JP2011191145A - 原子炉用制御棒の設計方法及び原子炉用制御棒 - Google Patents

原子炉用制御棒の設計方法及び原子炉用制御棒 Download PDF

Info

Publication number
JP2011191145A
JP2011191145A JP2010056697A JP2010056697A JP2011191145A JP 2011191145 A JP2011191145 A JP 2011191145A JP 2010056697 A JP2010056697 A JP 2010056697A JP 2010056697 A JP2010056697 A JP 2010056697A JP 2011191145 A JP2011191145 A JP 2011191145A
Authority
JP
Japan
Prior art keywords
control rod
neutron absorber
reactivity value
nuclear reactor
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010056697A
Other languages
English (en)
Inventor
Kiyoshi Ueda
精 植田
Kenichi Yoshioka
研一 吉岡
Tsukasa Kikuchi
司 菊池
Koji Matsumiya
浩志 松宮
Tomoko Tajima
智子 田嶋
Masaru Ukai
勝 鵜飼
Kosaku Tsumita
耕作 積田
Yamato Hayashi
大和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010056697A priority Critical patent/JP2011191145A/ja
Publication of JP2011191145A publication Critical patent/JP2011191145A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

【課題】反応度価値の要求値を満たしつつ、機械的寿命の延長を図ることができる原子炉用制御棒の設計方法を提供する。
【解決手段】反応度価値調節が不要な第I領域と、反応度価値調節が必要な第II領域とに制御棒有効部を区分しておき、第I領域Xの設計完了後に第II領域Yの設計を開始する。この設計において、中性子吸収材のスエリング量が中性子吸収材と収容穴の相互間隙の寸法に等しくなるまでの時間を機械的寿命と定義する。そして、第I領域の設計工程では、この機械的寿命が要求値を満たすように、中性子吸収材及び収容穴の寸法調節を行う。第II領域の設計工程では、中性子吸収材及び収容穴を第II領域に適用し、反応度価値が要求値以上となるように、B−10(中性子吸収材の有効核種)の濃縮度を調節する。続いて、核的寿命が要求値を満たすように、B−10の濃縮度を調節する。
【選択図】図7

Description

本発明は、原子炉用制御棒の設計技術に係り、特に、原子炉用制御棒の有効部となる原子炉用制御棒の設計方法及び原子炉用制御棒に関する。
従来、改良型沸騰水型原子炉(ABWR)を含む沸騰水型原子炉(BWR)、改良型加圧水型原子炉(ABWR)を含む加圧水型原子炉(PWR)、高速増殖炉(FBR)を含む各種の高速炉(FR)を対象とし、求められる核特性及び機械特性を考慮した様々な原子炉用制御棒が提案されている(特許文献1〜4,非特許文献1〜8)。
米国特許第4861544号明細書 米国特許第4876060号明細書 米国特許第4882123号明細書 特開昭57−98893号公報
Kerntechnik 57(1992), No.2:Main subject "Performance of Control Rods" p. 102, G.Vesterlund, L.Hallstadius, H.Hoffmann and L.Corsetti:"Development of ABB Control Rods and Operational Experience" Kerntechnik 57(1992), No.2: Main subject "Performance of Control Rods" p.107, K.W.Brayman and P.Van Diemen: "Experience with General Electric's Control Rods for Boiling Water Reactors" 日本原子力学会「2008年秋の大会」C19,p156 B.Robensdorff, A.Dag, S.Tajima, Y.Hayashi; "Study on B4C long-lifed Control Rod application to Japanese plant (1) Design Features and Operational Experience" 日本原子力学会「2008年秋の大会」C20, p.157 林、田嶋、B.Rebensdorff, A. Dag;B4C型長寿命制御棒の国内適用性についての検討 (2)機械的特性と核的特性 日本原子力学会「2002年春の年会」G58, p.367 吉岡、安藤、三橋、桜田 モンテカルロ燃焼計算コ−ドの開発 EPRI−NP−1974"Control Rod Materials and Burnable Poisons"1982 『高速増殖炉用制御棒の開発』丸山忠司 東京工業大学 耐火物 第60巻 第10号 516-526 2008年10月 Nuclear Technology, vol. 60, p. 362, Mar. 1983, N. Eickelpasch, et al.
原子炉用制御棒の中性子吸収材としては、中性子吸収断面積の大きいボロンカーバイド(BC)の粉末や焼結ペレットなどが用いられている。そして、BC粉末やペレットは、原子炉用制御棒の構造材(例えば、BWR用制御棒の場合は、翼(ウイング)のステンレス鋼板等金属製構造板)に設けられた中性子吸収材の収容穴に充填され、制御棒有効部を形成するのが一般的となっている。しかしながら、BC粉末は収容穴の穴壁と直接的に接触(Hard−contact)する構造となっているため、ホウ素の中性子吸収反応で生じるヘリウム(He)を主因とする中性子吸収材の膨張(スエリング)により、制御棒構造材(金属製構造材)の内圧・応力の上昇に基づく亀裂が発生するおそれがある。
但し、このような機械的破損が生じうる状態となるまでの時間(以下、「機械的寿命」と称す。)は、BC粉末を焼結・圧縮加工してペレット状とし、中性子吸収材とBCペレットの間に隙間を確保することで大幅に延長させることができる。
しかし、BCのペレット化及び隙間の確保は、言い換えると中性子吸収材の収容穴に中性子吸収材をフル充填しないということであるから、BCの粉末を用いた言わばフル充填の構造に比べると原子炉用制御棒の反応度価値が小さくなってしまう。要するに、機械的寿命を延長させようとすると反応度価値が低下し、反応度価値を高めようとすると機械的寿命の延長が図れないという点が問題となっている。
本発明は上記事情に鑑みてなされたもので、反応度価値の要求値を満たしつつ、機械的寿命の延長を図ることができる原子炉用制御棒、及び原子炉用制御棒の設計方法(製造方法)を提供することを目的とする。
上述した目的を達成するため、本発明に係る原子炉用制御棒の設計方法では、制御棒有効部となる中性子吸収材を収容する中性子吸収材収容部を備えた原子炉用制御棒の設計方法において、反応度価値調節が不要な高反応度価値−不要領域と、反応度価値調節が必要な高反応度価値−必要領域とに制御棒有効部を区分して、高反応度価値−不要領域の設計完了後に高反応度価値−必要領域の設計を開始するようにする。そして、高反応度価値−不要領域の設計工程では、中性子吸収材のスエリング量が中性子吸収材と中性子吸収材収容部の相互間隙の寸法と等しくなるまでの時間を機械的寿命と定義しておき、この機械的寿命が要求値を満たすように、中性子吸収材及び中性子吸収材収容部の寸法調節を行う(ステップ1)。
高反応度価値−必要領域の設計工程では、先ず、上記のステップ1で寸法調節された中性子吸収材及び中性子吸収材収容部を高反応度価値−必要領域に適用し、この高反応度価値−必要領域の反応度価値が要求値以上となるように、中性子吸収材の濃縮度を調節する(ステップ2)。次いで、ステップ2に続き、高反応度価値−必要領域の核的寿命が要求値を満たすように、中性子吸収材の濃縮度を調節する(ステップ3)。
上述した目的を達成するため、本発明に係る原子炉用制御棒は、制御棒有効部となる中性子吸収材を収容する中性子吸収材収容部を備えた原子炉用制御棒において、制御棒有効部は、反応度価値調節が不要な高反応度価値−不要領域と、反応度価値調節が必要な高反応度価値−必要領域とに区分され、高反応度価値−不要領域は、制御棒有効部の挿入先端から挿入末端側に向って略16cmまでの範囲と、制御棒有効部の中央又はその中央を略32cm超過した位置から制御棒有効部の挿入末端までの範囲とに設けられ、高反応度価値−必要領域は、制御棒有効部の挿入先端から略16cmの位置から制御棒有効部の中央又はその中央を略32cm超過した位置までの範囲に設けられることを特徴とする。
ここにおいて、高反応度価値−不要領域とは高い反応度価値を必要としない領域をいい、低い反応度でも許容できることを意味する。
本発明によれば、反応度価値の要求値を満たしつつ、機械的寿命の延長を図ることができる。
本発明に係る原子炉用制御棒の実施形態を示す図。 (a)は図1のA−A線に沿う縦断面図及び(b)は図1のB−B線に沿う横(平)断面図。 図1の原子炉用制御棒の要部拡大断面図。 原子炉用制御棒の特性図。 中性子吸収材(BC)のスエリング特性図。 原子炉用制御棒の核的寿命の説明図。 原子炉用制御棒の設計手順を示すフローチャート。 図7の設計手順に基づいて製造される原子炉用制御棒の態様図であり、(a)は原子炉用制御棒の側面図、(b)は図8(a)のA−A線に沿う横(平)断面図、(c)は図8(a)または(b)の部分的拡大図、(d)は、図8(a)のB−B線に沿う縦断面図。 図7の設計手順に基づいて製造される原子炉用制御棒の態様図であり、(a)はPWRの原子炉用制御棒の側面図、(b)は原子炉用制御棒の縦断面図。 図7の設計手順に基づいて製造される原子炉用制御棒の態様図。 原子炉用制御棒の反応度価値のB−10濃度依存性を示す図であり、(a)は、(b)は。 従来のBC制御棒モデルの一例を示す図。 原子炉用制御棒の反応度価値のB−10濃度依存性を示す図であり、(a)はB−10濃縮度と反応度価値の関係を示す図、(b)はB−10量/収容穴と反応度価値の関係を示す図。 原子炉用制御棒1の核的寿命のB−10濃度依存性を示す図であり、(a)はB−10濃縮度と核的寿命の関係を示す図、(b)はB−10量/収容穴と核的寿命の関係を示す図。 Cの中性子吸収率のHf濃度依存性を示す図。 図7の設計手順に基づいて反応度価値の調節が行われた原子炉用制御棒の一例を示す図。 図7の設計手順に基づいて反応度価値の調節が行われた原子炉用制御棒の一例を示す図。 図7の設計手順に基づいて反応度価値の調節が行われた原子炉用制御棒の一例を示す図。
添付図面を参照して、本発明の実施形態を説明する。尚、実施形態は、BWR用制御棒の設計方法に関する。
図1は本発明に係る原子炉用制御棒の実施形態を示す図であり、原子炉用制御棒の側面図である。図2(a)は図1のA−A線に沿う縦断面図、図2(b)は図1のB−B線に沿う横(平)断面図である。図3は原子炉用制御棒の要部拡大断面図である。
本実施形態の原子炉用制御棒1は、図1ないし図3に示すように、細長い矩形、平板状のステンレス鋼(以下、「金属製構造板」と称す。)を基本部材とする翼(ウイング)2がタイクロス3により横断面十字状に保持され、翼2の上端及び下端が先端構造材4及び末端構造材5により保持され、BWRの4体一組の燃料集合体(図示省略)の隙間を通って炉心内にて挿抜される。
タイクロス3は、原子炉用制御棒1の軸方向に間隔をおいて配置された横断面十字形の短尺結合部材をいい、このタイクロス3に4枚の翼2が横断面十字形に結合される。金属製構造板2aはステンレス鋼以外にハフニウム(Hf)とジルコニウムとの合金製の細長い矩形の平板で構成してもよい。
翼2の構造板2aには、図2(a)に示すように、所定の穴ピッチを置いて複数の中性子吸収材収容部、即ち、収容穴6(直径H)が設けられる。この収容穴6は、図2(b)に示すように、翼2の構造板2aの幅方向に向かって穿設され、設けられている。尚、収容穴6の開口端は、開口端閉塞機構6aで閉じられている。開口端閉塞機構6aは翼2の外側端側に一体に設けられ、閉塞するロッド状、あるいはかまぼこ状の閉塞部材で構成される。
挿入先端側から挿入末端側に数個、例えば6つ目までの収容穴6には、図3に示すように、非気密性の内管7(肉厚T)が挿入されており、この内管7の中にペレット状のボロンカーバイド(BC)または、AgInCd,Hfの中性子吸収材8(直径P)が収容されている。一方、挿入先端側から挿入末端側に数個、例えば7つ目以降の収容穴6には、BCの中性子吸収材8のペレットが直接あるいは内管7が挿入され、この内管7内に中性子吸収材8のペレットが挿入される。さらに、原子炉用制御棒1の挿入末端側には、内管7は挿入されず、中性子吸収材8は直接的に収容穴8に収容されている。翼2の構造板2aを金属製構造材を構成しており、金属製構造材の収容穴6には、内管7を挿入し、この内管7内にBCのペレットあるいは粉末を挿入したものと、内管7を挿入しないで、BCペレットあるいはその粉末を直接挿入したものがある。
収容穴6と内管7の間には間隙gが設けられており、又、内管7と中性子吸収材8の間には所定の間隙gが設けられている。間隙g及び間隙gは、主としてボロンの中性子吸収反応によるヘリウム生成に基づく膨張(スエリング)を考慮し、収容穴6や内管7の構造破損を回避するために設けられる。
次に、原子炉用制御棒1の設計方法について説明する。
<本発明に至った経緯>
図4は原子炉用制御棒1の必要な反応度価値(破線)及び中性子照射量(実線)の軸方向分布の概念を示す特性図である。
原子炉用制御棒1の挿入先端から挿入末端側に向う先端特定範囲、例えば5cm以上32cm以下(特に16cm未満)の第I領域Xについては、反応度価値の要求値はその他の領域に比べて高くない。従って、第I領域Xについては、力学的、電気・水化学的な健全性(総じて「機械的健全性」と称す。)を確保することが重要になる。原子炉用制御棒1は挿入先端から挿入末端まで、例えば4m程度の軸方向長さを有する。
一方、第II領域Yに対する反応度価値の要求値は、その他の領域に比べて高い。又、原子炉運転中に炉心挿入状態となる出力調整用制御棒にあっては、原子炉運転中に炉心から引き抜かれた状態となる停止用制御棒に比べて中性子照射量が多くなるので、中性子照射による機械的耐久性を図ることも併せて重要となる。尚、第II領域Yは、第I領域Xの終点位置から原子炉用制御棒の有効長中央よりも若干α(30cm程度)だけ制御棒挿入末端側に偏った位置までである。
この第II領域Yは、第III領域Zに比べると中性子照射量が多く、中性子吸収材8のスエリングが大きくなる。スエリングにより膨張変形した中性子吸収材8が翼2の構造板2aに直接接触すると、その応力によって翼2が破損するおそれが高まる。このため、第II領域Yの収容穴6、例えば、挿入先端から6つ目までの収容穴6を対象として、内管7を挿入し、この内管7の中に中性子吸収材8を収容する。内管8を用いるとスエリングが進行しても中性子吸収材8と翼2の構造板2aとが直接接触することを回避できる。加えて、上述した間隙g及び間隙gを設けることで、スエリングの進行に伴う翼2の機械的寿命を延長できる。スエリングが生じた中性子吸収材8の硬度は、ウイング2の金属製構造板の硬度より大きくなり硬い。
これに対し、第III領域Zは、第II領域Yに比べると中性子照射量が少なく中性子吸収材8のスエリングは少ないので、この領域の収容穴6に内管7を設けることのメリットは第II領域Yに比べると小さい。このため、第III領域Zの収容穴6には、例えば、挿入先端から7つ目以降の収容穴6から挿入末端に至る収容穴6まで、内管7が挿入されず、直接的に中性子吸収材8が収容されている。第III領域Zは、制御棒有効部の中央またはその中央を略32cm超過した位置から挿入末端に至る範囲は、高い反応度価値を必要としない領域、すなわち高反応度価値−不要領域である(図4参照)。
ここで、第II領域Yの収容穴6に対しては内管8や間隙g及び間隙gを設け、第III領域Zの収容穴6に対しては内管を設けることなく間隙gのみを設けるなどして機械的寿命の延長を図ると、収容穴6に収容可能な中性子吸収材8の量が少なくなってしまう。
この問題を解決する有効策は、中性子吸収材8の量的減少に伴う反応度価値の低下を回復すべく、中性子吸収材8、例えば、その成分であるBC、或いはその有効核種である質量数10のホウ素(B−10)の濃縮度を高めることである。
BWRの原子炉用制御棒1は、第1領域Xである挿入先端側の先端特定範囲は高い反応度価値を必要としない領域であり、反応度価値への要求はあまり高くなく、中性子照射による機械的寿命の短縮化を避ける制御棒構成が特に必要であることが分かる。反応度価値は先端特定範囲を除く挿入先端から挿入末端側の半分の区分(Y−X)で高い値が要求される。運転制御用制御棒の場合には更に高い中性子照射量のため、中性子照射に伴う機械的寿命の低下を防止する機構が要求される。
原子炉用制御棒1の金属製構造材である翼2の構造材2aに設けられた収容穴6に収容される中性子吸収材8には、中性子吸収断面積が大小異なる強核種と弱核種の混合物が用いられる。強核種は、中性子吸収断面積が大きいB−10などの強中性子吸収核種であり、弱核種は、強核種より中性子吸収断面積が小さなB−11などの弱中性子吸収核種である。具体的には、強核種はB−10であり、弱核種はB−11である金属元素とホウ素の化合物であり、中性子吸収材は、粉末状又はペレット状で、非密封構造の内管7に収納される。
さらに、原子炉用制御棒1は、収容穴6に収納される中性子吸収材8は、弱核種としてHfOを用い、強核種として希土類元素(RE)のユーロピウム(Eu)、サマリウム(Sm)がガドリニウム(Gd)から選択された希土類元素(RE)を用いて、強核種と弱核種の混合物[(Eu)+HfO]を構成してもよい。
原子炉用制御棒1は、翼2の金属製造構造板2aに設けた収納穴6に中性子吸収断面積が大きい強核種と弱い弱核種とが混合した中性子吸収材8を収納する構成を有する。この原子炉用制御棒1は、B−10などの中性子吸収材8の暫定濃度と暫定燃焼率に対応するスエリングの量を評価し、そのスエリング量が収容穴6内の間隙を占めた場合に機械的寿命に達すると判断して、中性子吸収材8の直径などの寸法を決定し、その寸法において反応度価値が内管7を使用しない場合の値より小さくならない様にB−10などの強核種の最低濃度を決定する。その後、核的寿命を評価して、設定した予定の核的寿命を満足しない場合、中性子吸収材8の混合割合の濃度を変更して繰り返し核的寿命を評価して予定寿命を満足した場合、その値を濃度の設計値とする制御棒の設計方法を提供するものである。
なお、原子炉用制御棒1は、設計上の妥当性を評価するため、中性子吸収材8の寸法(P)と設計すべき反応度価値と核的寿命値を満足した混合割合(濃度)に対して燃焼率計算を行い、その燃焼率の値が予定燃焼率より大きい場合、前記暫定濃度を修正して中性子吸収材8の寸法を修正し、混合割合の濃度の再評価が行なわれる。
原子炉用制御棒1は、この構成により、スエリングに対する知見を活用して、中性子吸収材の寸法を決定し、機械的寿命を確保しながら必要な核的寿命を得ることができる。すなわち、反応度価値の要求を満たしつつ、機械的寿命の延長を図ることができ、機械的寿命と核的寿命がほぼ一致する原子炉用制御棒およびその設計方法を提供するものである。
このため、原子炉用制御棒1は、以下の方法により設計されており、要求される機械的寿命を有し、併せて、要求される反応度価値や核的寿命を有するものとなっている。つまり、機械的寿命が残っている一方で核的寿命は全うして交換の必要が生じていたり、或いは核的寿命が残っている一方で機械的寿命は全うして交換の必要が生じていたりという、設計値の無駄が解消されている。
<設計の基本事項>
原子炉用制御棒1の場合は、図3に示すように、直径Hの収容穴6に若干の間隙(1/2g)を設けて内管7を挿入し、この内管7の中に若干の隙間(1/2g)を設けてペレット状の中性子吸収材8を収容することになる。
この場合、収容穴6の直径Hは、中性子吸収材8の直径Pと内管7の肉厚Tを用いて、次式(1)で表せる。
[数1]
H=P+g+g+2T ……(1)
中性子吸収材8の中性子照射に伴う体積スエリング率Sは、中性子吸収材8の燃焼率B(中性子吸収核種であるB−10の初期の原子数に対する中性子吸収反応に寄与したB−10の原子数)と、直線的な1次関数又は2次関数の関係にあることが知られている。2次関数については、一般的に比例定数a及びaを用いて次式(2)で表される。
[数2]
=aB+a ……(2)
体積スエリング率Sは、3で割ると近似的に線スエリング率Sと換算されるので、次式(3)が成立する。
[数3]
=S/3 ……(3)
ここで、体積スエリング率Sは、燃焼率Bの測定誤差を考慮したスエリングマージンGを含めておくのがよい。従って、中性子吸収材8の設計上の線スエリング率として、スエリングマージンGを含めた(S×G)を用いる。
尚、線スエリング量δのうち中性子吸収材の直径方向の線スエリング量δ(以下、「直径スエリング量δ」と称す。)は、中性子吸収材8の直径Pの関数としての次式(4)を用いる。軸方向の線スエリング量δは、直径線スエリング量と比べると機械的健全性に与える影響は対応が比較的容易なため、ここでは説明を簡略化するために式(4)において省略する。
[数4]
δ=P×S×G ……(4)
図5はBCのスエリング特性の具体例を示したもので、縦軸は体積スエリング率S及び線スエリング率S、横軸は中性子吸収反応によるB−10の燃焼率である。同図において、実線はペレット状のBCに関する体積スエリング率及び線スエリング率であり、B−10の燃焼率と直線でフィットでき、特にペレットの理論密度が95%TDの場合は信頼性が高い(非特許文献6)。又、破線は、粉末状のBCに関する体積スエリング率S及び線スエリング率Sであり、B−10の燃焼率と次式(5)でフィットできる(非特許文献8)。次式(5)の“x”は、B−10の燃焼率を単位体積当たりの中性子捕獲量(cap/cm)で表したものである。
[数5]
Sv=0.851x+0.0449x ……(5)
ここで、原子炉用制御棒1の機械的寿命は、内管7を用いた場合は線スエリング量δの値が間隙(g+g)の値と同等となった時点であると定義し、内管7を用いない場合は線スエリング量δの値が間隙gの値と同等となったときと定義する。
例えば、BCのスエリング特性図(図5)を参照して、直径6mmの収容穴6の中に内管7(外径5.8mm、肉厚0.1mm)を挿入し、その内管7の中にBCペレット(直径P)を収容したとする。この条件のもと、B−10の燃焼率が80%まで可能な原子炉用制御棒1を設計するときは、スエリングマージンGを考慮して、BCペレットの直径Pは、上記の式(1)及び次式(6)を用いて次のようになる。
ここで、線スエリング量δを1.0mmとし、スエリングマージンGを0.1とする。
[数6]
+g=P×(S ×G) ……(6)
P=(6.0−0.2−0.2)/(1.0+0.1)=5.1mm
原子炉用制御棒1は翼2の収容穴6の中に内管7を挿入し、この内管7にBCペレット(中性子吸収材)8を収納したとすると、収容穴6の直径6.0mmに較べBCペレット8は5.1mmφとかなり小さくしなければならないために、同じB−10濃度でも反応度価値はかなり減少する。したがって、反応度価値を維持するためにはね濃縮度(B−10濃度)を天然組成のB−10濃度(19.8atom%)より高めて維持する必要がある。
<核的寿命に関わる設計基本事項>
図6は原子炉用制御棒の核的寿命の説明図である。図6の横軸は原子炉用制御棒の核的寿命であり、縦軸は原子炉用制御棒の反応度価値(初期値で規格化)である。
原子炉用制御棒の核的寿命は、図6に示すように、原子炉に装荷した照射開始時点の反応度価値(初期値)から中性子照射の照射進行に伴って反応度価値が10%低下した時点とするのが慣行上の定義となっている。この核的寿命の定義は、核的、物理的或いは化学的に根拠を置く法令上の数値と言うわけではない。しかし、原子炉実機にて反応度価値が初期値から10%低下した時点で核的、物理的或いは化学的に原子炉用制御棒の健全性が損なわれた事例が多く見られ、原子炉用制御棒の核的寿命に関する極めて重要な判断指標となっている。
核的寿命は、B−10の濃度が高い場合或いはB−10の量が多い場合(核的寿命期間t1)には、B−10の濃度が低い場合或いはB−10の量が少ない場合(核的寿命期間t0)に比べて長くなる。原子炉用制御棒の長寿命化とは、核的寿命期間t0→t1とすることをいう。
<機械的寿命と核的寿命の両要求値を満たす設計手順>
図7は原子炉用制御棒1の設計手順を示すフローチャートである。ステップS101〜ステップS103は、原子炉用制御棒1の第I領域X(図4参照)の設計工程である。
ステップS101は、原子炉用制御棒1の設計パラメータを準備するステップである。設計パラメータは、B−10濃縮度ε、予定の燃焼率B、体積スエリング率S及びスエリングマージンG、収容穴6の直径H、収容穴6に挿入する内管7の肉厚Tである。
ここで、BWRに用いられる原子炉用制御棒1は、その第I領域Xに対する反応度価値の要求値はその他の領域に比べると小さい。そのため、このステップS101で予め準備しておく設計パラメータのうち、第I領域XのB−10濃縮度εについては、従来から用いられている天然同位体組成(約20%)としてもよい。工程簡素化のためである。その反面、この第I領域Xは、その著しい中性子照射に対抗できる優れた機械的健全性が要求され、この機械的健全性を高めることが重要となる。
ステップS102は、線スエリング率Sを推定するステップである。線スエリング率Sは、上式(3)を用いて計算できる。この計算で必要となる体積スエリング率Sは、公知の評価結果(図5参照)を用いて決定できるパラメータである。
ステップS103は、中性子吸収材8(ペレット状又は粉末状のBC)とその収容穴6に確保する間隙g又は間隙(g+g)、及び中性子吸収材8の直径Pを決定するステップである。間隙gは収容穴6に内管7を挿入しない場合、間隙(g+g)は収容穴6に内管7を挿入する場合の間隙寸法である。
間隙g又は間隙(g+g)及び中性子吸収材8の直径Pは、ステップS101で準備した中性子吸収材8の収容穴6の直径H、収容穴6に挿入する内管7の肉厚T、スエリングマージンG、及び上述の式(1)及び式(6)を用いて計算できる。
ここで、原子炉用制御棒1の第II領域Yは、第I領域Xと事情を異にし、機械的健全性に加えて反応度価値の要求値が比較的高いのが一般的である(図4参照)。
図7のステップS104〜ステップS111は、原子炉用制御棒1の第II領域Yの設計工程である。尚、原子炉用制御棒1の第II領域Yについては、ステップS104の前工程として、ステップS101〜ステップS103の各工程が適用され、第I領域Xと同様にして中性子吸収材8の直径Pが決定される。
ステップS104は、B−10概算最低濃縮度εを決定するステップである。このB−10概算最低濃縮度εは、「中性子吸収材8の直径P<収容穴6の直径H」として間隙を確保し機械的健全性を高めたとき、「中性子吸収材8の直径P=収容穴6の直径H」である場合の構造と比べて低下する反応度価値を回復させ、或いは、それ以上の反応度価値を得るために必要なB−10濃縮度である。
ステップS105は、ステップS104の補完ステップであり、B−10最低濃縮度εを決定するステップである。
B−10最低濃縮度εは、ステップS104で決定したB−10概算最低濃縮度εに、原子炉用制御棒1の中性子吸収材8の空間分布或いは幾何学的配置が反応度価値に与える影響(以下、「空間的効果」と称す。)を考慮したものである。
例えば、「中性子吸収材8の直径P<収容穴6の直径H」とすると、原子炉用制御棒1において中性子吸収材8が存在する領域と存在しない領域の離散度が拡大することとなるため、中性子吸収材8に含まれるB−10の原子核と中性子が衝突する確率が低下し、もって反応度価値が低下してしまう。
このステップS105は、ステップS104で用いた「反応度価値を回復させるために必要な反応度価値」に対して、このような種々の空間的効果を考慮するステップである。
ステップS106は、ステップS101〜ステップS105の各工程で設計された原子炉用制御棒1の核的寿命を評価するステップである。ここに、原子炉用制御棒1の反応度価値については、ステップS105でB−10最低濃縮度εが決定された時点で確定している。ステップS106に続く以降の各ステップは、核的寿命の設計工程となる。
ステップS107は、核的寿命が設計値を満たすか否か(Yes/No)を判定するステップである。
ステップS108は、ステップS107で<No>と判定した場合に行い、B−10濃縮度を変更するステップである。このステップS108は、ステップS107で<Yes>と判定するまで繰り返す。
ステップS109は、ステップS108で<Yes>と判定した場合に行い、ステップS101〜ステップS108の各工程で設計した原子炉用制御棒1に含まれるB−10の燃焼率Bを計算するステップである。
ステップS110は、ステップS109で算出した燃焼率Bが妥当であるか、即ち、ステップS109で算出した燃焼率BとステップS101で用いた燃焼率Bとが許容できる相違であるか否か(Yes/No)を判定するステップである。「許容できる相違」は、原子炉用制御棒の性能・品質等を考慮して適切に定められる。
ε<εであれば、スエリングの過大評価(安全側設計)となるので、燃焼率Bは妥当であるとして、ステップS111に移行し、核的寿命や反応度価値に余裕を持たせるなど適宜調整を施して原子炉用制御棒1の設計を終了する。一方、ε>εであれば、スエリングの過小評価(危険側設計)となるので、ステップS101で用いた燃焼率Bを燃焼率Bとし、ステップS110で<Yes>と判定するまで、ステップS101〜ステップS110の各工程を繰り返す。
次に、原子炉用制御棒1の設計方法の効果を説明する。
本設計方法にあっては、反応度価値調節が不要な第I領域(高反応度価値−不要領域)Xと、反応度価値調節が必要な第II領域(高反応度価値−必要領域)Yとに制御棒有効部を区分しておき、第I領域Xの設計完了後に第II領域Yの設計を開始する。この設計において、中性子吸収材8の線スエリング量δが中性子吸収材8と収容穴6(中性子吸収材収容部)の相互間隙g又は(g+g)に等しくなるまでの時間を機械的寿命と定義する。
そして、第I領域Xの設計工程では、この機械的寿命が要求値を満たすように、中性子吸収材8及び収容穴6の寸法調節を行う(ステップS101〜ステップS103)。
第II領域の設計工程では、ステップS101〜ステップS103で寸法調節された中性子吸収材8及び収容穴6を第II領域Yに適用し、反応度価値が要求値以上となるように、B−10(中性子吸収材の有効核種)の濃縮度を調節する(ステップS104、ステップS105)。続いて、核的寿命が要求値を満たすように、B−10の濃縮度を調節する(ステップS106〜ステップS108)。
このような設計方法に基づいて原子炉用制御棒を製造することで、反応度価値の要求値を満たしつつ、機械的寿命の延長を図ることができる。
又、ステップS103で必要となる線スエリング量δは、予め評価されたB−10の燃焼率Bと線スエリング率Sの相関に基づいて推定する。このため、容易に線スエリング量δを推定でき、間隙g又は間隙(g+g)や中性子吸収材の直径Pを決定できる。
又、第II領域Yの設計では、ステップS105又はステップS108で中性子吸収材8に含まれるB−10濃縮度を調節した後、原子炉用制御棒1が機械的寿命に到達した時点のB−10の燃焼率Bを算出する(ステップS109)。そして、このステップS109で算出した燃焼率BがステップS101で用いた燃焼率Bよりも大きいときは、B<Bとなるまで、ステップS109にて算出した燃焼率Bを用いてステップS101〜ステップS109の処理を繰り返して実施する。これにより、原子炉用制御棒1の機械的健全性を確保しつつ反応度価値や核的寿命の設定精度を高めることができる。
以上、本発明に係る原子炉用制御棒の設計方法を1つの実施形態に基づき説明してきたが、具体的な構成については、本実施形態に限られるものではなく、特許請求の範囲に記載の発明の要旨を逸脱しない限り設計の変更や追加等は許容される。
例えば、中性子吸収材として銀・インジウム・カドミウム合金(Ag−In−Cd合金)、ハフニウム(Hf)等を有する原子炉用制御棒であっても、本発明の設計方法(ステップS101〜ステップ111)を適用できる。そのほか、第I領域X及び第II領域Yに中性子吸収材のペレットを用いて第III領域Zに中性子吸収材の粉末を用いるなど、原子炉用制御棒の領域、中性子吸収材の形態や分布の変更についても、本発明の設計方法の適用を妨げるものではない。以下に、その他の具体例を列挙する。
[例1:第II領域Yの収容穴にも内管を挿入し、第II領域の内管に中性子吸収材の粉末を充填した原子炉用制御棒]
粉末状の中性子吸収材は、ペレット状のそれに比べて焼結や圧縮などの工程が不要になるので製造コストの削減に有利である。つまり、内管の採用によって収容穴と中性子吸収材との間に隙間が確保されて機械的寿命を延長させながら、製造コストの低減を図ることができる。
[例2:第I領域X〜第III領域Zの部分領域ないし各領域の全領域を対象とし、翼の構造板としてハフニウム・ジルコニウム合金(Hf−Zr)の板を用いた原子炉用制御棒]
Hfは良好な中性子吸収材であるので、Hfの鋼板の部分については収容穴及びこれに充填される中性子吸収材が不要になる場合があり、原子炉用制御棒構の簡素化や低コスト化が図られる。
[例3:中性子吸収材の収容チューブを備えた原子炉用制御棒]
図8は中性子吸収材の収容チューブを備えた沸騰水型原子炉の運転制御用の原子炉用制御棒1Aを示す図であり、図8(a)は側面図、図8(b)は図8(a)のA−A線に沿う横断面図、図8(c)は図8(b)の部分拡大図、図8(d)は図8(a)のB−B線に沿う拡大図(縦断面図)である。尚、実施形態の構成を変更し或いは新たに追加した構成は符号末尾に「A」を付す。
この原子炉用制御棒1Aの翼2Aは、中性子吸収材を収容する収容チューブ21Aが制御棒挿入方向に長軸が設定され且つ制御棒挿入方向と垂直を成す方向に複数並べられて溶接結合等されて構成されている(図8(a))。そして、タイクロス3を用いて4枚の翼が横断面十字状に保持されている(図8(b))。収容チューブ21Aの中に内管7が挿入され、内管7の中にペレット状或いは粉末状の中性子吸収材8が収容され、間隙g及び間隙gが設けられている(図8(c))。又、中性子吸収材8は、制御棒挿入方向に沿って領域分割されており(図8(d))、各領域ごとに適切な反応度価値及び核的寿命が設定されている。内管7は、制御棒軸方向の寸法が10〜40cm程度に調節されており且つ内圧上昇を抑えるための通気孔22Aを有し、制御棒挿入方向に沿って複数積層されている。
本発明の設計方法は、間隙g及び間隙g、収容穴6、及び中性子吸収材8の寸法調節や、中性子吸収材8の有効核種の濃縮度調節に適用できる。
[例4:加圧水型原子炉(PWR)に用いられる原子炉用制御棒]
図9はPWRに用いられる原子炉用制御棒を示す図であり、図9(a)は原子炉用制御棒の側面図、図9(b)は原子炉用制御棒を構成する(中性子)吸収棒の縦断面図である。尚、実施形態の構成を変更し或いは新たに追加した構成は符号末尾に「B」を付す。
PWRに用いられる原子炉用制御棒1Bは、図9(a)に示すように多数の吸収棒9Bがクラスタ状に配列され、原子炉容器上方から吊り下げられて燃料集合体領域で挿抜される。吸収棒9Bは、図9(b)に示すよう、被覆管91Bの内部に、吊り下げ支持部としての上端プラグ部から下方に向かって、ガスプレナム部、BCペレット部、Ag−In−Cd合金部、挿抜ガイドを担う先端部を有している。本発明の設計方法は、例えば、BCペレット部の設計に適用できる。
尚、BCペレットは、製造・輸送・使用のいずれかの段階で壊れて微小な破片を生じる可能性があり、その微小な破片が各所隙間に侵入・蓄積してスエリングを生じ、これによる(中性子)吸収棒9Bの破損が生じる可能性がある。このため、中性子吸収材8の微小破片の侵入を防止する目的で鉄などの金属ウ−ルが適所に設けられている。
加えて、PWRの停止用制御棒にあっては、図8(d)のように内管7を用いてもよいが、停止用制御棒における制御棒有効部の中性子照射量は少ないので、図10に示すように吸収棒9Bの内部に内管7を挿入せずに中性子吸収材8(例えば、BC)をペレット化して吸収棒9Bの内部にその内壁と接するように収納するようにしてもよい。中性子吸収材8はペレット化されているため、周辺構造との直接接触(Hard−contact)は生じない。
本発明の設計方法は、被覆管91B中性子吸収材8との相互間隙の寸法調節や、中性子吸収材8の有効核種の濃縮度調節に適用できる。
[例5:高速増殖炉(FBR)その他の高速炉(FR)に用いられる原子炉用制御棒]
図11はFRに用いられる原子炉用制御棒の横(平)断面図であり、図11(a)は原子炉用制御棒の横断面図、図11(b)は原子炉用制御棒に含まれる内管型の(中性子)吸収棒9Cの横断面図、図11(c)は原子炉用制御棒に含まれる無内管型吸収棒の横断面図である。尚、実施形態の構成を変更し或いは新たに追加した構成は符号末尾に「C」を付す。
FRの原子炉用制御棒1Cは、燃料集合体(図示省略)のラッパ管と同様のラッパ管の中に収容され挿抜される。原子炉用制御棒1Cは、円筒形の金属管の中に有内管型吸収棒91C(図11(b))と無内管型吸収棒92C(図11(c))が併せて31本配列されて構成されている。
本発明の設計方法は、この有内管型吸収棒91Cと無内管型吸収棒92Cに適用できる。即ち、内管7と中性子吸収体8の相互間隙の寸法調節や、中性子吸収体8の有効核種の濃縮度調節に適用できる。尚、FRの原子炉用制御棒1Cにあっては、中性子吸収材8として、EuBペレットや、ZrB12ペレットを用いることができる。
また、図12は、BWRの従来の原子炉用制御棒モデルを示す横断面図である。翼(ウイング)2の厚さを8.3mm、翼2を構成するシース26の厚さを1.1mm、シース2b内に外径5.6mm、内径4.2mmのSUS管7aにB4C粉末を70%TD(TD:理論密度)で充填した吸収棒8aを各翼2とも18本並列状に収納した場合の例である。制御棒軸心から最近接した吸収棒8a表面まではタイクロスあるいはタイロッド3aのSUS材でその距離は20mmとした。制御棒軸心から翼端までの距離(翼幅)は125mmとした。
以下、上述の実施形態の構成と類似又は対応する構成に同一符号を付して説明する。
図13は原子炉用制御棒1の反応度価値のB−10濃度依存性を示す図である。
反応度価値のB−10濃度依存性は、中性子吸収材8の直径Pと密度をパラメータとしたモンテカルロ法に基づく制御棒燃焼計算結果である。計算モデルは、図12に示された原子炉用制御棒1を模擬したものであり、図1に示すように、厚さT=8mmのステンレス鋼の平板により原子炉制御棒1の翼2を構成し、直径H=6mmで且つピッチ=8mmで中性子吸収材の収容穴6を構成し、この収容穴6にBC中性吸収材を充填した原子炉用制御棒1を模擬したものである。
図13(a)の横軸はB−10濃縮度(atom%)であり、縦軸は反応度価値(曲線(1−1)のB−10濃縮度20%の値を基準とした相対値)である。
曲線(1−1):中性子吸収材8としてBC粉末を用い、このBC粉末を収容穴6(直径H=6mm)に70%TD(TD:理論密度)で充填した場合の計算結果。
曲線(1−2):中性子吸収材8としてBCペレットを用い、このBCペレットを収容穴6(直径H=6mm)に100%TDで隙間なく充填した場合の計算結果。
曲線(1−3):中性子吸収材8としてBCペレットを用い、このBCペレットを収容穴6(直径H=5mm)に100%TDで隙間なく充填した場合の計算結果。
図13(b)の曲線(1−1)〜曲線(1−3)は、それぞれ図13(a)の曲線(1−1)〜曲線(1−3)に対応し、図13(a)の反応度価値の計算結果(曲線(1−1)〜曲線(1−3))を異なる尺度で表したものである。図13(b)の横軸は挿抜方向単位長さ当たりのB−10量(相対値)、縦軸は反応度価値(図13(a)の曲線(1−1)に関わるBC粉末20%における反応度価値を基準とした相対値)である。尚、天然のB−10濃縮度は、19.8%(約20%)である。
以下は、各計算結果の特徴である。
(特徴1)直径H=6mmの収容穴6にBC粉末を70%TDで充填した構成(曲線(1−1))から、直径H=5mmの収容穴6に100%TDのBCペレットを充填した構成(曲線(1−3))に変更すると、反応度価値は約4%減少する。
(特徴2)直径H=5mmの収容穴6に100%TDのBCペレットを充填した構成(曲線(1−3))において、B−10濃縮度を天然の20atom%から30atom%に変更すると、反応度価値が約4%増加する。
(特徴3)直径H=6mmの収容穴6にBC粉末を70%TDで充填した構成(曲線(1−1))において、BC粉末のB−10濃縮度を20atom%から33atom%に高めると、反応度価値は5%増加する。
(特徴4)直径H=5mmの収容穴6にBCペレットを100%TDで充填した構成(曲線(1−3))に関し、直径H=6mmの収容穴6にBC粉末を70%TDで充填した構成(曲線(1−1))でB−10濃縮度を33atom%に高めたときの反応度価値と同等の反応度価値を得るためには、B−10濃縮度を48%まで高めることが必要となる。
(特徴5)直径H=5mmの収容穴6にBCペレットを100%TDで充填した構成(曲線(1−1))において、反応度価値を10%増加させるためには、B−10濃縮度を85%(図示省略)とする必要がある。
(特徴6)収容穴6の直径Hが同じであれば、反応度価値はB−10量で決まり、B−10濃縮度による依存性は無視できる(曲線(1−1)及び曲線(1−2)の比較より)。
(特徴7)収容穴6のピッチが一定であれば、収容穴6の直径Hを6mmから5mmにすると反応度価値は4.0%減少する(曲線(1−1)及び(1−3)の比較より)。
(特徴8)直径H=6mmの収容穴6に収容されるB−10の理論密度を70%TD(BC粉末)から、100%TD(BCペレット)に高めると反応度価値は3.6%増大する(曲線(1−1)及び(1−2)の比較より)。
尚、図14(a)は原子炉用制御棒1の核的寿命のB−10濃度依存性を示す図であり、図14(a)の横軸はB−10濃縮度、縦軸はBC制御棒モデルの場合を基準とした核的寿命の相対値である。図14(b)はB−10濃縮度に代えて1つの収納穴6のB−10量で表したものである。
この図から、穴径6mm、充填密度70%TDと比べて5mm、100%TDの方が核的寿命は長い。又、B−10濃縮度40atom%付近で同一寿命を達成させる時、6mm−70%TDから5mm−100%TDへと変更すると、濃縮度を5%ほど低くできる。収容穴当たりのB−10充填量が同じなら6mm穴より5mm穴の方が核的寿命は長い。
図15はHfとBCの中性子吸収率のHf濃度(重量%:wt%)依存性として示したものである。原子炉用制御棒1に関する中性子吸収率のHf濃度依存性を示し、原子炉用制御棒1のうち翼2の構造板をHfとBCの合金板としたときの中性子吸収率のHf濃度依存性を示したものである。Hf濃度が30wt%の場合、Hfの原子数濃度は17atom%であり、比重は7.7g/ccとなる。50wt%の場合、34atom%で比重は8.8g/ccとなる。
Hf濃度30wt%に関し、収容穴6を設けない場合の反応度価値を臨界実験装置で測定したところ、図13のBC制御棒モデルの反応度価値の0.91倍であった。この程度の反応度価値であれば、中性子照射量が特に高い第I領域Xの構成として利用できる。Hf濃度を高くすれば当然に反応度価値が増大する。挿入末端側では収容穴6に内管7を配置し、その中にB−10濃縮度を高めたBCペレットが収納されている。B−10濃縮度、密度及び寸法が同じの場合、ステンレス鋼を構造材として用いる場合に対して反応度価値を5%程度高くなることが実験的に確かめられている。
図16は本発明の設計手順に基づいて反応度価値の調節が行われた原子炉用制御棒の一例を示す図である。
この原子炉用制御棒は、運転用制御棒である。第1/4区分における挿入先端側から略半分までの領域には内管及び中性子吸収材のペレットが用いられている。第1/4区分における挿入先端側から原子炉用制御棒の有効長の略半分である第3/4区分の挿入先端側上部までの領域には内管は用いず、中性子吸収材の(BC)ペレットのみが用いられている。第3/4区分における挿入先端側上部から挿入末端側の第4/4区分の全体の領域には内管は用いず、中性子吸収材の粉末のみがHard−Contactの状態で用いられている。
図17は本発明の設計手順に基づいて反応度価値の調節が行われた原子炉用制御棒の他の例を示す図である。
この原子炉用制御棒は、運転用制御棒又は停止用制御棒である。第1/4区分における挿入先端側から略半分までの領域には内管及び中性子吸収材のペレットが用いられている。第1/4区分における挿入先端側の略半分から第3/4区分における挿入先端側上部までの領域には内管及び中性吸収材の粉末が用いられている。中性子吸収材は内管に対してHard−Contactの状態にあるが、構造板(材)の収容穴との間に間隙(g)が設けられているので、機械的寿命はこの間隙で決定される。第3/4区分における挿入先端側上部から第4/4区分の全体の領域には内管は用いず、中性子吸収材の粉末のみが用いられている。
図18は本発明の設計手順に基づいて反応度価値の調節が行われた原子炉用制御棒の他の例を示す図である。この原子炉用制御棒は、停止用制御棒として用いられる。
第1/4区分における挿入先端側から略半分までの領域には内管及び中性子吸収材のペレットが用いられている。第1/4区分における挿入先端側から略半分からそれ以降の領域全体には内管は用いられず、中性吸収材の粉末が用いられている。
この原子炉用制御棒の場合は、先端よりの中性子吸収材(例えば、BC)の濃縮度を高めると、緊急時のスクラム特性の劣化を防止できる。この特性は、原子炉用制御棒の大多数を占める停止用制御棒への採用に好適である。停止余裕への寄与は小さい。
図16〜18では原子炉用制御棒に用いられる中性子吸収材の核種はBCを始め種々考えられる。
1…原子炉用制御棒、2…翼、3…タイクロス、4…先端構造材、5…末端構造材、6…収容穴、6a…収容穴の開口端閉塞機構、7…内管、8…中性子吸収材、g…間隙、g…間隙、P…中性子吸収材の直径、H…収容穴の直径、T…内管の肉厚。

Claims (17)

  1. 制御棒有効部となる中性子吸収材を収容する中性子吸収材収容部を備えた原子炉用制御棒の設計方法において、
    反応度価値調節が不要な高反応度価値−不要領域と、反応度価値調節が必要な高反応度価値−必要領域とに制御棒有効部を区分して、高反応度価値−不要領域の設計完了後に高反応度価値−必要領域の設計を開始するようにし、
    前記高反応度価値−不要領域の設計工程は、
    中性子吸収材のスエリング量が中性子吸収材と中性子吸収材収容部の相互間隙の寸法と等しくなるまでの時間を機械的寿命と定義し、この機械的寿命が要求値を満たすように、中性子吸収材及び中性子吸収材収容部の寸法調節を行うステップ1を有し、
    前記高反応度価値−必要領域の設計工程は、
    前記ステップ1で寸法調節された中性子吸収材及び中性子吸収材収容部を高反応度価値−必要領域に適用し、この高反応度価値−必要領域の反応度価値が要求値以上となるように、中性子吸収材の濃縮度を調節するステップ2と、
    前記ステップ2に続いて、この高反応度価値−必要領域の核的寿命が要求値を満たすように、中性子吸収材の濃縮度を調節するステップ3とを有することを特徴とする原子炉用制御棒の設計方法。
  2. 請求項1に記載の原子炉用制御棒の設計方法において、
    前記反応度価値の要求値は、前記ステップ1で寸法設定された中性子吸収材収容部に間隙を設けることなく中性子吸収材を収容したときの反応度価値とすることを特徴とする原子炉用制御棒の設計方法。
  3. 請求項1又は請求項2に記載の原子炉用制御棒の設計方法において、
    前記ステップ1では、中性子吸収材の燃焼率とスエリング率の相関に基づいて前記スエリング量を推定することを特徴とする原子炉用制御棒の設計方法。
  4. 請求項3に記載の原子炉用制御棒の設計方法において、
    前記高反応度価値−必要領域の設計工程は、前記ステップ2又はステップ3に続いて行われ且つ高反応度価値−必要領域が機械的寿命に到達した時点の中性子吸収材の燃焼率を算出するステップ4を有し、
    前記ステップ4で算出した燃焼率と前記ステップ1で用いた燃焼率との相違が許容値を超えるときは、この相違が許容値を超えなくなるまで、前記ステップ4で算出した燃焼率を用いて前記ステップ1ないし前記ステップ4を繰り返して行うことを特徴とする原子炉用制御棒の設計方法。
  5. 請求項1ないし請求項4の何れか1項に記載の原子炉用制御棒の設計方法において、
    前記中性子吸収材収容部に間隙を余して内管を挿入し、この内管に間隙を余して中性子吸収材を収容する原子炉用制御棒を対象とし、
    前記機械的寿命は、中性子吸収材のスエリング量が、中性子吸収材収容部と内管の相互間隙の寸法と、内管と中性子吸収材の相互間隙の寸法の総和に等しくなるまでの時間として定義することを特徴とする原子炉用制御棒の設計方法。
  6. 請求項1ないし請求項5の何れか1項に記載の原子炉用制御棒の設計方法において、
    中性子吸収材の粉末を圧縮して又は焼結して得られる固形状の中性子吸収材を用いる原子炉用制御棒に適用されることを特徴とする原子炉用制御棒の設計方法。
  7. 請求項5に記載の原子炉用制御棒の設計方法において、
    中性子吸収材の粉末、又は、中性子吸収材の粉末を圧縮して又は焼結して得られる固形状の中性子吸収材を用いる原子炉用制御棒に適用されることを特徴とする原子炉用制御棒の設計方法。
  8. 請求項1ないし請求項7の何れか1項に記載の原子炉用制御棒の設計方法において、
    前記高反応度価値−不要領域は、原子炉用制御棒の有効部のうち、その挿入先端から16cm程度までの範囲とし、
    前記高反応度価値−必要領域は、原子炉用制御棒の有効部のうち、低反応度領域の終点位置から有効部の中央位置若しくは中央位置を30cm超えた位置までの範囲とすることを特徴とする原子炉用制御棒の設計方法。
  9. 請求項1ないし請求項8の何れか1項に記載の原子炉用制御棒の設計方法において、
    前記中性子吸収材は、中性子吸収断面積が大小異なる弱核種と強核種の混合物を用いることを特徴とする請求項1に記載の原子炉用制御棒の設計方法。
  10. 請求項9に記載の原子炉用制御棒の設計方法において、
    前記弱核種としてB−11を用い、強核種としてB−10を用いることを特徴とする原子炉用制御棒の設計方法。
  11. 請求項9に記載の原子炉用制御棒の設計方法において、
    前記弱核種としてHfOを用い、
    前記強核種として(RE)を用いるとともに、希土類(RE)は、Eu、Sm、及びGdから選択し、
    前記弱核種及び強核種は、(RE)+HfOの混合物とすることを特徴とする原子炉用制御棒の設計方法。
  12. 沸騰水型原子炉、加圧水型原子炉、及び高速炉に用いられる原子炉用制御棒に適用されることを特徴とする請求項1ないし請求項11の何れか1項に記載の原子炉用制御棒の設計方法。
  13. 制御棒有効部となる中性子吸収材を収容する中性子吸収材収容部を備えた原子炉用制御棒において、
    前記制御棒有効部は、反応度価値調節が不要な高反応度価値−不要領域と、反応度価値調節が必要な高反応度価値−必要領域とに区分され、
    前記高反応度価値−不要領域は、制御棒有効部の挿入先端から挿入末端側に略16cmまでの範囲と、制御棒有効部の中央又はその中央を略32cm超過した位置から制御棒有効部の挿入末端までの範囲とに設けられ、
    前記高反応度価値−必要領域は、制御棒有効部の挿入先端から略16cmの位置から制御棒有効部の中央又はその中央を略32cm超過した位置までの範囲に設けられることを特徴とする原子炉用制御棒。
  14. 請求項13に記載の原子炉用制御棒において、
    前記高反応度価値−不要領域のうち、少なくとも制御棒有効部の挿入先端から16cmまでの範囲に設けられるものについては、前記中性子吸収材収容部に収容され、ボロンカーバイドのペレットを間隙を残して収容する内管を有し、このボロンカーバイドは、質量数10のボロン同位体が理論密度95%以上に濃縮されていることを特徴とする原子炉用制御棒。
  15. 請求項13又は請求項14に記載の原子炉用制御棒において、
    前記高反応度価値−不要領域のうち、少なくとも制御棒有効部の挿入先端から16cmまでの範囲に設けられるものについては、制御棒有効部の挿入先端から5cmまでの範囲に中性子吸収材が設けられないことを特徴とする原子炉用制御棒。
  16. 請求項13ないし請求項15の何れか1項に記載の原子炉用制御棒において、
    前記高反応度価値−必要領域は、前記中性子吸収材収容部に収容され、ボロンカーバイドのペレットを間隙を残して収容する内管を有し、このボロンカーバイドは、質量数10のボロン同位体が理論密度95%以上に濃縮されていることを特徴とする原子炉用制御棒。
  17. 請求項13ないし請求項16の何れか1項に記載の原子炉用制御棒において、
    前記高反応度価値−必要領域は、中性子吸収材として、質量数10のボロン同位体が理論密度95%以上に濃縮されたボロンカーバイドを有することを特徴とする原子炉用制御棒。
JP2010056697A 2010-03-12 2010-03-12 原子炉用制御棒の設計方法及び原子炉用制御棒 Pending JP2011191145A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056697A JP2011191145A (ja) 2010-03-12 2010-03-12 原子炉用制御棒の設計方法及び原子炉用制御棒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056697A JP2011191145A (ja) 2010-03-12 2010-03-12 原子炉用制御棒の設計方法及び原子炉用制御棒

Publications (1)

Publication Number Publication Date
JP2011191145A true JP2011191145A (ja) 2011-09-29

Family

ID=44796245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056697A Pending JP2011191145A (ja) 2010-03-12 2010-03-12 原子炉用制御棒の設計方法及び原子炉用制御棒

Country Status (1)

Country Link
JP (1) JP2011191145A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017167109A (ja) * 2016-03-18 2017-09-21 日立Geニュークリア・エナジー株式会社 制御棒及びこれを備えた沸騰水型原子炉
US9799414B2 (en) 2010-09-03 2017-10-24 Atomic Energy Of Canada Limited Nuclear fuel bundle containing thorium and nuclear reactor comprising same
JP2018072067A (ja) * 2016-10-26 2018-05-10 日立Geニュークリア・エナジー株式会社 沸騰水型原子力プラントの炉心、制御棒及び沸騰水型原子炉の制御装置
US10176898B2 (en) 2010-11-15 2019-01-08 Atomic Energy Of Canada Limited Nuclear fuel containing a neutron absorber
JP2019502917A (ja) * 2015-12-15 2019-01-31 フラマトムFramatome 原子炉用吸収棒アセンブリおよび吸収棒
JP7507727B2 (ja) 2021-05-13 2024-06-28 三菱重工業株式会社 評価方法、評価システム及びプログラム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799414B2 (en) 2010-09-03 2017-10-24 Atomic Energy Of Canada Limited Nuclear fuel bundle containing thorium and nuclear reactor comprising same
US10176898B2 (en) 2010-11-15 2019-01-08 Atomic Energy Of Canada Limited Nuclear fuel containing a neutron absorber
JP2019502917A (ja) * 2015-12-15 2019-01-31 フラマトムFramatome 原子炉用吸収棒アセンブリおよび吸収棒
US10937554B2 (en) 2015-12-15 2021-03-02 Framatome Absorber rod assembly for nuclear reactor
JP2021139915A (ja) * 2015-12-15 2021-09-16 フラマトムFramatome 原子炉用吸収棒アセンブリおよび吸収棒
JP7005497B2 (ja) 2015-12-15 2022-01-21 フラマトム 原子炉用吸収棒アセンブリおよび吸収棒
JP7233474B2 (ja) 2015-12-15 2023-03-06 フラマトム 原子炉用吸収棒アセンブリおよび吸収棒
JP2017167109A (ja) * 2016-03-18 2017-09-21 日立Geニュークリア・エナジー株式会社 制御棒及びこれを備えた沸騰水型原子炉
JP2018072067A (ja) * 2016-10-26 2018-05-10 日立Geニュークリア・エナジー株式会社 沸騰水型原子力プラントの炉心、制御棒及び沸騰水型原子炉の制御装置
JP7507727B2 (ja) 2021-05-13 2024-06-28 三菱重工業株式会社 評価方法、評価システム及びプログラム

Similar Documents

Publication Publication Date Title
Galahom Investigation of different burnable absorbers effects on the neutronic characteristics of PWR assembly
JP2011191145A (ja) 原子炉用制御棒の設計方法及び原子炉用制御棒
Gruel et al. Interpretation of fission product oscillations in the Minerve reactor, from thermal to epithermal spectra
Reda et al. Investigating the performance and safety features of pressurized water reactors using the burnable poisons
Darnowski et al. Simulations of the AP1000-based reactor core with SERPENT computer code
Bess et al. Benchmark evaluation of start-up and zero-power measurements at the high-temperature engineering test reactor
Paratte et al. A benchmark on the calculation of kinetic parameters based on reactivity effect experiments in the CROCUS reactor
CN108461161A (zh) 轻水反应堆用燃料组件、轻水反应堆炉心设计方法及轻水反应堆用燃料组件设计方法
Galahom et al. A novel approach for managing the excess reactivity at the beginning of the fuel cycle of VVER-1200
Ilas et al. SCALE 6.2. 4 Validation: Reactor Physics
Massih Models for MOX fuel behaviour. A selective review
Gentry et al. A neutronic investigation of the use of fully ceramic microencapsulated fuel for Pu/Np burning in PWRs
Blaise et al. Monte Carlo modelling of increasing void fraction in 100% MOX ABWR: Lessons drawn from the FUBILA program
JP5753674B2 (ja) 制御棒寿命評価方法および制御棒寿命評価装置
JP2012122770A (ja) 燃料棒および燃料集合体
Muth Parametric Study on Burnable Absorber Rod to Control Excess Reactivity for a Soluble Boron Free Small Modular Reactor
Louis Evaluation of effective prompt neutron lifetime for pressurized water reactors
Chen et al. Radial Distributions of Power and Isotopic Concentration in Candidate ATF U3Si2 and UO2/U3Si2 Fuel With FeCrAl Cladding
Pope et al. Reactor physics behavior of transuranic-bearing TRISO-Particle fuel in a pressurized water reactor
Bess et al. Benchmark Development in Support of Generation-IV Reactor Validation (IRPhEP 2010 Handbook)
Zong et al. Study on the cumulation of actinides and fission products in CF3 PWR fuel assemblies
Song et al. Analysis of fission rate distribution on BFS-75-1 assembly
Bernard et al. Experimental validation of the LWR reactivity loss with burn up: Analysis of spent fuel oscillation experiments
Siréta et al. France's Benchmark Results against Experimental Data from SPERT-IV Statics
Pope et al. EBR-II Reactor Physics Benchmark Evaluation Report

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111220