JP2011190843A - Ceramic tube member - Google Patents

Ceramic tube member Download PDF

Info

Publication number
JP2011190843A
JP2011190843A JP2010056187A JP2010056187A JP2011190843A JP 2011190843 A JP2011190843 A JP 2011190843A JP 2010056187 A JP2010056187 A JP 2010056187A JP 2010056187 A JP2010056187 A JP 2010056187A JP 2011190843 A JP2011190843 A JP 2011190843A
Authority
JP
Japan
Prior art keywords
peripheral portion
tube member
outer peripheral
ceramic tube
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010056187A
Other languages
Japanese (ja)
Other versions
JP5553150B2 (en
Inventor
Takehiro Kitaori
毅浩 北折
Shingo Mizutani
慎吾 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2010056187A priority Critical patent/JP5553150B2/en
Publication of JP2011190843A publication Critical patent/JP2011190843A/en
Application granted granted Critical
Publication of JP5553150B2 publication Critical patent/JP5553150B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure

Landscapes

  • Building Environments (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic tube member which makes it hard to precipitate alkali metal, water stain, etc., contained in water in a conduit of the ceramic tube member, and prevents a water passage hole from being clogged even when used for a long period of time. <P>SOLUTION: The ceramic tube member 12 has an inner periphery 22 formed of a water-permeable porous ceramic material to form the conduit 20 through which water flows, and an outer periphery 24 formed from the inner periphery outward at a predetermined thickness. Pores 26, 28 through which water can penetrate from the inner periphery through the outer periphery are formed. Porosity R1 on the outer periphery is set to be not less than porosity R2 on the inner periphery. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、セラミック管部材に係わり、特に、建物の外装部材に組み込まれて外気を冷却するセラミック管部材に関する。   The present invention relates to a ceramic tube member, and more particularly to a ceramic tube member that is incorporated in an exterior member of a building and cools outside air.

従来から、都市部においては、コンクリートで形成されたビルディング等の高層建築物が多数建設されている。これらの高層建築物は太陽光により加熱されやすいことに加え、夏季には高層建築物内で冷房を使用することにより多量のエネルギが消費される共に、多量の排熱が発生することになり、都市部の地域の地上気温が周辺地域より高くなるという、いわゆる、ヒートアイランド現象が発生するため、このようなヒートアイランド現象を抑制するために種々の対策がなされている。   Conventionally, many high-rise buildings such as buildings made of concrete have been built in urban areas. In addition to being easily heated by sunlight, these high-rise buildings consume a large amount of energy and generate a large amount of exhaust heat by using cooling in the high-rise buildings in summer. Since the so-called heat island phenomenon that the surface temperature of the urban area becomes higher than the surrounding area occurs, various measures are taken to suppress such a heat island phenomenon.

ヒートアイランド現象を抑制するための対策の一つとして、例えば、特許文献1に記載されているように、多孔質のセラミックスからなる羽根部材が所定間隔を置いて上下方向に複数配置されたルーバ装置が知られている。このルーバ装置の各羽根部材の上面には、水を一時的に貯留可能に凹状に形成された貯留部が設けられ、この貯留部の水が羽根部材の内部に浸透して保水されるようになっており、羽根部材が太陽光によって加熱されたときに、羽根部材の内部に保水された水が気化した気化熱(蒸発潜熱)を利用して周囲が冷却されるようになっている。   As one of the measures for suppressing the heat island phenomenon, for example, as described in Patent Document 1, there is a louver device in which a plurality of blade members made of porous ceramics are arranged in a vertical direction at predetermined intervals. Are known. The upper surface of each blade member of the louver device is provided with a storage portion formed in a concave shape so that water can be temporarily stored, so that the water in the storage portion penetrates into the blade member and is retained. Thus, when the blade member is heated by sunlight, the surroundings are cooled by using the heat of vaporization (latent heat of vaporization) of the water retained inside the blade member.

また、例えば、特許文献2には、仕切壁により前面から後面に貫通する通風孔が形成された冷却体用ブロックが積み重ねられた冷却壁体が記載されている。この冷却壁体の各冷却体用ブロックの上下の面には、左右方向に延びる通水路が形成され、これらの通水路には、上下方向に貫く貫通孔が各冷却体用ブロック毎に異なる位置に形成されている。各冷却体用ブロックの貫通孔が上下の冷却体用ブロックにおいて互い違いとなるように積み重ねることにより、各冷却体用ブロックの通水路及び上下方向を貫く貫通孔内の水によって冷却体用ブロックが湿潤するようになっている。そして、冷却体用ブロックが太陽光によって加熱されたときに、冷却体用ブロックに湿潤している水が気化した気化熱を利用して周囲が冷却されるようになっている。   Further, for example, Patent Document 2 describes a cooling wall body in which cooling body blocks in which ventilation holes penetrating from the front surface to the rear surface are formed by partition walls are stacked. On the upper and lower surfaces of each cooling body block of this cooling wall body, water passages extending in the left-right direction are formed, and in these water passages, through holes penetrating in the vertical direction are located at different positions for each cooling body block. Is formed. By stacking the through holes of each cooling body block so that they are staggered in the upper and lower cooling body blocks, the cooling body block is moistened by the water in the through holes passing through the water passages and the vertical direction of each cooling body block. It is supposed to be. And when the block for cooling bodies is heated with sunlight, the circumference | surroundings are cooled using the heat of vaporization which the water moistened to the block for cooling bodies vaporized.

特開2006−28927号公報JP 2006-28927 A 特開2000−144963号公報JP 2000-144963 A

しかしながら、上述した特許文献1に記載されているルーバ装置においては、各羽根部材の上面に凹状に形成された貯留部に水を貯留するためには、ホースやじょうろによって貯留部に散水しなければならず手間を要するという問題がある。また、夏季以外の散水が不要な季節には、羽根部材の上面に凹状に形成された貯留部に塵埃や枯葉などが堆積し易く、再び冷却が必要な夏季を迎えるまでに堆積物を除去する必要がある等のメンテナンスに手間を要するという問題がある。さらに、貯留部に貯留した水が強風で飛散する等、安定した冷却性能が得られないという問題もある。したがって、これらのルーバ装置の問題から、ビルディング等の高層建築物にルーバ装置を適用することが難しく、都市部のヒートアイランド現象を確実に抑制することが難しいという問題もある。   However, in the louver device described in Patent Document 1 described above, in order to store water in a storage portion formed in a concave shape on the upper surface of each blade member, water must be sprayed into the storage portion by a hose or a watering can. There is a problem that it takes time and effort. In addition, during seasons when watering is not required other than in summer, dust and dead leaves are likely to accumulate in the reservoir formed in a concave shape on the upper surface of the blade member, and deposits are removed before the summer when cooling is required again. There is a problem that it takes time and effort for maintenance. Furthermore, there is a problem that stable cooling performance cannot be obtained, for example, the water stored in the storage part is scattered by strong wind. Therefore, due to the problems of these louver devices, it is difficult to apply the louver device to high-rise buildings such as buildings, and there is also a problem that it is difficult to reliably suppress the heat island phenomenon in urban areas.

また、上述した特許文献2に記載されている冷却壁体においては、各冷却体用ブロック内の仕切壁を伝わって水が落下する構造となっており、各ブロックの上下の面に形成された通水路と連通する貫通孔がパイプのような閉水路ではなく、一部が外気に曝されているため、ブロックを湿潤させている水が強風によって外部へ漏れて飛び散って落下するおそれがある。したがって、このような冷却壁体をビルディング等の高層建築物に適用することが難しく、都市部のヒートアイランド現象を確実に抑制することが難しいという問題もある。   Moreover, in the cooling wall body described in the above-mentioned Patent Document 2, the structure is such that water falls along the partition wall in each cooling body block, and is formed on the upper and lower surfaces of each block. Since the through hole communicating with the water passage is not a closed water passage such as a pipe, but a part of the through hole is exposed to the outside air, there is a possibility that water that wets the block leaks to the outside due to strong wind and scatters and falls. Therefore, it is difficult to apply such a cooling wall body to a high-rise building such as a building, and there is a problem that it is difficult to reliably suppress the heat island phenomenon in urban areas.

そこで、本発明者らは、セラミック材料の技術分野における独自の技術とノウハウを活かし、透水性及び保水性に優れた多孔質のセラミック管路を形成するセラミック管部材を開発し、このセラミック管部材を建物の周囲の外気を冷却する外装材に組み込み、セラミック管路内に水を流すことにより、管路内の水の一部をセラミック管部材の外周面から放出させて気化させて外気を冷却することにより、上述した従来技術の問題を解決することを試みた。   Therefore, the present inventors have developed a ceramic pipe member that forms a porous ceramic pipe line having excellent water permeability and water retention, utilizing the unique technology and know-how in the technical field of ceramic materials. Is incorporated into the exterior material that cools the outside air around the building, and water is allowed to flow through the ceramic pipe line, so that a part of the water in the pipe line is discharged from the outer peripheral surface of the ceramic pipe member and vaporized to cool the outside air. Thus, an attempt was made to solve the above-described problems of the prior art.

しかしながら、上述した従来のセラミック管部材においては、セラミック管部材の内周部から外周部に至るまでの領域に透水可能な無数の気孔(以下「透水孔」)が形成されているが、セラミック管部材の使用期間が長くなる程、セラミック管路内を流れる水に含まれるアルカリ金属や水垢等が気孔内で徐々に析出し、この析出量が増えると、透水孔が目詰まりを起こすという問題があり、このような問題を解決することが新たに要請された課題となっている。   However, in the above-described conventional ceramic tube member, innumerable pores (hereinafter referred to as “water-permeable holes”) capable of water permeation are formed in the region from the inner periphery to the outer periphery of the ceramic tube member. The longer the service life of the member, the more gradually alkali metals and scales contained in the water flowing in the ceramic pipes are deposited in the pores. There is a newly requested issue to solve such problems.

そこで、本発明は、上述した従来のセラミック管部材に関する新たに要請された課題を解決するためになされたものであり、長期間使用しても、セラミック管部材の管路内の水に含まれているアルカリ金属や水垢等が透水孔内で析出しにくくすることができ、透水孔の目詰まりを防ぐことができるセラミック管部材を提供することを目的としている。   Therefore, the present invention has been made to solve the newly requested problem related to the conventional ceramic pipe member described above, and even if it is used for a long time, it is contained in the water in the pipe of the ceramic pipe member. It is an object of the present invention to provide a ceramic tube member that can make it difficult for alkali metals, scales, and the like that are deposited in the water-permeable holes to prevent clogging of the water-permeable holes.

上記の目的を達成するために、本発明は、建物の外装材に組み込まれて外気を冷却するセラミック管部材であって、透水性多孔質のセラミック材料によって形成され、水が流れる管路を形成する内周部と、この内周部から外側に所定厚みで形成された外周部と、を有し、上記内周部から上記外周部を貫いて透水可能な気孔が形成され、上記外周部における気孔率は、上記内周部における気孔率以上に設定されていることを特徴としている。
このように構成された本発明においては、建物の外装材に組み込まれたセラミック管部材の管路内を流れる水は、セラミック管部材の内周部から透水可能な気孔(以下「透水孔」)を経て外周部の外部へ放出されて気化されることによって、建物の周囲の外気が冷却される。この際、セラミック管部材の外周部における気孔率が、セラミック管部材の内周部における気孔率以上に設定されているため、管路内を流れる水を内周部から透水孔を経てより確実に外周部の外部へ放出させて気化させることができる。したがって、セラミック管部材を長期間使用しても、管路内の水に含まれている、例えば、アルカリ金属や水垢等を透水孔において析出しにくくすることができ、透水孔の目詰まりを起こしにくくすることができる。また、セラミック管部材の内周部から透水孔を経て外周部の外部へ放出される水は、気化冷却機能を維持した状態で建物の周囲の外気を確実に冷却することができるため、特に、都市部においては、ヒートアイランド現象を確実に抑制することができる。
In order to achieve the above object, the present invention is a ceramic tube member that is incorporated in a building exterior material and cools outside air, and is formed of a water-permeable porous ceramic material to form a conduit through which water flows. And an outer peripheral portion formed with a predetermined thickness outward from the inner peripheral portion, and a water-permeable pore is formed from the inner peripheral portion through the outer peripheral portion. The porosity is set to be equal to or higher than the porosity in the inner peripheral portion.
In the present invention configured as described above, the water flowing through the pipe of the ceramic tube member incorporated in the exterior material of the building can be permeated from the inner periphery of the ceramic tube member (hereinafter referred to as “water-permeable hole”). The outside air around the building is cooled by being discharged to the outside of the outer peripheral portion and vaporized. At this time, since the porosity in the outer peripheral portion of the ceramic tube member is set to be equal to or higher than the porosity in the inner peripheral portion of the ceramic tube member, the water flowing in the pipeline is more reliably passed from the inner peripheral portion through the water-permeable holes. It can be discharged to the outside of the outer periphery and vaporized. Therefore, even if the ceramic pipe member is used for a long period of time, it is possible to make it difficult to deposit alkali metal, scale, etc. contained in the water in the pipe, for example, in the water-permeable hole, and clog the water-permeable hole. Can be difficult. In addition, since the water released from the inner peripheral portion of the ceramic tube member to the outside of the outer peripheral portion through the water-permeable holes can reliably cool the outside air around the building while maintaining the evaporative cooling function, In urban areas, the heat island phenomenon can be reliably suppressed.

本発明において、好ましくは、上記セラミック管部材の外周部の上面側における気孔率は、上記セラミック管部材の内周部及び外周部の下面側における気孔率以上に設定されている。
このように構成された本発明においては、例えば、セラミック管部材の外周部の下面よりも日当たりが良いセラミック管部材の外周部の上面側における気孔率がセラミック管部材の内周部及び外周部の下面側における気孔率以上に設定されているため、セラミック管部材の外周部の上面側において、セラミック管部材の外周部の下面側よりも多くの水を透水孔から放出して水の気化及び蒸散作用を高めることができ、気化冷却機能を維持した状態で建物の周囲の外気を確実に冷却することができる。また、特に、都市部においては、ヒートアイランド現象を確実に抑制することができる。
In the present invention, preferably, the porosity on the upper surface side of the outer peripheral portion of the ceramic tube member is set to be higher than the porosity on the lower surface side of the inner peripheral portion and the outer peripheral portion of the ceramic tube member.
In the present invention configured as described above, for example, the porosity on the upper surface side of the outer peripheral portion of the ceramic tube member, which is more sunny than the lower surface of the outer peripheral portion of the ceramic tube member, is higher than the inner peripheral portion and the outer peripheral portion of the ceramic tube member. Since the porosity is set to be equal to or higher than the porosity on the lower surface side, on the upper surface side of the outer peripheral portion of the ceramic tube member, more water is discharged from the water-permeable holes than on the lower surface side of the outer peripheral portion of the ceramic tube member to vaporize and evaporate the water. The action can be enhanced, and the outside air around the building can be reliably cooled while maintaining the evaporative cooling function. Particularly in urban areas, the heat island phenomenon can be reliably suppressed.

また、本発明は、建物の外装材に組み込まれて外気を冷却するセラミック管部材であって、透水性多孔質のセラミック材料によって形成され、水が流れる管路を形成する内周部と、この内周部から外側に所定厚みで形成された外周部と、を有し、上記内周部から上記外周部を貫いて透水可能な気孔が形成され、上記外周部における気孔径は、上記管路内を流れる水を上記内周部から上記透水可能な気孔を経て上記外周部の外部へ放出させて気化させることができるように、上記内周部における気孔径以上に設定されていることを特徴としている。
このように構成された本発明においては、建物の外装材に組み込まれたセラミック管部材の管路内を流れる水は、セラミック管部材の内周部から透水可能な気孔(以下「透水孔」)を経て外周部の外部へ放出されて気化されることによって、建物の周囲の外気が冷却される。この際、セラミック管部材の外周部における気孔径が、セラミック管部材の内周部における気孔径以上に設定されているため、管路内を流れる水を内周部から透水孔を経てより確実に外周部の外部へ放出させて気化させることができる。したがって、セラミック管部材を長期間使用しても、管路内の水に含まれている、例えば、アルカリ金属や水垢等を透水孔において析出しにくくすることができ、透水孔の目詰まりを起こしにくくすることができる。また、セラミック管部材の内周部から透水孔を経て外周部の外部へ放出される水は、気化冷却機能を維持した状態で建物の周囲の外気を確実に冷却することができるため、特に、都市部においては、ヒートアイランド現象を確実に抑制することができる。
Further, the present invention is a ceramic tube member that is incorporated in a building exterior material and cools the outside air, and is formed of a water-permeable porous ceramic material, and an inner peripheral portion that forms a conduit through which water flows, and this An outer peripheral portion formed with a predetermined thickness on the outer side from the inner peripheral portion, and a water-permeable pore is formed from the inner peripheral portion through the outer peripheral portion, and the pore diameter in the outer peripheral portion is the pipe line It is set to be larger than the pore diameter in the inner peripheral portion so that the water flowing inside can be discharged from the inner peripheral portion to the outside of the outer peripheral portion through the water-permeable pores and vaporized. It is said.
In the present invention configured as described above, the water flowing through the pipe of the ceramic tube member incorporated in the exterior material of the building can be permeated from the inner periphery of the ceramic tube member (hereinafter referred to as “water-permeable hole”). The outside air around the building is cooled by being discharged to the outside of the outer peripheral portion and vaporized. At this time, since the pore diameter in the outer peripheral portion of the ceramic tube member is set to be larger than the pore diameter in the inner peripheral portion of the ceramic tube member, the water flowing in the pipeline is more reliably passed from the inner peripheral portion through the water-permeable holes. It can be discharged to the outside of the outer periphery and vaporized. Therefore, even if the ceramic pipe member is used for a long period of time, it is possible to make it difficult to deposit alkali metal, scale, etc. contained in the water in the pipe, for example, in the water-permeable hole, and clog the water-permeable hole. Can be difficult. In addition, since the water released from the inner peripheral portion of the ceramic tube member to the outside of the outer peripheral portion through the water-permeable holes can reliably cool the outside air around the building while maintaining the evaporative cooling function, In urban areas, the heat island phenomenon can be reliably suppressed.

本発明において、好ましくは、上記セラミック管部材の外周部の上面側における気孔径は、上記セラミック管部材の内周部及び外周部の下面側における気孔径以上に設定されている。
このように構成された本発明においては、例えば、セラミック管部材の外周部の下面よりも日当たりが良いセラミック管部材の外周部の上面側における気孔径がセラミック管部材の内周部及び外周部の下面側における気孔径以上に設定されているため、セラミック管部材の外周部の上面側において、セラミック管部材の外周部の下面側よりも多くの水を透水孔から放出して水の気化及び蒸散作用を高めることができ、気化冷却機能を維持した状態で建物の周囲の外気を確実に冷却することができる。また、特に、都市部においては、ヒートアイランド現象を確実に抑制することができる。
In the present invention, preferably, the pore diameter on the upper surface side of the outer peripheral portion of the ceramic tube member is set to be larger than the pore diameter on the lower surface side of the inner peripheral portion and the outer peripheral portion of the ceramic tube member.
In the present invention configured as described above, for example, the pore diameter on the upper surface side of the outer peripheral portion of the ceramic tube member that is more sunny than the lower surface of the outer peripheral portion of the ceramic tube member is the same as the inner peripheral portion and the outer peripheral portion of the ceramic tube member. Since the pore diameter is set to be equal to or larger than the pore diameter on the lower surface side, vaporization and transpiration of water are discharged on the upper surface side of the outer peripheral portion of the ceramic tube member from the lower surface side of the outer peripheral portion of the ceramic tube member. The action can be enhanced, and the outside air around the building can be reliably cooled while maintaining the evaporative cooling function. Particularly in urban areas, the heat island phenomenon can be reliably suppressed.

本発明において、好ましくは、上記セラミック管部材の外周部は、ブラスト加工されている。
このように構成された本発明においては、セラミック管部材の外周部がブラスト加工されているため、セラミック管部材の外周部を形成する面について、ブラスト加工を行わない場合よりも粗面化させることができ、セラミック管部材の外周部の表面積についてもブラスト加工を行わない場合よりも大きくすることができる。したがって、セラミック管部材の外周部における透水孔から放出した水の気化及び蒸散作用を高めることができ、気化冷却機能を維持した状態で建物の周囲の外気を確実に冷却し、特に、都市部においては、ヒートアイランド現象を確実に抑制することができる。
In the present invention, preferably, the outer peripheral portion of the ceramic tube member is blasted.
In the present invention configured as described above, since the outer peripheral portion of the ceramic tube member is blasted, the surface forming the outer peripheral portion of the ceramic tube member is made rougher than when blasting is not performed. The surface area of the outer peripheral portion of the ceramic tube member can also be made larger than when blasting is not performed. Therefore, it is possible to enhance the evaporation and transpiration of the water released from the water-permeable holes in the outer periphery of the ceramic tube member, and reliably cool the outside air around the building while maintaining the evaporation cooling function, especially in urban areas. Can reliably suppress the heat island phenomenon.

本発明のセラミック管部材によれば、長期間使用しても、セラミック管部材の管路内の水に含まれているアルカリ金属や水垢等が透水孔内で析出しにくくすることができ、透水孔の目詰まりを防ぐことができる。   According to the ceramic pipe member of the present invention, even if it is used for a long period of time, alkali metals and scales contained in the water in the pipe of the ceramic pipe member can be made difficult to precipitate in the water permeable holes. Hole clogging can be prevented.

本発明の一実施形態によるセラミック管部材が適用された外装材を示す概略正面図である。It is a schematic front view which shows the exterior material to which the ceramic pipe member by one Embodiment of this invention was applied. 本発明の一実施形態によるセラミック管部材を示す断面図である。It is sectional drawing which shows the ceramic pipe member by one Embodiment of this invention.

以下、添付図面により、本発明の一実施形態によるセラミック管部材を説明する。
まず、図1により、本発明の一実施形態によるセラミック管部材が適用された外装材を説明する。
Hereinafter, a ceramic tube member according to an embodiment of the present invention will be described with reference to the accompanying drawings.
First, an exterior material to which a ceramic tube member according to an embodiment of the present invention is applied will be described with reference to FIG.

図1は、本発明の一実施形態によるセラミック管部材が適用された外装材を示す概略正面図である。
図1に示すように、符号1は外装材を示し、この外装材1は、複数階の高層建築物等の建物(図示せず)の所定階部分の外壁(図示せず)に設けられ、建物の間口の広さや外壁の高さに応じた大きさに形成されている。
FIG. 1 is a schematic front view showing an exterior material to which a ceramic tube member according to an embodiment of the present invention is applied.
As shown in FIG. 1, the code | symbol 1 shows exterior material, this exterior material 1 is provided in the outer wall (not shown) of the predetermined floor part of buildings (not shown), such as a multistory high-rise building, It is sized according to the size of the frontage of the building and the height of the outer wall.

外装材1は、両側に設けられた左側支柱2及び右側支柱4と、これらの左側支柱2及び右側支柱4の中間位置に設けられた中間支柱6と、左側支柱2と中間支柱6の中間位置及び右側支柱4と中間支柱6の中間位置にそれぞれ設けられた補助支柱8,10と、左側支柱2、右側支柱4及び中間支柱6によって保持されて上下方向に所定間隔を置いて複数配置された長尺のセラミック管部材12を備えている。   The exterior material 1 includes a left column 2 and a right column 4 provided on both sides, an intermediate column 6 provided at an intermediate position between the left column 2 and the right column 4, and an intermediate position between the left column 2 and the intermediate column 6. A plurality of auxiliary columns 8 and 10 provided at intermediate positions between the right column 4 and the intermediate column 6 and the left column 2, the right column 4 and the intermediate column 6 are arranged at predetermined intervals in the vertical direction. A long ceramic tube member 12 is provided.

また、支柱2,4,6,8,10のいずれについても、耐蝕性、強度に優れた、例えば、中空のステンレス部材により形成されている。
両側の支柱2,4は、建物の1階から最上階までの外壁(図示せず)に固定されており、中間支柱6は、各階毎に上下方向の所定の長さに設定されて外壁(図示せず)に固定されている。
In addition, all of the columns 2, 4, 6, 8, and 10 are formed of, for example, a hollow stainless steel member having excellent corrosion resistance and strength.
The struts 2 and 4 on both sides are fixed to the outer wall (not shown) from the first floor to the top floor of the building, and the intermediate strut 6 is set to a predetermined length in the vertical direction for each floor. (Not shown).

左側支柱2と中間支柱6との間、及び、右側支柱4と中間支柱6との間にそれぞれ配置された複数のセラミック管部材12は、中間支柱6に対して左右対称にそれぞれ配置された左側気化冷却ユニット14及び右側気化冷却ユニット16を形成している。   The plurality of ceramic tube members 12 arranged between the left column 2 and the intermediate column 6 and between the right column 4 and the intermediate column 6 are respectively arranged symmetrically with respect to the intermediate column 6. The evaporative cooling unit 14 and the right evaporative cooling unit 16 are formed.

また、左側支柱2及び左側気化冷却ユニット14のセラミック管部材12、及び、右側支柱4及び右側気化冷却ユニット16のセラミック管部材12のそれぞれは、水が流れる管路(通水路18)を形成しており、左側支柱2及び右側支柱4の上方からの雨水又はその他の給水源(図示せず)からの給水が左側支柱2及び右側支柱4の通水路18からそれぞれに対応する左側気化冷却ユニット14及び右側気化冷却ユニット16のセラミック管部材12の通水路18を経て、左側支柱2及び右側支柱4の下方に排水されるようになっている。   Further, the ceramic tube member 12 of the left column 2 and the left evaporative cooling unit 14 and the ceramic tube member 12 of the right column 4 and the right evaporative cooling unit 16 form a pipeline (water channel 18) through which water flows. The left evaporative cooling unit 14 corresponds to the rainwater from the upper side of the left column 2 and the right column 4 or water supply from other water supply sources (not shown) from the water passages 18 of the left column 2 and the right column 4 respectively. The water is drained below the left column 2 and the right column 4 through the water passage 18 of the ceramic tube member 12 of the right evaporative cooling unit 16.

さらに、左側気化冷却ユニット14及び右側気化冷却ユニット16のセラミック管部材12の構造についての詳細は後述するが、セラミック管部材12は、この通水路18内を流れる水の一部をセラミック管部材12の外部へ透水させ、この外部に透水させた水を気化させることにより、セラミック管部材12の周囲の外気を冷却させる気化冷却機能を備えている。
また、左側気化冷却ユニット14及び右側気化冷却ユニット16のセラミック管部材12は、建物(図示せず)の室内から窓越しにある程度の広さの視界を確保しつつ、日除(ルーバ)の機能を持たせている。
Further, the details of the structure of the ceramic tube member 12 of the left evaporative cooling unit 14 and the right evaporative cooling unit 16 will be described later. The ceramic tube member 12 uses a portion of the water flowing through the water passage 18 to pass through the ceramic tube member 12. A vaporization cooling function is provided for cooling the outside air around the ceramic tube member 12 by allowing water to permeate outside and vaporizing the water permeated outside.
Further, the ceramic tube members 12 of the left evaporative cooling unit 14 and the right evaporative cooling unit 16 have a function of sunshade (louver) while ensuring a certain extent of field of view through the window from the interior of the building (not shown). Is given.

つぎに、図2により、セラミック管部材12について詳細に説明する。
図2は、本発明の一実施形態によるセラミック管部材を示す断面図である。
図2に示すように、セラミック管部材12は、透水性及び保水性を備えた多孔質のセラミック材料で形成された厚肉の中空体であり、内部に管路20を形成している。
このセラミック管部材12は、内周部22と、この内周部22から外側に所定の厚みで形成された外周部24を備え、これらの内周部22及び外周部24の断面形状が、建物(図示せず)の前後方向(図2の左右方向)に長い長円形形状となっている。
Next, the ceramic tube member 12 will be described in detail with reference to FIG.
FIG. 2 is a cross-sectional view showing a ceramic tube member according to an embodiment of the present invention.
As shown in FIG. 2, the ceramic tube member 12 is a thick hollow body made of a porous ceramic material having water permeability and water retention, and forms a pipe line 20 therein.
The ceramic tube member 12 includes an inner peripheral portion 22 and an outer peripheral portion 24 formed with a predetermined thickness on the outer side from the inner peripheral portion 22, and the cross-sectional shapes of the inner peripheral portion 22 and the outer peripheral portion 24 are buildings. It has an oval shape that is long in the front-rear direction (not shown) (left-right direction in FIG. 2).

また、セラミック管部材12の内周部22の上面である上側内周面22aから外周部24の上面である上側外周面24aを貫いて透水可能な無数の気孔である上側透水孔26が形成され、セラミック管部材12の内周部22の下面である下側内周面22bから外周部24の下面である下側外周面24bを貫いて透水可能な無数の気孔である下側透水孔28が形成されている。   Also, upper water-permeable holes 26 that are innumerable pores that are permeable through the upper outer peripheral surface 24a that is the upper surface of the outer peripheral portion 24 from the upper inner peripheral surface 22a that is the upper surface of the inner peripheral portion 22 of the ceramic tube member 12 are formed. The lower water-permeable holes 28 that are innumerable pores that can penetrate through the lower inner peripheral surface 22b that is the lower surface of the inner peripheral portion 22 of the ceramic tube member 12 through the lower outer peripheral surface 24b that is the lower surface of the outer peripheral portion 24 are provided. Is formed.

さらに、セラミック管部材12の内周部22の内側には、芯材30が設けられており、この芯材30によってセラミック管部材12が内部から保持され、万一、セラミック管部材12が破損した場合でも、セラミック管部材12の落下を防ぐようになっている。   Further, a core member 30 is provided inside the inner peripheral portion 22 of the ceramic tube member 12, and the ceramic tube member 12 is held from the inside by the core member 30, and the ceramic tube member 12 is damaged by any chance. Even in this case, the ceramic tube member 12 is prevented from falling.

また、セラミック管部材12の内周部22の上側内周面22a及び下側内周面22b、及び、外周部24の下側外周面24bについては、セラミック管部材12の外周部24の上側外周面24aよりも表面粗さが小さい緻密層L1が形成されている。
一方、セラミック管部材12の外周部24の上側外周面24aについては、セラミック管部材12の内周部22の内周面22a,22b及び外周部24の下側外周面24bと同一な緻密層L1について所定の薄さの部分だけ切削加工が施されて緻密層L1が除去され、内部の中間層L2が露出した状態となっている。
The upper outer peripheral surface 22 a and the lower inner peripheral surface 22 b of the inner peripheral portion 22 of the ceramic tube member 12 and the lower outer peripheral surface 24 b of the outer peripheral portion 24 are the upper outer periphery of the outer peripheral portion 24 of the ceramic tube member 12. A dense layer L1 having a surface roughness smaller than that of the surface 24a is formed.
On the other hand, the upper outer peripheral surface 24a of the outer peripheral portion 24 of the ceramic tube member 12 is the same dense layer L1 as the inner peripheral surfaces 22a and 22b of the inner peripheral portion 22 of the ceramic tube member 12 and the lower outer peripheral surface 24b of the outer peripheral portion 24. Only a portion having a predetermined thickness is cut to remove the dense layer L1, and the inner intermediate layer L2 is exposed.

また、中間層L2は、緻密層L1よりも気孔率が大きくなっている。
ここで、「気孔率」とは、セラミック材料によって形成されるセラミック管路部材12より採取した、中間層L2または緻密層L1の試料(気孔を含む)容積に対する気孔部分の容積の割合(容積率)を意味している。
Further, the intermediate layer L2 has a larger porosity than the dense layer L1.
Here, the “porosity” is the ratio of the volume of the pore portion to the volume of the sample (including pores) of the intermediate layer L2 or the dense layer L1 collected from the ceramic pipe member 12 formed of a ceramic material (volume ratio). ).

さらに、セラミック管部材12の外周部24の上側外周面24a側における気孔率R1、セラミック管部材12の内周部22の上側内周面22a側及び下側内周面22b側における気孔率R2、セラミック管部材12の外周部24の下側外周面24b側における気孔率R3とすると、気孔率R1は、気孔率R2以上(R1≧R2)且つ気孔率R3以上(R1≧R3)となるように設定されている。
また、気孔率R2及び気孔率R3については、上述した気孔率R1との大小関係が満たされていれば、気孔率R2と気孔率R3については同一(R2=R3)となるように設定されてもよいし、気孔率R3が気孔率R2よりも大きく且つ気孔率R1よりも小さく(R1>R3>R2)なるように設定されてもよい。あるいは、R1=R3>R2であってもよい。本実施形態では、気孔率R1が気孔率R2以上に設定されるのが好ましく、また、気孔率R1が気孔率R2よりも大きくなるように設定されるのがより好ましく、さらに、気孔率R1が最も大きくなるように設定されるのが最も好ましい。
Furthermore, the porosity R1 on the upper outer peripheral surface 24a side of the outer peripheral portion 24 of the ceramic tube member 12, the porosity R2 on the upper inner peripheral surface 22a side and the lower inner peripheral surface 22b side of the inner peripheral portion 22 of the ceramic tube member 12, When the porosity R3 on the lower outer peripheral surface 24b side of the outer peripheral portion 24 of the ceramic tube member 12 is set, the porosity R1 is equal to or higher than the porosity R2 (R1 ≧ R2) and equal to or higher than the porosity R3 (R1 ≧ R3). Is set.
Further, the porosity R2 and the porosity R3 are set so that the porosity R2 and the porosity R3 are the same (R2 = R3) if the magnitude relationship with the porosity R1 described above is satisfied. Alternatively, the porosity R3 may be set to be larger than the porosity R2 and smaller than the porosity R1 (R1>R3> R2). Or R1 = R3> R2 may be sufficient. In the present embodiment, the porosity R1 is preferably set to be equal to or higher than the porosity R2, more preferably set so that the porosity R1 is larger than the porosity R2, and the porosity R1 is Most preferably, the maximum value is set.

さらに、気孔率R1,R2,R3については、1μmの最小分解能を有するマイクロフォーカスX線CT(株式会社島津製作所製SMX−160CT−SV3)を用いて、セラミック管部材12についてX線による3次元解析を行う。
具体的には、セラミック管部材12の全体の体積、セラミック管部材12の内周部22及び外周部24の下側外周面24bにおける緻密層L1に形成された1μm以上の気孔部分の寸法形状及び容積、及び、内周部22及び外周部24との間の内部及び外周部24の上側外周面24aにおける中間層L2に形成された1μm以上の気孔部分の寸法形状及び容積について、3次元画像に基づいて数値解析した結果に基づいて、気孔率R1,R2,R3を測定する。
Further, for the porosity R1, R2, and R3, a three-dimensional analysis by X-ray of the ceramic tube member 12 is performed using a microfocus X-ray CT (SMX-160CT-SV3 manufactured by Shimadzu Corporation) having a minimum resolution of 1 μm. I do.
Specifically, the overall volume of the ceramic tube member 12, the size and shape of pore portions of 1 μm or more formed in the dense layer L1 on the lower outer peripheral surface 24b of the inner peripheral portion 22 and the outer peripheral portion 24 of the ceramic tube member 12, and A three-dimensional image of the volume and the size shape and volume of the pore portion of 1 μm or more formed in the intermediate layer L2 inside the inner peripheral portion 22 and the outer peripheral portion 24 and in the upper outer peripheral surface 24a of the outer peripheral portion 24. The porosity R1, R2, R3 is measured based on the result of numerical analysis based on the result.

また、中間層L2は、緻密層L1よりも気孔径が大きくなっている。
ここで、本実施形態において、「気孔径」とは、セラミック管路部材12より採取した、中間層L2または緻密層L1の試料におけるモード径(Mode Pore Diameter)を指す。モード径は、水銀圧入法による細孔分布測定装置を用いて、積算細孔容積曲線から得られる微分細孔分布において、微分値が最大となる所の細孔径を意味する。
Further, the intermediate layer L2 has a larger pore diameter than the dense layer L1.
Here, in this embodiment, the “pore diameter” refers to a mode diameter (Mode Pore Diameter) of the sample of the intermediate layer L2 or the dense layer L1 collected from the ceramic conduit member 12. The mode diameter means the pore diameter at which the differential value is maximum in the differential pore distribution obtained from the integrated pore volume curve using a pore distribution measuring device by mercury porosimetry.

さらに、セラミック管部材12の外周部24の上側外周面24a側における気孔径D1、セラミック管部材12の内周部22の上側内周面22a側及び下側内周面22b側における気孔径D2、セラミック管部材12の外周部24の下側外周面24b側における気孔径D3とすると、気孔径D1は、気孔径D2以上(D1≧D2)且つ気孔径D3以上(D1≧D3)となるように設定されている。
また、気孔径D2及び気孔径D3については、上述した気孔径D1との大小関係が満たされていれば、気孔径D2と気孔径D3については同一(D2=D3)となるように設定されてもよいし、気孔径D3が気孔径D2よりも大きく且つ気孔径D1よりも小さく(D1>D3>D2)なるように設定されてもよい。あるいは、D1=D3>D2であってもよい。本実施形態では、気孔径D1が気孔径D2以上に設定されるのが好ましく、また、気孔径D1が気孔径D2よりも大きくなるように設定されるのがより好ましく、さらに、気孔径D1が最も大きくなるように設定されるのが最も好ましい。
Further, the pore diameter D1 on the upper outer peripheral surface 24a side of the outer peripheral portion 24 of the ceramic tube member 12, the pore diameter D2 on the upper inner peripheral surface 22a side and the lower inner peripheral surface 22b side of the inner peripheral portion 22 of the ceramic tube member 12, When the pore diameter D3 on the lower outer peripheral surface 24b side of the outer peripheral portion 24 of the ceramic tube member 12 is set, the pore diameter D1 is not less than the pore diameter D2 (D1 ≧ D2) and not less than the pore diameter D3 (D1 ≧ D3). Is set.
The pore diameter D2 and the pore diameter D3 are set so that the pore diameter D2 and the pore diameter D3 are the same (D2 = D3) as long as the above-described magnitude relationship with the pore diameter D1 is satisfied. Alternatively, the pore diameter D3 may be set to be larger than the pore diameter D2 and smaller than the pore diameter D1 (D1>D3> D2). Alternatively, D1 = D3> D2 may be satisfied. In the present embodiment, the pore diameter D1 is preferably set to be larger than the pore diameter D2, more preferably the pore diameter D1 is set to be larger than the pore diameter D2, and the pore diameter D1 is Most preferably, the maximum value is set.

次に、セラミック管部材12の製造方法の一例について説明する。
セラミック管部材12の成形に用いられる透水性及び保水性を備えた多孔質のセラミック材料の原料である坏土(はいど)の組成については、長石が10%〜70%、骨材が0%〜30%、粘土が10%〜50%、顔料が0%〜10%の割合で含んでなるものが好適に利用できる。
Next, an example of a method for manufacturing the ceramic tube member 12 will be described.
Regarding the composition of clay, which is a raw material of porous ceramic material having water permeability and water retention used for forming the ceramic tube member 12, feldspar is 10% to 70%, and aggregate is 0%. A composition comprising -30%, 10% to 50% clay, and 0% to 10% pigment can be suitably used.

セラミック管部材12の成形については、真空土練機を用いて真空の状態で水を含ませた前記坏土を練り、湿式で押し出し成形を行い、成形後2日以上、80℃以下で乾燥を行う。   For forming the ceramic tube member 12, the above-mentioned clay containing water is kneaded in a vacuum state using a vacuum kneader, and extrusion molding is performed wet, followed by drying at 80 ° C or lower for 2 days or more after molding. Do.

上述した所定の乾燥条件で乾燥後、最高温度1200℃の焼成炉内で30時間〜40時間、好ましくは、ほぼ37時間程度の焼成を行う。
ここで、焼成炉については、炉内の製品を台車に載せて搬送するタイプであるトンネルキルンが用いられるが、このトンネルキルン以外にも、回転するローラー棒上で製品を搬送するローラーハースキルンや、製品を乗せた台車を炉内に収納したまま焼成するバッチ式の焼成炉であるシャトルキルンを用いてもよい。
After drying under the predetermined drying conditions described above, baking is performed in a baking furnace having a maximum temperature of 1200 ° C. for 30 to 40 hours, preferably about 37 hours.
Here, as the firing furnace, a tunnel kiln that is a type that transports the product in the furnace on a carriage is used. In addition to this tunnel kiln, a roller hearth kiln that transports the product on a rotating roller rod, Alternatively, a shuttle kiln that is a batch-type firing furnace that fires while a cart loaded with products is housed in the furnace may be used.

以上の工程を経て得られたセラミック管部材12は、その内周部22と外周部24の表面全体に緻密層L1が形成される。内周部22と外周部24との間の層(中間層L2)は、緻密層L1よりも気孔率または気孔径が大きくなる。   The ceramic tube member 12 obtained through the above steps has a dense layer L1 formed on the entire surface of the inner peripheral portion 22 and the outer peripheral portion 24 thereof. The layer (intermediate layer L2) between the inner peripheral portion 22 and the outer peripheral portion 24 has a larger porosity or pore diameter than the dense layer L1.

つぎに、上述した所定の焼成条件による焼成後の後加工として、セラミック部材12において、セラミック管部材12の外周部24に形成される緻密層L1のみについて、所定の薄さの切削量による切削加工を行い、緻密層L1を除去し、中間層L2を露出させる。この切削加工は、セラミック管部材12の外周部24の上面24aのみに行うことが、効率的に水の気化及び蒸散作用を高め、且つ長期間持続させることができる点で、より好ましい。
ここで、セラミック管部材12の外周部24に形成される緻密層L1について切削加工を行う際、所定の薄さの切削量については、1mm以下に設定するのが好ましく、0.5mmに設定するのが最も好ましい。
切削加工は、やすりやグラインダを用いた研削加工、研磨、ショットブラスト加工のいずれも利用可能であるが、容易に表面を粗面に仕上げることができるショットブラスト加工が好適に利用できる。
このショットブラスト加工では、ステンレス製の金属棒をカットした所定の粒径及び硬度を有するブラスト材(玉)が常時上方から下方に向けて叩きつけられている設備内へ焼成後のセラミック管部材12がコンベヤによって所定の速度で搬送され、この設備内でセラミック管部材12の外周部24(特に、外周部24の上面)にブラスト材が叩きつけられることによって、外周部24の上面が凹凸状に削られる。
Next, as post-processing after firing under the above-described predetermined firing conditions, only the dense layer L1 formed on the outer peripheral portion 24 of the ceramic tube member 12 in the ceramic member 12 is cut with a cutting amount having a predetermined thickness. To remove the dense layer L1 and expose the intermediate layer L2. It is more preferable that this cutting process is performed only on the upper surface 24a of the outer peripheral portion 24 of the ceramic tube member 12 in that the water vaporization and transpiration can be efficiently enhanced and sustained for a long period of time.
Here, when cutting the dense layer L1 formed on the outer peripheral portion 24 of the ceramic tube member 12, the cutting amount of a predetermined thickness is preferably set to 1 mm or less, and set to 0.5 mm. Is most preferred.
As the cutting, any of grinding, polishing, and shot blasting using a file or a grinder can be used, but shot blasting that can easily finish the surface to a rough surface can be suitably used.
In this shot blasting process, the ceramic tube member 12 after firing into a facility in which a blasting material (ball) having a predetermined particle size and hardness obtained by cutting a stainless steel metal rod is always struck downward from above. The blast material is struck against the outer peripheral portion 24 of the ceramic tube member 12 (particularly, the upper surface of the outer peripheral portion 24) in the facility, and the upper surface of the outer peripheral portion 24 is shaved into an uneven shape. .

つぎに、上述したショットブラスト加工後のセラミック管部材12の内周部22及び外周部24の表面全体について、水及び空気による洗浄が行われる。   Next, the entire surface of the inner peripheral portion 22 and the outer peripheral portion 24 of the ceramic tube member 12 after the above-described shot blasting is washed with water and air.

つぎに、図1及び図2を参照し、本発明の一実施形態によるセラミック管部材12の作用を説明する。
ここで、図2では、本発明の一実施形態によるセラミック管部材が適用された外装材の内部における給水及び排水の方向を矢印で示されている。また、図3では、セラミック管部材の管路内を流れる水の一部がセラミック管部材の外周部の外部で気化される水蒸気が矢印で示されている。
Next, the operation of the ceramic tube member 12 according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
Here, in FIG. 2, directions of water supply and drainage in the exterior material to which the ceramic tube member according to the embodiment of the present invention is applied are indicated by arrows. Moreover, in FIG. 3, the water vapor | steam which a part of the water which flows through the inside of the pipe line of a ceramic pipe member vaporizes outside the outer peripheral part of a ceramic pipe member is shown by the arrow.

セラミック管部材12の管路20内を流れる水は、特に、セラミック管部材12の内周部22の上側内周面22aから上側透水孔26を経て外周部24の上側外周面24aの外部へ放出されて気化される。この結果、建物(図示せず)の周囲の外気が冷却される。この際、セラミック管部材12の外周部24の上側外周面24a側における気孔率R1が、セラミック管部材12の内周部22の上側内周面22a側及び下側内周面22b側における気孔率R2以上に設定されているため、管路20内を流れる水は、内周部22の下側内周面22bから下側透水孔28を経て外周部24の下側外周面24bの外部へ放出されて気化する水よりも多くの水が内周部22の上側内周面22aから上側透水孔26を経て外周部24の上側外周面24aの外部へ確実に放出されて気化する。   The water flowing in the conduit 20 of the ceramic tube member 12 is discharged from the upper inner peripheral surface 22a of the inner peripheral portion 22 of the ceramic tube member 12 to the outside of the upper outer peripheral surface 24a of the outer peripheral portion 24 through the upper water-permeable holes 26. Being vaporized. As a result, the outside air around the building (not shown) is cooled. At this time, the porosity R1 on the upper outer peripheral surface 24a side of the outer peripheral portion 24 of the ceramic tube member 12 is the porosity on the upper inner peripheral surface 22a side and the lower inner peripheral surface 22b side of the inner peripheral portion 22 of the ceramic tube member 12. Since it is set to R2 or more, the water flowing in the pipe line 20 is discharged from the lower inner peripheral surface 22b of the inner peripheral portion 22 to the outside of the lower outer peripheral surface 24b of the outer peripheral portion 24 through the lower water permeable holes 28. Thus, more water than the water to be vaporized is reliably discharged from the upper inner peripheral surface 22a of the inner peripheral portion 22 to the outside of the upper outer peripheral surface 24a of the outer peripheral portion 24 through the upper water-permeable holes 26 and is vaporized.

つぎに、本発明の一実施形態によるセラミック管部材12に関する実施例及び比較例について説明する。   Next, examples and comparative examples relating to the ceramic tube member 12 according to one embodiment of the present invention will be described.

(実施例)
本実施例においては、長石、粘土、骨材、顔料を含有する坏土に水を添加し、混練した素地を、真空押出し成形機にかけて、管状の成形体を作成した。この管状の成形体について、乾燥させた後、最高温度1100℃に設定したトンネルキルンで焼成した。得られた焼成体は、外周部の上面のみをショットブラスト加工し、平均深さ0.5mmを研削した。研削面には高圧空気を吹き付けて研削粉を除去し、外径(長径:11cm、短径7cm)、内径(長径:8.4cm、短径4.4cm)、肉厚1.3cm、管長さ153.5cmの、図2に示す形状のセラミック管部材を製造した。
(Example)
In the present example, water was added to the kneaded clay containing feldspar, clay, aggregate, and pigment, and the kneaded base was subjected to a vacuum extrusion molding machine to produce a tubular molded body. The tubular molded body was dried and then fired in a tunnel kiln set to a maximum temperature of 1100 ° C. The obtained fired body was shot blasted only on the upper surface of the outer peripheral portion and ground to an average depth of 0.5 mm. High pressure air is blown onto the grinding surface to remove the grinding powder, and the outer diameter (major axis: 11 cm, minor axis 7 cm), inner diameter (major axis: 8.4 cm, minor axis 4.4 cm), wall thickness 1.3 cm, tube length A ceramic tube member having a shape shown in FIG.

(比較例)
焼成後の後加工について、ショットブラスト加工および研削粉の除去を行わなかったこと以外の工程については、上述した本実施例と同様な工程でセラミック管部材を製造し、比較例とした。
(Comparative example)
As for the post-processing after firing, the ceramic tube member was manufactured in the same process as the above-described example, except for shot blasting and removal of the grinding powder, and used as a comparative example.

(気孔率の測定)
本実施例のセラミック管部材について、外周部上面および内周部を切り出し、表面から深さ3mmの厚みの試料を作成した。各試料について、マイクロフォーカスX線CT(株式会社島津製作所製SMX−160CT−SV3)にて気孔率を測定したところ、外周部上面の気孔率は内周部の気孔率よりも大きいという結果が得られた。
(Measurement of porosity)
About the ceramic tube member of the present Example, the upper surface and inner peripheral part of the outer peripheral part were cut out, and a sample having a thickness of 3 mm from the surface was prepared. About each sample, when the porosity was measured by microfocus X-ray CT (SMX-160CT-SV3 manufactured by Shimadzu Corporation), the result that the porosity of the upper surface of the outer peripheral portion was larger than the porosity of the inner peripheral portion was obtained. It was.

(気孔径の測定)
本実施例のセラミック管部材について、外周部上面および内周部を切り出し、約2gの試料を作成した。各試料について、水銀圧入法により細孔分布測定を行った。測定装置は、株式会社島津製作所製マイクロメリティクス オートポアIV 9520を用い、標準セルにて初期圧0.7kPaで測定した。なお、水銀パラメータは装置のデフォルト(水銀接触角130°、水銀表面張力485dynes/cm)に設定した。測定の結果、外周部上面のモード径は3.8μmで、内周部のモード径は2.2μmであった。
(Measurement of pore diameter)
About the ceramic tube member of the present Example, the outer peripheral part upper surface and the inner peripheral part were cut out, and the sample of about 2g was created. About each sample, the pore distribution measurement was performed by the mercury intrusion method. The measuring apparatus used was Micromeritics Autopore IV 9520 manufactured by Shimadzu Corporation, and the measurement was performed at an initial pressure of 0.7 kPa using a standard cell. The mercury parameters were set to the default of the apparatus (mercury contact angle 130 °, mercury surface tension 485 dynes / cm). As a result of the measurement, the mode diameter of the upper surface of the outer peripheral portion was 3.8 μm, and the mode diameter of the inner peripheral portion was 2.2 μm.

(屋外通水試験)
本実施例および比較例のセラミック管部材を屋外に水平に設置し、セラミック管部材内部に0.3リットル/日の流速で水道水を通水した。1ヶ月通水を継続したところ、本実施例は水蒸散速度が初期、すなわち通水開始直後と同等であったのに対して、比較例では通水試験後の水蒸散速度が初期の約50%であった。
(Outdoor water flow test)
The ceramic pipe members of the present example and the comparative example were horizontally installed outdoors, and tap water was passed through the ceramic pipe member at a flow rate of 0.3 liter / day. When water flow was continued for one month, the water transpiration rate in this example was the initial value, that is, immediately after the start of water flow, whereas in the comparative example, the water transpiration rate after the water flow test was about 50 at the initial stage. %Met.

上述した本発明の一実施形態によるセラミック管部材12によれば、セラミック管部材12を長期間使用しても、管路20内を流れる水に含まれているか、あるいはセラミック管部材から溶出される無機成分、例えば、アルカリ金属や水垢等を上側透水孔26において析出しにくくすることができ、上側透水孔26の目詰まりを起こしにくくすることができる。また、セラミック管部材12の内周部22から上側透水孔26を経て外周部24の上側外周面24aの外部へ放出される水は、気化冷却機能を維持した状態で建物の周囲の外気を確実に冷却することができるため、特に、都市部においては、ヒートアイランド現象を確実に抑制することができる。   According to the ceramic tube member 12 according to the embodiment of the present invention described above, even if the ceramic tube member 12 is used for a long period of time, it is contained in the water flowing in the pipe line 20 or is eluted from the ceramic tube member. Inorganic components such as alkali metals and scales can be made difficult to precipitate in the upper water-permeable holes 26, and clogging of the upper water-permeable holes 26 can be made difficult to occur. In addition, the water released from the inner peripheral portion 22 of the ceramic tube member 12 to the outside of the upper outer peripheral surface 24a of the outer peripheral portion 24 through the upper water-permeable hole 26 ensures the outside air around the building while maintaining the evaporative cooling function. In particular, in urban areas, the heat island phenomenon can be reliably suppressed.

また、本実施形態によるセラミック管部材12によれば、例えば、セラミック管部材12の外周部24の下側外周面24bよりも日当たりが良いセラミック管部材12の外周部24の上側外周面24aにおける気孔率R1が、セラミック管部材12の内周部22及び外周部24の下側外周面24bにおける気孔率R2,R3以上に設定されており、外周部24の上側外周面24a側における気孔径D1が、セラミック管部材12の内周部22及びに外周部24の下側外周面24bおける気孔径D2,D3以上に設定されているため、セラミック管部材12の外周部24の上側外周面24aにおいて、セラミック管部材12の外周部24の下側外周面24bよりも多くの水を透水孔26から放出して水の気化及び蒸散作用を高めることができ、気化冷却機能を維持した状態で建物の周囲の外気を確実に冷却することができる。また、特に、都市部においては、ヒートアイランド現象を確実に抑制することができる。   Further, according to the ceramic tube member 12 according to the present embodiment, for example, pores in the upper outer peripheral surface 24a of the outer peripheral portion 24 of the ceramic tube member 12 that are more sunny than the lower outer peripheral surface 24b of the outer peripheral portion 24 of the ceramic tube member 12. The rate R1 is set to be equal to or higher than the porosity R2, R3 of the lower outer peripheral surface 24b of the inner peripheral portion 22 and the outer peripheral portion 24 of the ceramic tube member 12, and the pore diameter D1 on the upper outer peripheral surface 24a side of the outer peripheral portion 24 is Since the pore diameters D2 and D3 are set to be larger than the inner peripheral portion 22 of the ceramic tube member 12 and the lower outer peripheral surface 24b of the outer peripheral portion 24, the upper outer peripheral surface 24a of the outer peripheral portion 24 of the ceramic tube member 12 is More water than the lower outer peripheral surface 24b of the outer peripheral portion 24 of the ceramic tube member 12 can be discharged from the water permeable holes 26 to enhance the vaporization and transpiration of water, The ambient air around the building can be reliably cooled while maintaining the reduction cooling function. Particularly in urban areas, the heat island phenomenon can be reliably suppressed.

さらに、本実施形態によるセラミック管部材12によれば、セラミック管部材12の外周部24の上面がショットブラスト加工が施されているため、最終製品のセラミック管部材12の外周部24の上側外周面24aについて、ブラスト加工を行わない場合よりも粗面化させることができ、セラミック管部材12の外周部24の上側外周面24aの表面積についてもブラスト加工を行わない場合よりも大きくすることができる。したがって、セラミック管部材12の外周部24の上側外周面24aにおける透水孔26から放出した水の気化及び蒸散作用を高めることができ、気化冷却機能を維持した状態で建物の周囲の外気を確実に冷却し、特に、都市部においては、ヒートアイランド現象を確実に抑制することができる。   Furthermore, according to the ceramic tube member 12 according to the present embodiment, since the upper surface of the outer peripheral portion 24 of the ceramic tube member 12 is shot blasted, the upper outer peripheral surface of the outer peripheral portion 24 of the ceramic tube member 12 of the final product. 24a can be made rougher than when blasting is not performed, and the surface area of the upper outer peripheral surface 24a of the outer peripheral portion 24 of the ceramic tube member 12 can also be made larger than when blasting is not performed. Therefore, the vaporization and transpiration action of the water discharged from the water permeable holes 26 in the upper outer peripheral surface 24a of the outer peripheral portion 24 of the ceramic tube member 12 can be enhanced, and the outside air around the building can be surely maintained while maintaining the evaporative cooling function. Cooling can be reliably suppressed, especially in urban areas.

1 外装材
2 左側支柱
4 右側支柱
6 中間支柱
8 補助支柱
10 補助支柱
12 セラミック管部材
14 左側気化冷却ユニット
16 右側気化冷却ユニット
18 通水路
20 セラミック管部材の管路
22 セラミック管部材の内周部
22a セラミック管部材の内周部の上側内周面
22b セラミック管部材の内周部の下側内周面
24 セラミック管部材の外周部
24a セラミック管部材の外周部の上側外周面
24b セラミック管部材の外周部の下側外周面
26 上側透水孔
28 下側透水孔
30 芯材
L1 緻密層
L2 中間層
DESCRIPTION OF SYMBOLS 1 Exterior material 2 Left support | pillar 4 Right support | pillar 6 Intermediate support | pillar 8 Auxiliary support | pillar 10 Auxiliary support | pillar 12 Ceramic pipe member 14 Left evaporative cooling unit 16 Right evaporative cooling unit 18 Water flow path 20 Pipe line of ceramic pipe member 22 Inner peripheral part of ceramic pipe member 22a Upper inner peripheral surface of the inner peripheral portion of the ceramic tube member 22b Lower inner peripheral surface of the inner peripheral portion of the ceramic tube member 24 Outer peripheral portion of the ceramic tube member 24a Upper outer peripheral surface of the outer peripheral portion of the ceramic tube member 24b Lower outer peripheral surface of outer peripheral portion 26 Upper water-permeable hole 28 Lower water-permeable hole 30 Core material L1 Dense layer L2 Intermediate layer

Claims (5)

建物の外装材に組み込まれて外気を冷却するセラミック管部材であって、
透水性多孔質のセラミック材料によって形成され、水が流れる管路を形成する内周部と、この内周部から外側に所定厚みで形成された外周部と、を有し、
上記内周部から上記外周部を貫いて透水可能な気孔が形成され、上記外周部における気孔率は、上記内周部における気孔率以上に設定されていることを特徴とするセラミック管部材。
A ceramic tube member that is built into the building exterior and cools the outside air,
An inner peripheral portion that is formed of a water-permeable porous ceramic material and forms a conduit through which water flows, and an outer peripheral portion that is formed with a predetermined thickness outward from the inner peripheral portion;
A ceramic tube member, wherein pores capable of passing water are formed from the inner peripheral portion through the outer peripheral portion, and a porosity in the outer peripheral portion is set to be equal to or higher than a porosity in the inner peripheral portion.
上記セラミック管部材の外周部の上面側における気孔率は、上記セラミック管部材の内周部及び外周部の下面側における気孔率以上に設定されている請求項1記載の管部材。   The pipe member according to claim 1, wherein the porosity of the ceramic tube member on the upper surface side of the outer peripheral portion is set to be equal to or higher than the porosity of the inner peripheral portion of the ceramic tube member and the lower surface side of the outer peripheral portion. 建物の外装材に組み込まれて外気を冷却するセラミック管部材であって、
透水性多孔質のセラミック材料によって形成され、水が流れる管路を形成する内周部と、この内周部から外側に所定厚みで形成された外周部と、を有し、
上記内周部から上記外周部を貫いて透水可能な気孔が形成され、上記外周部における気孔径は、上記内周部における気孔径以上に設定されていることを特徴とするセラミック管部材。
A ceramic tube member that is built into the building exterior and cools the outside air,
An inner peripheral portion that is formed of a water-permeable porous ceramic material and forms a conduit through which water flows, and an outer peripheral portion that is formed with a predetermined thickness outward from the inner peripheral portion;
A ceramic tube member, wherein pores that allow water to pass through from the inner peripheral portion to the outer peripheral portion are formed, and a pore diameter in the outer peripheral portion is set to be larger than a pore diameter in the inner peripheral portion.
上記セラミック管部材の外周部の上面側における気孔径は、上記セラミック管部材の内周部及び外周部の下面側における気孔径以上に設定されている請求項3記載の管部材。   The tube member according to claim 3, wherein a pore diameter on the upper surface side of the outer peripheral portion of the ceramic tube member is set to be equal to or larger than a pore diameter on the lower surface side of the inner peripheral portion and the outer peripheral portion of the ceramic tube member. 上記セラミック管部材の外周部は、ブラスト加工されている請求項1乃至4の何れか1項に記載の管部材。   The pipe member according to any one of claims 1 to 4, wherein an outer peripheral portion of the ceramic pipe member is blasted.
JP2010056187A 2010-03-12 2010-03-12 Ceramic tube member Expired - Fee Related JP5553150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056187A JP5553150B2 (en) 2010-03-12 2010-03-12 Ceramic tube member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056187A JP5553150B2 (en) 2010-03-12 2010-03-12 Ceramic tube member

Publications (2)

Publication Number Publication Date
JP2011190843A true JP2011190843A (en) 2011-09-29
JP5553150B2 JP5553150B2 (en) 2014-07-16

Family

ID=44795982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056187A Expired - Fee Related JP5553150B2 (en) 2010-03-12 2010-03-12 Ceramic tube member

Country Status (1)

Country Link
JP (1) JP5553150B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280990U (en) * 1985-11-11 1987-05-23
JPH06344508A (en) * 1993-06-10 1994-12-20 Mitsui Toatsu Chem Inc Heat-resistant resin coated elastic ceramic roll
JP2004124574A (en) * 2002-10-04 2004-04-22 Environmental Assessment Center Co Ltd Building cooling device
JP2004150214A (en) * 2002-10-31 2004-05-27 Masaru Mizutani Outer wall structure for creating good environment
JP2007131119A (en) * 2005-11-09 2007-05-31 Japan Aerospace Exploration Agency Wide area heat protection technology by air flow transpiration cooling using inclining porous ceramic composite material
JP2007209203A (en) * 2006-02-07 2007-08-23 Toshiba Ceramics Co Ltd Calcium phosphate-based cell culture carrier and method for culturing
JP2008106298A (en) * 2006-10-24 2008-05-08 Mitsubishi Materials Corp Equipment and method for manufacturing porous body
JP2008202280A (en) * 2007-02-19 2008-09-04 Sumitomo Forestry Co Ltd Window structure
JP2010116741A (en) * 2008-11-13 2010-05-27 Nikken Sekkei Ltd Exterior material having vaporization cooling function
JP2011157735A (en) * 2010-02-01 2011-08-18 Toto Ltd External facing material with evaporative cooling function

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280990U (en) * 1985-11-11 1987-05-23
JPH06344508A (en) * 1993-06-10 1994-12-20 Mitsui Toatsu Chem Inc Heat-resistant resin coated elastic ceramic roll
JP2004124574A (en) * 2002-10-04 2004-04-22 Environmental Assessment Center Co Ltd Building cooling device
JP2004150214A (en) * 2002-10-31 2004-05-27 Masaru Mizutani Outer wall structure for creating good environment
JP2007131119A (en) * 2005-11-09 2007-05-31 Japan Aerospace Exploration Agency Wide area heat protection technology by air flow transpiration cooling using inclining porous ceramic composite material
JP2007209203A (en) * 2006-02-07 2007-08-23 Toshiba Ceramics Co Ltd Calcium phosphate-based cell culture carrier and method for culturing
JP2008106298A (en) * 2006-10-24 2008-05-08 Mitsubishi Materials Corp Equipment and method for manufacturing porous body
JP2008202280A (en) * 2007-02-19 2008-09-04 Sumitomo Forestry Co Ltd Window structure
JP2010116741A (en) * 2008-11-13 2010-05-27 Nikken Sekkei Ltd Exterior material having vaporization cooling function
JP2011157735A (en) * 2010-02-01 2011-08-18 Toto Ltd External facing material with evaporative cooling function

Also Published As

Publication number Publication date
JP5553150B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
US20130330530A1 (en) Porous Ceramic Sintered Body
Sarı Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials
Zhang et al. Frozen slurry-based laminated object manufacturing to fabricate porous ceramic with oriented lamellar structure
JP2009013013A (en) Porous brick and its production method
CN102432327A (en) Method for preparing aluminum oxide porous ceramic with composite structure by adopting freeze drying process
Sun et al. Cotton cloth supported tungsten carbide/carbon nanocomposites as a Janus film for solar driven interfacial water evaporation
JP5553150B2 (en) Ceramic tube member
JP2005282980A (en) Humidifier
JP2007333360A (en) Air-conditioning system for utilizing geotherm
JP2006342979A (en) Outdoor unit of air-cooled type cooling device
JP2007198685A (en) Evaporating filter and humidifier
Sudprasert et al. Utilization of rice husks in a water-permeable material for passive evaporative cooling
CN102905774B (en) With the part of catalytic surface, the application of its manufacture method and this part
JP2010100513A (en) Ceramics for water retention, method of manufacturing the same and water retaining structure
CN201180246Y (en) Anti-block water permeable brick
Kemarau et al. Analyses Water Bodies Effect in Mitigation of Urban Heat Effect: Case Study Small Size Cities Kuching, Sarawak
JP2008241124A (en) Humidifying member and humidifier using this member
KR20180001546A (en) Heat storage properties enhanced sspcm concrete and method for manufacturing the same
Jalila et al. Salt removal from soil using the argil porous ceramic
JP2007230786A (en) Liquid-absorbing ceramic member
Gabrovšek et al. Physics of condensation corrosion in caves
ES2745039T3 (en) Material, use thereof and method to manufacture said material
CN205709901U (en) A kind of sea water is evaporated brine, is desalinated integrated system
JP4997186B2 (en) Thermal insulation structure and repair method
JP6236254B2 (en) Geothermal heat exchanger and air conditioning system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140514

R150 Certificate of patent or registration of utility model

Ref document number: 5553150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees