JP2007131119A - Wide area heat protection technology by air flow transpiration cooling using inclining porous ceramic composite material - Google Patents

Wide area heat protection technology by air flow transpiration cooling using inclining porous ceramic composite material Download PDF

Info

Publication number
JP2007131119A
JP2007131119A JP2005325373A JP2005325373A JP2007131119A JP 2007131119 A JP2007131119 A JP 2007131119A JP 2005325373 A JP2005325373 A JP 2005325373A JP 2005325373 A JP2005325373 A JP 2005325373A JP 2007131119 A JP2007131119 A JP 2007131119A
Authority
JP
Japan
Prior art keywords
heat
porous ceramic
wide
fiber
ceramic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005325373A
Other languages
Japanese (ja)
Other versions
JP4635183B2 (en
Inventor
Kazuhisa Fujita
和央 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2005325373A priority Critical patent/JP4635183B2/en
Publication of JP2007131119A publication Critical patent/JP2007131119A/en
Application granted granted Critical
Publication of JP4635183B2 publication Critical patent/JP4635183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple and light air flow transpiration cooling system with high heat-resistance, having extremely high heat flux and atmosphere gas with an oxidization/reduction property, and capable of materializing suitable gas blow-out even under an environment where atmosphere gas pressure and the heat flux are spatially changed, in a heat-resisting system of a method making gas uniformly blow out from a surface of heatproof material made from porous ceramic. <P>SOLUTION: In the air flow transpiration wide area heat protecting system using the inclining porous ceramic composite material 1, a fiber reinforcing porous ceramic composite material incliningly adjusted in porosity and/or thickness is joined with base material to structure a heatproof wall corresponding to outside air flow pressure and a heat flux distribution. Pressurizing coolant is supplied from a back surface to ooze from the heatproof wall into the outside air, thereby forming a cooling system element. Fiber material improving the toughness if the porous ceramic by fiber reinforcement is combined by tilting a fiber containing rate in a wall thickness direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐熱材料、耐熱システムー般に関するものであり、特に航空宇宙分野における耐熱、熱防御要素技術、熱防御システムに関する。   The present invention relates to a heat-resistant material and a heat-resistant system in general, and more particularly to a heat-resistant, thermal protection element technology and a thermal protection system in the aerospace field.

高温となる構造物の壁面を高エンタルピガスから防御する技術として、壁面からの気流吹き出しを実行するという発想は新規なものではなく、現在でもフィルム冷却、浸出(トランスピレーション)冷却として、ガスタービンのブレード、燃焼器側壁の冷却などとして検討されている。しかしこれら従来の技術はガス温度がたかだか4,000K程度までの応用を目指したものであり、特殊な燃焼ガスを除いては壁面が著しく酸化または還元雰囲気にさらされることはない。従って技術的には、純粋に気流吹き出しによる熱流束のブロッキングを想定したものに過ぎない。これに対し、例えば極超音速機の飛行環境など、機体周囲の気体温度が8,000〜12,000Kとなる高い熱負荷環境では、大気中の酸素原子はほぼ完全に解離し、壁面は著しい酸化雰囲気にさらされることになる。このような状況では、壁面は熱的な負荷による溶損のみならず強い酸化をうけることになり、耐熱性と耐酸化性を兼ね備えた熱防御技術を用いなければならない。現在、この要求を完全に満足させる耐熱材料や熱防御技術は存在せず、例えばスペースシャトルの耐熱タイルにおいては再使用性と信頼性向上の面で大きな障害となっている。   As a technology to protect the walls of structures that reach high temperatures from high enthalpygas, the idea of performing air flow blowout from the walls is not new, and even today, gas turbines are used for film cooling and leaching (translation) cooling. It is being considered as cooling of the blades and side walls of the combustor. However, these conventional techniques are intended for applications where the gas temperature is up to about 4,000 K, and the wall surface is not significantly exposed to an oxidizing or reducing atmosphere except for a special combustion gas. Therefore, technically, the heat flux blocking is purely assumed by the air flow. On the other hand, for example, in a high heat load environment where the gas temperature around the aircraft is 8,000 to 12,000K, such as the flight environment of a hypersonic aircraft, oxygen atoms in the atmosphere are almost completely dissociated, and the walls are in a significantly oxidizing atmosphere. Will be exposed. In such a situation, the wall surface is not only melted by a thermal load but also strongly oxidized, and a heat protection technique having both heat resistance and oxidation resistance must be used. At present, there is no heat-resistant material and heat-protection technology that completely satisfy this requirement. For example, space shuttle heat-resistant tiles are a major obstacle in terms of reusability and reliability.

気流吹き出し冷却を行う際には、気流吹き出しに伴う主流の乱れを可能な限り抑制することが望ましく、気孔率が高いポーラスセラミックスを耐熱材料としてガスを一様に吹き出す方法は有効であり、これを用いた熱防御技術(例えば特許文献1参照)が提案されているところである。一般にポーラスセラミックスは数ミクロン〜数十ミクロンの微小粒径セラミックを焼結することで形成されるもので、内部構造として微小空洞を有するセラミック材である。材質としてアルミナ、窒化珪素、ジルコニア、炭化珪素など、耐熱性の高いものの開発も可能であり、一般にフィルターなどとして利用されているものである。しかしこのポーラスセラミックスを耐熱材料として用い、表面からガスを一様に吹き出す従来の技術では、例えば極超音速機のノーズコーン周りや翼前縁など、外部壁面圧力と熱流束の分布が局所的に変化する場合に効率よい冷却を行わせることが困難である。この理由は、外部圧力が高く(同時に熱流束も大きい)部分はガスの吹き出しが阻害され、逆に外部圧力が低い(熱流束が小さい)部分では過剰のガスが漏れ出てしまうため、冷却効果にムラが生じてしまうことになる。これを克服するために、ポーラスセラミックス背面の圧力を外部圧力に応じて調整しようというアイデアもあるが、熱防御システムとしては複雑となり重量も増加するため現実的とはいえない。
耐熱材としてセラミックスを使用する場合の問題点は、セラミックスの靭性が低く、熱衝撃に弱いという点であり、有孔率の高いポーラスセラミックスでは特に問題となる。これを克服するために繊維強化セラミックス(FRC)を用いることが有効と考えられ、スペースシャトルの耐熱タイルではガラス繊維強化セラミックスが使用されているが、吹き出し冷却を行うためのポーラスセラミックス複合材としての製造法は確立されていない。
特開2005−42721号公報 「冷却媒体および多孔質部材で表面を有する機器を冷却する方法、浸出冷却装置、ならびに構造を冷却する方法」 平成17年2月17日公開
When airflow blowing cooling is performed, it is desirable to suppress as much as possible the turbulence of the main flow associated with the airflow blowing, and a method of blowing gas uniformly using porous ceramics having a high porosity as a heat resistant material is effective. The heat protection technology used (see, for example, Patent Document 1) is being proposed. In general, porous ceramics are formed by sintering a ceramic having a small particle diameter of several microns to several tens of microns, and are ceramic materials having a microcavity as an internal structure. Materials having high heat resistance such as alumina, silicon nitride, zirconia, and silicon carbide can be developed, and are generally used as filters. However, with this conventional technology that uses this porous ceramic as a heat-resistant material and blows gas uniformly from the surface, the distribution of external wall pressure and heat flux is locally distributed, for example, around the nose cone of a hypersonic machine and the leading edge of the blade. When changing, it is difficult to perform efficient cooling. This is because the part where the external pressure is high (at the same time the heat flux is large) blocks the gas blowout, and conversely the excess gas leaks out at the part where the external pressure is low (heat flux is small). Will result in unevenness. In order to overcome this, there is an idea to adjust the pressure on the back surface of the porous ceramics according to the external pressure, but this is not practical because it is complicated and increases in weight as a thermal protection system.
A problem when using ceramics as a heat-resistant material is that ceramics have low toughness and are vulnerable to thermal shock, which is particularly problematic with porous ceramics having a high porosity. In order to overcome this, it is considered effective to use fiber reinforced ceramics (FRC), and glass fiber reinforced ceramics are used in heat-resistant tiles of the Space Shuttle. A manufacturing method has not been established.
JP 2005-42721 A "Method for cooling equipment having surface with cooling medium and porous member, leaching cooling device, and method for cooling structure" Published February 17, 2005

本発明の課題は、ポーラスセラミックスからなる耐熱材料の表面からガスを一様に吹き出す方式の熱防御システムにおいて、熱流束が極めて高く、雰囲気ガスが酸化/還元性を有し、雰囲気ガス圧力と熱流束が空間的に変化する環境においても適正なガスの吹き出しを実現できる高耐熱、簡易かつ軽量の気流浸出冷却システムを提供することにある。   An object of the present invention is to provide a heat protection system in which gas is uniformly blown from the surface of a heat-resistant material made of porous ceramics. The heat flux is extremely high, the atmospheric gas has oxidizing / reducing properties, and the atmospheric gas pressure and the heat flow. An object of the present invention is to provide a highly heat-resistant, simple and lightweight airflow leaching cooling system capable of realizing proper gas blowing even in an environment where the bundle changes spatially.

本発明の傾斜ポーラスセラミックス複合材を用いた気流浸出広域熱防御システムは、外部気流圧力と熱流束分布に対応させて気孔率及び/または厚みを傾斜的に調整した繊維強化ポーラスセラミックス複合材をべース材と接合して耐熱壁を構築し、背面より加圧冷媒を供給して前記耐熱壁から外気中へ浸出させることにより冷却システム要素を形成するようにした。そして、繊維強化によりポーラスセラミックスの靭性を向上させる繊維材は、壁厚み方向に繊維含有率を傾斜させて配合したものとするようにした。
本発明の傾斜ポーラスセラミックス複合材を用いた広域熱防御システムは、耐熱壁背面がハニカム構造を介して圧力隔壁に結合され、前記ハニカム構造の圧力隔壁側には圧力室を形成するようにし、前記圧力隔壁には冷媒を供給する供給ポートが配置されたものとした。
本発明の傾斜ポーラスセラミックス複合材を用いた広域熱防御システムは、1形態として傾斜ポーラスセラミックス複合材を用いた本発明に係る広域熱防御システムでは広域の耐熱壁が複数のセグメントで分割形成されるようにし、供給ポートへ冷媒を供給する供給管はセグメント面を巡るように配管されるようにした。
The airflow leaching wide area thermal protection system using the inclined porous ceramic composite material of the present invention is based on a fiber reinforced porous ceramic composite material in which the porosity and / or thickness is adjusted to be inclined corresponding to the external airflow pressure and the heat flux distribution. A heat-resistant wall was constructed by joining with a soot material, and a cooling system element was formed by supplying pressurized refrigerant from the back and leaching out of the heat-resistant wall into the outside air. And the fiber material which improves the toughness of porous ceramics by fiber reinforcement was made to mix | blend the fiber content rate in the wall thickness direction.
In the wide-area thermal protection system using the inclined porous ceramic composite material of the present invention, the heat-resistant wall back surface is coupled to the pressure partition via the honeycomb structure, and a pressure chamber is formed on the pressure partition side of the honeycomb structure, The pressure partition was provided with a supply port for supplying a refrigerant.
The wide area thermal protection system using the inclined porous ceramic composite material according to the present invention has a wide area heat-resistant wall divided into a plurality of segments in the wide area thermal protection system according to the present invention using the inclined porous ceramic composite material as one form. Thus, the supply pipe for supplying the refrigerant to the supply port is arranged so as to go around the segment surface.

本発明に係る広域熱防御システム用の傾斜ポーラスセラミックス複合材を得る製造方法は、炭化珪素ファイバー繊維織り込み時にSi粉末とフェノール樹脂の配合を面内で傾斜させたマトリックスを配し、乾燥、成形後、反応焼結させることにより製造するものとした。
また、他の製造方法として、繊維プリフォームにSiC前駆体の有機ケイ素ポリマーを含浸・熱分解させるPIP法において、含浸工程の回数を領域毎に調整することで面内有孔率分布を調整する広域熱防御システム用の傾斜ポーラスセラミックス複合材を得る方法を提示した。
本発明に係る広域熱防御システムの使用方法として、酸化/還元雰囲気での耐熱壁面の耐酸化/還元性を向上させることを目的として、冷媒として3,000Kまで不活性かつ低熱伝導のガスを採用し浸出させることを提示した。更に具体的には冷媒として液体窒素を採用し、貯蔵時の比体積が抑制し、各耐熱セグメントヘの配管により構造パネルをも冷却とガスの気化を促進させる広域熱防御システムの使用方法を提示した。
The manufacturing method for obtaining a tilted porous ceramic composite material for a wide area thermal protection system according to the present invention includes a matrix in which Si powder and phenol resin are tilted in-plane when silicon carbide fiber fibers are woven, and after drying and molding It was manufactured by reactive sintering.
As another manufacturing method, in a PIP method in which a fiber preform is impregnated and thermally decomposed with an organosilicon polymer of a SiC precursor, the in-plane porosity distribution is adjusted by adjusting the number of impregnation steps for each region. A method to obtain graded porous ceramic composites for wide area thermal protection system was presented.
As a method of using the wide-area thermal protection system according to the present invention, an inert and low heat conduction gas up to 3,000 K is adopted as a refrigerant for the purpose of improving the oxidation / reduction property of the heat-resistant wall surface in an oxidation / reduction atmosphere. Presented to leach. More specifically, liquid nitrogen is used as a refrigerant, the specific volume during storage is suppressed, and the use of a wide-area thermal protection system that promotes cooling and gas vaporization of structural panels by piping to each heat-resistant segment did.

本発明の傾斜ポーラスセラミックス複合材を用いた気流浸出広域熱防御システムは、外部気流圧力と熱流束分布に対応させて気孔率及び/または厚みを傾斜的に調整した繊維強化ポーラスセラミックス複合材をべース材と接合して耐熱壁を構築し、背面より加圧冷媒を供給して前記耐熱壁から外気中へ浸出させることにより冷却システム要素を形成するようにしたものであるから、領域毎に圧力を調整するシステムを備えることなく、背面より一定圧の加圧冷媒を供給するだけで、外部気流圧力と熱流束分布に対応した冷却ガスの浸出を実現し、好適な冷却システムを提供できる。そして、繊維強化によりポーラスセラミックスの靭性を向上させる繊維材は、壁厚み方向に繊維含有率を傾斜させて配合したことにより、耐熱衝撃性を向上させると共に面方向に傾斜させた気孔率を繊維材が外表面近傍で妨げない気流浸出広域熱防御システムを実現できた。
本発明の傾斜ポーラスセラミックス複合材を用いた広域熱防御システムは、耐熱壁背面がハニカム構造を介して圧力隔壁に結合され、前記ハニカム構造の圧力隔壁側には圧力室を形成するようにし、前記圧力隔壁には冷媒を供給する供給ポートが配置されたものとしたことにより、ハニカム構造を流路として冷媒を傾斜ポーラスセラミックス複合材へ供給し、外表面から浸出させるように冷却ガスの流れを方向づけることができる。
また、本発明の1形態として傾斜ポーラスセラミックス複合材を用いた本発明に係る広域熱防御システムでは広域の耐熱壁が複数のセグメントで分割形成されるようにしたので、単純構造でない複雑な曲面形状の構造体であっても区分領域毎にパネル形成することができる。また、供給ポートへ冷媒を供給する供給管はセグメント面を巡るように配管したときは、その構成により構造パネルの冷却とガスの気化を促進させる作用効果を奏する。
本発明の傾斜ポーラスセラミックス複合材を用いた気流浸出冷却による広域熱防御技術は、傾斜ポーラスセラミックスを用いることにより、外部気流への擾乱を最小限に抑制しながら外部気流圧力と熱流束分布に対して適切なガス浸出分布を与えることが可能で、広域の壁面を単一の熱防御壁、単一圧力の気密室により熱防御することが可能である。これにより、システムを簡易かつ軽量で構築することができる。
The airflow leaching wide area thermal protection system using the inclined porous ceramic composite material of the present invention is based on a fiber reinforced porous ceramic composite material in which the porosity and / or thickness is adjusted to be inclined corresponding to the external airflow pressure and the heat flux distribution. Since a heat-resistant wall is constructed by joining with a soot material, a cooling system element is formed by supplying pressurized refrigerant from the back and leaching out of the heat-resistant wall into the outside air. Without providing a system for adjusting the pressure, only by supplying a pressurized refrigerant having a constant pressure from the back surface, leaching of the cooling gas corresponding to the external air flow pressure and the heat flux distribution can be realized, and a suitable cooling system can be provided. And the fiber material which improves the toughness of the porous ceramics by fiber reinforcement is made by adding the fiber content rate in the wall thickness direction, thereby improving the thermal shock resistance and increasing the porosity in the surface direction. However, the air leaching wide area thermal protection system that does not disturb near the outer surface could be realized.
In the wide-area thermal protection system using the inclined porous ceramic composite material of the present invention, the heat-resistant wall back surface is coupled to the pressure partition via the honeycomb structure, and a pressure chamber is formed on the pressure partition side of the honeycomb structure, Since the supply port for supplying the refrigerant is arranged in the pressure partition wall, the refrigerant is supplied to the inclined porous ceramic composite material with the honeycomb structure as a flow path, and the flow of the cooling gas is directed so as to be leached from the outer surface. be able to.
Moreover, in the wide-area thermal protection system according to the present invention using the inclined porous ceramic composite material as one embodiment of the present invention, the wide-area heat-resistant wall is divided and formed in a plurality of segments, so that a complicated curved surface shape that is not a simple structure is formed. Even with this structure, a panel can be formed for each divided region. In addition, when the supply pipe for supplying the refrigerant to the supply port is provided so as to go around the segment surface, the structure brings about the effect of promoting the cooling of the structural panel and the gas evaporation.
The global thermal protection technology by airflow leaching cooling using the tilted porous ceramic composite of the present invention uses the tilted porous ceramics to minimize the disturbance to the external airflow and against the external airflow pressure and heat flux distribution. It is possible to provide an appropriate gas leaching distribution, and it is possible to heat-protect a wide-area wall surface with a single thermal barrier wall and a single pressure hermetic chamber. Thereby, a system can be constructed simply and lightly.

本発明に係る広域熱防御システム用の傾斜ポーラスセラミックス複合材を得る製造方法は、マトリックスであるセラミックスの有孔率を面内方向に傾斜させる製造手法により、任意のガス浸出分布を実現することが可能である。そして、反応焼結法により上記仕様の傾斜ポーラスセラミックス複合材を製造する場合は、成型体の収縮は他の手法と比較して小さく抑えることが可能で、製造工程も簡略化される。また、PIP法による含浸工程を調整する手法では、繊維含有率を面垂直方向に傾斜させるのが困難であるが、面内方向の有孔率傾斜をより細かく正確に調整することが可能である。
酸化/還元雰囲気に曝される中で、冷媒として3,000Kまで不活性かつ低熱伝導のガスを採用し浸出させることとした本発明に係る広域熱防御システムの使用方法は、高温の厳しい環境下でも安定した不活性ガスの浸出がなされるため、耐熱壁面の耐酸化/還元性を向上させることができた。更に冷媒として液体窒素を採用し、貯蔵時の比体積が抑制し、各耐熱セグメントヘの配管により構造パネルをも冷却とガスの気化を促進させる広域熱防御システムの使用方法においては、貯蔵時の比体積が抑制され、各耐熱セグメントヘの配管が構造パネルをも冷却できるなど副次的な効果も奏する。
The manufacturing method for obtaining a tilted porous ceramic composite material for a wide area thermal protection system according to the present invention can realize an arbitrary gas leaching distribution by a manufacturing method for tilting the porosity of ceramic as a matrix in the in-plane direction. Is possible. And when manufacturing the inclination porous ceramics composite material of the said specification by reaction sintering method, shrinkage | contraction of a molded object can be restrained small compared with another method, and a manufacturing process is also simplified. Further, in the method of adjusting the impregnation step by the PIP method, it is difficult to incline the fiber content rate in the direction perpendicular to the plane, but it is possible to adjust the porosity gradient in the in-plane direction more finely and accurately. .
The use method of the wide-area thermal protection system according to the present invention, which employs an inert and low heat conduction gas up to 3,000 K as a refrigerant and is leached out in an oxidizing / reducing atmosphere, Since stable inert gas leaching was achieved, the oxidation resistance / reduction property of the heat resistant wall surface could be improved. In addition, liquid nitrogen is used as a refrigerant, the specific volume during storage is suppressed, and the piping to each heat-resistant segment also promotes cooling and gas vaporization of structural panels. The specific volume is suppressed, and there are also secondary effects such as the piping to each heat-resistant segment can cool the structural panel.

本発明の傾斜ポーラスセラミックス複合材を用いた気流浸出冷却システムは、対象構造物についての外部気流圧力と熱流束分布特性を求め、その分布特性を示す環境下において一定の背圧によって適正量のガスに代表される冷媒がパージされるようにするものである。それを実現させる1つの形態を図1に示す。これは、所望のガス流出が得られるように気孔率を傾斜的に調整した繊維強化ポーラスセラミックス複合材1を機械的強度を備えるためべ一ス材2と接合して耐熱壁を構築する。このベース材2は冷媒を繊維強化ポーラスセラミックス複合材1へ通過させる必要があるため、板状体ではなく網形状のような構造物が用いられる。また、外部気流圧力と熱流束分布に対して適切なガス浸出分布が与えられるように、この耐熱壁と構造壁を兼ねる圧力隔壁4の間を、冷媒の横方向の移動を可能とするハニカム構造3で接続し、冷却システム要素を形成する。冷媒の横方向の移動を可能とするハニカム構造とは、ハニカムを形成する壁に貫通孔を設けたり、ハニカム構造3と圧力隔壁4との間を要所でブリッジ接続する等の設計が可能である。また、これの派生型の形態として、気孔率を傾斜的に調整する代わりにポーラスセラミックス1の厚みを調整することで冷媒透過率分布を変化させる手法を提示する。図2に示したものがそれである。また、上記2つの形態を併用してガス浸出分布を与える手法も本発明に採用できる。冷媒透過率に傾斜特性を持たせたポーラスセラミックスを利用することで、外部気流圧力と熱流束分布が変化する広域の壁面を、単一の熱防御壁、単一圧力の気密室により熱防御することが可能となり、システムを簡易かつ軽量で構築することができる。   The airflow leaching cooling system using the tilted porous ceramic composite material of the present invention obtains the external airflow pressure and heat flux distribution characteristics of the target structure, and an appropriate amount of gas with a constant back pressure in an environment showing the distribution characteristics. The refrigerant represented by (1) is purged. One form for realizing this is shown in FIG. In this method, the fiber-reinforced porous ceramic composite material 1 whose porosity is adjusted to be inclined so as to obtain a desired gas outflow is joined to the base material 2 in order to provide mechanical strength, thereby constructing a heat-resistant wall. Since the base material 2 needs to allow the refrigerant to pass through the fiber-reinforced porous ceramic composite material 1, a net-like structure is used instead of a plate-like body. In addition, a honeycomb structure that allows the refrigerant to move in the lateral direction between the pressure partition walls 4 that also serve as the heat-resistant wall and the structural wall so that an appropriate gas leaching distribution is given to the external air flow pressure and the heat flux distribution. 3 connect to form a cooling system element. The honeycomb structure that enables the lateral movement of the refrigerant can be designed such that a through-hole is provided in the wall forming the honeycomb, or the honeycomb structure 3 and the pressure partition 4 are bridge-connected at important points. is there. In addition, as a derivative form thereof, a method of changing the refrigerant permeability distribution by adjusting the thickness of the porous ceramics 1 instead of adjusting the porosity in an inclined manner is presented. This is what is shown in FIG. Further, a method of giving gas leaching distribution by using the above two forms together can be adopted in the present invention. By using porous ceramics with gradient characteristics in refrigerant permeability, a wide range of walls with varying external air pressure and heat flux distribution are protected by a single thermal barrier and single pressure hermetic chamber. Therefore, the system can be constructed simply and lightly.

しかし、ポーラスセラミックスという素材には機械的歪みにもろいという弱点がある。そこで、ポーラスセラミックスの靭性を強化するために、本発明では繊維強化セラミックス複合材を用いるようにした。外部壁面表面での浸出ガス分布の乱れを低減させるため、図3に示すように、繊維含有率が外表面に近づくに従い漸次減少するように傾斜させて形成し、表面ではほぼポーラスセラミックスのみで構成されるようにする。面に垂直方向の傾斜分布は、熱応力分布の急激な変化による破壊を抑制する効果も有する。傾斜ポーラスセラミックス複合材1の製造法として、第1に提示するものはSiCマトリクスを用いたSiC/SiC複合材料を用いるもので、この場合は、図4に模式的に示すようにSiC繊維5織り込み時にSi粉末6とフェノール樹脂7の配合を面内で傾斜させたマトリックスを配し、乾燥、成形してプリプレグ8を作成する。SiC繊維5の密度を変えて同様にSi粉末6とフェノール樹脂7の配合を面内で傾斜させたマトリックスを配し、乾燥、成形する。この工程を順次積層して行い、厚み方向にはSiC繊維密度が傾斜した素材を形成する。これを反応焼結法により焼結することで、図3に示したような面内に気孔率を傾斜させると共に、繊維含有率が外表面に近づくに従い漸次減少するように傾斜するように形成したポーラスマトリックス複合材1を得ることができる。   However, a material called porous ceramics has a weak point that it is vulnerable to mechanical strain. Therefore, in order to reinforce the toughness of the porous ceramics, a fiber reinforced ceramic composite material is used in the present invention. In order to reduce the disturbance of the leach gas distribution on the external wall surface, as shown in FIG. 3, the fiber content is formed to be inclined so as to gradually decrease as it approaches the outer surface. To be. The inclination distribution in the direction perpendicular to the surface also has an effect of suppressing breakage due to a rapid change in the thermal stress distribution. As a manufacturing method of the inclined porous ceramic composite material 1, the first presented method uses a SiC / SiC composite material using a SiC matrix. In this case, as shown schematically in FIG. Sometimes, a matrix in which the composition of Si powder 6 and phenol resin 7 is inclined in the plane is arranged, dried and molded to prepare prepreg 8. Similarly, by changing the density of the SiC fibers 5, a matrix in which the composition of the Si powder 6 and the phenol resin 7 is inclined in the plane is arranged, dried and molded. These steps are sequentially laminated to form a material having a SiC fiber density gradient in the thickness direction. By sintering this by a reactive sintering method, the porosity was inclined in the plane as shown in FIG. 3 and the fiber content was inclined so as to gradually decrease as it approached the outer surface. A porous matrix composite 1 can be obtained.

第2の製造方法として、繊維プリフォームにSiC前駆体の有機ケイ素ポリマーを含浸・熱分解させるPIP(Polymer Infiltration and Pyrolysis)法を応用したものを提示する。この製造法は図5に模式的に示したように、SiC繊維5で形成された繊維プリフォームにフェノール樹脂を塗布して加熱し、まずポーラス炭素マトリックスを形成する。この素材にSiC前駆体の有機ケイ素ポリマー9を含浸・熱分解させ、炭化珪素を形成させるのであるが、気孔率を低く抑えたい部位では気孔率を高くしたい部位に比べ、有機ケイ素ポリマーの含浸工程の回数を増加させることにより、SiCの密度を高くし、結果的に面内有孔率を任意の分布に調整したプリプレグ8を生成する。この素材の上にSiC繊維5の密度を変えた織物を重ね、同様の手法で面内有孔率を任意の分布に調整したプリプレグ8を形成し、順次SiC繊維5の密度が密のものから粗のプリプレグ8を順次積層し、これを加熱工程を加えることで、図3に示したような面内に気孔率を傾斜させると共に、繊維含有率が外表面に近づくに従い漸次減少するように傾斜するように形成したポーラスマトリックス複合材1を得ることができる。   As a second production method, an application of a polymer infiltration and pyrolysis (PIP) method in which a fiber preform is impregnated with a silicon precursor organosilicon polymer and thermally decomposed is presented. In this manufacturing method, as schematically shown in FIG. 5, a phenol resin is applied to a fiber preform formed of SiC fibers 5 and heated to first form a porous carbon matrix. This material is impregnated with the SiC precursor organosilicon polymer 9 and thermally decomposed to form silicon carbide. In the part where the porosity is to be kept low, the organosilicon polymer is impregnated compared to the part where the porosity is to be raised. By increasing the number of times, the density of SiC is increased, and as a result, the prepreg 8 in which the in-plane porosity is adjusted to an arbitrary distribution is generated. A woven fabric in which the density of the SiC fiber 5 is changed is stacked on this material, and a prepreg 8 in which the in-plane porosity is adjusted to an arbitrary distribution is formed by the same method. Rough prepregs 8 are sequentially laminated, and the heating process is applied to incline the porosity in the plane as shown in FIG. 3, and incline so that the fiber content gradually decreases as it approaches the outer surface. The porous matrix composite material 1 formed as described above can be obtained.

酸化/還元雰囲気にさらされる構造体の耐熱壁面の耐酸化/還元性を向上させるためには、浸出ガスとして熱伝導性が低く3,000K程度まで不活性の特性を持つガスを用いることが必要である。冷媒は貯蔵状態で気体であっても差し支えないが、貯蔵時の比体積を考慮すると液体であるほうが望ましい。例えば、図6に示すように冷媒熱防御壁をセグメントに分割し、各セグメントに備えられる供給ポート10へ冷媒を供給源から供給する供給管11がセグメント面を巡るように配管する。このように配管することにより構造パネルを冷却すると共に冷媒の気化を促進するという作用効果を奏する。代表的な冷媒としては窒素が用いられる。   In order to improve the oxidation / reduction properties of the heat-resistant wall of the structure exposed to an oxidation / reduction atmosphere, it is necessary to use a gas with low thermal conductivity and inert properties up to about 3,000K as the leaching gas. is there. The refrigerant may be a gas in the storage state, but is preferably a liquid in consideration of the specific volume during storage. For example, as shown in FIG. 6, the refrigerant thermal barrier wall is divided into segments, and the supply pipe 11 that supplies the refrigerant from the supply source to the supply port 10 provided in each segment is provided so as to go around the segment surface. By piping in this way, the structural panel is cooled and the effect of promoting vaporization of the refrigerant is achieved. Nitrogen is used as a typical refrigerant.

第1実施例として単一翼全体の冷却システムの一例を図7に示す。これはガスタービン翼列や、極超音速機カナードなど、小型翼全体を冷却するものに適用できる。小型翼12の場合、その構造を中空の傾斜ポーラスセラミックス複合材1で形成することができる。その中空の部分を冷媒の流路、あるいは気密室とすることで前述した圧力隔壁4などが不要となり、システムの簡素化と軽量化を図ることができる。ただし、この場合、セラミックス複合材1が構造強度を担うこととなるため、強度設計においては注意が必要となる。
やや中規模の翼について等、セラミックス複合材1単体での翼構造を構成することが強度的に無理なときは、この派生型として、図8に示すように多孔を有する補強プレート13を中空内面に接着し、補強プレート間に梁14を設ける方法で構造強度を増加する手法を提示する。
An example of the cooling system for the entire single blade is shown in FIG. 7 as the first embodiment. This can be applied to the one that cools the entire small blade, such as a gas turbine cascade or a hypersonic canard. In the case of the small wing 12, the structure can be formed by the hollow inclined porous ceramic composite material 1. By making the hollow portion a refrigerant flow path or an airtight chamber, the above-described pressure partition 4 or the like is not required, and the system can be simplified and reduced in weight. However, in this case, since the ceramic composite material 1 bears the structural strength, care must be taken in the strength design.
When it is impossible to construct a wing structure with a ceramic composite material 1 alone, such as a slightly medium-scale wing, as a derived type, a porous reinforcing plate 13 is used as a hollow inner surface as shown in FIG. A method of increasing the structural strength by providing a beam 14 between the reinforcing plates is proposed.

次に、燃焼器スロートや、ノズル壁面の冷却システムに本発明を適用した実施例を示す。この場合は、高温のガスに曝される面が構造体の外周面ではなく内周面となる。図9に示すものは燃焼器スロートやノズル壁面を冷却するシステムの一例であり、外部隔壁15と仕切り構造により形成される縦溝16により、冷媒は傾斜ポーラスセラミックス複合材1の背面に供給される。大規模ノズルでは傾斜ポーラスセラミックス複合材の一体成型・焼結が困難となるが、小〜中規模ノズルの場合スロート一体化の製造が可能である。浸出冷却の場合、内燃ガス圧力分布は浸出圧力分布とバランスするか後者よりやや低めとなるため、ポーラスセラミック表面は燃焼圧を受けず、構造強度は外部圧力隔壁15が担うことになる。このため、燃焼圧を壁面で直接受ける受動的耐熱システムと比較して、壁面セラミックスの応力は低減される。   Next, the Example which applied this invention to the combustor throat and the cooling system of a nozzle wall surface is shown. In this case, the surface exposed to the high-temperature gas is not the outer peripheral surface of the structure but the inner peripheral surface. FIG. 9 shows an example of a system for cooling the combustor throat and the nozzle wall surface, and the coolant is supplied to the back surface of the inclined porous ceramic composite material 1 by the external grooves 15 and the longitudinal grooves 16 formed by the partition structure. . In the case of a large-scale nozzle, it is difficult to integrally form and sinter the inclined porous ceramic composite material. In the case of leaching cooling, the internal combustion gas pressure distribution balances with the leaching pressure distribution or is slightly lower than the latter, so that the porous ceramic surface is not subjected to the combustion pressure, and the structural strength is borne by the external pressure partition 15. For this reason, compared with the passive heat-resistant system which receives a combustion pressure directly on a wall surface, the stress of wall surface ceramics is reduced.

次に、極超音速機の翼前縁の冷却システムに本発明を適用した実施例を示す。図10に示したものは極超音速機など、やや大規模の翼前縁の冷却システムの一例である。この場合、冷却部位が広域かつ大規模となるため、幾つかの傾斜ポーラスセラミックス複合材1を冷却セグメントに分割して、全体として一つの冷却システムを構成する。因みにこの例では翼前縁を長手方向に複数ブロックに分割すると共に、各分割ブロックを上部と中間部そして下部のセグメントに分割している。翼全体としては外部流の圧力と熱流速分布に最適なガス浸出が連続的に接続するように、各セグメントのガス透過率を設計して製造する。各セグメントにおいて気孔率あるいはガス透過率を適切に傾斜させることにより、浸出ガス量は翼各部の圧力及び熱流束に対応したものとされるため、冷媒を流入する供給ポート10へは一定の冷媒圧力で供給すればよく、隔壁内では供給源と供給ポート10をつなぐように単純に供給管11を配管すればよい。各セグメントの隔壁内圧を個別に調整する場合には、冷媒はそれぞれの調圧システムを通して各セグメントヘ供給される必要があるが、本実施例のようにすべてのセグメントで同一の隔壁内圧を用いる場合、(冗長系を除けば)調圧システムは単一のものでよく、また配管も共通でよい。従って従来の手法のように、浸出ガス分布を与えるために多くの調圧システムを準備する必要がなく、システムは簡素化され重量も低減される。   Next, an embodiment in which the present invention is applied to a cooling system for a blade leading edge of a hypersonic aircraft will be described. FIG. 10 shows an example of a slightly large blade leading edge cooling system such as a hypersonic machine. In this case, since the cooling site is wide and large, several inclined porous ceramic composite materials 1 are divided into cooling segments to constitute one cooling system as a whole. In this example, the blade leading edge is divided into a plurality of blocks in the longitudinal direction, and each divided block is divided into upper, middle and lower segments. The blade as a whole is designed and manufactured so that the gas permeability of each segment is connected so that the optimum gas leaching is continuously connected to the external flow pressure and heat flow rate distribution. By appropriately tilting the porosity or gas permeability in each segment, the amount of leached gas is made to correspond to the pressure and heat flux of each part of the blade, so that a constant refrigerant pressure is supplied to the supply port 10 into which the refrigerant flows. The supply pipe 11 may be simply connected to connect the supply source and the supply port 10 in the partition wall. When adjusting the partition internal pressure of each segment individually, the refrigerant needs to be supplied to each segment through the respective pressure regulation systems, but when the same internal partition pressure is used in all the segments as in this embodiment. The pressure regulating system may be single (except for the redundant system), and the piping may be common. Thus, unlike conventional approaches, it is not necessary to prepare many pressure regulation systems to provide the leach gas distribution, and the system is simplified and weight is reduced.

最後に、極超音速機のノーズ部に本発明を適用した実施例を示す。図11に示したものは極超音速機のノーズ部の冷却システムの一例であり、基本的な設計思想は大規模翼前縁の場合に準じ、幾つかの傾斜ポーラスセラミックス複合材冷却セグメントに分割して全体として一つの冷却システムを構成し、それぞれのセグメントへは一定の冷媒圧力で供給する。因みにここに示した例では機体軸方向に複数ブロックに分割し、機首先端部を1つのセグメントに、次のブロックからは周方向に複数のセグメントに分割して極超音速機のノーズ部を構成している。それぞれのセグメントは、極超音速飛行時におけるノーズ部の外壁の圧力及び熱流束分布に対応させてその部分の気孔率を傾斜させた傾斜ポーラスセラミックス複合材1となる。   Finally, an embodiment in which the present invention is applied to the nose portion of a hypersonic aircraft will be described. FIG. 11 shows an example of a cooling system for the nose portion of a hypersonic aircraft. The basic design philosophy is divided into several inclined porous ceramic composite cooling segments according to the case of a large blade leading edge. As a whole, one cooling system is configured, and each segment is supplied with a constant refrigerant pressure. By the way, in the example shown here, the nose part of the hypersonic aircraft is divided into a plurality of blocks in the aircraft axis direction, the nose tip is divided into one segment, and the next block is divided into a plurality of segments in the circumferential direction. It is composed. Each segment becomes the inclined porous ceramic composite material 1 in which the porosity of the portion is inclined corresponding to the pressure and heat flux distribution of the outer wall of the nose portion during hypersonic flight.

航空宇宙分野における耐熱、熱防御システムー般として利用できることは当然として、他の具体的な応用例として、ガスタービン翼、燃焼室壁面、燃焼器スロート壁面、ノズル壁面、極超音速機の外部壁面などが想定できる。 Heat resistance and thermal protection system in the aerospace field-Naturally, it can be used as a general application, and other specific applications include gas turbine blades, combustion chamber wall surface, combustor throat wall surface, nozzle wall surface, external wall surface of hypersonic aircraft, etc. Can be assumed.

本発明に係る傾斜ポーラスセラミックスによる熱防御壁の概念図である。It is a conceptual diagram of the thermal defense wall by the inclination porous ceramics which concern on this invention. 本発明の他の傾斜ポーラスセラミックスによる熱防御壁の概念図である。It is a conceptual diagram of the thermal protection wall by the other inclination porous ceramics of this invention. 繊維強化された傾斜ポーラスセラミックス複合体の概念図である。It is a conceptual diagram of the fiber-reinforced gradient porous ceramic composite. 反応焼結法による傾斜ポーラスセラミックス複合体製造方法を説明する図である。It is a figure explaining the inclination porous ceramics composite manufacturing method by the reaction sintering method. PIP法を用いた傾斜ポーラスセラミックス複合体製造方法を説明する図である。It is a figure explaining the inclination porous ceramics composite manufacturing method using PIP method. 配管系の再生冷却による構造パネル冷却形態を説明する図である。It is a figure explaining the structural panel cooling form by regeneration cooling of a piping system. 小型翼を本発明の傾斜ポーラスセラミックス複合体で一体成形した実施例を示す図である。It is a figure which shows the Example which integrally molded the small wing | blade with the inclination porous ceramic composite_body | complex of this invention. 小〜中型翼の強度補強を施した実施例を説明する図である。It is a figure explaining the Example which gave the intensity | strength reinforcement of the small-medium-sized wing | blade. スロート及び小規模ノズルを本発明の傾斜ポーラスセラミックス複合体で構成した実施例を示す図である。It is a figure which shows the Example which comprised the throat and the small scale nozzle with the inclination porous ceramic composite_body | complex of this invention. 大規模翼前縁を本発明の傾斜ポーラスセラミックス複合体で構成した実施例を示す図である。It is a figure which shows the Example which comprised the large-scale blade front edge with the inclination porous ceramic composite_body | complex of this invention. 極超音速機ノーズ部を本発明の傾斜ポーラスセラミックス複合体で構成した実施例を示す図である。It is a figure which shows the Example which comprised the hypersonic machine nose part with the inclination porous ceramic composite_body | complex of this invention.

符号の説明Explanation of symbols

1 傾斜ポーラスセラミックス複合体 2 ベース材
3 ハニカム構造 4 圧力隔壁
5 SiC繊維 6 Si粉末
7 フェノール樹脂 8 プリプレグ
9 有機ケイ素ポリマー 10 供給ポート
11 供給管 12 小型翼
13 補強プレート 14 梁
15 外部圧力隔壁 16 縦溝
DESCRIPTION OF SYMBOLS 1 Inclined porous ceramic composite 2 Base material 3 Honeycomb structure 4 Pressure partition 5 SiC fiber 6 Si powder 7 Phenolic resin 8 Prepreg 9 Organosilicon polymer 10 Supply port 11 Supply pipe 12 Small blade 13 Reinforcement plate 14 Beam 15 External pressure partition 16 Vertical groove

Claims (10)

外部気流圧力と熱流束分布に対応させて気孔率及び/または厚みを傾斜的に調整した繊維強化ポーラスセラミックス複合材をべース材と接合して耐熱壁を構築し、背面より加圧冷媒を供給して前記耐熱壁から外気中へ浸出させることにより冷却システム要素を形成したものである広域熱防御システム。   A heat-resistant wall is constructed by joining a fiber-reinforced porous ceramics composite with a porosity and / or thickness adjusted in an inclined manner corresponding to the external air pressure and heat flux distribution to the base material, and pressurized refrigerant is applied from the back. A wide-area thermal protection system in which a cooling system element is formed by supplying and leaching from the heat-resistant wall into the outside air. 繊維強化によりポーラスセラミックスの靭性を向上させる繊維材は、壁厚み方向に繊維含有率を傾斜させて配合したものとすることにより、耐熱衝撃性を向上させると共に面方向に傾斜させた気孔率を繊維材が外表面近傍で妨げないものとしたことを特徴とする請求項1に記載の広域熱防御システム。   The fiber material that improves the toughness of the porous ceramics by reinforcing the fiber is blended by inclining the fiber content in the wall thickness direction, thereby improving the thermal shock resistance and increasing the porosity in the surface direction. The wide area thermal protection system according to claim 1, wherein the material is not disturbed near the outer surface. 耐熱壁背面はハニカム構造を介して圧力隔壁に結合され、前記ハニカム構造の圧力隔壁側には圧力室を形成するようにし、前記圧力隔壁には冷媒を供給する供給ポートが配置されたものであって、前記ハニカム構造は供給された冷媒が耐熱壁厚み方向へ移動するように形成したものである請求項1または2に記載の広域熱防御システム。   The rear surface of the heat-resistant wall is coupled to a pressure partition via a honeycomb structure, a pressure chamber is formed on the pressure partition side of the honeycomb structure, and a supply port for supplying a refrigerant is disposed on the pressure partition. The wide-area thermal protection system according to claim 1 or 2, wherein the honeycomb structure is formed so that the supplied refrigerant moves in the heat-resistant wall thickness direction. 中空構造体を傾斜ポーラスセラミックス複合材で一体形成したものであって、その表面が熱防御壁となる請求項1または2に記載の広域熱防御システム。   The wide-area heat protection system according to claim 1 or 2, wherein the hollow structure is integrally formed of an inclined porous ceramic composite material, and the surface thereof serves as a heat protection wall. 傾斜ポーラスセラミックス複合材を用いた広域の耐熱壁は、複数のセグメントで分割形成されたものである請求項1乃至3のいずれかに記載の広域熱防御システム。   The wide-area heat protection system according to any one of claims 1 to 3, wherein the wide-area heat-resistant wall using the inclined porous ceramic composite material is formed by being divided into a plurality of segments. 供給ポートへ冷媒を供給する供給管はセグメント面を巡るように配管されることを特徴とする請求項5に記載の広域熱防御システム。   6. The wide area thermal protection system according to claim 5, wherein the supply pipe for supplying the refrigerant to the supply port is provided so as to go around the segment surface. 炭化珪素ファイバー繊維織り込み時にSi粉末とフェノール樹脂の配合を面内で傾斜させたマトリックスを配し、乾燥、成形後、反応焼結させることにより広域熱防御システム用の傾斜ポーラスセラミックス複合材を得る製造方法。   Manufacture of tilted porous ceramic composites for wide-area thermal protection systems by placing a matrix in which Si powder and phenol resin are tilted in-plane when weaving silicon carbide fiber fibers, drying, molding, and reaction sintering Method. 繊維プリフォームにSiC前駆体の有機ケイ素ポリマーを含浸・熱分解させるPIP法において、含浸工程の回数を領域毎に調整することで面内有孔率分布を調整する広域熱防御システム用の傾斜ポーラスセラミックス複合材を得る製造方法。   Inclined porous for wide-area thermal protection system that adjusts in-plane porosity distribution by adjusting the number of impregnation steps for each region in PIP method of impregnating and thermally decomposing SiC precursor organosilicon polymer into fiber preform A manufacturing method for obtaining a ceramic composite material. 酸化/還元雰囲気での耐熱壁面の耐酸化/還元性を向上させることを目的として、冷媒として3,000Kまで不活性かつ低熱伝導のガスを採用し浸出させる請求項1乃至6のいずれかに記載の広域熱防御システムの使用方法。   7. The refrigeration gas according to claim 1, wherein an inert and low thermal conductivity gas is used and leached up to 3,000 K for the purpose of improving the oxidation / reduction property of the heat-resistant wall surface in an oxidation / reduction atmosphere. How to use a wide area thermal protection system. 冷媒として液体窒素を採用し、貯蔵時の比体積が抑制し、各耐熱セグメントヘの配管により構造パネルをも冷却とガスの気化を促進させることを特徴とする請求項6に記載の広域熱防御システムの使用方法。   7. The wide-area thermal protection according to claim 6, wherein liquid nitrogen is used as a refrigerant, a specific volume during storage is suppressed, and cooling and gas vaporization are promoted by piping to each heat-resistant segment. How to use the system.
JP2005325373A 2005-11-09 2005-11-09 Wide area thermal protection technology by airflow leaching cooling using inclined porous ceramics composite Expired - Fee Related JP4635183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325373A JP4635183B2 (en) 2005-11-09 2005-11-09 Wide area thermal protection technology by airflow leaching cooling using inclined porous ceramics composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005325373A JP4635183B2 (en) 2005-11-09 2005-11-09 Wide area thermal protection technology by airflow leaching cooling using inclined porous ceramics composite

Publications (2)

Publication Number Publication Date
JP2007131119A true JP2007131119A (en) 2007-05-31
JP4635183B2 JP4635183B2 (en) 2011-02-16

Family

ID=38153133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325373A Expired - Fee Related JP4635183B2 (en) 2005-11-09 2005-11-09 Wide area thermal protection technology by airflow leaching cooling using inclined porous ceramics composite

Country Status (1)

Country Link
JP (1) JP4635183B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190843A (en) * 2010-03-12 2011-09-29 Toto Ltd Ceramic tube member
WO2013143886A1 (en) * 2012-03-29 2013-10-03 Siemens Aktiengesellschaft Coated gas turbine component for high-temperature applications, having a duct system for protective gas
JP2017053356A (en) * 2010-09-21 2017-03-16 パルマー ラボ,エルエルシー High efficiency power production method, assembly and system
JP2017187027A (en) * 2016-04-05 2017-10-12 ゼネラル・エレクトリック・カンパニイ High porosity material and method of making the same
JP2018505099A (en) * 2015-02-13 2018-02-22 中国科学院▲寧▼波材料技▲術▼▲与▼工程研究所 Thermal protection and resistance reduction method and system for ultra-high speed aircraft
KR101866900B1 (en) * 2016-05-20 2018-06-14 한국기계연구원 Gas turbine blade
CN109823510A (en) * 2019-03-06 2019-05-31 中南大学 Hypersonic aircraft and its thermal protection structure and coolant circulating system
CN117326046A (en) * 2023-11-15 2024-01-02 北京交通大学 Hypersonic aircraft surface can thermal protection system of dimension shape
JP7432349B2 (en) 2019-12-10 2024-02-16 イビデン株式会社 Manufacturing method of ceramic matrix composite material
CN117326046B (en) * 2023-11-15 2024-05-10 北京交通大学 Hypersonic aircraft surface can thermal protection system of dimension shape

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313866A (en) * 1992-11-02 1995-12-05 Aerospat Soc Natl Ind Method and system for protecting oxidizable material from oxidation
JP2002234777A (en) * 2000-12-18 2002-08-23 United Technol Corp <Utc> Process of making ceramic matrix composite parts with cooling channels
JP2005042721A (en) * 2003-07-22 2005-02-17 Boeing Co:The Cooling medium and method of cooling device having porous member surface, sweated cooling device and structure cooling method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313866A (en) * 1992-11-02 1995-12-05 Aerospat Soc Natl Ind Method and system for protecting oxidizable material from oxidation
JP2002234777A (en) * 2000-12-18 2002-08-23 United Technol Corp <Utc> Process of making ceramic matrix composite parts with cooling channels
JP2005042721A (en) * 2003-07-22 2005-02-17 Boeing Co:The Cooling medium and method of cooling device having porous member surface, sweated cooling device and structure cooling method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190843A (en) * 2010-03-12 2011-09-29 Toto Ltd Ceramic tube member
US11459896B2 (en) 2010-09-21 2022-10-04 8 Rivers Capital, Llc High efficiency power production methods, assemblies, and systems
JP2017053356A (en) * 2010-09-21 2017-03-16 パルマー ラボ,エルエルシー High efficiency power production method, assembly and system
JP2018159381A (en) * 2010-09-21 2018-10-11 パルマー ラボ,エルエルシー High efficiency power production method, assembly and system
US10927679B2 (en) 2010-09-21 2021-02-23 8 Rivers Capital, Llc High efficiency power production methods, assemblies, and systems
US11859496B2 (en) 2010-09-21 2024-01-02 8 Rivers Capital, Llc High efficiency power production methods, assemblies, and systems
WO2013143886A1 (en) * 2012-03-29 2013-10-03 Siemens Aktiengesellschaft Coated gas turbine component for high-temperature applications, having a duct system for protective gas
JP2018505099A (en) * 2015-02-13 2018-02-22 中国科学院▲寧▼波材料技▲術▼▲与▼工程研究所 Thermal protection and resistance reduction method and system for ultra-high speed aircraft
JP2017187027A (en) * 2016-04-05 2017-10-12 ゼネラル・エレクトリック・カンパニイ High porosity material and method of making the same
KR101866900B1 (en) * 2016-05-20 2018-06-14 한국기계연구원 Gas turbine blade
CN109823510A (en) * 2019-03-06 2019-05-31 中南大学 Hypersonic aircraft and its thermal protection structure and coolant circulating system
JP7432349B2 (en) 2019-12-10 2024-02-16 イビデン株式会社 Manufacturing method of ceramic matrix composite material
CN117326046A (en) * 2023-11-15 2024-01-02 北京交通大学 Hypersonic aircraft surface can thermal protection system of dimension shape
CN117326046B (en) * 2023-11-15 2024-05-10 北京交通大学 Hypersonic aircraft surface can thermal protection system of dimension shape

Also Published As

Publication number Publication date
JP4635183B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4635183B2 (en) Wide area thermal protection technology by airflow leaching cooling using inclined porous ceramics composite
US10202854B2 (en) Abrasive tips for ceramic matrix composite blades and methods for making the same
EP1500880B1 (en) A transpiration cooling system and method
Padture Advanced structural ceramics in aerospace propulsion
Marshall et al. Integral textile ceramic structures
US10384981B2 (en) Methods of forming ceramic matrix composites using sacrificial fibers and related products
US10480108B2 (en) Ceramic matrix composite components reinforced for managing multi-axial stresses and methods for fabricating the same
US6151887A (en) Combustion chamber for rocket engine
US10107119B2 (en) Vane assembly for a gas turbine engine
US4838346A (en) Reusable high-temperature heat pipes and heat pipe panels
JP5642776B2 (en) Method and apparatus for structural insulating layers using microtruss
JP2005240797A (en) USE OF BIASED FABRIC TO IMPROVE PROPERTIES OF SiC/SiC CERAMIC COMPOSITE FOR TURBINE ENGINE COMPONENT
US20070175535A1 (en) Orthogonal weaving for complex shape preforms
US10995040B2 (en) Ceramic matrix composite components having a deltoid region and methods for fabricating the same
Luo et al. Carbon fiber reinforced silicon carbide composite-based sharp leading edges in high enthalpy plasma flows
US11260976B2 (en) System for reducing thermal stresses in a leading edge of a high speed vehicle
Misra Composite materials for aerospace propulsion related to air and space transportation
Kumar et al. C/C and C/SiC composites for aerospace applications
Fahy et al. Recent developments of ablative thermal protection systems for atmospheric entry
Zhang et al. Synthesis and characterization of light-weight porous ceramics used in the transpiration cooling
Russo et al. The USV Program &UHTC Development
US7037602B2 (en) Multilayer composite
JP2008101534A (en) Effusion cooling rocket combustor
US20220074639A1 (en) Semi-passive cooling using hierarchical vasculature
Cox et al. Integral textile ceramic composites for turbine engine combustors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees