JP2011190508A - Titanium copper for electronic component, and electronic component using the same - Google Patents

Titanium copper for electronic component, and electronic component using the same Download PDF

Info

Publication number
JP2011190508A
JP2011190508A JP2010058355A JP2010058355A JP2011190508A JP 2011190508 A JP2011190508 A JP 2011190508A JP 2010058355 A JP2010058355 A JP 2010058355A JP 2010058355 A JP2010058355 A JP 2010058355A JP 2011190508 A JP2011190508 A JP 2011190508A
Authority
JP
Japan
Prior art keywords
titanium
copper
hydrogen
mass
titanium copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010058355A
Other languages
Japanese (ja)
Inventor
Masuo Okada
益男 岡田
Atsunori Kamegawa
厚則 亀川
Yugo Takeda
悠吾 竹田
Masatoshi Eto
雅俊 衛藤
Norio Yuki
典夫 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
JX Nippon Mining and Metals Corp
Original Assignee
Tohoku University NUC
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, JX Nippon Mining and Metals Corp filed Critical Tohoku University NUC
Priority to JP2010058355A priority Critical patent/JP2011190508A/en
Publication of JP2011190508A publication Critical patent/JP2011190508A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide hydrogen-containing titanium copper in which both of strength and electric conductivity are improved. <P>SOLUTION: In the titanium copper containing, by mass, 1 to 6% Ti and 0.01 to 0.2% H, wherein H is comprised in 0.5 to 4 by atomic ratio to Ti, and the balance copper with inevitable impurities, among precipitates made of intermetallic compounds of Ti and Cu, the ones with a particle diameter of ≥5 μm are not present, and in titanium hydroxide, the number of the precipitates of the titanium hydroxide with the dimensions of 5 to 20 nm is 20 to 300 pieces in the field×the thickness of the sample in a thickness of 70 nm observed by a scanning transmission electron microscope (STEM) of 100 nm×100 nm is 20 to 300 pieces, and the area ratio of the titanium hydroxide with the dimensions of 100 nm to 5 μm is 0.25 to 11% in the field of the compositional image of a scanning electron microscope (SEM). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子部品用のチタン銅及びその製造方法に関する。また、本発明はチタン銅を用いて作製した電子部品及びその製造方法に関する。   The present invention relates to titanium copper for electronic components and a method for producing the same. The present invention also relates to an electronic component manufactured using titanium copper and a manufacturing method thereof.

チタンを含有する銅合金(以下、「チタン銅」と称する。)は、銅合金中ベリリウム銅に次ぐ強度を有し、ベリリウム銅を凌ぐ応力緩和特性を有していることからコネクタ材等の電子部品に使用され、近年その需要は益々増大の傾向にある。一方で、電子部品の短小軽薄化に伴い、強度及び導電性を高い次元で両立するチタン銅が求められている。   A copper alloy containing titanium (hereinafter referred to as “titanium copper”) has the strength next to beryllium copper in the copper alloy, and has stress relaxation characteristics superior to beryllium copper. In recent years, the demand has been increasing. On the other hand, with the reduction in size and thickness of electronic components, there is a demand for titanium copper that achieves both strength and conductivity at a high level.

チタン銅の特性を向上させる方法として、チタン銅中に水素を含有させる方法が知られている。特開2008−75174号公報には、熱処理により銅−チタン合金の母相(過飽和固溶体相)からチタン銅化合物(TiCu4)を析出させると同時に、本合金に水素を吸収させることによりチタンハイドライド(TiH2:以後「水素化チタン」という。)としてチタンを析出させ、母相中のチタン(Ti)含有量を低減させることにより、高強度銅−チタン合金の導電率を向上させようとする思想が開示されている。
また、そのような銅−チタン−水素合金を製造する方法として、銅を母材としてチタンを所定分量含有させ、急冷することで、チタンが過飽和に固溶した銅合金を作製し、それを水素雰囲気で時効処理などすることによって水素を含有させる方法が開示されている。
当該文献によれば、チタン銅に水素を含有させることで、強度は保ったままで導電率を高くすることができるとされている。
As a method of improving the characteristics of titanium copper, a method of containing hydrogen in titanium copper is known. JP 2008-75174 A discloses a titanium hydride (TiCu 4 ) by precipitating a titanium copper compound (TiCu 4 ) from a parent phase (supersaturated solid solution phase) of a copper-titanium alloy by heat treatment and at the same time absorbing hydrogen into the alloy. The idea of improving the electrical conductivity of a high-strength copper-titanium alloy by precipitating titanium as TiH 2 : hereinafter referred to as “titanium hydride” and reducing the titanium (Ti) content in the parent phase. Is disclosed.
In addition, as a method for producing such a copper-titanium-hydrogen alloy, a predetermined amount of titanium is contained in copper as a base material, and rapidly cooled to prepare a copper alloy in which titanium is supersaturated, and this is hydrogenated. A method of incorporating hydrogen by aging treatment in an atmosphere is disclosed.
According to this document, it is said that by adding hydrogen to titanium copper, the electrical conductivity can be increased while maintaining the strength.

また、国際公開第2005/098071号パンフレットには、水素との親和力の弱い元素を主とした合金に、水素との親和力の強い元素を含有せしめて、結晶粒微細化効果を発揮せしめる技術が開示されている。当該文献によれば、水素との親和力の弱い元素を主たる構成成分とする合金であって且つ水素との親和力の強い元素を含有せしめた合金に対して、絶対温度で表される金属(又は合金)の融点をTMと表した場合に、該合金を0℃〜0.8TMの温度範囲で水素雰囲気に合金をおくことで、水素が吸収されて、合金に含まれ且つ水素との親和力の強い元素が該吸収された水素と反応するとされ、更に、上記知見による水素を吸収し且つ水素との親和力の弱い元素を主たる構成要素としている合金から、0℃〜0.8TMの温度範囲で水素を放出させることで、該合金の結晶粒径を1μm以下に微細化できるとされる。そして、結晶粒径を微細化した結果、合金の高強度化を図ることができるとされている。 In addition, the pamphlet of International Publication No. 2005/098071 discloses a technique for demonstrating the effect of refining crystal grains by incorporating an element having a strong affinity for hydrogen into an alloy mainly composed of an element having a weak affinity for hydrogen. Has been. According to this document, a metal (or alloy) represented by an absolute temperature with respect to an alloy containing an element having a weak affinity for hydrogen as a main constituent and an element having a strong affinity for hydrogen. the melting point of) when expressed as T M, the alloy by placing the alloy in a hydrogen atmosphere at a temperature range of 0 ℃ ~0.8T M, hydrogen is absorbed, affinity with and hydrogen contained in the alloy It is said that a strong element reacts with the absorbed hydrogen, and further, from an alloy that absorbs hydrogen and has an element having a weak affinity for hydrogen as a main component, based on the above knowledge, a temperature range of 0 ° C. to 0.8 T M It is said that the crystal grain size of the alloy can be miniaturized to 1 μm or less by releasing hydrogen at this point. As a result of reducing the crystal grain size, it is said that the strength of the alloy can be increased.

特開2008−75174号公報JP 2008-75174 A 国際公開第2005/098071号パンフレットInternational Publication No. 2005/098071 Pamphlet

特開2008−75174号公報によれば、チタン銅に水素を含有させることで、強度は保ったままで導電率を高くすることができるとされているが、強度までも向上することは記載されていない。むしろ、当該文献の図3及び図5に記載のデータから明らかなように、強度は水素を含有させたものの方が低い傾向にある。   According to Japanese Patent Laid-Open No. 2008-75174, it is said that by adding hydrogen to titanium copper, the electrical conductivity can be increased while maintaining the strength, but it is described that the strength is also improved. Absent. Rather, as apparent from the data described in FIGS. 3 and 5 of the document, the strength tends to be lower when hydrogen is contained.

一方、国際公開第2005/098071号パンフレットには、「水素を吸収させることにより、合金中に水素化物または水素固溶体相が形成され、水素放出後は水素吸収反応前と同様の出現相に一部または全てが再形成されることにより、結晶粒が1μm以下に微細化される」(段落0028)と記載されており、合金の強度向上効果は水素を合金から放出させて初めて得られると考えられていた。   On the other hand, the pamphlet of International Publication No. 2005/098071 states that “by absorbing hydrogen, a hydride or hydrogen solid solution phase is formed in the alloy, and after hydrogen release, a part of the appearance phase is the same as before the hydrogen absorption reaction. Or, by re-forming everything, the crystal grains are refined to 1 μm or less ”(paragraph 0028), and the effect of improving the strength of the alloy is considered to be obtained only after hydrogen is released from the alloy. It was.

また、古くから、金属中に水素が含有していると、水素脆性と呼ばれる金属材料の延性靱性が低下する現象が生じることが知られており、金属材料の強度を高める目的で水素を積極的に添加することはなかった。   In addition, it has been known for a long time that when hydrogen is contained in a metal, a phenomenon that the ductility toughness of a metal material, called hydrogen embrittlement, is reduced, and hydrogen is actively used to increase the strength of the metal material. Was not added.

従って、チタン銅に水素を含有させることにより、導電率のみならず、強度までも向上させることができれば画期的であろう。また、導電率においても、前記の通り水素化によって向上するものの、チタン銅の導電率は純銅に比べればまだまだ低く、さらなる改善が望まれる。本発明は、強度及び導電率の両者が改善された水素含有チタン銅を提供することを主たる課題とする。   Therefore, it would be epoch-making if not only the conductivity but also the strength can be improved by adding hydrogen to titanium copper. In addition, although the conductivity is improved by hydrogenation as described above, the conductivity of titanium copper is still lower than that of pure copper, and further improvement is desired. The main object of the present invention is to provide hydrogen-containing titanium copper having improved both strength and electrical conductivity.

発明者は、上記課題を解決するために検討したところ、特開2008−75174号公報に記載の技術では水素がチタン銅の表面付近に多く分布し、チタン銅の内部に充分に水素が拡散しておらず、チタン銅中で水素の分布が不均一であることを見出した。水素は内部に拡散せずに表面付近に過剰に存在するため、逆に強度に悪影響を与えていた可能性がある。
そこで、本発明者は、水素は結晶粒界や転位を通って内部に拡散すると考えられることから、チタン銅の製造過程において、チタン銅内部に水素が容易に拡散できるように結晶粒界及び転位を増やし、均一に水素を分散させることで特性改善ができると考えた。また、当該公報に記載の技術ではTiH2と共にCu4Tiも析出させているが、Tiを安定相であるCu4Tiとして析出するのではなく、できるだけTiH2を析出させることで特性改善に結びつく可能性があると考えた。
The inventor has studied to solve the above problems, and in the technique described in Japanese Patent Application Laid-Open No. 2008-75174, a large amount of hydrogen is distributed near the surface of titanium copper, and hydrogen is sufficiently diffused inside the titanium copper. However, it was found that the distribution of hydrogen was uneven in titanium copper. Since hydrogen does not diffuse inside and exists excessively near the surface, it may have adversely affected the strength.
Therefore, the present inventor believes that hydrogen diffuses inside through crystal grain boundaries and dislocations, so that in the production process of titanium copper, the crystal grain boundaries and dislocations can be easily diffused into titanium copper. We thought that the characteristics could be improved by increasing hydrogen and dispersing hydrogen uniformly. In the technique described in the publication, Cu 4 Ti is precipitated together with TiH 2. However, Ti is not precipitated as Cu 4 Ti which is a stable phase, but TiH 2 is precipitated as much as possible, leading to improvement of characteristics. I thought it was possible.

本発明者は上記仮説に基づいて引き続き検討を行ったところ、チタン銅の製造過程において、結晶粒界及び転位を増やして水素を内部拡散させ、また、析出するTiの形態として、安定なCuとTiの金属間化合物(例えばCu4Ti及びCu3Ti)、とりわけ粗大なCuとTiの金属間化合物の析出を抑制し、その代わり水素化チタン(TiH2やTiH4等)を析出させる比率を多くすると、チタン銅は導電率のみならず強度までも向上することを見出した。 The present inventor has continued examination based on the above hypothesis, and in the production process of titanium copper, the grain boundaries and dislocations are increased to internally diffuse hydrogen, and as a form of precipitated Ti, stable Cu and The ratio of depositing Ti intermetallic compounds (eg Cu 4 Ti and Cu 3 Ti), especially coarse Cu and Ti intermetallic compounds, and depositing titanium hydride (TiH 2 , TiH 4, etc.) instead. In many cases, it has been found that titanium copper improves not only the conductivity but also the strength.

さらには、前記の粗大なCuとTiの金属間化合物の析出を回避しつつも、特定範囲以下の大きさであるCuとTiの金属間化合物を一定程度析出させ、それを水素化することにより、更なる導電率の向上が得られることを見出した。   Furthermore, while avoiding the precipitation of the coarse intermetallic compound of Cu and Ti, a certain amount of the intermetallic compound of Cu and Ti having a size below a specific range is precipitated and hydrogenated. The present inventors have found that further improvement in conductivity can be obtained.

上記知見を基礎として完成した本発明は、一側面において、Tiを1〜6質量%、Hを0.01〜0.2質量%含有し、HをTiに対する原子比で0.5〜4含有し、残部銅及び不可避的不純物からなり、TiとCuの金属間化合物からなる析出物のうち、粒径5μm以上のものが実質的にないチタン銅であって、水素化チタンのうち、大きさ5〜20nmの水素化チタンの析出物が100nm×100nmの走査透過型電子顕微鏡(STEM)で観察される視野×試料の厚さ70nmにおいて20〜300個であり、大きさ100nm〜5μmの水素化チタンの面積率が走査型電子顕微鏡(SEM)の組成像の視野内において0.25〜11%であるチタン銅である。   In one aspect, the present invention completed based on the above knowledge contains 1 to 6% by mass of Ti, 0.01 to 0.2% by mass of H, and 0.5 to 4 in terms of atomic ratio with respect to Ti. Of the precipitates composed of the balance copper and inevitable impurities, and composed of an intermetallic compound of Ti and Cu, titanium copper having substantially no particle size of 5 μm or more, Hydrogenation of 5 to 20 nm titanium hydride precipitates observed with a scanning transmission electron microscope (STEM) of 100 nm × 100 nm × 20 to 300 in a thickness of 70 nm of the sample and a size of 100 nm to 5 μm It is titanium copper whose area ratio of titanium is 0.25 to 11% in the field of view of the composition image of a scanning electron microscope (SEM).

本発明に係るチタン銅の一実施形態においては、平均結晶粒径が30μm以下である。   In one embodiment of titanium copper according to the present invention, the average crystal grain size is 30 μm or less.

本発明に係るチタン銅の更に一実施形態においては、板厚方向に測定した硬さの標準偏差が10以下である。   In a further embodiment of the titanium copper according to the present invention, the standard deviation of hardness measured in the thickness direction is 10 or less.

本発明に係るチタン銅の更に別の一実施形態においては、更に第3元素群としてMg、Mn、Fe、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、P及びAgよりなる群から選択される1種又は2種以上を合計で0.5質量%以下含有する。   In yet another embodiment of titanium copper according to the present invention, the third element group further includes Mg, Mn, Fe, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, P, and Ag. 1 type or 2 types or more selected from the group which consists of 0.5 mass% or less in total are contained.

本発明は、別の一側面において、Cuに、Mg、Mn、Fe、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、P及びAgよりなる群から選択される1種以上を合計で0.5質量%以下含有するように随意に添加した後、Tiを1〜6質量%含有するように添加してインゴットを製造する工程1と、
前記インゴットを熱間圧延して冷間圧延する工程2と、
次いで、Ti含有量に応じた固溶限温度に比べて30〜100℃高い温度に加熱して溶体化処理する工程3と、
加工度50%〜90%で冷間圧延する工程4と、
Ti含有量に応じた固溶限温度に比べて0〜20℃低い温度で加熱して溶体化処理する工程5と、
次いで10%〜70%で冷間圧延する工程6と、
次いで250〜450℃で1〜100時間時効処理する工程7と、
を含み、
工程7において又は工程7よりも前段階で材料中に水素を導入する工程を実施する、
チタン銅の製造方法である。
In another aspect of the present invention, Cu is one or more selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, P, and Ag. Are optionally added so as to contain 0.5% by mass or less in total, and then added to contain 1-6% by mass of Ti to produce an ingot, and
Step 2 of hot rolling the ingot and cold rolling;
Next, a step 3 of solution treatment by heating to a temperature 30 to 100 ° C. higher than the solid solution limit temperature according to the Ti content,
Step 4 of cold rolling at a working degree of 50% to 90%,
Step 5 of heating at a temperature lower by 0 to 20 ° C. than the solid solution limit temperature according to the Ti content and solution treatment,
Then, step 6 of cold rolling at 10% to 70%,
Next, step 7 of aging treatment at 250 to 450 ° C. for 1 to 100 hours,
Including
Performing a step of introducing hydrogen into the material in step 7 or in a stage prior to step 7;
It is a manufacturing method of titanium copper.

本発明は別の一側面において、上記チタン銅からなる伸銅品である。   In another aspect, the present invention is a copper-drawn product made of the above titanium copper.

本発明はまた別の一側面において、上記チタン銅を備えた電子部品である。   Another aspect of the present invention is an electronic component including the titanium copper.

本発明はまた別の一側面において、上記チタン銅を備えたコネクタである。   In another aspect, the present invention is a connector comprising the titanium copper.

本発明によれば、強度及び導電率の両者が改善された水素含有チタン銅を得ることができる。   According to the present invention, it is possible to obtain hydrogen-containing titanium copper having improved both strength and electrical conductivity.

Tiの水素化物(C1:大きさ 5nm〜20nm)Ti hydride (C1: size 5 nm to 20 nm) Tiの水素化物(C2:大きさ 100nm〜5μm 走査型電子顕微鏡(SEM)5000倍で観察)Ti hydride (C2: size 100 nm to 5 μm, observed with a scanning electron microscope (SEM) 5000 times) Tiの水素化物(C2:大きさ 100nm〜5μm 走査透過型電子顕微鏡(STEM)10万倍で観察)Ti hydride (C2: size 100 nm to 5 μm, observed with scanning transmission electron microscope (STEM) 100,000 times)

(1)銅合金の組成について
(a)Ti
Tiが1質量%未満ではチタン銅本来の変調構造の形成による強化機構を充分に得ることができないことから充分な強度が得られず、逆に5質量%を超えると粗大な安定相(TiCu4やTiCu3に代表されるCuとTiの金属間化合物)が析出し易くなるが、溶体化処理を適切に行うことで6質量%近くまで安定相を大きさ5μm未満に制御することができる。但し、6質量%を超えるとその制御が困難となり、強度及び曲げ加工性が劣化する。従って、本発明に係るチタン銅中のTiの含有量は、1.0〜6.0質量%であり、好ましくは、3.0〜5.5質量%であり、より好ましくは3.5〜5.0質量%である。このようにTiの含有量を適正化することで、電子部品用に適した強度及び曲げ加工性を共に実現することができる。
(1) Composition of copper alloy (a) Ti
If Ti is less than 1% by mass, a sufficient strengthening mechanism cannot be obtained due to the formation of a modulation structure inherent to titanium-copper. On the contrary, if Ti exceeds 5% by mass, a coarse stable phase (TiCu 4 Or an intermetallic compound of Cu and Ti typified by TiCu 3 ) is easily precipitated, but the stable phase can be controlled to a size of less than 5 μm up to nearly 6 mass% by appropriately performing the solution treatment. However, when it exceeds 6 mass%, the control becomes difficult, and the strength and bending workability deteriorate. Therefore, the content of Ti in the titanium copper according to the present invention is 1.0 to 6.0 mass%, preferably 3.0 to 5.5 mass%, more preferably 3.5 to 5.0% by mass. Thus, by optimizing the Ti content, both strength and bending workability suitable for electronic components can be realized.

(b)H
チタン銅は、溶体化工程でTiを充分に固溶させた後時効処理時にTi濃度の周期的変動である変調構造を発達させることで強度及び導電率が向上する合金である。しかしながら、変調構造を発達させる時効処理時にはTiCu4やTiCu3等のTiとCuの金属間化合物も不可避的に析出してしまう。TiとCuの金属間化合物が析出すると、固溶Ti量の減少によって導電率は向上するものの、強度にはほとんど寄与しない。特に時効温度が高い或いは時効時間が長い等の過時効の状態では、粗大なTiCu4やTiCu3等のTiとCuの金属間化合物となる。粗大な金属間化合物は強度を低下させるので好ましくない。
(B) H
Titanium copper is an alloy whose strength and conductivity are improved by developing a modulation structure that is a periodic variation of Ti concentration during aging treatment after sufficiently dissolving Ti in the solution treatment step. However, an intermetallic compound of Ti and Cu such as TiCu 4 and TiCu 3 is inevitably deposited during the aging treatment for developing the modulation structure. When the intermetallic compound of Ti and Cu is precipitated, the conductivity is improved by decreasing the amount of solid solution Ti, but hardly contributes to the strength. In particular, in an overaging state where the aging temperature is high or the aging time is long, a coarse intermetallic compound of Ti and Cu such as TiCu 4 or TiCu 3 is obtained. Coarse intermetallic compounds are not preferred because they reduce strength.

そこで、高強度・高導電性を有するチタン銅として本発明では、時効処理時の母相中に水素を存在させることで、時効処理時に固溶Tiと水素を反応させ超微細な水素化物を析出させ導電率を向上させるとともに、強度を低下させる粗大なTiとCuとの金属間化合物の析出を抑制することで高強度化を図ることを見出した。さらには、強度を低下させない程度の大きさの微細なTiとCuとの金属間化合物を逆に析出させ、それを微細な水素化チタンとすることにより更なる導電性の向上を図ることを見出した。なお、水素はCuよりもTiとの親和性が高く、水素化銅を形成することはほとんどない。   Therefore, in the present invention, as titanium copper having high strength and high conductivity, hydrogen exists in the matrix during the aging treatment, so that the solid solution Ti reacts with hydrogen during the aging treatment to precipitate an ultrafine hydride. It has been found that the strength can be increased by suppressing the precipitation of coarse intermetallic compounds of Ti and Cu, which improve the conductivity and reduce the strength. Furthermore, it has been found that a fine intermetallic compound of Ti and Cu of such a size that does not decrease the strength is reversely precipitated and made into fine titanium hydride to further improve the conductivity. It was. Hydrogen has a higher affinity for Ti than Cu and hardly forms copper hydride.

また、超微細な水素化チタンの析出が強度の向上に寄与することもできる。これは強化に寄与するHは、変調構造の中で超微細な水素化チタンを形成していることによると考えられる。   Moreover, the precipitation of ultrafine titanium hydride can also contribute to the improvement of strength. This is considered to be because H contributing to strengthening is due to the formation of ultrafine titanium hydride in the modulation structure.

本発明において水素化チタンは、チタンの水素化合物TiHxとしてX=0.2〜2(または0.5〜2)からなると考えられる。   In the present invention, titanium hydride is considered to consist of X = 0.2 to 2 (or 0.5 to 2) as a hydrogen compound TiHx of titanium.

Hの含有量としては、少なすぎると前述した効果が充分に得られないので、チタン銅中にはHをTiに対する原子比で少なくとも0.5は含有させるべきである。一方、過剰に添加すると、変調構造に寄与するTiがHと反応して過剰の水素化チタンを析出するため、強度を低下させてしまう。また、未反応Hを多量に残留させることも好ましくない。水素は、原子半径が小さく軽いので、材料内部を比較的自由に移動し、母材中に微量混入しているOやCと反応して水やメタンを形成する。このような液又はガス状の化合物がチタン銅中に存在すると、母相中に微細な空隙や亀裂を生じさせて強度を低下させる原因となる。従って、チタン銅中のH濃度は、添加されたすべてのHがTiと化合物を作るのに必要な濃度よりも少なくすべきであり、具体的には、最大でもTiの原子数の4倍を超えて含有させるべきではなく、水素化チタンが主としてTiH2として析出することを考えればTiの原子数の2倍を超えて含有しないのが好ましい。 If the content of H is too small, the above-described effects cannot be obtained sufficiently. Therefore, at least 0.5 in terms of the atomic ratio of Ti to Ti should be contained in titanium copper. On the other hand, when excessively added, Ti that contributes to the modulation structure reacts with H and precipitates excess titanium hydride, thereby reducing the strength. Also, it is not preferable to leave a large amount of unreacted H. Since hydrogen has a small atomic radius and is light, it moves relatively freely in the material and reacts with O and C mixed in a trace amount in the base material to form water and methane. When such a liquid or gaseous compound is present in titanium copper, fine voids and cracks are generated in the matrix phase, causing a decrease in strength. Therefore, the H concentration in titanium copper should be less than the concentration required for all the added H to form a compound with Ti, specifically, at most four times the number of Ti atoms. In consideration of the fact that titanium hydride precipitates mainly as TiH 2 , it is preferable not to contain more than twice the number of Ti atoms.

そこで、チタン銅中に含まれるHの含有量はTiに対する原子比で0.5〜4である。より好ましくは0.5から2である。具体的なH濃度としては0.01〜0.2質量%とするのが好ましく、0.01〜0.1質量%とするのがより好ましい。   Therefore, the content of H contained in titanium copper is 0.5 to 4 in terms of atomic ratio with respect to Ti. More preferably, it is 0.5 to 2. The specific H concentration is preferably 0.01 to 0.2% by mass, and more preferably 0.01 to 0.1% by mass.

(c)第3元素群
チタン銅中には、更に第3元素群としてMg、Mn、Fe、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、P及びAgよりなる群から選択される1種又は2種以上を合計で0.5質量%以下含有させてもよい。これらの元素の効果は、微量の添加によりTiが充分に固溶する温度で溶体化処理をしても結晶粒が容易に微細化すること、後述するプレス加工後の低温での熱処理により硬化してばね性が向上することである。ここで、チタン銅において本発明の効果が最も高いのがFeである。Mg、Mn、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、P及びAgにおいても、Feに準じた効果が期待でき、単独の添加でも効果が見られるが、2種以上を複合添加してもよい。
(C) Third element group Titanium copper further includes a third element group consisting of Mg, Mn, Fe, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, P, and Ag. You may contain 1 type (s) or 2 or more types selected in total 0.5 mass% or less. The effect of these elements is that the crystal grains are easily refined even when solution treatment is performed at a temperature at which Ti is sufficiently dissolved by addition of a small amount, and is cured by heat treatment at a low temperature after press working described later. The spring property is improved. Here, in titanium copper, Fe has the highest effect of the present invention. Mg, Mn, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, P, and Ag can be expected to have an effect equivalent to Fe, and even when added alone, the effect can be seen. May be added in combination.

これらの元素はチタン銅中の固溶量が少なく、僅かな添加量で結晶粒が微細化する。そして、チタン銅の強度を引き出す変調構造の発達に対して悪影響を及ぼさない元素である。また、BとPは、単独の添加では効果が殆どないが、他の元素と複合添加することにより、それらの元素の働きを助長する効果がある。第3元素群の効果は、合計で0.05質量%以上含有すると有意に現れだすため、第3元素群は合計で0.05質量%以上含有させるのが好ましい。ただし、あまり添加し過ぎるとTiの固溶度を低くし、粗大な第2相粒子を析出し易くなり、強度は若干向上するが、曲げ加工性が劣化する。具体的には、第3元素群は、合計0.5質量%を越えると第2相粒子の析出が過剰となり、曲げ加工性に悪影響を与える。   These elements have a small amount of solid solution in titanium copper, and crystal grains are refined with a slight addition amount. And it is an element which does not exert a bad influence with respect to the development of the modulation | alteration structure which draws out the intensity | strength of titanium copper. Further, B and P are hardly effective when added alone, but by adding them in combination with other elements, there is an effect of promoting the function of these elements. Since the effect of the third element group appears significantly when the total content is 0.05% by mass or more, it is preferable to contain the third element group by 0.05% by mass or more in total. However, when too much is added, the solid solubility of Ti is lowered and coarse second phase particles are easily precipitated, and the strength is slightly improved, but the bending workability is deteriorated. Specifically, if the total amount of the third element group exceeds 0.5% by mass, the precipitation of the second phase particles becomes excessive, which adversely affects the bending workability.

(2)TiとCuの金属間化合物および水素化チタンからなる析出物
(a)析出物の構成
本発明で得られるチタン銅における析出物として、TiとCuの金属間化合物及び水素化チタンが挙げられる。水素化チタンは、主に「超微細な」水素化チタンと「微細な」水素化チタンに分けられ、両者は以降具体的に述べるように、それぞれ異なった形でチタン銅の強度及び導電性に寄与する。
(2) Precipitate composed of intermetallic compound of Ti and Cu and titanium hydride (a) Structure of precipitate As the precipitate in titanium copper obtained in the present invention, an intermetallic compound of Ti and Cu and titanium hydride are listed. It is done. Titanium hydride is mainly divided into “ultra-fine” titanium hydride and “fine” titanium hydride, both of which are different from each other in the strength and conductivity of titanium copper, as will be described in detail below. Contribute.

(b)チタン銅と「超微細な」水素化チタンの関係
チタン銅において、時効処理時に析出する安定相であるTiとCuの金属間化合物(TiCu4やTiCu3等)は先述したように、強度への向上がほとんどないばかりか、粗大なものは強度に悪影響を及ぼす。本発明では、超微細な水素化チタンとして析出させることにより、粗大なTiとCuの金属間化合物の析出を抑制して、TiがCuの金属間化合物として析出する比率を下げることができる。その結果、粗大なTiがCuの金属間化合物による強度への悪影響が軽減され、チタン銅本来の変調構造由来の強度向上効果、および変調構造組織に分散した水素化チタンによる一層の強度向上効果がより鮮明に現れる。これは、変調構造中にTiを超微細な水素化チタンとして析出させるようにしたことによるためと考えられ、析出した超微細な水素化チタンが、変調構造からTiとCuの金属間化合物への発達を抑制する、すなわち、TiとCuの金属間化合物の数が減少し、粗大な析出物の発生が抑えられるためと考えられる。
(B) Relationship between titanium copper and “ultrafine” titanium hydride In titanium copper, Ti and Cu intermetallic compounds (TiCu 4 , TiCu 3, etc.), which are stable phases that precipitate during aging treatment, are as described above. There is almost no improvement to strength, but coarse ones have an adverse effect on strength. In the present invention, by precipitating as ultrafine titanium hydride, it is possible to suppress the precipitation of coarse Ti and Cu intermetallic compounds, and to reduce the ratio of Ti to precipitate as Cu intermetallic compounds. As a result, the adverse effect on the strength due to the intermetallic compound of coarse Ti is reduced, the strength improvement effect derived from the original modulation structure of titanium copper, and the further strength improvement effect due to titanium hydride dispersed in the modulation structure Appear more clearly. This is considered to be because Ti was precipitated as ultrafine titanium hydride in the modulation structure. The precipitated ultrafine titanium hydride was converted from the modulation structure to an intermetallic compound of Ti and Cu. It is considered that the growth is suppressed, that is, the number of intermetallic compounds of Ti and Cu is reduced, and the generation of coarse precipitates is suppressed.

具体的には、TiとCuの金属間化合物からなる析出物のうち、粒径5μm以上のものが実質的になく、大きさ5〜20nmの水素化チタンが、100nm×100nmの走査透過型電子顕微鏡(STEM)の視野×試料の厚さ70nmにおいて、20〜300個であり、好ましくは30〜300個、より好ましくは50〜300個である。ここで「実質的になく」とは、例えば走査型電子顕微鏡(SEM)の組成像を1000倍で単位視野(85μm×115μmの視野)あたりの粒子個数を10視野について計数し、大きさ5μm以上の1視野あたりの平均個数が0.2未満のことを言う。   Specifically, among the precipitates composed of an intermetallic compound of Ti and Cu, those having a particle size of 5 μm or more are substantially absent, and titanium hydride having a size of 5 to 20 nm is a scanning transmission electron having a size of 100 nm × 100 nm. In the field of view of the microscope (STEM) × the thickness of the sample at 70 nm, the number is 20 to 300, preferably 30 to 300, and more preferably 50 to 300. Here, “substantially no” means, for example, that the composition image of a scanning electron microscope (SEM) is 1000 times and the number of particles per unit field (85 μm × 115 μm field) is counted for 10 fields, and the size is 5 μm or more. The average number per field of view is less than 0.2.

なお、TiとCuの金属間化合物とは、SEM、EPMA、STEM(HAADF)などの電子顕微鏡で観察される析出物で、Cuが50質量%以上かつTiが6質量%以上検出される析出物で、具体的にはTiCu4やTiCu3とが挙げられるが、これに限らない。 In addition, the intermetallic compound of Ti and Cu is a precipitate observed with an electron microscope such as SEM, EPMA, or STEM (HAADF), and is a precipitate in which Cu is detected by 50 mass% or more and Ti is detected by 6 mass% or more. Specific examples include TiCu 4 and TiCu 3 , but are not limited thereto.

(c)チタン銅と「微細な」水素化チタンとの関係
一方で、前記のような粗大なTiとCuの金属間化合物の析出を抑制しながらも、強度に影響しない程度の微細なTiとCuの金属間化合物を析出させ、水素雰囲気下で時効処理することにより微細な水素化チタンの析出物が得られる。このように微細なTiとCuの金属間化合物を水素化チタンとすることにより、強度を損なうことなく、更なる導電性の向上が得られる。これは、微細なTiとCuの金属間化合物が析出されることにより、母相中のTiが減少し、また微細な析出物中の金属間化合物のCu4Ti等が水素化してCuが生じるためと考えられる(例えばCu4Ti+H2→4Cu+TiH2)。
(C) Relationship between titanium copper and “fine” titanium hydride On the other hand, while suppressing the precipitation of the coarse intermetallic compound of Ti and Cu as described above, the fine Ti and the strength that does not affect the strength By depositing an intermetallic compound of Cu and aging treatment in a hydrogen atmosphere, fine titanium hydride deposits are obtained. Thus, by using titanium hydride as a fine intermetallic compound of Ti and Cu, further improvement in conductivity can be obtained without impairing strength. This is because Ti in the matrix phase is reduced by the precipitation of fine Ti and Cu intermetallic compounds, and Cu 4 Ti, etc., of the intermetallic compounds in the fine precipitates is hydrogenated to produce Cu. (For example, Cu 4 Ti + H 2 → 4Cu + TiH 2 ).

ここで、上記微細な水素化チタンについては、特定視野で観察される特定の大きさの水素化チタンの面積率を求めることによって、その生成量を特定することができる。具体的には、走査型電子顕微鏡(SEM)の組成像において、水素化チタンは黒色部として表れ、画像処理をすることによってその面積率を算出することができる。面積率が大きくなりすぎると、強度に悪影響を及ぼすようになり、逆に面積率が小さすぎると、導電性の向上効果が得られない。具体的には、上記微細な水素化チタンにおいて、大きさ100nm〜5μmの水素化チタンの面積率(%)が、0.25〜11.00%であり、好ましくは0.75〜9.00%である。   Here, about the said fine titanium hydride, the generation amount can be specified by calculating | requiring the area ratio of the titanium hydride of the specific magnitude | size observed in a specific visual field. Specifically, in a composition image of a scanning electron microscope (SEM), titanium hydride appears as a black portion, and the area ratio can be calculated by image processing. If the area ratio is too large, the strength is adversely affected. Conversely, if the area ratio is too small, the effect of improving conductivity cannot be obtained. Specifically, in the fine titanium hydride, the area ratio (%) of titanium hydride having a size of 100 nm to 5 μm is 0.25 to 11.00%, preferably 0.75 to 9.00. %.

(3)板厚方向に測定した硬さの標準偏差
本発明に係るチタン銅では、結晶粒界や転位を増やし、水素の拡散経路を増加することで水素が内部まで均一に拡散しているため、従来のように表面付近に水素が過剰分布していたことによる弊害がなくなる。
ただし、水素濃度の板厚方向の分布を測定することは困難なため、本発明では、材料の硬さによって規定した。具体的には、ビッカース硬度を測定することによって板厚方向に複数回測定した硬さ(Hv)の標準偏差が10以下であり、より好ましくは5以下である。
(3) Hardness standard deviation measured in the thickness direction In the titanium copper according to the present invention, hydrogen is uniformly diffused to the inside by increasing the grain boundaries and dislocations and increasing the hydrogen diffusion path. Thus, the adverse effects of excessive hydrogen distribution near the surface as in the prior art are eliminated.
However, since it is difficult to measure the distribution of the hydrogen concentration in the plate thickness direction, in the present invention, it is defined by the hardness of the material. Specifically, the standard deviation of the hardness (Hv) measured several times in the thickness direction by measuring the Vickers hardness is 10 or less, more preferably 5 or less.

(4)平均結晶粒径
チタン銅の強度を向上させるためには、結晶粒が小さいほどよい。さらに本発明においては、結晶粒界も多くなって水素の内部拡散にも有利となる。そこで、好ましい平均結晶粒径は30μm以下、より好ましくは10μm以下、更により好ましくは7μm以下である。下限については、最終圧延の加工度が高いと結晶粒径の判別が困難となるため、そのような状況を1μm未満(<1μm)とし、本発明の範囲に含める。ただし、極端に小さくなると応力緩和特性が低下してしまうので、応力緩和特性が必要な場合には、1μm以上が好ましい。
(4) Average crystal grain size In order to improve the strength of titanium copper, the smaller the crystal grain, the better. Furthermore, in the present invention, the number of crystal grain boundaries increases, which is advantageous for hydrogen internal diffusion. Therefore, the preferable average crystal grain size is 30 μm or less, more preferably 10 μm or less, and even more preferably 7 μm or less. Regarding the lower limit, it is difficult to discriminate the crystal grain size when the degree of work of the final rolling is high. Therefore, such a situation is set to less than 1 μm (<1 μm) and is included in the scope of the present invention. However, if the stress relaxation characteristic is required, it is preferably 1 μm or more since the stress relaxation characteristic is deteriorated if it becomes extremely small.

(5)本発明に係るチタン銅の特性
上述したように、本発明に係るチタン銅には水素が適切な形態及び分布状態で存在し、かつ粗大なTiとCuの金属間化合物の析出が抑制されているため、水素を添加しない場合に比べて、導電率に加えて強度までも向上するという特徴を有している。また微細なTiとCuの金属間化合物を析出させ、水素化することにより、単に水素を添加する場合に比べて、更に導電性が向上するという特徴を有している。例えば、引張強度が800MPa以上、好ましくは1000MPa以上、かつ、導電率(%IACS)が30%以上、好ましくは35%以上、とすることができる。
(5) Characteristics of Titanium Copper According to the Present Invention As described above, hydrogen is present in the titanium copper according to the present invention in an appropriate form and distribution state, and precipitation of coarse intermetallic compounds of Ti and Cu is suppressed. Therefore, as compared with the case where hydrogen is not added, there is a feature that strength is improved in addition to conductivity. In addition, by depositing and hydrogenating a fine intermetallic compound of Ti and Cu, it has a feature that the conductivity is further improved as compared with the case where hydrogen is simply added. For example, the tensile strength can be 800 MPa or more, preferably 1000 MPa or more, and the electrical conductivity (% IACS) can be 30% or more, preferably 35% or more.

本発明に係るチタン銅は種々の板厚の伸銅品に加工することができ、各種の電子部品の材料として有用である。本発明に係るチタン銅は、限定的ではないが、スイッチ、コネクタ、ジャック、端子、リレー等の材料として好適に使用することができる。   Titanium copper according to the present invention can be processed into copper products having various plate thicknesses, and is useful as a material for various electronic components. The titanium copper according to the present invention is not limited, but can be suitably used as a material for switches, connectors, jacks, terminals, relays and the like.

(6)製造方法
本発明に係るチタン銅を製造する上では、先述したように、水素が材料内部に均一に拡散できるように結晶粒界及び転位を増やし、また、変調構造を形成するスピノーダル変態中に水素化チタンを析出させること、粗大なCuとTiの金属間化合物の析出を抑制させること、及び微細なCuとTiの金属間化合物を析出させ水素化することが必要である。そのためには、第一容体化処理においてCu中にTiを充分に固溶させること、最終の溶体化処理において再結晶粒の粗大化を防止しつつも微細なCuとTiの金属間化合物を生成、残存させるような温度で溶体化すること、時効処理直前に適度な冷間圧延を実施すること、時効処理を比較的低温側で行うことが重要となる。なお、チタン銅への水素の導入は、時効処理前或いは時効処理中に行なえばよい。
以下に、好適な製造例を工程毎に順次説明する。
(6) Manufacturing method In manufacturing titanium copper according to the present invention, as described above, the crystal grain boundaries and dislocations are increased so that hydrogen can uniformly diffuse inside the material, and a spinodal transformation that forms a modulation structure. It is necessary to deposit titanium hydride therein, suppress the precipitation of coarse Cu and Ti intermetallic compounds, and deposit and hydrogenate fine Cu and Ti intermetallic compounds. To that end, in the first solution treatment, Ti is sufficiently dissolved in Cu, and in the final solution treatment, a fine intermetallic compound of Cu and Ti is produced while preventing recrystallized grains from becoming coarse. It is important to form a solution at such a temperature as to remain, to perform an appropriate cold rolling immediately before the aging treatment, and to perform the aging treatment on a relatively low temperature side. In addition, what is necessary is just to perform introduction | transduction of hydrogen to titanium copper before an aging treatment or during an aging treatment.
Below, a suitable manufacture example is demonstrated one by one for every process.

1)インゴット製造工程
溶解及び鋳造によるインゴットの製造は、基本的に真空中又は不活性ガス雰囲気中で行う。溶解において添加元素の溶け残りがあると、強度の向上に対して有効に作用しない。よって、溶け残りをなくすため、FeやCr等の高融点の添加元素は、添加してから充分に攪拌した上で、一定時間保持する必要がある。一方、TiはCu中に比較的溶け易いので第3元素群の溶解後に添加すればよい。従って、溶製に関しては、適当量のCuに、必要に応じて第3元素群としてFe、Mn、Mg、Mo、Co、Ni、Si、Cr、V、Nb、Zr、B、P及びAgよりなる群から選択される1種以上を合計で0.50質量%以下含有するように添加し、充分保持した後にTiを1〜6質量%添加する。
1) Ingot manufacturing process Manufacturing of an ingot by melting and casting is basically performed in a vacuum or in an inert gas atmosphere. If the additive element remains undissolved during melting, it does not effectively act on strength improvement. Therefore, in order to eliminate undissolved residue, it is necessary to add a high-melting-point additive element such as Fe or Cr, and after sufficiently stirring, hold for a certain time. On the other hand, since Ti is relatively easily dissolved in Cu, it may be added after the third element group is dissolved. Therefore, for melting, an appropriate amount of Cu is added as necessary as a third element group from Fe, Mn, Mg, Mo, Co, Ni, Si, Cr, V, Nb, Zr, B, P, and Ag. One or more selected from the group consisting of a total of 0.50% by mass or less is added, and after holding sufficiently, 1 to 6% by mass of Ti is added.

2)均質化焼鈍及び熱間圧延
ここでは凝固偏析や鋳造中に発生した晶出物をできるだけ無くすことが望ましい。後の溶体化処理において、TiとCuの金属間化合物及び水素化チタンに代表される第二相粒子の析出を微細かつ均一に分散させる為であり、混粒の防止にも効果があるからである。
インゴット製造工程後には、900〜960℃で、3時間以上、典型的には3〜5時間の均質化焼鈍を行った後に、熱間圧延を実施する。チタン銅は900℃以上では拡散速度及び塑性流動性が高く、Ti濃度の違いによる変形抵抗に差異が生じないので、偏析層が分断されて均質化が助長される。また、偏析部ではチタンが濃化して低融点となっているため、960℃を超える加熱をすると、液相が出現して、そのまま熱間圧延をするとその部分で割れるという液体金属脆性が生じてしまう。
2) Homogenization annealing and hot rolling Here, it is desirable to eliminate solidified segregation and crystallized substances generated during casting as much as possible. This is because in the subsequent solution treatment, the precipitation of the second phase particles represented by the intermetallic compound of Ti and Cu and titanium hydride is dispersed finely and uniformly, and it is also effective in preventing mixed grains. is there.
After the ingot manufacturing process, hot rolling is performed after performing homogenization annealing at 900 to 960 ° C. for 3 hours or longer, typically 3 to 5 hours. Titanium copper has a high diffusion rate and plastic fluidity at 900 ° C. or higher, and there is no difference in deformation resistance due to a difference in Ti concentration. Therefore, the segregation layer is divided and homogenization is promoted. In addition, since the titanium is concentrated in the segregation part and has a low melting point, when heated above 960 ° C., a liquid phase appears, and when hot rolling is performed as it is, liquid metal brittleness is generated that cracks at that part. End up.

3)第一溶体化処理
その後、冷延と焼鈍を適宜繰り返してから溶体化処理を行うことが望ましい。ここで予め溶体化を行っておく理由は、Ti及びTiCu化合物を完全に固溶させるためである。ここで温度が高すぎると合金が局所的に溶融したり、表面から進入、拡散してきた酸素によって表層部から酸化してしまうので好ましくない。低すぎるとTiCu化合物が固溶しないので好ましくない。Cu-Ti合金の平行状態図において、Tiの固溶限温度はTi含有量によって異なり、1質量%Tiで約590℃、2質量%Tiで約680℃、3質量%Tiで約760℃、4質量%Tiで約820℃、5質量%Tiで約860℃、6質量%Tiで約880℃である。そのため、これらの温度以上で30〜100℃、より好ましくは30〜90℃高い温度の範囲で、2〜10分間、好ましくは5〜7分間行うと良い。
3) First solution treatment After that, it is desirable to carry out the solution treatment after appropriately repeating cold rolling and annealing. The reason why the solution is formed in advance is to completely dissolve the Ti and TiCu compounds. If the temperature is too high, the alloy is not preferable because the alloy is locally melted or oxidized from the surface layer by oxygen that has entered and diffused from the surface. If it is too low, the TiCu compound does not dissolve, which is not preferable. In the parallel phase diagram of the Cu—Ti alloy, the solid solution limit temperature of Ti varies depending on the Ti content, and is about 590 ° C. for 1% by mass Ti, about 680 ° C. for 2% by mass Ti, about 760 ° C. for 3% by mass Ti, 4 mass% Ti is about 820 ° C., 5 mass% Ti is about 860 ° C., and 6 mass% Ti is about 880 ° C. Therefore, it is good to carry out for 2 to 10 minutes, preferably 5 to 7 minutes in the temperature range higher than these temperatures by 30 to 100 ° C, more preferably 30 to 90 ° C.

4)中間圧延
最終の溶体化処理前の中間圧延における加工度を高くするほど、最終の溶体化処理における第二相粒子が均一かつ微細に析出する。それは、集積した加工ひずみが再結晶の核生成サイトとなるので、加工度を高くしてひずみをためた方が、多数の再結晶核が生成するため、結晶粒が微細化するのである。但し、加工度をあまり高くして最終の溶体化処理を行うと、再結晶集合組織が発達して、塑性異方性が生じ、プレス成形性を害することがある。従って、中間圧延の加工度は50〜90%である。加工度は{(圧延前の厚み−圧延後の厚み)/圧延前の厚み)×100%}で定義される。
4) Intermediate rolling As the degree of processing in the intermediate rolling before the final solution treatment is increased, the second phase particles in the final solution treatment are precipitated more uniformly and finely. This is because accumulated processing strain becomes a nucleation site for recrystallization. Therefore, when the strain is increased by increasing the degree of processing, a large number of recrystallization nuclei are generated, so that the crystal grains become finer. However, if the final solution treatment is performed with a too high degree of work, a recrystallized texture develops and plastic anisotropy occurs, which may impair press formability. Therefore, the processing degree of intermediate rolling is 50 to 90%. The degree of work is defined by {(thickness before rolling−thickness after rolling) / thickness before rolling) × 100%}.

5)最終の溶体化処理
溶体化処理時の加熱速度が高いほど結晶粒は微細化する。そして溶体化という目的においては、第2相粒子を完全に固溶させることが望ましいが、完全に固溶するまで高温に加熱すると、結晶粒が粗大化し、また微細なTiとCuの金属間化合物の所望とする析出が得られないので、加熱温度は第2相粒子が固溶する固溶度線付近で且つ固溶度線付近よりも低い温度とする。典型的には、Ti含有量に応じた固溶限付近温度に比べて0〜20℃低い温度、好ましくは0〜10℃低い温度で加熱する。
5) Final solution treatment The crystal grains become finer as the heating rate during the solution treatment is higher. For the purpose of solution formation, it is desirable to completely dissolve the second phase particles, but when heated to a high temperature until complete dissolution, the crystal grains become coarse, and a fine intermetallic compound of Ti and Cu. Therefore, the heating temperature is set to a temperature in the vicinity of the solid solubility line where the second phase particles are dissolved and lower than the vicinity of the solid solubility line. Typically, heating is performed at a temperature lower by 0 to 20 ° C., preferably 0 to 10 ° C. lower than the temperature near the solid solubility limit depending on the Ti content.

また、最終の溶体化処理での加熱時間は短いほうが結晶粒は微細化する。加熱時間は15秒〜90秒、例示的には20〜45秒である。この時点で第2相粒子が発生しても微細かつ均一に分散していれば、強度と曲げ加工性に対してほとんど無害である。しかし粗大なものは最終の時効処理で更に成長する傾向にあるので、この時点での第2相粒子は生成してもなるべく少なく、小さくしなければならない。冷却速度は高い方が好ましく、操業安定性の観点からは水冷を使用するのが有利である。   Further, the shorter the heating time in the final solution treatment, the finer the crystal grains. The heating time is 15 seconds to 90 seconds, illustratively 20 to 45 seconds. Even if the second phase particles are generated at this point, if they are finely and uniformly dispersed, they are almost harmless to strength and bending workability. However, since coarse particles tend to grow further in the final aging treatment, the number of second-phase particles at this point must be reduced as much as possible. A higher cooling rate is preferable, and it is advantageous to use water cooling from the viewpoint of operational stability.

6)最終の冷延加工度
上記溶体化処理工程後、最終の冷間圧延を行う。最終の冷間加工によってチタン銅の強度を高めることができるほか、転位の生成により水素の拡散経路を増加させる。この際、加工度が10%未満では充分な効果が得られないので加工度を10%以上とするのが好ましい。但し、加工度が高いほど次の時効処理でCuとTiの金属間化合物が形成され易いので、加工度を70%以下、好ましくは50%以下とする。
6) Final cold rolling degree After the solution treatment step, final cold rolling is performed. The final cold working can increase the strength of titanium copper and increase the hydrogen diffusion path by generating dislocations. At this time, if the degree of work is less than 10%, a sufficient effect cannot be obtained, so that the degree of work is preferably 10% or more. However, the higher the degree of work, the easier it is to form an intermetallic compound of Cu and Ti in the next aging treatment, so the degree of work is 70% or less, preferably 50% or less.

7)時効処理
時効処理は、添加元素によっても適正な時効条件は異なってくるが、通常は250〜450℃で1〜100時間である。低温の時効ほどTiとCuの金属間化合物の成長を抑制しながら水素化チタンの析出を助長できるが、長い時効時間を要する。例えば、300℃以上400℃未満では12〜75hとすることが望ましく、更に望ましくは330〜370℃で30〜60hとする。時効温度が450℃を超えると水素の吸収が進まず、放出が始まるので、水素化が困難となる。よって400℃を超える温度域は極力避け、短時間で実施することが好ましい。
7) Aging treatment The aging treatment is usually performed at 250 to 450 ° C for 1 to 100 hours, although appropriate aging conditions vary depending on the additive element. Although the aging at a low temperature can promote the precipitation of titanium hydride while suppressing the growth of the intermetallic compound of Ti and Cu, a long aging time is required. For example, if it is 300 degreeC or more and less than 400 degreeC, it is desirable to set it as 12 to 75 hours, More desirably, it is set as 30 to 60 hours at 330 to 370 degreeC. When the aging temperature exceeds 450 ° C., hydrogen absorption does not proceed and release starts, making hydrogenation difficult. Therefore, it is preferable to avoid the temperature range exceeding 400 ° C. as much as possible, and to carry out in a short time.

チタン銅への水素の導入は時効処理前、あるいは時効処理時に行うことができる。例えば水素雰囲気下で時効処理することにより、水素がチタン銅内部へ拡散しながら時効処理時の熱によって材料中のチタンと反応して微細な水素化チタンとして析出する。例えば、0.1〜20MPaの水素分圧として時効処理すればよい。また、時効処理時の雰囲気ガスとしては可能な限り純度の高い水素を使用することが望ましい。材料中での水素の予期せぬ挙動を防止するためである。その他、時効処理前に電解チャージする方法によっても水素を導入することが可能である。   Hydrogen can be introduced into titanium copper before aging treatment or during aging treatment. For example, by performing an aging treatment in a hydrogen atmosphere, hydrogen reacts with titanium in the material by the heat during the aging treatment while diffusing into the titanium copper, and precipitates as fine titanium hydride. For example, an aging treatment may be performed with a hydrogen partial pressure of 0.1 to 20 MPa. Moreover, it is desirable to use hydrogen having the highest possible purity as the atmospheric gas during the aging treatment. This is to prevent unexpected behavior of hydrogen in the material. In addition, it is possible to introduce hydrogen by a method of electrolytic charging before aging treatment.

ただし、時効処理後のチタン銅への水素の導入、例えば従来のようなAr雰囲気化での時効処理後に水素を導入してもTiとCuの金属間化合物の成長は抑制できず、本発明の効果は得られない。また、水素雰囲気下での時効処理時であっても、時効温度が水素放出の始まる温度である450℃を超えている場合には水素が導入できずにTiとCuの金属間化合物の成長が進んでしまうため、その後に水素が導入されても導電率は向上するが強度までは向上しない。   However, even if hydrogen is introduced into titanium copper after aging treatment, for example, hydrogen is introduced after aging treatment in a conventional Ar atmosphere, growth of an intermetallic compound of Ti and Cu cannot be suppressed. There is no effect. Further, even during aging treatment in a hydrogen atmosphere, when the aging temperature exceeds 450 ° C., which is the temperature at which hydrogen release starts, hydrogen cannot be introduced, and growth of an intermetallic compound of Ti and Cu occurs. Therefore, even if hydrogen is subsequently introduced, the conductivity is improved, but the strength is not improved.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

実施例及び比較例で得られたチタン銅の試験片に対しては、下記の特性を測定した。   The following properties were measured for the titanium copper test pieces obtained in the examples and comparative examples.

A.H含有量
H含有量は、熱伝導度方式を用いた水素分析装置LECO社製RH402により求めた。
A. H content H content was calculated | required by RH402 by the hydrogen analyzer LECO company using the thermal conductivity system.

B.平均結晶粒径
平均結晶粒径の測定は、圧延方向に平行な断面の組織を、エッチング(水(100mL)−FeCl3(5g)−HCl(10mL))により現出させ、単位面積当たりの結晶粒の数をカウントして、結晶粒の平均の円相当径を求めた。具体的には、100μm×100μmの枠を作成し、この枠の中に存在する結晶粒の数をカウントした。なお、枠を横切っている結晶粒については、すべて1/2個としてカウントした。枠の面積10000μm2をその合計で除したものが結晶粒1個当たりの面積の平均値である。その面積を持つ真円の直径が円相当径であるので、これを平均結晶粒径とした。
B. Average crystal grain size The average crystal grain size is measured by revealing a cross-sectional structure parallel to the rolling direction by etching (water (100 mL) -FeCl 3 (5 g) -HCl (10 mL)), and crystal per unit area. The number of grains was counted to determine the average equivalent circle diameter of the crystal grains. Specifically, a frame of 100 μm × 100 μm was created, and the number of crystal grains present in this frame was counted. Note that all the crystal grains crossing the frame were counted as ½. The average value of the area per crystal grain is obtained by dividing the frame area of 10,000 μm 2 by the total. Since the diameter of the perfect circle having the area is the equivalent circle diameter, this was defined as the average crystal grain size.

C1.Tiの水素化物(5〜20nm)の個数
Tiの水素化物のうち、5〜20nmの大きさのものの個数を走査透過型電子顕微鏡(STEM)による観察を行い判定した。具体的には、試料をFIB(Focused Ion Beam)加工装置で厚さ50〜80nm、幅5μm、長さ6μmに加工し、STEMの試料ホルダーに取り付けた。次に、STEMで高角度散乱暗視野像(High Angle Annular Dark Field)を120万倍で観察し、黒い点でTiの水素化物の有無、大きさを評価した(図1)。個数を計測する範囲を100nm×100nmの視野×試料の厚さ70nmとした。大きさについては、析出物を囲む最小円の直径をその析出物の大きさとした。
C1. Number of Ti hydrides (5 to 20 nm) The number of Ti hydrides having a size of 5 to 20 nm was determined by observation with a scanning transmission electron microscope (STEM). Specifically, the sample was processed to a thickness of 50 to 80 nm, a width of 5 μm, and a length of 6 μm with a FIB (Focused Ion Beam) processing apparatus, and attached to a STEM sample holder. Next, a high angle scattering dark field image (High Angle Annular Dark Field) was observed at 1.2 million magnifications with STEM, and the presence and size of Ti hydride were evaluated at black points (FIG. 1). The range in which the number was measured was 100 nm × 100 nm field of view × sample thickness 70 nm. Regarding the size, the diameter of the smallest circle surrounding the precipitate was taken as the size of the precipitate.

C2.Tiの水素化物(100nm〜5μm)の面積率(図2−1)
Tiの水素化物のうち、100nm〜5μmの大きさのものの面積率は、走査型電子顕微鏡(SEM)の組成像(5000倍〜20000倍)で観察し、観察視野(5000倍:17μm×23μm、20000倍:4.4μm×6μm)に占める、当該大きさの黒点部を画像処理して面積率を算出した。大きさについては、析出物を囲む最小円の直径をその析出物の大きさとした。TiとCuの金属間化合物(粒径約500nm)が水素中熱処理によってTiの水素化物に変化したものを走査透過型電子顕微鏡(STEM)により、10万倍で観察した。(図2−2)
C2. Area ratio of hydride of Ti (100 nm to 5 μm) (FIG. 2-1)
Among the hydrides of Ti, the area ratio of those having a size of 100 nm to 5 μm was observed with a scanning electron microscope (SEM) composition image (5000 times to 20000 times), and the observation field (5000 times: 17 μm × 23 μm, The area ratio was calculated by performing image processing on the black spot portion of the size occupying 20000 times: 4.4 μm × 6 μm). Regarding the size, the diameter of the smallest circle surrounding the precipitate was taken as the size of the precipitate. An intermetallic compound of Ti and Cu (particle size of about 500 nm) was changed to Ti hydride by heat treatment in hydrogen and observed with a scanning transmission electron microscope (STEM) at a magnification of 100,000 times. (Figure 2-2)

C3.TiとCuの金属間化合物(粒径5μm以上)
TiとCuの金属間化合物からなる析出物のうち、粒径5μm以上のものの個数密度は以下の方法で算出した。
供試材を電解研磨後、走査型電子顕微鏡(SEM)の組成像を1000倍で単位視野(85μm×115μmの視野)当りの粒子個数を10視野について計数することで求めた。また、粒径については、析出物を囲む最小円の直径をその析出物の粒径とした。ここで、前記視野で観察される該当物の平均個数が0.2未満の場合には、粒子個数を実質的に0とみなした。TiとCuの金属間化合物であることを同定するために、EDX、WDXなどの分析装置が付属した電子顕微鏡を使用した。計数にあたっては、観察視野に分布する個数を目視で計数する他に、EPMAなどの元素マッピング情報から計数することも可能である。
C3. Intermetallic compound of Ti and Cu (particle size 5μm or more)
Among the precipitates made of an intermetallic compound of Ti and Cu, the number density of those having a particle diameter of 5 μm or more was calculated by the following method.
After electropolishing the test material, the composition image of a scanning electron microscope (SEM) was obtained by counting 1000 times the number of particles per unit field (85 μm × 115 μm field) for 10 fields. Moreover, about the particle size, the diameter of the minimum circle surrounding a precipitate was made into the particle size of the precipitate. Here, when the average number of relevant objects observed in the visual field was less than 0.2, the number of particles was regarded as substantially zero. In order to identify the intermetallic compound of Ti and Cu, an electron microscope with an analyzer such as EDX or WDX was used. In counting, in addition to visually counting the number distributed in the observation field, it is also possible to count from element mapping information such as EPMA.

D.Hの拡散状態
硬さの標準偏差はJIS Z-2244に従って、板厚方向断面のビッカース硬さを測定し、統計処理した。
D. Diffusion state of H The standard deviation of the hardness was statistically processed by measuring the Vickers hardness of the cross section in the plate thickness direction according to JIS Z-2244.

E.強度
強度については圧延平行方向での引張試験を行って引張強度を測定した。
E. Strength Regarding the strength, a tensile test was performed in the rolling parallel direction to measure the tensile strength.

F.導電率
導電率(EC;%IACS)についてはダブルブリッジによる体積抵抗率測定により求めた。
F. Conductivity Conductivity (EC;% IACS) was determined by measuring volume resistivity with a double bridge.

チタン銅の試験片を製造するに際しては、活性金属であるTiが第2成分として添加されるから、溶製には真空溶解炉を用いた。また、本発明で規定した元素以外の不純物元素の混入による予想外の副作用が生じることを未然に防ぐため、原料は99.99%以上の純度の高いものを厳選して使用した。   When manufacturing a titanium-copper test piece, Ti, which is an active metal, is added as the second component, and therefore a vacuum melting furnace was used for melting. Further, in order to prevent unexpected side effects due to mixing of impurity elements other than the elements specified in the present invention, raw materials having a high purity of 99.99% or more were carefully selected and used.

[No.1〜21]
Ar雰囲気下、高周波溶解炉中のCuに、Tiを添加して1200℃で溶製し、Cu−4.5質量%Tiの組成を有する厚さ30mmのインゴットに鋳造した。上記インゴットに対して960℃で3時間の均質化焼鈍、及びそれに続く熱間圧延を行い、板厚10mmの熱延板を得た。面削による脱スケール後、冷間圧延して素条の1mm板厚とし、表1記載の条件で第1次溶体化処理を行って、表1に記載の終圧延前の板厚まで冷間圧延した。その後、急速加熱が可能な焼鈍炉に挿入して表1に記載の条件で最終の溶体化処理を行い、酸洗による脱スケール後、表1に記載の条件で最終の冷間圧延をして最終の板厚とし、最後に表1に記載の条件で時効処理して各種試験片を得た。また、時効処理を水素雰囲気下で行う場合、水素分圧7.5MPaとした。得られた試験片の各種特性を表2に示す。
[No. 1-21]
Under an Ar atmosphere, Ti was added to Cu in a high-frequency melting furnace, melted at 1200 ° C., and cast into a 30 mm thick ingot having a composition of Cu-4.5 mass% Ti. The ingot was subjected to homogenization annealing at 960 ° C. for 3 hours and subsequent hot rolling to obtain a hot rolled sheet having a thickness of 10 mm. After descaling by chamfering, it is cold-rolled to a strip thickness of 1 mm, subjected to the first solution treatment under the conditions shown in Table 1, and cold-rolled to the thickness before final rolling shown in Table 1 Rolled. Thereafter, it is inserted into an annealing furnace capable of rapid heating and subjected to the final solution treatment under the conditions described in Table 1. After descaling by pickling, the final cold rolling is performed under the conditions described in Table 1. The final plate thickness was obtained, and finally, various test pieces were obtained by aging treatment under the conditions shown in Table 1. In addition, when the aging treatment was performed in a hydrogen atmosphere, the hydrogen partial pressure was set to 7.5 MPa. Table 2 shows various characteristics of the obtained test piece.

最終圧延前の最終の溶体化処理が適正に行われ、最終圧延にて適正な加工度で行われ、水素雰囲気化での時効処理がなされた発明例No.1〜8はHが0.01%以上を含有し、Ti/Hが0.5を超えており、充分なチタンの水素化がなされ、粗大なTiとCuの化合物の析出が抑えられている。一方で、微細なTiとCuの化合物が析出し、水素化がなされている。その結果、高強度かつ高導電率を得ることができている。   Invention Example No. No. No. 1 was finally subjected to a solution treatment before final rolling, performed at an appropriate working degree in final rolling, and subjected to an aging treatment in a hydrogen atmosphere. Nos. 1 to 8 contain H of 0.01% or more, and Ti / H exceeds 0.5, so that sufficient titanium hydrogenation is performed and precipitation of coarse Ti and Cu compounds is suppressed. . On the other hand, fine Ti and Cu compounds are precipitated and hydrogenated. As a result, high strength and high conductivity can be obtained.

比較例No.9はアルゴン中で時効処理を行っているため、水素化物(C1)が確認されず、引張強さと導電率が劣っている。   Comparative Example No. Since No. 9 is aging-treated in argon, hydride (C1) is not confirmed, and tensile strength and electrical conductivity are inferior.

比較例No.10は最終の圧延加工度が高すぎるため、水素雰囲気下の時効処理で発明例と同じ熱処理を行ってもTiとCuの化合物及び水素化物が析出しやすい。その結果、本願発明の上限を超える過剰な水素化物の析出(C2)が起こり、強度が発明例より劣っている。   Comparative Example No. No. 10 has a final degree of rolling work that is too high, so that Ti and Cu compounds and hydrides are likely to precipitate even when the same heat treatment as in the invention example is performed in an aging treatment in a hydrogen atmosphere. As a result, excessive hydride precipitation (C2) exceeding the upper limit of the present invention occurs, and the strength is inferior to that of the inventive examples.

比較例No.11は最終圧延を行っていないため、材料中の転位の数が少ないため充分に水素が拡散せず、水素含有量が少なく、水素化物が確認されず、発明例に比較して強度不足である。   Comparative Example No. Since No. 11 was not subjected to final rolling, the number of dislocations in the material was small, so that hydrogen was not sufficiently diffused, the hydrogen content was small, hydrides were not confirmed, and the strength was insufficient as compared with the invention examples. .

比較例No.12、18、19及び20は、最終溶体化処理の時間が長かったり、温度が高いため、結晶粒径が大きい。また、比較例No.12では、本願発明の下限以上の水素化物(C1)が得られていない。その結果、強度が低いものとなっている。また、比較例No.18、19及び20は、本願発明の下限以上の水素化物(C2)が得られず、結果導電率が発明例よりも劣っている。   Comparative Example No. Nos. 12, 18, 19 and 20 have a large crystal grain size because the time for the final solution treatment is long and the temperature is high. Comparative Example No. In No. 12, a hydride (C1) not lower than the lower limit of the present invention was not obtained. As a result, the strength is low. Comparative Example No. In 18, 19, and 20, a hydride (C2) equal to or higher than the lower limit of the present invention was not obtained, and as a result, the conductivity was inferior to that of the inventive examples.

比較例No.13では溶体化処理1の温度が低いため、No.14は最終溶体化処理の温度が低く、時間が長いため、大きさ5μm以上の粗大なCuとTiの金属間化合物(C3)が残存し、強度が低いものとなる。   Comparative Example No. In No. 13, since the temperature of the solution treatment 1 is low, No. 14 has a low final solution treatment temperature and a long time, so that a coarse intermetallic compound of Cu and Ti (C3) having a size of 5 μm or more remains and has a low strength.

比較例No.15とNo.16は時効処理の温度が450℃を超えるため、水素雰囲気下で熱処理しても水素化物が生成されず、強度、導電率ともに劣っている。   Comparative Example No. 15 and No. No. 16 has an aging treatment temperature exceeding 450 ° C., so that hydride is not generated even when heat treatment is performed in a hydrogen atmosphere, and both strength and conductivity are inferior.

比較例No.17では、最終圧延が不充分であり、添加されているTiの量に対して水素の取り込みが不充分となって、強度及び導電率が劣っている。   Comparative Example No. In No. 17, the final rolling is insufficient, the hydrogen uptake is insufficient relative to the amount of Ti added, and the strength and conductivity are inferior.

比較例No.21では、時効処理の熱処理温度が低いため、水素化されず、強度及び導電率が劣っている。   Comparative Example No. In No. 21, since the heat treatment temperature of the aging treatment is low, it is not hydrogenated and has poor strength and electrical conductivity.

[No.22〜49]
Ar雰囲気下、高周波溶解炉中のCuに、Mg、Mn、Fe、Co、Ni、Cr、Mo、V、Nb、Zr、Si、B、P及びAgを表3に示す組成でそれぞれ添加した後、同表に示す組成のTiをそれぞれ添加して1230℃で溶製し、厚さ30mmのインゴットに鋳造した。上記インゴットに対して960℃で3時間の均質化焼鈍、及びそれに続く熱間圧延を行い、板厚10mmの熱延板を得た。面削による脱スケール後、冷間圧延して素条の板厚(1mm)とし、表4に記載の条件での第1次溶体化処理を行って、中間の板厚(0.1mm)まで冷間圧延した。その後、急速加熱が可能な焼鈍炉に挿入して表4に記載の条件で最終の溶体化処理を行い、酸洗による脱スケール後、表4に記載の条件で最終の冷間圧延をして板厚0.05mmとし、最後に表4に記載の条件で時効処理して各種試験片を得た。得られた試験片の各種特性を表5に示す。
[No. 22-49]
After adding Mg, Mn, Fe, Co, Ni, Cr, Mo, V, Nb, Zr, Si, B, P and Ag to Cu in the high-frequency melting furnace in an Ar atmosphere with the compositions shown in Table 3, respectively. Ti having the composition shown in the table was added and melted at 1230 ° C., and cast into an ingot having a thickness of 30 mm. The ingot was subjected to homogenization annealing at 960 ° C. for 3 hours and subsequent hot rolling to obtain a hot rolled sheet having a thickness of 10 mm. After descaling by chamfering, it is cold-rolled to the strip thickness (1 mm), and the first solution treatment is performed under the conditions shown in Table 4 until the intermediate thickness (0.1 mm). Cold rolled. Thereafter, it is inserted into an annealing furnace capable of rapid heating and subjected to the final solution treatment under the conditions described in Table 4. After descaling by pickling, the final cold rolling is performed under the conditions described in Table 4. The plate thickness was set to 0.05 mm, and finally, various test pieces were obtained by aging treatment under the conditions described in Table 4. Table 5 shows various characteristics of the obtained test piece.

発明例No.22〜42はTiの含有量を変更又はTi以外の第3元素を添加した場合の例であり、水素化による強度かつ導電率の向上は、発明例No.1〜8と同様な結果が得られた。比較例No.43〜49はAr雰囲気下で時効処理を行っているため、水素化物が得られず、引張強さと導電率が劣っている。   Invention Example No. 22 to 42 are examples in the case where the content of Ti is changed or a third element other than Ti is added. Results similar to 1-8 were obtained. Comparative Example No. Since Nos. 43 to 49 are subjected to an aging treatment in an Ar atmosphere, a hydride cannot be obtained, and tensile strength and conductivity are inferior.

Claims (8)

Tiを1〜6質量%、Hを0.01〜0.2質量%含有し、HをTiに対する原子比で0.5〜4含有し、残部銅及び不可避的不純物からなり、TiとCuの金属間化合物からなる析出物のうち、粒径5μm以上のものがないチタン銅であって、水素化チタンのうち、大きさ5〜20nmの水素化チタンの析出物が100nm×100nmの走査透過型電子顕微鏡(STEM)で観察される視野×試料の厚さ70nmにおいて20〜300個であり、大きさ100nm〜5μmの水素化チタンの面積率が走査型電子顕微鏡(SEM)の組成像の視野内において0.25〜11%であるチタン銅。   1 to 6% by mass of Ti, 0.01 to 0.2% by mass of H, 0.5 to 4 in terms of atomic ratio with respect to Ti, and the balance of copper and inevitable impurities. Titanium copper having no particle size of 5 μm or more among precipitates made of intermetallic compounds, and among titanium hydrides, a precipitate of titanium hydride having a size of 5 to 20 nm is 100 nm × 100 nm scanning transmission type Field of view observed with an electron microscope (STEM) × 20 to 300 in a sample thickness of 70 nm, and the area ratio of titanium hydride having a size of 100 nm to 5 μm is within the field of view of a composition image of a scanning electron microscope (SEM) Titanium titanium which is 0.25 to 11%. 平均結晶粒径が30μm以下である請求項1に記載のチタン銅。   Titanium copper according to claim 1, wherein the average crystal grain size is 30 µm or less. 板厚方向に測定した硬さの標準偏差が10以下であることを特徴とする、請求項1〜2何れか一項記載のチタン銅。   The titanium-copper according to any one of claims 1 to 2, wherein the standard deviation of hardness measured in the thickness direction is 10 or less. 第3元素群としてMg、Mn、Fe、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、P及びAgよりなる群から選択される1種又は2種以上を合計で0.5質量%以下更に含有する請求項1〜3何れか一項記載のチタン銅。   As the third element group, one or two or more selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, P, and Ag are added to a total of 0.0. Titanium copper as described in any one of Claims 1-3 which further contains 5 mass% or less. Cuに、Mg、Mn、Fe、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、P及びAgよりなる群から選択される1種以上を合計で0.5質量%以下含有するように随意に添加した後、Tiを1〜6質量%含有するように添加してインゴットを製造する工程1と、
前記インゴットを熱間圧延して冷間圧延する工程2と、
次いで、Ti含有量に応じた固溶限温度に比べて30〜100℃高い温度に加熱して溶体化処理する工程3と、
加工度50%〜90%で冷間圧延する工程4と、
Ti含有量に応じた固溶限温度に比べて0〜20℃低い温度で加熱して溶体化処理する工程5と、
次いで10%〜70%で冷間圧延する工程6と、
次いで250〜450℃で1〜100時間時効処理する工程7と、
を含み、
工程7において又は工程7よりも前段階で材料中に水素を導入する工程を実施する、
チタン銅の製造方法。
Cu contains 0.5% by mass or less in total of at least one selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, P and Ag And optionally adding step 1 to produce an ingot by adding 1 to 6% by mass of Ti,
Step 2 of hot rolling the ingot and cold rolling;
Next, a step 3 of solution treatment by heating to a temperature 30 to 100 ° C. higher than the solid solution limit temperature according to the Ti content,
Step 4 of cold rolling at a working degree of 50% to 90%,
Step 5 of heating at a temperature lower by 0 to 20 ° C. than the solid solution limit temperature according to the Ti content and solution treatment,
Then, step 6 of cold rolling at 10% to 70%,
Next, step 7 of aging treatment at 250 to 450 ° C. for 1 to 100 hours,
Including
Performing a step of introducing hydrogen into the material in step 7 or in a stage prior to step 7;
Titanium copper manufacturing method.
請求項1〜4何れか一項記載のチタン銅からなる伸銅品。   The copper-stretched article which consists of titanium copper as described in any one of Claims 1-4. 請求項1〜4何れか一項記載のチタン銅を備えた電子部品。   The electronic component provided with the titanium copper as described in any one of Claims 1-4. 請求項1〜4何れか一項記載のチタン銅を備えたコネクタ。   The connector provided with the titanium copper as described in any one of Claims 1-4.
JP2010058355A 2010-03-15 2010-03-15 Titanium copper for electronic component, and electronic component using the same Withdrawn JP2011190508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010058355A JP2011190508A (en) 2010-03-15 2010-03-15 Titanium copper for electronic component, and electronic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010058355A JP2011190508A (en) 2010-03-15 2010-03-15 Titanium copper for electronic component, and electronic component using the same

Publications (1)

Publication Number Publication Date
JP2011190508A true JP2011190508A (en) 2011-09-29

Family

ID=44795725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010058355A Withdrawn JP2011190508A (en) 2010-03-15 2010-03-15 Titanium copper for electronic component, and electronic component using the same

Country Status (1)

Country Link
JP (1) JP2011190508A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202261A (en) * 2010-03-26 2011-10-13 Osaka Prefecture Univ Copper-titanium-hydrogen alloy and method for producing the same
CN109852840A (en) * 2019-04-02 2019-06-07 东北大学 A kind of copper-titanium alloy and preparation method thereof
CN109881039A (en) * 2019-04-02 2019-06-14 东北大学 A kind of high-strength copper titanium alloy and preparation method thereof
CN113234947A (en) * 2021-05-19 2021-08-10 攀枝花学院 Nano copper-titanium alloy and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202261A (en) * 2010-03-26 2011-10-13 Osaka Prefecture Univ Copper-titanium-hydrogen alloy and method for producing the same
CN109852840A (en) * 2019-04-02 2019-06-07 东北大学 A kind of copper-titanium alloy and preparation method thereof
CN109881039A (en) * 2019-04-02 2019-06-14 东北大学 A kind of high-strength copper titanium alloy and preparation method thereof
CN113234947A (en) * 2021-05-19 2021-08-10 攀枝花学院 Nano copper-titanium alloy and preparation method thereof
CN113234947B (en) * 2021-05-19 2022-04-12 攀枝花学院 Nano copper-titanium alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101576715B1 (en) Copper alloy and method for producing copper alloy
EP3040430B1 (en) Copper alloy sheet material and method for producing same, and current-carrying component
JP4615628B2 (en) Copper alloy material, electrical and electronic component, and method for producing copper alloy material
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
US10100387B2 (en) Copper-titanium alloy for electronic component
KR20140056003A (en) Cu-ni-co-si based copper alloy sheet materal and method for producing the same
TW526272B (en) High strength copper alloy excellent in bendability and method for producing the same and terminal and connector using the same
JP2008056977A (en) Copper alloy and its production method
JP2009242895A (en) High-strength copper alloy of excellent bending processability
JP2008266787A (en) Copper alloy material and its manufacturing method
WO2011068134A1 (en) Copper alloy sheet material having low young&#39;s modulus and method for producing same
WO2006019035A1 (en) Copper alloy plate for electric and electronic parts having bending workability
JP4959141B2 (en) High strength copper alloy
CN101275191B (en) High-strength high-conductive copper alloy having superior hot workability
JP2007100111A (en) Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD
JP4087307B2 (en) High strength and high conductivity copper alloy with excellent ductility
JP2011117034A (en) Copper-alloy material
JP2009242890A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
WO2017047368A1 (en) Copper alloy sheet and manufacturing method therefor
WO2010126131A1 (en) Method for manufacturing a titanium-copper for electronic components
JP2004307905A (en) Cu ALLOY, AND ITS PRODUCTION METHOD
JP2013173986A (en) Copper alloy
JP2011190508A (en) Titanium copper for electronic component, and electronic component using the same
EP3640354A1 (en) Copper alloy and use thereof
JP2006200014A (en) Copper alloy having high strength and high electric conductivity

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604