JP2011191337A - 雑音抑制装置、方法、及びプログラム - Google Patents

雑音抑制装置、方法、及びプログラム Download PDF

Info

Publication number
JP2011191337A
JP2011191337A JP2010055002A JP2010055002A JP2011191337A JP 2011191337 A JP2011191337 A JP 2011191337A JP 2010055002 A JP2010055002 A JP 2010055002A JP 2010055002 A JP2010055002 A JP 2010055002A JP 2011191337 A JP2011191337 A JP 2011191337A
Authority
JP
Japan
Prior art keywords
noise
signal
observation signal
estimation
separation filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010055002A
Other languages
English (en)
Inventor
Jani Even
ジャニ エバン
Tomoya Takatani
智哉 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Institute of Science and Technology NUC
Toyota Motor Corp
Original Assignee
Nara Institute of Science and Technology NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Institute of Science and Technology NUC, Toyota Motor Corp filed Critical Nara Institute of Science and Technology NUC
Priority to JP2010055002A priority Critical patent/JP2011191337A/ja
Publication of JP2011191337A publication Critical patent/JP2011191337A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit For Audible Band Transducer (AREA)

Abstract

【課題】効果的に雑音を抑制することができる雑音抑制装置、雑音抑制方法、及び雑音抑制プログラムを提供すること。
【解決手段】本発明の一態様にかかる雑音抑制装置は、マイクロフォンユニット6によって取得された観測信号に対して、雑音抑制を行う雑音抑制装置であって、雑音成分と音声成分とを含む観測信号を周波数領域に変換するFFT部12と、周波数領域の観測信号を用いた適応処理によって、観測信号から音声推定信号を抽出する分離フィルタベクトルを算出する適応処理部13と、分離フィルタベクトルで分離された音声推定信号に基づいて、観測信号の雑音成分を推定する雑音推定部14と、雑音推定部で推定された雑音成分に基づくフィルタを用いて、観測信号の雑音を抑制するフィルタ部15と、を備え、分離フィルタベクトルが、ニュートン法を用いた更新学習によって分離フィルタを算出されているものである。
【選択図】 図2

Description

本発明は、雑音を抑制する雑音抑制装置、雑音抑制方法、及び雑音抑制プログラムに関する。
マイクロフォンによって集音した音声データからノイズを分離する処理において、ブラインド音源分離(BSS Blind Source Separation)が利用されている。ブラインド音源分離では、それぞれの音源を独立とした独立成分分析(ICA:Independent Component Analysis)が用いられる。
例えば、非特許文献1の独立成分分析では、音源数を仮定して、それと同数の分離信号が出力されるように、最適化している。この処理では、音源毎にフィルタを求める必要がある。このため、音源数に応じて処理時間が長くなってしまう。特に、適応処理では、フィルタの各フィルタ係数を算出する処理により多くの計算時間を要する。さらに、適用処理後に推定した音声推定信号を活用せずに破棄している。このような破棄する音声推定信号を算出するために、長時間の演算処理が行われる。処理時間を短くすることができないという。さらに、音源分離を行うために、分離フィルタ行列を算出する方法が、特許文献1に開示されている。
非特許文献1とは異なり音源数を既定せずに、音源分離を行う方法が非特許文献2に開示されている。この方法では、最適化するフィルタの個数が大きく減少され、計算量を大きく改善することができる。
特開2008−306712号公報 Yu Takahashi, Keiichi Osako, Hiroshi Saruwatari, Kiyohiro Shikano, "BLIND SOURCE EXTRACTION FOR HANDS−FREE SPEECH RECOGNITION BASED ON WIENER FILTERING AND ICA−BASED NOISE ESTIMATION", HSCMA2008, pp164−167 Jani Even, Hiroshi Saruwatari, Kiyohiro Shikano, "BLIND SIGNAL EXTRACTION BASED SPEECH ENHANCEMENT IN PRESENCE OF DIFFUSE BACKGROUND NOISE", 2009IEEE/SP 15th Workshop on Statistical Signal Processing(SSP), pp513−517
しかしながら、非特許文献2の処理では、コスト関数を最小化する更新学習式を最急降下法によって導出している。このため、更新係数値の調整が必要であり、更新係数値によっては、ローカルミニマムに陥ったり、発散したりして、解に到達しないことがある。すなわち、演算が収束せずに、処理時間が長くなってしまう。さらに、特許文献1では、音源数に応じた分離フィルタ行列を算出するため、計算が煩雑になって、計算時間が長くなってしまう。
本発明は、上記の問題点に鑑みてなされたものであり、効果的に雑音を低減することができる雑音抑制装置、雑音抑制方法、及び雑音抑制プログラムを提供することを目的とする。
本発明の第1の態様にかかる雑音抑制装置は、マイクロフォンユニットによって取得された観測信号に対して、雑音抑制を行う雑音抑制装置であって、雑音成分と音声成分とを含む観測信号を周波数領域に変換するフーリエ変換部と、前記周波数領域の観測信号を用いた適応処理によって、前記観測信号から音声推定信号を抽出する分離フィルタベクトルを算出する適応処理部と、前記分離フィルタベクトルで抽出された音声推定信号に基づいて、前記観測信号の雑音成分を推定する雑音推定部と、前記雑音推定部で推定された雑音成分に基づくフィルタを用いて、観測信号の雑音を抑制するフィルタ部と、を備え、前記分離フィルタベクトルが、ニュートン法を用いた更新学習によって算出されているものである。これにより、効果的に雑音を除去することができる。
本発明の第2の態様にかかる雑音抑制装置は、上記の雑音抑制装置であって、単チャネルの前記音声推定信号を複数チャネルの信号に射影する射影処理部をさらに備え、前記複数チャネルの信号と観測信号とに基づいて、雑音推定するものである。これにより、効果的に雑音を除去することができる。
本発明の第3の態様にかかる雑音抑制方法は、マイクロフォンユニットによって取得された観測信号に対して、雑音抑制を行う雑音抑制方法であって、雑音成分と音声成分とを含む観測信号を周波数領域に変換するステップと、前記周波数領域の観測信号を用いた適応処理によって、前記観測信号から音声推定信号を抽出する分離フィルタベクトルを算出するステップと、前記分離フィルタベクトルに基づいて、前記観測信号の雑音成分を推定するステップと、前記雑音推定部で推定された雑音成分に基づくフィルタを用いて、観測信号の雑音を抑制するステップと、を備え、前記分離フィルタベクトルが、ニュートン法を用いた更新学習によって算出されているものである。これにより、効果的に雑音を除去することができる。
本発明の第4の態様にかかる雑音抑制方法は、上記の方法であって、単チャネルの前記音声推定信号を複数チャネルの信号に射影するステップをさらに備え、前記複数チャネルの信号と観測信号とに基づいて、雑音推定するものである。これにより、効果的に雑音を除去することができる。
本発明の第5の態様にかかる雑音抑制プログラムは、マイクロフォンユニットによって取得された観測信号に対して、雑音抑制を行う雑音抑制プログラムであって、コンピュータに対して、雑音成分と音声成分とを含む観測信号を周波数領域に変換させるステップと、前記周波数領域の観測信号を用いた適応処理によって、前記観測信号から音声推定信号を分離する分離フィルタベクトルを算出させるステップと、前記分離フィルタベクトルに基づいて、前記観測信号の雑音成分を推定させるステップと、前記雑音推定部で推定された雑音成分に基づくフィルタを用いて、観測信号の雑音を抑制させるステップと、を備え、前記分離フィルタベクトルが、ニュートン法を用いた更新学習によって算出されているものである。これにより、効果的に雑音を除去することができる。
本発明の第6の態様にかかる雑音抑制方法は、上記のプログラムであって、単チャネルの前記音声推定信号を複数チャネルの信号に射影させるステップをさらに備え、前記複数チャネルの信号と観測信号とに基づいて、雑音推定するものである。これにより、効果的に雑音を除去することができる。
本発明によれば、短い処理時間で雑音を効果的に抑制することができる雑音抑制装置、雑音抑制方法、及び雑音抑制プログラムを提供することを提供することができる。
本発明にかかるロボットの全体構成を模式的に示す図である。 本発明にかかる雑音抑制装置とそのフローを示すブロック図である。
以下、本発明に係る移動体の実施形態を、図面に基づいて詳細に説明する。但し、本発明が以下の実施形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
まず、本発明に係る移動体の一例であるロボットの構成について、図1を用いて説明する。図1はロボットの構成を模式的に示す外観図である。本実施の形態では、ロボットが、自律移動する移動ロボットとして説明する。ロボットは、頭部1と、車輪2と、筐体3と、センサ5と、マイクロフォンユニット6と、制御部10と、を備えている。そして、筐体3の内部には、車輪2と接続されたモータ、及びモータを駆動するためのバッテリなどが設けられている。このモータがロボットを駆動するための駆動機構となる。モータを駆動することによって、車輪2が回転して、ロボットが移動する。
さらに、頭部1には、CCDカメラやレーザセンサなどを有するセンサ5が設けられている。センサ5はロボット100に周囲に存在する障害物や人間などを検知する。ロボット1は、障害物などを避けて移動する。マイクロフォンユニット6は、複数のマイクロフォンによって、外部の音を検出する。すなわち、マイクロフォンユニット6は、所定のピッチでマイクロフォンが配列されているマルチチャネルのマイクロフォンユニットである。そして、マイクロフォンユニット6は、集音した音声データをA/D変換して、制御部10に出力する。
制御部10は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、通信用のインタフェイスなどを有する演算処理装置である。また、制御部10は、着脱可能なHDD、光ディスク、光磁気ディスク等を有し、各種プログラムや制御パラメータなどを記憶し、そのプログラムやデータを必要に応じてメモリ(不図示)等に供給する。もちろん、制御部10は、物理的に一つの構成に限られるものではない。制御部10は、マイクロフォンユニット6によって、集音された音のデータに対して、音声処理を行う。例えば、雑音除去処理、音声認識処理などを行う。そして、制御部10は、音声認識の処理結果に応じて、ロボット1の動作を制御する。
本実施形態にかかるロボット1は、制御部10によって行われる音声データ処理、具体的には、雑音抑制処理を特徴の一つとしている。ここでは、独立成分分析(ICA)により音源抽出を行い、音声成分、雑音成分を推定している。さらに、本実施形態では、音声成分のスパース性が高いことに着目し、高スパース性信号を出力するICAを用いている。マイクロフォンユニット6から出力された観測信号から雑音信号を抑制して、特定のユーザから発せられた音声信号を抽出している。さらに、雑音が抑制された音声データに対して、例えば、音声認識処理を行う。これにより、音声認識の精度を向上することができる。このように、制御部10は、雑音抑制装置として機能する。
次に、雑音抑制処理を行う制御部10の構成、及び雑音抑制方法のフローについて、図2を用いて説明する。図2は、雑音抑制処理を行うための、制御部10の構成を示すブロック図である。制御部10は、フレーム分割部11と、FFT部12と、適応処理部13と、射影処理部14と、雑音推定部1と、WF部16と、DS部17と、IFFT部18と、を備えている。
ここでは、マイクロフォンユニット6が2つのマイクロフォンを備えており、第1のマイクロフォンからの入力信号を入力1とし、第2のマイクロフォンからの入力信号を入力2とする。そして、入力1、及び入力2が制御部10に入力される。なお、マイクロフォンユニット6の数は、2に限られるものではなく、1つでも3つ以上でもよい。マイクロフォンユニット6からの入力1、2は、ユーザの音声に基づく音声信号だけでなく、ハックグラウンドに基づく雑音信号も含む、観測信号となる。すなわち、観測信号は、抽出したい音声信号と、除去したい雑音信号とが混合された信号である。なお、上記の説明ではマイクロフォンユニット6によって観測信号をデジタル信号に変換したが、マイクロフォンユニット6から出力されたアナログの観測信号を制御部10がデジタル信号に変換しても良い。
フレーム分割部11は、マイクロフォンユニット6から入力された観測信号をフレーム分割する。具体的には、所定時間の観測信号をバッファに記憶して、その観測信号を、k個(kは2以上の整数)のフレームに分割する。ここでは、時間領域において、隣接フレームが半分重なるように、ハーフシフトによってフレーム分割している。フレーム分割された音声データは、FFT部12によって、高速フーリエ変換(Fast Fourier Transfrom)され、周波数領域の観測信号となる。すなわち、デジタルの観測信号に対して離散的なフーリエ変換を行うことによって、時間領域の観測信号が、周波数領域の観測信号に変換される。
周波数領域の観測信号は、適応処理部13によって適応処理がなされる。適応処理では、最適化アルゴリズムに従ってその伝達関数の逆フィルタを自己適応させる適応フィルタが生成される。この適応フィルタは、観測信号から音声成分を分離する分離フィルタである。分離フィルタは、マイクロフォンユニット6のチャネル数に応じた次元を持つベクトルである。分離フィルタは、観測信号から目的音源であるユーザの音声成分を抽出する。例えば、分離フィルタは、音声成分以外を雑音成分として、観測信号から音声成分を抽出する。
具体的には、コスト関数J(W(f))を最小にするような分離フィルタW(f)が作成される。コスト関数は、観測信号に対して、音声成分の分離度を評価するものである。このコスト関数が最小値に収束することで、分離フィルタW(f)が決定される。具体的には、更新学習を行うことで、コスト関数J(W(f))が最小値に近づいていく。そして、更新計算が収束することで、コスト関数J(W(f))が最小化されて、分離フィルタW(f)が決定する。そして、分離フィルタW(f)が決定されたら、次の観測信号からこの分離フィルタW(f)を用いて、音声成分を推定する。さらに、制御部10は、新たに測定された観測信号と現在の分離フィルタW(f)を用いて更新学習処理を行い、所定の更新間隔で、分離フィルタW(f)を更新する。このように、分離フィルタW(f)は、フィードバックによって随時変化する。
この分離フィルタW(f)を観測信号に適用することで、観測信号から音声推定信号が抽出される。なお、音声推定信号は、発話したユーザを音源と推定した信号となる。なお、分離フィルタW(f)を算出する処理については後述する。
射影処理部14は、適応処理部13で作成された分離フィルタW(f)に基づいて、射影処理を行う。ここでは、音声推定信号y(f,k)と観測信号X(f,k)と基づいて、射影処理を行う。これにより、音声と推定された音声推定信号のみ、元の空間に射影される。具体的には、射影された音声推定信号(以下、射影信号とする)は以下の式(1)によって求めることができる。
Figure 2011191337
εは、kに対する平均、すなわち、時間平均を示している。Hは共役転置を示している。この射影処理によって音のひずみを抑制して、マイクロフォンユニット6の音質に戻すことができる。さらに、単チャネルの推定信号を多チャネルに射影することができる。すなわち、1つの音声推定信号が、多チャネルの信号に変換される。もちろん、これ以外の方法で、射影処理を行っても良い。そして、射影処理部14は、射影された射影信号を雑音推定部15に出力する。
次に、雑音推定部15は、射影信号に基づいて、雑音成分を推定する。例えば、雑音推定部15は、観測信号から射影信号を減算することで、雑音成分を推定する。具体的には、以下の式(2)によって、算出することができる。
Figure 2011191337
そして、雑音推定部15から雑音推定信号が出力される。雑音推定部15は、チャネル毎に雑音推定する。本実施形態では2チャネルのマイクロフォンユニット6を用いているため、ある周波数ビンについて、2つの雑音推定信号が出力される。なお、分離フィルタW(f)を生成する処理から、雑音推定するまでの処理は、同じタイミングの観測信号に基づいて実行される。
そして、WF(Weiner Filter)部16には、雑音推定部15からの雑音推定信号が入力される。さらに、WF部16には、FFT部12から観測信号が入力される。WF部16は、推定された雑音成分を用いて、FFT部12からの観測信号に対する雑音抑制を行う。WF部16は、ウィーナーフィルタ処理によって雑音抑制処理を実行する。例えば、雑音推定信号のパワーと、観測信号のパワーの比から、雑音を抑制する。これにより、効果的に雑音を抑制することができる。FFT部12からの観測信号は、分離フィルタを生成した観測信号よりも後に測定されたものである。よって、後続する観測信号に対してWF部16によるフィルタ処理が行われる
例えば、WF部16では、雑音成分に応じた雑音推定信号と、雑音成分と音声成分を含む観測信号と、に基づいて、マスク関数を算出する。マスク関数は、観測信号から雑音成分を減算するための減算係数を有するフィルタである。そして、このマスク関数を、観測信号に適用することで、雑音をマスクする。これにより、観測信号中の雑音成分が抑制される。
例えば、マスク関数G(f,k)は以下の式(3)で算出することができる。
Figure 2011191337
なお、上記の式において、αは任意の定数であり、雑音抑制を制御するパラメータである。マスク関数G(f,k)はウィーナーゲインに相当する。ウィーナーフィルタにより雑音抑圧は、各チャネルに対して実行される。なお、各関数の下付き文字の"1"はチャネルを示している。よって、その他のチャネルに対しても同様の処理が適用される。なお、観測信号は、雑音推定信号と音声推定信号の和である。観測信号がウィーナーフィルタを通過することで、雑音抑制される。そして、WF部16は、雑音抑制された雑音抑制信号をDS部17に出力する。各周波数成分に対してウィーナーフィルタリング処理が適用されることで、効果的に雑音抑制することができる。
WF部16でウィーナーフィルタを通過した雑音抑制信号は、DS(Delay and Sum)部17によって、遅延、及び加算される。すなわち、2チャネルの観測信号に、音声到来方向と、マイクロフォン間ピッチに応じた時間遅延(ディレイ)を与える。そして、所定の時間遅延が与えられた後、2つの観測信号が加算される。これにより、2チャネルの観測信号の位相が揃う。このため、音声成分が強調され、S/Nを向上することができる。
そして、DS部17から出力された信号は、IFFT(Inverse Fast Fourier Transform)部18に入力される。IFFT部18は、信号に逆高速フーリエ変換を行い、時間領域の信号に戻す。これにより、時間領域の信号であって、かつ雑音抑制処理が行われた音声データを生成することができる。
上記のように、マイクロフォンユニット6によって、雑音成分と音声成分とを含む観測信号を取得する。そして、観測信号を周波数領域に変換する。周波数領域の観測信号を用いた適応処理によって、観測信号から音声推定信号を分離する分離フィルタベクトルを算出する。分離フィルタベクトルに基づいて、観測信号の雑音成分を推定する雑音推定する。雑音推定部で推定された雑音成分に基づくフィルタを用いて、観測信号の雑音を抑制する。分離フィルタを随時更新していき、更新された分離フィルタに基づいて雑音抑制を行う。これにより、音源数の増加しても、分離フィルタ(ベクトル)の算出時間が多くならない。よって、演算時間を短くすることができ、効果的に、雑音抑制することができる。
本実施の形態では、音源数によらず音声成分だけを推定している。これにより、演算処理を簡素化することができ、演算処理時間を短縮することができる。さらに、ニュートン法を用いた更新学習によって分離フィルタベクトルを算出している。以下に、適応処理部13における分離フィルタの算出処理について、詳細に説明する。更新学習に用いられるコスト関数J(W(f))は、以下の式(4)によって表される。
Figure 2011191337
ここで、W(f)は分離フィルタ(ベクトル)、X(f,k)は入力信号(ベクトル)、y(f,k)は音声推定信号(スカラー)である。入力信号X(f,k)は観測信号に対応する。音声推定信号y(f、k)は、分離フィルタによる分離、抽出の結果である。すなわち、入力信号X(f,k)に分離フィルタW(f)を適用することに音声推定信号y(f、k)がよって得られる。このため、音声推定信号y(f、k)は、以下のように分離フィルタW(f)と入力信号X(f,k)との乗算で表され、以下の式(5)となる。
Figure 2011191337
式(5)において、Tは転置を示している。また、更新学習式は、以下の式(6)によって表すことができる。
Figure 2011191337
εは、kに対する平均、すなわち時間平均を示している。Hはヘッセ行列であり、その対称性からHwiwi*=H wi*wiとなり、また、Hwi*wi*=H wiwiとなる。*は共役、Tは転置、Hは共役転置を示している。
上記の更新学習式によって、分離フィルタW(f)が収束するまで、繰り返し演算を行う。例えば、iをインクリメントした時の分離フィルタW(f)の減少分が一定値以下になるまでループを繰り返す。この更新学習によって、分離フィルタW(f)を算出することができる。この分離フィルタW(f)を用いることで、短い処理時間で効果的に雑音を抑制することができる。
更新学習において、ニュートン法を用いて分離フィルタを算出することで、更新係数μを変更しなくても、分離フィルタW(f)の繰り返し演算が収束する。ローカルミニマムに陥ることがなく、かつ発散することがないので、ロバスト性を向上することができる。すなわち、更新係数の選択によらず、更新学習が収束するため、更新係数に対するロバスト性が向上する。すなわち、更新係数μは一定値でよい。さらに、更新学習の繰り返し回数も少なくすることができる。よって、演算処理時間を短縮することができる。また、分離フィルタW(f)は行列ではなく、ベクトルであるため、計算を簡素化でき、計算時間を短くすることができる。
本実施形態では、音声信号のスパース性が高いことに着目して、音声信号のみを抽出している。よって、音源数を規定する必要がない。観測信号から音声推定信号を分離する分離フィルタベクトルのみを算出すればよい。すなわち、一つの分離フィルタベクトルを算出するだけでよいため、処理時間を短くすることができる。
上述した雑音抑制処理は、DSP(Digital Signal Processor)、MPU(Micro Processing Unit)、若しくはCPU(Central Processing Unit)又はこれらの組み合わせを含むコンピュータにプログラムを実行させることによって実現してもよい。
雑音抑制処理をコンピュータに行わせるための命令群を含むプログラムは、非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いてコンピュータに供給できる。非一時的なコンピュータ可読媒体は、様々な種類の実体のある記憶媒体(tangible storage medium)を含む。例えば、非一時的なコンピュータ可読媒体は、磁気記憶媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記憶媒体(例えば光磁気ディスク)、CD−ROM、CD−R,CD−R/W、RAM(Random Access Memory)、ROM(Read Only Memory)、UV−EPROM(Erasable ROM)、EEPROM(Electrical EPROM)、フラッシュROMを含む。また、プログラムは、非一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的な媒体は、プログラムがエンコードされた電気信号、光信号、及び電磁波を含む。プログラムがエンコードされた電気信号、光信号、及び電磁波は、電線及び光ファイバ等の有線伝送路、又は無線伝送路(空間)を伝搬することでコンピュータに供給される。
1 頭部
2 車輪
3 筺体
5 センサ
6 マイクロフォンユニット
10 制御部
11 フレーム分割部
12 FFT部
13 適応処理部
14 射影処理部
15 雑音推定部
16 WF部
17 DS部
18 IFFT部

Claims (6)

  1. マイクロフォンユニットによって取得された観測信号に対して、雑音抑制を行う雑音抑制装置であって、
    雑音成分と音声成分とを含む観測信号を周波数領域に変換するフーリエ変換部と、
    前記周波数領域の観測信号を用いた適応処理によって、前記観測信号から音声推定信号を抽出する分離フィルタベクトルを算出する適応処理部と、
    前記分離フィルタベクトルで抽出された音声推定信号に基づいて、前記観測信号の雑音成分を推定する雑音推定部と、
    前記雑音推定部で推定された雑音成分に基づくフィルタを用いて、観測信号の雑音を抑制するフィルタ部と、を備え、
    前記前記分離フィルタベクトルが、ニュートン法を用いた更新学習によって算出されている雑音抑制装置。
  2. 単チャネルの前記音声推定信号を複数チャネルの信号に射影する射影処理部をさらに備え、
    前記複数チャネルの信号と観測信号とに基づいて、雑音推定する請求項1に記載の雑音抑制装置。
  3. マイクロフォンユニットによって取得された観測信号に対して、雑音抑制を行う雑音抑制方法であって、
    雑音成分と音声成分とを含む観測信号を周波数領域に変換するステップと、
    前記周波数領域の観測信号を用いた適応処理によって、前記観測信号から音声推定信号を抽出する分離フィルタベクトルを算出するステップと、
    前記分離フィルタベクトルに基づいて、前記観測信号の雑音成分を推定するステップと、
    前記雑音推定部で推定された雑音成分に基づくフィルタを用いて、観測信号の雑音を抑制するステップと、を備え、
    前記分離フィルタベクトルがニュートン法を用いた更新学習によって算出されている雑音抑制方法。
  4. 単チャネルの前記音声推定信号を複数チャネルの信号に射影するステップをさらに備え、
    前記複数チャネルの信号と観測信号とに基づいて、雑音推定する請求項2に記載の雑音抑制方法。
  5. マイクロフォンユニットによって取得された観測信号に対して、雑音抑制を行う雑音抑制プログラムであって、
    コンピュータに対して、
    雑音成分と音声成分とを含む観測信号を周波数領域に変換させるステップと、
    前記周波数領域の観測信号を用いた適応処理によって、前記観測信号から音声推定信号を抽出する分離フィルタベクトルを算出させるステップと、
    前記分離フィルタベクトルに基づいて、前記観測信号の雑音成分を推定させるステップと、
    前記雑音推定部で推定された雑音成分に基づくフィルタを用いて、観測信号の雑音を抑制させるステップと、を備え、
    前記分離フィルタベクトルが、ニュートン法を用いた更新学習によって算出されている雑音抑制プログラム。
  6. 単チャネルの前記音声推定信号を複数チャネルの信号に射影させるステップをさらに備え、
    前記複数チャネルの信号と観測信号とに基づいて、雑音推定する請求項5に記載の雑音抑制プログラム。
JP2010055002A 2010-03-11 2010-03-11 雑音抑制装置、方法、及びプログラム Pending JP2011191337A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055002A JP2011191337A (ja) 2010-03-11 2010-03-11 雑音抑制装置、方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055002A JP2011191337A (ja) 2010-03-11 2010-03-11 雑音抑制装置、方法、及びプログラム

Publications (1)

Publication Number Publication Date
JP2011191337A true JP2011191337A (ja) 2011-09-29

Family

ID=44796384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055002A Pending JP2011191337A (ja) 2010-03-11 2010-03-11 雑音抑制装置、方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP2011191337A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106796803A (zh) * 2014-10-14 2017-05-31 汤姆逊许可公司 用于在音频通信中将语音数据与背景数据分离的方法和装置
CN111524531A (zh) * 2020-04-23 2020-08-11 广州清音智能科技有限公司 一种用于对高音质的双通道视频语音的实时降噪的方法
WO2021161437A1 (ja) * 2020-02-13 2021-08-19 日本電信電話株式会社 音源分離装置、音源分離方法、およびプログラム
KR20220134877A (ko) * 2021-03-29 2022-10-06 한국광기술원 잡음환경에 강건한 대화 음성 분리 기능을 갖춘 대면 녹취장치 및 방법

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106796803A (zh) * 2014-10-14 2017-05-31 汤姆逊许可公司 用于在音频通信中将语音数据与背景数据分离的方法和装置
JP2017532601A (ja) * 2014-10-14 2017-11-02 トムソン ライセンシングThomson Licensing オーディオ通信内の音声データを背景データから分離する方法及び機器
CN106796803B (zh) * 2014-10-14 2023-09-19 交互数字麦迪逊专利控股公司 用于在音频通信中将语音数据与背景数据分离的方法和装置
WO2021161437A1 (ja) * 2020-02-13 2021-08-19 日本電信電話株式会社 音源分離装置、音源分離方法、およびプログラム
JPWO2021161437A1 (ja) * 2020-02-13 2021-08-19
JP7420153B2 (ja) 2020-02-13 2024-01-23 日本電信電話株式会社 音源分離装置、音源分離方法、およびプログラム
CN111524531A (zh) * 2020-04-23 2020-08-11 广州清音智能科技有限公司 一种用于对高音质的双通道视频语音的实时降噪的方法
KR20220134877A (ko) * 2021-03-29 2022-10-06 한국광기술원 잡음환경에 강건한 대화 음성 분리 기능을 갖춘 대면 녹취장치 및 방법
KR102504043B1 (ko) * 2021-03-29 2023-02-28 한국광기술원 잡음환경에 강건한 대화 음성 분리 기능을 갖춘 대면 녹취장치 및 방법

Similar Documents

Publication Publication Date Title
JP7191793B2 (ja) 信号処理装置、信号処理方法、及びプログラム
US10403299B2 (en) Multi-channel speech signal enhancement for robust voice trigger detection and automatic speech recognition
EP3185243B1 (en) Voice processing device, voice processing method, and program
US9654894B2 (en) Selective audio source enhancement
JP6260504B2 (ja) オーディオ信号処理装置、オーディオ信号処理方法及びオーディオ信号処理プログラム
CN111133511A (zh) 声源分离系统
US9369803B2 (en) Apparatus and method for removing noise
JP6225245B2 (ja) 信号処理装置、方法及びプログラム
JP5374427B2 (ja) 音源分離装置、音源分離方法およびそのためのプログラム、並びにそれを用いたビデオカメラ装置およびカメラ付き携帯電話装置
JP6544234B2 (ja) 信号処理装置、信号処理方法および信号処理プログラム
KR102410850B1 (ko) 잔향 제거 오토 인코더를 이용한 잔향 환경 임베딩 추출 방법 및 장치
JP2011191337A (ja) 雑音抑制装置、方法、及びプログラム
JP6087762B2 (ja) 残響抑圧装置とその方法と、プログラムとその記録媒体
US20120148063A1 (en) Audio processing apparatus, audio processing method, and image capturing apparatus
KR101557779B1 (ko) 두 개의 마이크로폰을 포함하는 통신장치에서의 잡음제거방법 및 장치
EP3219028A1 (en) Adaptive interchannel discriminitive rescaling filter
JP5982900B2 (ja) 雑音抑制装置、マイクロホンアレイ装置、雑音抑制方法、及びプログラム
EP3225037B1 (en) Method and apparatus for generating a directional sound signal from first and second sound signals
KR101903874B1 (ko) 듀얼 마이크 기반의 잡음 제거 방법 및 장치
KR101096091B1 (ko) 음성 분리 장치 및 이를 이용한 단일 채널 음성 분리 방법
JP5687522B2 (ja) 音声強調装置、方法、及びプログラム
JP2010217551A (ja) 音処理装置およびプログラム
JP2017151226A (ja) 信号解析装置、方法、及びプログラム
JP2005257748A (ja) 収音方法、収音装置、収音プログラム
JP6221463B2 (ja) 音声信号処理装置及びプログラム