JP2011190430A - Thermosetting resin composition and fiber-reinforced prepreg - Google Patents

Thermosetting resin composition and fiber-reinforced prepreg Download PDF

Info

Publication number
JP2011190430A
JP2011190430A JP2011020022A JP2011020022A JP2011190430A JP 2011190430 A JP2011190430 A JP 2011190430A JP 2011020022 A JP2011020022 A JP 2011020022A JP 2011020022 A JP2011020022 A JP 2011020022A JP 2011190430 A JP2011190430 A JP 2011190430A
Authority
JP
Japan
Prior art keywords
resin composition
mass
component
parts
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011020022A
Other languages
Japanese (ja)
Other versions
JP5760463B2 (en
Inventor
Kazuki Koga
一城 古賀
Shinya Kato
慎也 加藤
Shohei Mori
尚平 森
Yasuhiro Fukuhara
康裕 福原
Hisaya Ushiyama
久也 牛山
Keigo Yoshida
圭吾 吉田
Hiroko Takeuchi
弘子 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011020022A priority Critical patent/JP5760463B2/en
Publication of JP2011190430A publication Critical patent/JP2011190430A/en
Application granted granted Critical
Publication of JP5760463B2 publication Critical patent/JP5760463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/56Polyhydroxyethers, e.g. phenoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material excellent in interlayer impact strength and to provide a prepreg excellent in surface tack retainability. <P>SOLUTION: A thermosetting resin composition comprises [A] an epoxy resin, [B] a thermoplastic resin, [C] fine elastomer particles and [D] fine silica particles as essential components, and includes 5-40 pts.mass component [B] and 12-40 pts.mass component [C] based on 100 pts.mass component [A]. A fiber-reinforced prepreg prepared by laminating a sheet-like material or materials of the composition on one side or both sides of a basic fiber-reinforced prepreg is also provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱硬化性樹脂組成物及び繊維強化プリプレグに関する。   The present invention relates to a thermosetting resin composition and a fiber reinforced prepreg.

繊維強化プラスチックは、強化繊維とマトリックス樹脂とで構成される異方性材料であり、その製造には強化繊維に未硬化の樹脂を含浸させた繊維強化プリプレグと呼ばれるシート状の前駆体を積層、成形した後、硬化して目的物を得る手法が広く用いられる。以後の記述においては、特に断らない限り「複合材料」という用語を、プリプレグを積層、成形、硬化して得た繊維強化プラスチックという意味で使用する。   The fiber reinforced plastic is an anisotropic material composed of reinforced fibers and a matrix resin, and a sheet-like precursor called a fiber reinforced prepreg in which the reinforced fibers are impregnated with an uncured resin is laminated for the production, A technique for obtaining an object by curing after molding is widely used. In the following description, unless otherwise specified, the term “composite material” is used to mean a fiber reinforced plastic obtained by laminating, molding and curing a prepreg.

熱硬化性樹脂をマトリックス樹脂とする複合材料は、マトリックス樹脂が低靭性であることを反映し、耐衝撃性が不十分である。そこで、繊維軸方向以外の物性、特に耐衝撃性、層間靭性を改良することを目的として種々の方法が提案されており、特に層間にマトリックス樹脂とは異なる材料を配置し、破壊エネルギーを吸収させる手法が多く提案されている。   A composite material using a thermosetting resin as a matrix resin is insufficient in impact resistance, reflecting that the matrix resin has low toughness. Therefore, various methods have been proposed for the purpose of improving physical properties other than the fiber axis direction, particularly impact resistance, and interlayer toughness. In particular, a material different from the matrix resin is disposed between the layers to absorb the fracture energy. Many methods have been proposed.

特許文献1では、熱可塑性樹脂の微粒子を配合した樹脂組成物をプリプレグ表面に貼ることで繊維強化プラスチックの衝撃後圧縮強度(CAI)が向上することが示されている。しかしながら、時間の経過とともにプリプレグ表面の熱硬化性樹脂成分がプリプレグ内部に吸収され、プリプレグ表面のタックが不足するという問題がある。通常プリプレグは成形型などの上に積層した後に加熱、加圧して成形を行うが、プリプレグ表面のタックが不足すると、型やプリプレグへの貼り付きが弱くなるために、特に複雑な形状での積層作業が困難になる。   Patent Document 1 shows that the compressive strength after impact (CAI) of a fiber-reinforced plastic is improved by sticking a resin composition containing fine particles of a thermoplastic resin to the prepreg surface. However, there is a problem that the thermosetting resin component on the surface of the prepreg is absorbed inside the prepreg with time and the tackiness on the surface of the prepreg is insufficient. Usually, a prepreg is laminated on a mold, etc., and then heated and pressed to form. However, if the surface of the prepreg is insufficiently tucked, the sticking to the mold or prepreg will be weakened. Work becomes difficult.

特許文献2では、プリプレグの表面にランダム配向した熱可塑性樹脂からなる長繊維を配置することで、タック性を保持したまま耐衝撃性の改良された複合材料を与えることが示されている。しかしながら、長繊維をランダムに配向させる場合、熱可塑性樹脂からなる長繊維は非常に嵩高い構造を持ってしまう。このとき、熱可塑性樹脂からなる長繊維はより多くの熱硬化性樹脂を保持するため、比較的粘度の低いマトリックス樹脂を用いた場合に、熱可塑性樹脂からなる長繊維層に表面のマトリックス樹脂が徐々に吸い込まれ、プリプレグ表面のタックが急激に低下する問題がある。   In Patent Document 2, it is shown that a composite material having improved impact resistance can be obtained while maintaining tackiness by arranging long fibers made of a thermoplastic resin randomly oriented on the surface of a prepreg. However, when the long fibers are randomly oriented, the long fibers made of the thermoplastic resin have a very bulky structure. At this time, since the long fiber made of thermoplastic resin retains more thermosetting resin, when the matrix resin having a relatively low viscosity is used, the surface matrix resin is formed on the long fiber layer made of thermoplastic resin. There is a problem that the tack on the surface of the prepreg is abruptly lowered by being sucked in gradually.

一方、特許文献3では、ゴム微粒子を配合した樹脂組成物で繊維強化プラスチックの耐衝撃性を向上させ得ることが示されているが、CAIなど繊維強化プラスチックの層間の靭性が求められる強度試験においてはその効果が現れないという問題がある。   On the other hand, Patent Document 3 shows that a resin composition containing rubber fine particles can improve the impact resistance of a fiber reinforced plastic, but in a strength test that requires toughness between fiber reinforced plastic layers such as CAI. Has a problem that the effect does not appear.

特許文献4では、液状エラストマーを予備反応させ、樹脂流れを抑制した樹脂組成物をプリプレグに用いることでCAIが向上することが示されている。しかしながら、液状ゴムを予備反応させる必要があるため、樹脂組成物を調製するためのコストがかかるという問題がある。   Patent Document 4 shows that CAI is improved by pre-reacting a liquid elastomer and using a resin composition in which resin flow is suppressed for a prepreg. However, since it is necessary to pre-react liquid rubber, there exists a problem that the cost for preparing a resin composition starts.

WO94/16003号パンフレットWO94 / 16003 pamphlet 特開昭63−170428号公報JP-A 63-170428 特開平9−25393号公報JP-A-9-25393 特開昭60−63229号公報JP-A-60-63229

本発明は、上記の如き従来技術の問題点を解消するため、表面のタック及びタックの保持性に優れ、硬化後に層間の耐衝撃性に優れるプリプレグを提供することを課題とする。   An object of the present invention is to provide a prepreg excellent in surface tack and tack retention and excellent in impact resistance between layers after curing in order to solve the problems of the prior art as described above.

本発明者らは、上記課題を解決するため鋭意検討を進めた結果、次の構成からなる樹脂組成物及びプリプレグによって課題を解決することができることを見出し、本発明を完成させたものである。すなわち、本発明は、以下の事項からなる。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the problems can be solved by the resin composition and prepreg having the following constitution, and have completed the present invention. That is, this invention consists of the following matters.

1)必須成分[A]、[B]、[C]及び[D]を含み、成分[A]100質量部に対して、成分[B]が5質量部以上40質量部以下、成分[C]が12質量部以上40質量部以下である熱硬化性樹脂組成物のシート状物を、ベースの繊維強化プリプレグの片面又は両面に貼り合わせてなる繊維強化プリプレグ。
[A] エポキシ樹脂
[B] 熱可塑性樹脂
[C] エラストマー微粒子
[D] シリカ微粒子
1) Including essential components [A], [B], [C] and [D], with respect to 100 parts by mass of component [A], component [B] is 5 to 40 parts by mass, and component [C] ] Is a fiber reinforced prepreg obtained by bonding a sheet-like material of a thermosetting resin composition having a mass of 12 parts by mass or more and 40 parts by mass or less to one side or both sides of a base fiber reinforced prepreg.
[A] Epoxy resin [B] Thermoplastic resin [C] Elastomer fine particles [D] Silica fine particles

2)2℃/分の速度にて温度を上げた際の熱硬化性樹脂組成物の最低粘度が1000P以上であり、且つ、該熱可塑性樹脂組成物の60℃におけるチキソトロピー指数(η100/η0.1)が10以上である上記1)記載の繊維強化プリプレグ。 2) The minimum viscosity of the thermosetting resin composition when the temperature is increased at a rate of 2 ° C./min is 1000 P or more, and the thixotropy index (η 100 / η) of the thermoplastic resin composition at 60 ° C. The fiber-reinforced prepreg according to 1) above, wherein 0.1 ) is 10 or more.

3)ベースの繊維強化プリプレグの片面又は両面に貼り合わせた熱硬化性樹脂組成物の目付が10g/m以上45g/m以下である上記1)又は2)記載の繊維強化プリプレグ。 3) The fiber-reinforced prepreg according to 1) or 2) above, wherein the basis weight of the thermosetting resin composition bonded to one side or both sides of the base fiber-reinforced prepreg is 10 g / m 2 or more and 45 g / m 2 or less.

4)必須成分[A]、[B]、[C]及び[D]を含み、成分[A]100質量部に対して、成分[B]が5質量部以上40質量部以下、成分[C]が12質量部以上40質量部以下である熱硬化性樹脂組成物。
[A] エポキシ樹脂
[B] 熱可塑性樹脂
[C] エラストマー微粒子
[D] シリカ微粒子
4) Including essential components [A], [B], [C] and [D], with respect to 100 parts by mass of component [A], component [B] is 5 to 40 parts by mass, and component [C] ] Is 12 to 40 parts by mass of thermosetting resin composition.
[A] Epoxy resin [B] Thermoplastic resin [C] Elastomer fine particles [D] Silica fine particles

5)成分[B]の熱可塑性樹脂の少なくとも一部が成分[A]のエポキシ樹脂に溶解された上記4)記載の熱硬化性樹脂組成物。   5) The thermosetting resin composition according to 4) above, wherein at least a part of the thermoplastic resin of component [B] is dissolved in the epoxy resin of component [A].

6)成分[B]の熱可塑性樹脂が、ポリエーテルスルホン、ポリエーテルイミド、ポリビニルホルマール及びフェノキシ樹脂からなる群より選ばれる1種又は2種以上である上記4)又は5)記載の熱硬化性樹脂組成物。   6) Thermosetting as described in 4) or 5) above, wherein the thermoplastic resin of component [B] is one or more selected from the group consisting of polyethersulfone, polyetherimide, polyvinyl formal and phenoxy resin. Resin composition.

7)成分[C]のエラストマー微粒子が架橋エラストマー微粒子である上記4)〜6)のいずれかに記載の熱硬化性樹脂組成物。
8)成分[C]のエラストマー微粒子が架橋エラストマー微粒子及び/又はコアシェル型エラストマー微粒子である上記4)〜6)のいずれかに記載の熱硬化性樹脂組成物。
9)成分[D]シリカ微粒子が成分[A]エポキシ樹脂100質量部に対し、0.8質量部以上含まれる上記4)〜8)のいずれかに記載のエポキシ樹脂組成物。
10)ベースの繊維強化プリプレグの片面及び/又は両面に貼り合わせるシート状物を構成する熱硬化性樹脂の組成物であって、その硬化物が示す破壊靭性値がベースの繊維強化プリプレグに用いられるマトリックス樹脂を硬化して得られる硬化物の破壊靭性値よりも高い上記4)〜9)のいずれかに記載のエポキシ樹脂組成物。
7) The thermosetting resin composition according to any one of 4) to 6) above, wherein the elastomer fine particles of component [C] are crosslinked elastomer fine particles.
8) The thermosetting resin composition according to any one of 4) to 6) above, wherein the elastomer fine particles of component [C] are crosslinked elastomer fine particles and / or core-shell type elastomer fine particles.
9) The epoxy resin composition according to any one of 4) to 8), wherein the component [D] silica fine particles are contained in an amount of 0.8 parts by mass or more with respect to 100 parts by mass of the component [A] epoxy resin.
10) A composition of a thermosetting resin constituting a sheet-like material to be bonded to one side and / or both sides of a base fiber-reinforced prepreg, and the fracture toughness value indicated by the cured product is used for the base fiber-reinforced prepreg. The epoxy resin composition according to any one of 4) to 9) above, which is higher than a fracture toughness value of a cured product obtained by curing a matrix resin.

本発明の樹脂組成物は、フロー抑制効果が非常に高く、硬化後の破壊靭性値が高い。このため、シート状に加工した本発明の樹脂組成物をベースのプリプレグ表面に貼り合わせることにより、表面のタック及びタックの保持性に優れ、硬化後に層間の耐衝撃性に優れるプリプレグを得ることができる。   The resin composition of the present invention has a very high flow suppressing effect and a high fracture toughness value after curing. For this reason, by sticking the resin composition of the present invention processed into a sheet to the base prepreg surface, it is possible to obtain a prepreg having excellent surface tack and tack retention, and excellent impact resistance between layers after curing. it can.

G´−Tgを求める際に使用するグラフである。It is a graph used when calculating | requiring G'-Tg.

本発明の構成成分[A]であるエポキシ樹脂としては、例えば、分子内に水酸基を有する化合物とエピクロロヒドリンから得られるグリシジルエーテル型エポキシ樹脂、分子内にアミノ基を有する化合物とエピクロロヒドリンから得られるグリシジルアミン型エポキシ樹脂、分子内にカルボキシル基を有する化合物とエピクロロヒドリンから得られるグリシジルエステル型エポキシ樹脂、分子内に二重結合を有する化合物を酸化することにより得られる脂環式エポキシ樹脂、あるいはこれらから選ばれる2種類以上のタイプの基が分子内に混在するエポキシ樹脂などが用いられる。   Examples of the epoxy resin that is the constituent component [A] of the present invention include a glycidyl ether type epoxy resin obtained from a compound having a hydroxyl group in the molecule and epichlorohydrin, a compound having an amino group in the molecule, and epichlorohydride. Glycidylamine type epoxy resin obtained from phosphorus, glycidyl ester type epoxy resin obtained from a compound having a carboxyl group in the molecule and epichlorohydrin, a compound having a double bond in the molecule, and an alicyclic ring Epoxy resin or epoxy resin in which two or more types of groups selected from these are mixed in the molecule is used.

グリシジルエーテル型エポキシ樹脂の具体例としては、ビスフェノールAとエピクロロヒドリンの反応により得られるビスフェノールA型エポキシ樹脂、ビスフェノールFとエピクロロヒドリンの反応により得られるビスフェノールF型エポキシ樹脂、レゾルシノールとエピクロロヒドリンの反応により得られるレゾルシノール型エポキシ樹脂、フェノールとエピクロロヒドリンの反応により得られるフェノールノボラック型エポキシ樹脂、その他トリスフェノールノボラック型エポキシ樹脂、ポリエチレングリコール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂及びそれらの位置異性体やアルキル基やハロゲンでの置換体が挙げられる。   Specific examples of the glycidyl ether type epoxy resin include bisphenol A type epoxy resin obtained by reaction of bisphenol A and epichlorohydrin, bisphenol F type epoxy resin obtained by reaction of bisphenol F and epichlorohydrin, resorcinol and epi Resorcinol type epoxy resin obtained by reaction of chlorohydrin, phenol novolac type epoxy resin obtained by reaction of phenol and epichlorohydrin, other trisphenol novolak type epoxy resin, polyethylene glycol type epoxy resin, polypropylene glycol type epoxy resin, Examples thereof include naphthalene type epoxy resins, dicyclopentadiene type epoxy resins, and their positional isomers, substituted groups with alkyl groups and halogens.

ビスフェノールA型エポキシ樹脂の市販品としては、EPON825、jER826、jER827、jER828(以上、三菱化学(株)製)、エピクロン850(DIC(株)製)、エポトートYD−128(東都化成(株)製)、DER−331、DER−332(ダウケミカル社製)、Bakelite EPR154、Bakelite EPR162、Bakelite EPR172、Bakelite EPR173、およびBakelite EPR174(以上、Bakelite AG社製)などが挙げられる。   Commercially available products of bisphenol A type epoxy resin include EPON825, jER826, jER828, jER828 (above, manufactured by Mitsubishi Chemical Corporation), Epicron 850 (DIC Corporation), Epototo YD-128 (Toto Kasei Co., Ltd.) ), DER-331, DER-332 (manufactured by Dow Chemical Co., Ltd.), Bakelite EPR154, Bakelite EPR162, Bakelite EPR172, Bakelite EPR173, and Bakelite EPR174 (manufactured by Bakelite AG).

ビスフェノールF型エポキシ樹脂の市販品としては、jER806、jER807、jER1750(以上、三菱化学(株)製)、エピクロン830(DIC(株)製)、エポトートYD−170、エポトートYD−175(東都化成(株)製)、Bakelite EPR169(Bakelite AG社製)、GY281、GY282、およびGY285(以上、ハンツマン・アドバンスト・マテリアル社製)などが挙げられる。   As commercial products of bisphenol F type epoxy resin, jER806, jER807, jER1750 (above, manufactured by Mitsubishi Chemical Corporation), Epicron 830 (manufactured by DIC Corporation), Epototo YD-170, Epototo YD-175 (Toto Kasei ( Co., Ltd.), Bakelite EPR169 (manufactured by Bakerite AG), GY281, GY282, and GY285 (above, manufactured by Huntsman Advanced Material), and the like.

レゾルシノール型エポキシ樹脂の市販品としては、デナコールEX−201(ナガセケムテックス(株)製)などが挙げられる。   Examples of commercially available resorcinol type epoxy resins include Denacol EX-201 (manufactured by Nagase ChemteX Corporation).

フェノールノボラック型エポキシ樹脂の市販品としては、jER152、jER154(以上、三菱化学(株)製)、エピクロン740(DIC(株)製)、およびEPN179、EPN180(以上、ハンツマン・アドバンスト・マテリアル社製)などが挙げられる。   Commercial products of phenol novolac type epoxy resins include jER152, jER154 (above, manufactured by Mitsubishi Chemical Corporation), Epicron 740 (made by DIC Corporation), and EPN179, EPN180 (above, manufactured by Huntsman Advanced Materials). Etc.

トリスフェノールノボラック型エポキシ樹脂としてはTactix742(ハンツマン・アドバンスト・マテリアル社製)、EPPN501H、EPPN501HY、EPPN502H、EPPN503H(以上、日本化薬(株)製)、jER1032(三菱化学(株)製)などが挙げられる。   Examples of the trisphenol novolac type epoxy resin include Tactix 742 (manufactured by Huntsman Advanced Material), EPPN501H, EPPN501HY, EPPN502H, EPPN503H (manufactured by Nippon Kayaku Co., Ltd.), jER1032 (manufactured by Mitsubishi Chemical Corporation), and the like. It is done.

グリシジルアミン型エポキシ樹脂の具体例としては、テトラグリシジルジアミノジフェニルメタン類、アミノフェノールのグリシジル化合物類、グリシジルアニリン類、及びキシレンジアミンのグリシジル化合物などが挙げられる。   Specific examples of the glycidylamine type epoxy resin include tetraglycidyldiaminodiphenylmethanes, glycidyl compounds of aminophenol, glycidylanilines, and glycidyl compounds of xylenediamine.

テトラグリシジルジアミノジフェニルメタン類の市販品としては、スミエポキシELM434(住友化学(株)製)、アラルダイトMY720、アラルダイトMY721、アラルダイトMY9512、アラルダイトMY9612、アラルダイトMY9634、アラルダイトMY9663(以上ハンツマン・アドバンスト・マテリアル社製)、jER604(三菱化学(株)製)、Bakelite EPR494、Bakelite EPR495、“Bakelite EPR496、およびBakelite EPR497(以上、Bakelite AG社製)などが挙げられる。   Commercially available products of tetraglycidyldiaminodiphenylmethanes include Sumiepoxy ELM434 (Sumitomo Chemical Co., Ltd.), Araldite MY720, Araldite MY721, Araldite MY9512, Araldite MY9612, Araldite MY9634, Araldite MY9663 (manufactured by Huntsman Advanced Materials) jER604 (manufactured by Mitsubishi Chemical Corporation), Bakelite EPR494, Bakelite EPR495, “Bakelite EPR496, and Bakelite EPR497 (above, manufactured by Bakelite AG) and the like.

アミノフェノールやアミノクレゾールのグリシジル化合物類の市販品としては、jER630(三菱化学(株)製)、アラルダイトMY0500、アラルダイトMY0510、アラルダイトMY0600(以上ハンツマン・アドバンスト・マテリアル社製)、スミエポキシELM120、およびスミエポキシELM100(以上、住友化学(株)製)などが挙げられる。   Commercially available glycidyl compounds such as aminophenol and aminocresol include jER630 (Mitsubishi Chemical Corporation), Araldite MY0500, Araldite MY0510, Araldite MY0600 (manufactured by Huntsman Advanced Materials), Sumiepoxy ELM120, and Sumiepoxy ELM100. (Above, manufactured by Sumitomo Chemical Co., Ltd.).

グリシジルアニリン類の市販品としては、GAN、GOT(以上、日本化薬(株)製)やBakelite EPR493(Bakelite AG社製)などが挙げられる。キシレンジアミンのグリシジル化合物としては、TETRAD−X(三菱瓦斯化学(株)製)が挙げられる。   Examples of commercially available glycidyl anilines include GAN, GOT (manufactured by Nippon Kayaku Co., Ltd.), Bakelite EPR493 (manufactured by Bakelite AG), and the like. Examples of the glycidyl compound of xylenediamine include TETRAD-X (manufactured by Mitsubishi Gas Chemical Co., Inc.).

グリシジルエステル型エポキシ樹脂の具体例としては、フタル酸ジグリシジルエステルや、ヘキサヒドロフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステルやそれぞれの各種異性体が挙げられる。   Specific examples of the glycidyl ester type epoxy resin include phthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, dimer acid diglycidyl ester and various isomers thereof.

フタル酸ジグリシジルエステルの市販品としては、エポミックR508(三井化学(株)製)やデナコールEX−721(ナガセケムテックス(株)製)などが挙げられる。   Examples of commercially available products of diglycidyl phthalate include Epomic R508 (manufactured by Mitsui Chemicals) and Denacol EX-721 (manufactured by Nagase ChemteX Corporation).

ヘキサヒドロフタル酸ジグリシジルエステルの市販品としては、エポミックR540(三井化学(株)製)やAK−601(日本化薬(株)製)などが挙げられる。   Examples of commercially available products of hexahydrophthalic acid diglycidyl ester include Epomic R540 (manufactured by Mitsui Chemicals) and AK-601 (manufactured by Nippon Kayaku Co., Ltd.).

ダイマー酸ジグリシジルエステルの市販品としては、jER871(三菱化学(株)製)やエポトートYD−171(東都化成(株)製)などが挙げられる。   Examples of commercially available dimer acid diglycidyl ester include jER871 (manufactured by Mitsubishi Chemical Corporation) and Epototo YD-171 (manufactured by Toto Kasei Co., Ltd.).

脂環式エポキシ樹脂の市販品としては、セロキサイド2021P(ダイセル化学工業(株)製)、CY179(ハンツマン・アドバンスド・マテリアル社製)、セロキサイド2081(ダイセル化学工業(株)製)、およびセロキサイド3000(ダイセル化学工業(株)製)などが挙げられる。
骨格中にオキサゾリドン環、ナフタレン、ジシクロペンタジエン、アントラセン、キサンテン、ビフェニルなどの剛直な構造を持つエポキシ樹脂を用いると、耐熱性や靭性、剛直性を高めることが出来るため好ましい。
骨格中にオキサゾリドン環を持つエポキシ樹脂としては、AER4152、AER4151、LSA4311、LSA4313、LSA7001(以上、旭化成イーマテリアルズ株式会社製)などが挙げられる。
骨格中にナフタレン骨格を持つエポキシ樹脂としては、HP−4032、HP−4700(以上、DIC(株)製)、NC−7300(日本化薬株式会社製)などが挙げられる。
骨格中にジシクロペンタジエン骨格を持つエポキシ樹脂としては、XD−100(日本化薬社製)、HP7200(DIC(株)製)などが挙げられる。
骨格中にアントラセン骨格を持つエポキシ樹脂としては、YL7172YX−8800(以上、三菱化学(株)製)などが挙げられる。
骨格中にキサンテン骨格を持つエポキシ樹脂としては、EXA−7335(DIC(株)製)などが挙げられる。
Commercially available alicyclic epoxy resins include Celoxide 2021P (manufactured by Daicel Chemical Industries), CY179 (manufactured by Huntsman Advanced Materials), Celoxide 2081 (manufactured by Daicel Chemical Industries, Ltd.), and Celoxide 3000 ( Daicel Chemical Industries, Ltd.).
It is preferable to use an epoxy resin having a rigid structure such as an oxazolidone ring, naphthalene, dicyclopentadiene, anthracene, xanthene, or biphenyl in the skeleton because heat resistance, toughness, and rigidity can be improved.
Examples of the epoxy resin having an oxazolidone ring in the skeleton include AER4152, AER4151, LSA4311, LSA4313, and LSA7001 (manufactured by Asahi Kasei E-Materials Corporation).
Examples of the epoxy resin having a naphthalene skeleton in the skeleton include HP-4032, HP-4700 (manufactured by DIC Corporation), NC-7300 (manufactured by Nippon Kayaku Co., Ltd.), and the like.
Examples of the epoxy resin having a dicyclopentadiene skeleton in the skeleton include XD-100 (manufactured by Nippon Kayaku Co., Ltd.) and HP7200 (manufactured by DIC Corporation).
Examples of the epoxy resin having an anthracene skeleton in the skeleton include YL7172YX-8800 (manufactured by Mitsubishi Chemical Corporation).
Examples of the epoxy resin having a xanthene skeleton in the skeleton include EXA-7335 (manufactured by DIC Corporation).

これらの構成成分[A]エポキシ樹脂はその特性に応じて任意のものを使用することができるが、これらの中でもビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂は低コストで入手することが可能で、耐熱性、靱性等のバランスに優れるため好ましい。また、構成成分[A]エポキシ樹脂の一部を室温で固体のエポキシ樹脂にすることで、プリプレグのタックや形態保持性を持たせることができるため好ましい。特に、トリスフェノールノボラック型エポキシ樹脂やオキサゾリドン環を骨格中に持つエポキシ樹脂を用いることで、高い靭性と耐熱性を両立することが可能になるため好ましい。また、上記のエポキシ樹脂は1種または2種以上で用いることができる。   Any of these component [A] epoxy resins can be used according to their properties, but among them, bisphenol A type epoxy resins and bisphenol F type epoxy resins can be obtained at low cost. It is preferable because of its excellent balance of heat resistance and toughness. In addition, it is preferable that a part of the component [A] epoxy resin is a solid epoxy resin at room temperature because tackiness and form retention of the prepreg can be provided. In particular, it is preferable to use a trisphenol novolac-type epoxy resin or an epoxy resin having an oxazolidone ring in the skeleton because both high toughness and heat resistance can be achieved. Moreover, said epoxy resin can be used by 1 type (s) or 2 or more types.

また、本発明の構成成分[B]は熱可塑性樹脂である。この熱可塑性樹脂は、元来エポキシ樹脂組成物に配合することでエポキシ樹脂組成物の粘度を上げる効果を奏するが、本発明におけるその他の必須成分と組み合わせることにより、特異的にエポキシ樹脂組成物の硬化中の粘度低下を抑制し、高いチキソトロピー性を発現させることが可能となる。このため、本発明のプリプレグでは、表面のタック保持性能が優れ、複合材料としたときには層構造の間に衝撃吸収層の役割をなす樹脂層が形成され、優れた耐衝撃性が得られる。   The constituent component [B] of the present invention is a thermoplastic resin. This thermoplastic resin originally has the effect of increasing the viscosity of the epoxy resin composition by being blended with the epoxy resin composition, but by combining with other essential components in the present invention, the epoxy resin composition can be specifically used. It is possible to suppress a decrease in viscosity during curing and to exhibit high thixotropic properties. For this reason, in the prepreg of the present invention, the surface tack retention performance is excellent, and when a composite material is used, a resin layer serving as a shock absorbing layer is formed between the layer structures, and excellent impact resistance is obtained.

このような熱可塑性樹脂としては、例えば、ポリスルホン、ポリエーテルイミド、ポリフェニレンエーテル、ポリアミド、ポリアクリレート、ポリアラミド、ポリエステル、ポリカーボネート、ポリフェニレンスルフィド、ポリベンズイミダゾール、ポリイミド、ポリエーテルスルホンポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリビニルホルマールのようなエンジニアリングプラスチックに属する熱可塑性樹脂の一群がより好ましく用いられる。耐熱性や靭性、取り扱い性に優れることから、ポリイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホン及びポリビニルホルマールなどが特に好ましく使用される。   Examples of such thermoplastic resins include polysulfone, polyetherimide, polyphenylene ether, polyamide, polyacrylate, polyaramid, polyester, polycarbonate, polyphenylene sulfide, polybenzimidazole, polyimide, polyethersulfone polyketone, polyetherketone, polyketone. A group of thermoplastic resins belonging to engineering plastics such as ether ether ketone and polyvinyl formal is more preferably used. Polyimide, polyetherimide, polysulfone, polyethersulfone, polyvinyl formal, and the like are particularly preferably used because of excellent heat resistance, toughness, and handleability.

熱可塑性樹脂の配合形態としては、任意の形態を取ることができる。例えば、粉体状の熱可塑性樹脂をエポキシ樹脂中にニーダーなどを用いて混錬、分散させたものや、エポキシ樹脂中で加熱するなどして、エポキシ樹脂中に熱可塑性樹脂を溶解した状態にすることで、エポキシ樹脂組成物の硬化中の粘度低下を押さえ、高いチキソトロピー性を発現させることができる。特に、熱可塑性樹脂の少なくとも一部をエポキシ樹脂中に溶解するとチキソトロピー性の発現効果が高いため、好ましい。   The blending form of the thermoplastic resin can take any form. For example, a powdered thermoplastic resin is kneaded and dispersed in an epoxy resin using a kneader or the like, or heated in an epoxy resin so that the thermoplastic resin is dissolved in the epoxy resin. By doing so, the viscosity reduction during hardening of an epoxy resin composition can be suppressed, and high thixotropic property can be expressed. In particular, it is preferable to dissolve at least a part of the thermoplastic resin in the epoxy resin because the effect of developing thixotropy is high.

粉体状の熱可塑性樹脂の粒径としては、200μm以下であれば、エポキシ樹脂組成物のチキソトロピー性がより高くなるため好ましい。粒径の下限には特に制限は無いが、0.2μm以上のものがエポキシ樹脂への分散が容易になるため好ましい。   The particle size of the powdered thermoplastic resin is preferably 200 μm or less because the thixotropic property of the epoxy resin composition becomes higher. Although there is no restriction | limiting in particular in the minimum of a particle size, since the dispersion | distribution to an epoxy resin becomes easy, the thing of 0.2 micrometers or more is preferable.

また、これらの熱可塑性樹脂が熱硬化性樹脂との反応性の官能基を有することは、靭性向上および硬化樹脂の耐環境性維持の観点から好ましい。特に好ましい官能基としては、カルボキシル基、アミノ基及び水酸基などが挙げられる。   Moreover, it is preferable that these thermoplastic resins have a functional group reactive with the thermosetting resin from the viewpoint of improving toughness and maintaining the environmental resistance of the cured resin. Particularly preferred functional groups include a carboxyl group, an amino group, and a hydroxyl group.

成分[B]の熱可塑性樹脂は、少なくとも一部を成分[A]のエポキシ樹脂に溶解しておくことが好ましい。この場合、エポキシ樹脂組成物の硬化過程における粘度低下を抑制するため、積層体の層間に樹脂層を形成させることが容易となり、層間の耐衝撃性を向上させることができる。   It is preferable that at least a part of the thermoplastic resin of component [B] is dissolved in the epoxy resin of component [A]. In this case, since the viscosity reduction in the curing process of the epoxy resin composition is suppressed, it becomes easy to form a resin layer between the layers of the laminate, and the impact resistance between the layers can be improved.

成分[B]の熱可塑性樹脂の成分[A]のエポキシ樹脂に対する含有量は、エポキシ樹脂100質量部に対し5質量部以上40質量部以下の範囲である。5質量部以上であれば耐衝撃性の効果が十分に得られ、さらには、本発明におけるその他の必須成分と組み合わせることにより、特異的にエポキシ樹脂組成物の硬化中の粘度低下を抑制し、高いチキソトロピー性を発現させることが可能となる。40質量部以下であれば樹脂組成物の粘度が高くなり過ぎることなく樹脂の混錬を行うことができる。さらに好ましい範囲は6質量部以上24部質量部以下である。   Content with respect to the epoxy resin of component [A] of the thermoplastic resin of component [B] is the range of 5 mass parts or more and 40 mass parts or less with respect to 100 mass parts of epoxy resins. If it is 5 parts by mass or more, the effect of impact resistance is sufficiently obtained, and further, by combining with other essential components in the present invention, specifically suppresses a decrease in viscosity during curing of the epoxy resin composition, High thixotropy can be expressed. If it is 40 mass parts or less, kneading | mixing of resin can be performed, without the viscosity of a resin composition becoming high too much. A more preferable range is 6 parts by mass or more and 24 parts by mass or less.

本発明の構成成分[C]はエラストマー微粒子である。エラストマー微粒子は、エポキシ樹脂マトリックスの種類や硬化条件の違いによりモルホロジーが変化することがないため、靭性などの安定した硬化物物性が得られるという特徴を持つが、本発明におけるその他の必須成分と組み合わせることにより、特異的にエポキシ樹脂組成物の硬化中の粘度低下を抑制し、高いチキソトロピー性を発現させることが可能となる。このため、本発明のプリプレグは表面のタック保持性能が優れ、複合材料としたときには層構造の間に衝撃吸収層の役割をなす樹脂層が形成され、優れた耐衝撃性が得られる。   The component [C] of the present invention is an elastomer fine particle. Elastomer fine particles have the feature that stable physical properties such as toughness can be obtained because the morphology does not change depending on the kind of epoxy resin matrix and curing conditions, but it is combined with other essential components in the present invention. Thus, it is possible to specifically suppress a decrease in viscosity during curing of the epoxy resin composition and to exhibit high thixotropic properties. For this reason, the prepreg of the present invention has excellent surface tack retention performance, and when a composite material is used, a resin layer serving as a shock absorbing layer is formed between the layer structures, and excellent impact resistance can be obtained.

エラストマー微粒子としては、例えば、単独のあるいは複数の不飽和化合物と、架橋性モノマーを共重合して得られる粒子が挙げられる。   Examples of the elastomer fine particles include particles obtained by copolymerizing a single or a plurality of unsaturated compounds and a crosslinkable monomer.

不飽和化合物としては、エチレン、プロピレンなどの脂肪族オレフィン、スチレン、メチルスチレン等の芳香族ビニル化合物、ブタジエン、ジメチルブタジエン、イソプレン、クロロプレンなどの共役ジエン化合物、アクリル酸メチル、アクリル酸プロピル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸プロピル、メタクリル酸ブチルなどの不飽和カルボン酸エステル、アクリロニトリルなどのシアン化ビニルなどを例示することができる。   Examples of unsaturated compounds include aliphatic olefins such as ethylene and propylene, aromatic vinyl compounds such as styrene and methylstyrene, conjugated diene compounds such as butadiene, dimethylbutadiene, isoprene, and chloroprene, methyl acrylate, propyl acrylate, and acrylic acid. Examples thereof include unsaturated carboxylic acid esters such as butyl, methyl methacrylate, propyl methacrylate and butyl methacrylate, and vinyl cyanide such as acrylonitrile.

さらに、不飽和化合物として、カルボキシル基、エポキシ基、水酸基およびアミノ基、アミド基などのエポキシ樹脂あるいは硬化剤と反応性を有する官能基を有する化合物などを用いることもできる。例としては、アクリル酸、グリシジルメタクリレート、ビニルフェノール、ビニルアニリン、アクリルアミドなどを挙げることができる。   Furthermore, as the unsaturated compound, a carboxyl group, an epoxy group, a hydroxyl group and an amino group, a compound having a functional group reactive with a curing agent, or the like such as an amino group or an amide group can be used. Examples include acrylic acid, glycidyl methacrylate, vinyl phenol, vinyl aniline, acrylamide and the like.

架橋性モノマーの例としては、ジビニルベンゼン、ジアリルフタレート、エチレングリコールジメタアクリレートなどの分子内に重合性二重結合を複数個有する化合物を挙げることができる。   Examples of the crosslinkable monomer include compounds having a plurality of polymerizable double bonds in the molecule, such as divinylbenzene, diallyl phthalate, and ethylene glycol dimethacrylate.

これらのエラストマー微粒子は、例えば、乳化重合法、懸濁重合法などの従来公知の各種重合方法により製造することができる。代表的な乳化重合法は、不飽和化合物及び架橋性モノマーを過酸化物などのラジカル重合開始剤、メルカプタン、ハロゲン化炭化水素などの分子量調整剤、乳化剤の存在下で乳化重合を行い、所定の重合転化率に達した後、反応停止剤を添加して重合反応を停止させ、次いで重合系の未反応モノマーを水蒸気蒸留などで除去することによって共重合体のラテックスを得る方法である。乳化重合法で得られたラテックスから水を除去して架橋ゴム粒子が得られる。また、市販品を使用することもできる。市販の架橋ゴム粒子としては、例えば、カルボキシル変性のブタジエン−アクリロニトリル共重合体の架橋物からなるXER−91(ジャパンエポキシレジン(株)製)、アクリルゴム微粒子からなるBPF307、BPA328((株)日本触媒製)、YR−500シリーズ(東都化成(株)製)などが挙げられる。
エラストマー微粒子としてコアシェル型のエラストマー微粒子を用いるともできる。コアシェル型のエラストマー微粒子は、シェル部のTgや組成を変えることで、エラストマー微粒子同士の融着を防いだり、マトリックス樹脂との相溶性を向上することができるため、エポキシ樹脂中での2次凝集を防止し、結果として配合量を増やすことができる。このため、硬化物の靭性向上や、チキソ性のコントロールが容易になるため好ましい。
These elastomer fine particles can be produced by various conventionally known polymerization methods such as an emulsion polymerization method and a suspension polymerization method. A typical emulsion polymerization method is a method in which an unsaturated compound and a crosslinkable monomer are subjected to emulsion polymerization in the presence of a radical polymerization initiator such as a peroxide, a molecular weight regulator such as a mercaptan or a halogenated hydrocarbon, and an emulsifier. In this method, after reaching the polymerization conversion rate, a reaction stopper is added to stop the polymerization reaction, and then the unreacted monomer in the polymerization system is removed by steam distillation or the like to obtain a copolymer latex. Water is removed from the latex obtained by the emulsion polymerization method to obtain crosslinked rubber particles. Moreover, a commercial item can also be used. Examples of commercially available crosslinked rubber particles include XER-91 (made by Japan Epoxy Resin Co., Ltd.) made of a crosslinked product of a carboxyl-modified butadiene-acrylonitrile copolymer, BPF307 made of acrylic rubber fine particles, and BPA 328 (Japan). Catalyst) and YR-500 series (manufactured by Toto Kasei Co., Ltd.).
Core-shell type elastomer fine particles may be used as the elastomer fine particles. The core-shell type elastomer fine particles can prevent the fusion of the elastomer fine particles and improve the compatibility with the matrix resin by changing the Tg and composition of the shell portion. As a result, the blending amount can be increased. For this reason, since the toughness improvement of cured | curing material and control of thixotropy become easy, it is preferable.

コアシェル型のエラストマー微粒子としては、ゼフィアックF351などのゼフィアックシシーズやスタフィロイドシリーズ(以上、ガンツ化成(株)製)、メタブレンS−2001、メタブレンC−223Aなどメタブレンシリーズ(三菱レイヨン(株)製)、GEINOPERL P52(Wacker Chemie社製)などが挙げられる。
コアシェル型微粒子の中でも、ゼフィアックF351のような、加熱によりエポキシ樹脂中で膨潤するタイプを用いた場合、エポキシ樹脂組成物の硬化中の粘度低下を抑える効果が高くなるため、好ましい。
Core shell type elastomer fine particles include Zefiac series such as Zefiac F351 and Staphyroid series (manufactured by Ganz Kasei Co., Ltd.), Metabrene series such as Metabrene S-2001 and Metabrene C-223A (Mitsubishi Rayon Co., Ltd.). And GEINOPELL P52 (manufactured by Wacker Chemie).
Among the core-shell type fine particles, the use of a type that swells in an epoxy resin by heating, such as Zefiac F351, is preferable because an effect of suppressing a decrease in viscosity during curing of the epoxy resin composition is increased.

以上のようなエラストマー微粒子は、複数の品種を組み合わせて用いてもよい。
エラストマー微粒子の平均粒子径は、10μm以下のものであることが好ましく、さらに好ましくは5μm以下、より好ましくは0.5μm以下である。粒子径が大きすぎると、プリプレグのタック保持能力が弱くなることがある。
The elastomer fine particles as described above may be used in combination of a plurality of varieties.
The average particle size of the elastomer fine particles is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 0.5 μm or less. When the particle size is too large, the tack retaining ability of the prepreg may be weakened.

成分[C]のエラストマー微粒子の成分[A]のエポキシ樹脂に対する含有量は、エポキシ100質量部に対し12質量部以上40質量部以下の範囲である。12質量部以上であれば耐衝撃性の効果が十分に得られ、40質量部以下であれば樹脂組成物の粘度が高くなり過ぎることなく樹脂の混錬を行うことができる。より好ましい範囲は15質量部以上30質量部以下、さらに好ましくは20質量部以下である。   Content with respect to the epoxy resin of the component [A] of the elastomer fine particles of the component [C] is in a range of 12 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the epoxy. If it is 12 parts by mass or more, the effect of impact resistance can be sufficiently obtained, and if it is 40 parts by mass or less, the resin composition can be kneaded without excessively increasing the viscosity of the resin composition. A more preferable range is 15 parts by mass or more and 30 parts by mass or less, and further preferably 20 parts by mass or less.

本発明の構成成分[D]はシリカ微粒子であり、具体的には湿式シリカ、フェーズドシリカ、フュームドシリカなどが用いられる。プリプレグのタック保持性能を発現し、硬化過程における樹脂フローを抑制するためには、少なくとも一部にフュームドシリカを用いることが好ましい。一般にシリカ微粒子は微粒子の形状や、微粒子表面の官能基を適切に制御することにより、エポキシ樹脂にチキソトロピー性を付与する効果を持つが、本発明におけるその他の必須成分と組み合わせることにより、特異的にエポキシ樹脂組成物の硬化中の粘度低下を抑制し、高いチキソトロピー性を発現させることが可能となる。このため、本発明のプリプレグは表面のタック保持性能が優れ、複合材料としたときには層構造の間に衝撃吸収層の役割をなす樹脂層が形成され、優れた耐衝撃性が得られる。   The component [D] of the present invention is silica fine particles, and specifically, wet silica, phased silica, fumed silica and the like are used. In order to express the tack retaining performance of the prepreg and suppress the resin flow in the curing process, it is preferable to use fumed silica at least in part. In general, silica fine particles have the effect of imparting thixotropic properties to the epoxy resin by appropriately controlling the shape of the fine particles and the functional groups on the surface of the fine particles, but in combination with other essential components in the present invention, It is possible to suppress a decrease in viscosity during curing of the epoxy resin composition and to exhibit high thixotropic properties. For this reason, the prepreg of the present invention has excellent surface tack retention performance, and when a composite material is used, a resin layer serving as a shock absorbing layer is formed between the layer structures, and excellent impact resistance can be obtained.

シリカ微粒子の表面に疎水性の官能基を反応させることは、よりチキソトロピー性を付与しやすくなるため好ましい。シリカ微粒子の粒径は、0.1μm以下であればチキソトロピー性の改質効果が高いため好ましく、0.02μm以下であればさらに好ましい。ヒュームドシリカの市販品としては、アエロジルA300などのAシリーズ、RY300などのRYシリーズ(日本アエロジル(株)製)などが挙げられる。   It is preferable to react a hydrophobic functional group on the surface of the silica fine particles because it becomes easier to impart thixotropic properties. The particle size of the silica fine particles is preferably 0.1 μm or less because the thixotropic modification effect is high, and more preferably 0.02 μm or less. Examples of commercially available fumed silica include A series such as Aerosil A300, RY series such as RY300 (manufactured by Nippon Aerosil Co., Ltd.), and the like.

成分[D]のシリカ微粒子の成分[A]のエポキシ樹脂に対する含有量は、エポキシ100質量部に対し0.8質量部以上である。0.8質量部以上含まれる場合に、その他の必須成分と組み合わせることにより、特異的にエポキシ樹脂組成物の硬化中の粘度低下を抑制し、高いチキソトロピー性を発現させることが可能となる。このため、本発明のプリプレグは表面のタック保持性能が優れ、複合材料としたときには層構造の間に衝撃吸収層の役割をなす樹脂層が形成され、優れた耐衝撃性が得られる。より好ましくは1.3質量部以上10質量部以下の範囲である。1.3質量部以上であれば、エポキシ樹脂組成物の硬化中の粘度低下を押さえ、高いチキソトロピー性を発現させる効果があり、層間にエポキシ樹脂層を形成して、耐衝撃性の効果が十分に得られる。10質量部以下であれば、樹脂組成物に均一に混錬することができる。さらに好ましい範囲は1.5質量部以上5質量部以下、さらに好ましくは3質量部以下である。   Content with respect to the epoxy resin of component [A] of the silica fine particle of component [D] is 0.8 mass part or more with respect to 100 mass parts of epoxy. When 0.8 parts by mass or more is contained, by combining with other essential components, it is possible to specifically suppress a decrease in viscosity during curing of the epoxy resin composition and to exhibit high thixotropic properties. For this reason, the prepreg of the present invention has excellent surface tack retention performance, and when a composite material is used, a resin layer serving as a shock absorbing layer is formed between the layer structures, and excellent impact resistance can be obtained. More preferably, it is the range of 1.3 to 10 mass parts. If it is 1.3 parts by mass or more, there is an effect of suppressing the decrease in viscosity during curing of the epoxy resin composition and exhibiting high thixotropy, and an epoxy resin layer is formed between the layers, and the impact resistance effect is sufficient Is obtained. If it is 10 mass parts or less, it can knead | mix uniformly to a resin composition. A more preferable range is 1.5 parts by mass or more and 5 parts by mass or less, and further preferably 3 parts by mass or less.

本発明の樹脂組成物は、シート状物に加工し、ベースの繊維強化プリプレグの片面又は両面に張り合わせることで効果を発現することができる。更に、ベースの繊維強化プリプレグの片面及び/又は両面に保持した熱可塑性樹脂の硬化物が示す破壊靭性値が、ベースの繊維強化プリプレグに用いられるマトリックス樹脂を硬化して得られる硬化物の破壊靭性値よりも高い場合、プリプレグを積層硬化して成形した複合材料の耐衝撃性が向上するため好ましい。   The resin composition of the present invention can be processed into a sheet-like material and can exhibit an effect by being bonded to one side or both sides of the base fiber-reinforced prepreg. Furthermore, the fracture toughness value of the cured product of the thermoplastic resin held on one side and / or both sides of the base fiber reinforced prepreg is the fracture toughness of the cured product obtained by curing the matrix resin used for the base fiber reinforced prepreg. If the value is higher than the value, the impact resistance of the composite material formed by laminating and curing the prepreg is preferable.

シート状に加工した樹脂組成物をベースの繊維強化プリプレグに貼り付ける方法としては、特に規制は無く、一般的なプリプレグの加工方法を用いればよい。例えば、コーターを用いて樹脂組成物を離型紙上にシート状に塗布してシート状物に加工し、プリプレグ製造装置を用いて別途作成したベースの繊維強化プリプレグに後工程にて貼り合わせれば、樹脂組成物の目付を制御しやすく好ましい。   There is no restriction | limiting in particular as a method of sticking the resin composition processed into the sheet form to a base fiber reinforced prepreg, What is necessary is just to use the processing method of a general prepreg. For example, if the resin composition is applied in a sheet form on a release paper using a coater and processed into a sheet form, and bonded to a base fiber reinforced prepreg separately prepared using a prepreg manufacturing apparatus, It is preferable because the basis weight of the resin composition is easy to control.

なお、シート状に加工した樹脂組成物の目付は、10g/m以上45g/m以下であることが好ましい。10g/m以上であれば、プリプレグとしてのタックの保持性能と複合材料の耐衝撃性を発現できるため好ましい。一方、45g/m以下であれば、ベースの繊維強化プリプレグの樹脂量を少なくする必要が無く含浸性にも影響しないため好ましい。 In addition, it is preferable that the fabric weight of the resin composition processed into the sheet form is 10 g / m 2 or more and 45 g / m 2 or less. If it is 10 g / m 2 or more, it is preferable because the holding performance of tack as a prepreg and the impact resistance of the composite material can be expressed. On the other hand, if it is 45 g / m 2 or less, it is not necessary to reduce the resin amount of the base fiber-reinforced prepreg, and it is preferable because it does not affect the impregnation property.

<最低粘度の測定>
レオメトリクス社製レオメーターDSR200を用いた。直径25mmのパラレルプレートを用い、パラレルプレート間のエポキシ樹脂組成物の厚みを0.5mmとし、角速度10ラジアン/秒、昇温速度2℃/分の条件で30℃から測定を開始し、粘度上昇が見られるまで粘度測定を行った。温度に対して得られた複素粘度をプロットした際の最も低い複素粘度を最低粘度として記録した。
<Measurement of minimum viscosity>
A rheometer DSR200 manufactured by Rheometrics was used. Using a parallel plate with a diameter of 25 mm, the thickness of the epoxy resin composition between the parallel plates was 0.5 mm, the measurement was started from 30 ° C. under the conditions of an angular velocity of 10 radians / second and a heating rate of 2 ° C./min. Viscosity measurements were taken until The lowest complex viscosity when plotting the complex viscosity obtained against temperature was recorded as the lowest viscosity.

<チキソトロピー性の測定>
レオメトリクス社製レオメーターDSR200を用いた。直径25mmのパラレルプレートを用い、パラレルプレート間のエポキシ樹脂組成物の厚みを0.5mmとし、角速度100ラジアン/秒及び0.1ラジアン/秒の条件にて60℃における粘度測定を行った。角速度0.1ラジアン/秒での測定粘度をη0.1、角速度100ラジアン/秒での測定粘度をη100とした際のη100/η0.1をチキソトロピー指数と定義した。
<Measurement of thixotropic properties>
A rheometer DSR200 manufactured by Rheometrics was used. Using a parallel plate with a diameter of 25 mm, the thickness of the epoxy resin composition between the parallel plates was 0.5 mm, and the viscosity was measured at 60 ° C. under conditions of angular velocities of 100 radians / second and 0.1 radians / second. Η 100 / η 0.1 when the measured viscosity at an angular velocity of 0.1 radians / second was η 0.1 and the measured viscosity at an angular velocity of 100 radians / second was η 100 was defined as the thixotropic index.

<硬化樹脂板の作製>
ガラス転移温度、硬化樹脂の曲げ物性、硬化樹脂の破壊靭性値の測定に用いる硬化樹脂板を以下の手順で作製した。後記の各実施例、比較例の説明で述べる手順で調製した樹脂組成物を、所定厚のポリテトラフルオロエチレンのスペーサーを挟んだ2枚のガラス板の間に注入し、昇温速度1.7℃/分、180℃にて2時間の硬化条件で加熱硬化させ、硬化樹脂板を得た。
<Production of cured resin plate>
A cured resin plate used for measurement of the glass transition temperature, the bending property of the cured resin, and the fracture toughness value of the cured resin was produced by the following procedure. The resin composition prepared by the procedure described in the description of each example and comparative example described later is injected between two glass plates sandwiching a spacer of polytetrafluoroethylene having a predetermined thickness, and a temperature increase rate of 1.7 ° C. / And cured at 180 ° C. for 2 hours under a curing condition to obtain a cured resin plate.

<繊維強化複合材料の成形>
ガラス転移温度、衝撃後圧縮強度(CAI)の測定に用いる繊維強化複合材料を以下の手順で作成した。所定の積層構成でプリプレグを積層した積層物をバッグ内に入れ、これをオートクレーブ内で180℃にて2時間加熱し、硬化させて成形板(繊維強化複合材料)を作製した。この間オートクレーブ内を0.7MPaに加圧し、バッグ内を真空に保った。
<Molding of fiber reinforced composite material>
A fiber-reinforced composite material used for measurement of glass transition temperature and compressive strength after impact (CAI) was prepared by the following procedure. A laminate in which prepregs were laminated in a predetermined laminate configuration was placed in a bag, which was heated in an autoclave at 180 ° C. for 2 hours and cured to produce a molded plate (fiber reinforced composite material). During this time, the inside of the autoclave was pressurized to 0.7 MPa, and the inside of the bag was kept in vacuum.

<ガラス転移温度の測定>
SACMA 18R−94法に准じて、熱硬化性樹脂組成物を硬化させた硬化樹脂及び繊維強化複合材料のガラス転移温度を測定した。厚さ2mmに作製した硬化樹脂板を長さ55mm×幅12mmの試験片に加工し、[0°]の方向に12枚積層して作製した繊維強化複合材料を長さ(繊維方向)55mm×幅12mmの試験片に加工し、レオメトリクス社製レオメーターARES−RDAを用い、測定周波数1Hz、昇温速度5℃/分、ひずみ0.01%の条件で、チャック間の距離を45mmとし、30℃からゴム弾性領域まで貯蔵弾性率G´の温度依存性を測定した。logG´を温度に対してプロットし、logG´の平坦領域の近似直線と、G´が転移する領域の近似直線との交点から求められる温度をガラス転移温度G´−Tgとして記録した(図1参照)。
<Measurement of glass transition temperature>
Based on the SACMA 18R-94 method, the glass transition temperature of the cured resin obtained by curing the thermosetting resin composition and the fiber reinforced composite material was measured. A cured resin plate produced to a thickness of 2 mm was processed into a test piece having a length of 55 mm and a width of 12 mm, and a fiber reinforced composite material produced by laminating 12 sheets in the direction of [0 °] was 55 mm in length (fiber direction). Processed into a 12 mm wide test piece, using a rheometer ARES-RDA manufactured by Rheometrics, with a measurement frequency of 1 Hz, a heating rate of 5 ° C./min, and a strain of 0.01%, the distance between chucks was 45 mm, The temperature dependence of the storage elastic modulus G ′ was measured from 30 ° C. to the rubber elastic region. Log G ′ is plotted against temperature, and the temperature obtained from the intersection of the approximate straight line of the flat region of log G ′ and the approximate straight line of the region where G ′ transitions is recorded as the glass transition temperature G′−Tg (FIG. 1). reference).

<硬化樹脂の破壊靭性値(GIc)の測定>
試験片の作製及び試験を、温度20℃、湿度50%RHの環境下で、ASTM D5045に準拠したSENB(Single Edge Noched Bend)試験法に準拠して実施した。熱硬化性樹脂組成物を硬化させた樹脂板で長さ27mm×幅3mm×厚み6mmの試験片を作製した後、湿式ダイヤモンドカッターにてノッチを入れ、MEKにて脱脂した剃刀をノッチの先端に押しつけながらスライドさせて、プリクラックを作成した。作製した試験片についてインストロン社製万能試験機にて破壊靱性試験を行った。
<Measurement of fracture toughness value (GIc) of cured resin>
The test piece was prepared and tested in an environment of a temperature of 20 ° C. and a humidity of 50% RH in accordance with a SENB (Single Edge Nominated Bend) test method compliant with ASTM D5045. A test piece having a length of 27 mm, a width of 3 mm, and a thickness of 6 mm was prepared using a resin plate obtained by curing a thermosetting resin composition, and then a notch was made with a wet diamond cutter, and a razor degreased with MEK was attached to the tip of the notch. A pre-crack was created by sliding while pressing. A fracture toughness test was performed on the prepared test piece using an universal testing machine manufactured by Instron.

<タックの評価>
プリプレグのタック評価を室温22℃、湿度50RH%の環境下で実施した。プリプレグを室温22℃、湿度50RH%の環境下に1時間放置した後、プリプレグ表面の保護フィルムを剥がし、触感テストによりタック評価を行った。また、同様に保護フィルムを剥がしたプリプレグを室温22℃、湿度50RH%の環境下に24時間放置し、同様に触感テストによりタック評価を行った。
評価結果 ○ :張り付きに十分なタックを示すが、タックが強く、取り扱い性がや や悪い。
評価結果 ◎ :タックが適度であり、取り扱い性に優れる。
評価結果 △ :タックがやや弱く、取り扱い性が悪い。
評価結果 × :タックが弱すぎるため、取り扱い性が悪い。
<Evaluation of tack>
Tack evaluation of the prepreg was performed in an environment of room temperature 22 ° C. and humidity 50 RH%. The prepreg was allowed to stand in an environment of room temperature 22 ° C. and humidity 50 RH% for 1 hour, and then the protective film on the prepreg surface was peeled off, and tack evaluation was performed by a tactile sensation test. Similarly, the prepreg from which the protective film was peeled was allowed to stand for 24 hours in an environment at room temperature of 22 ° C. and humidity of 50 RH%, and tack evaluation was similarly performed by a tactile sensation test.
Evaluation result ○: Although the tack is sufficient for sticking, the tack is strong and the handleability is slightly poor.
Evaluation results A: Tack is moderate and the handleability is excellent.
Evaluation results Δ: Tack is slightly weak and handling is poor.
Evaluation result ×: Tack is too weak, so handling is poor.

<衝撃後圧縮強度(CAI)の測定>
プリプレグを[+45°/0°/−45°/90°]の方向に4枚積層したものを3セット重ね合わせた12枚の積層体と、[90°/−45°/0°/+45°]の方向に4枚積層したものを3セット重ね合わせた12枚の積層体を、それぞれ90°方向が合わさるように重ね、合計24枚の積層体としてバッグ内に入れ、これをオートクレーブ内で180℃にて2時間加熱し、硬化させて成形板(繊維強化複合材料)を作製した。この間オートクレーブ内を0.7MPaに加圧し、バッグ内を真空に保った。
<Measurement of compressive strength after impact (CAI)>
12 laminates obtained by superposing 3 sets of 4 prepregs laminated in the direction of [+ 45 ° / 0 ° / −45 ° / 90 °], and [90 ° / −45 ° / 0 ° / + 45 °] ] Are stacked so that the 90 ° direction is aligned with each other and placed in a bag as a total of 24 laminates, which are placed in an autoclave for 180 Heated at 2 ° C. for 2 hours and cured to produce a molded plate (fiber reinforced composite material). During this time, the inside of the autoclave was pressurized to 0.7 MPa, and the inside of the bag was kept in vacuum.

得られた成形板から試験片を切り出し、Airbus Industries Test Method AITM 1.0010に準拠して、この試験片の中心に25Jもしくは30Jの落錘衝撃を与えた後、試験片の衝撃後圧縮強度を測定した。
尚、本試験では試験片のVf(繊維体積含有率)の影響が小さいため、測定値はVf換算しない実測値である。
得られた結果を表3、4に記載した。
A test piece was cut out from the obtained molded plate, and a 25 J or 30 J drop weight impact was applied to the center of the test piece in accordance with Airbus Industries Test Method AITM 1.0010, and then the compression strength of the test piece after impact was measured. It was measured.
In this test, since the influence of Vf (fiber volume content) of the test piece is small, the measurement value is an actual measurement value not converted to Vf.
The obtained results are shown in Tables 3 and 4.

<実施例・比較例で使用した原料の説明>
EPPN502H:トリスフェノールノボラック型エポキシ樹脂、日本化薬(株)製
jER630:p−アミノフェノール型エポキシ樹脂、三菱化学(株)製
LSA7001:オキサジゾリドン環骨格を持つエポキシ樹脂。旭化成イーマテリアルズ(株)製
jER807:ビスフェノールF型エポキシ樹脂、三菱化学(株)製
jER828:ビスフェノールA型エポキシ樹脂、三菱化学(株)製
GAN:ジグリジシルアニリン型エポキシ樹脂、日本化薬(株)社製
RY300:表面に疎水性の官能基を反応させたフュームドシリカ、エボニック社製
BPF307:架橋アクリルエラストマー微粒子とビスフェノールF型エポキシ樹脂の混合品、(株)日本触媒製
MX960:架橋シリコンエラストマー微粒子とビスフェノールA型エポキシ樹脂の混合品、(株)カネカ製
ゼフィアックF351;コアシェル型アクリルゴム微粒子、ガンツ化成(株)製
E2020P micro:末端に水酸基を持ったポリエーテルスルホン、平均粒径20μm、BASF社製
ULTEM1040:ポリエーテルイミド、SABICイノベーティブプラスチック社製
YP50S:フェノキシ樹脂、東都化成(株)製
ビニレックE:ポリビニルホルマール、チッソ(株)製
3,3’−DDS:3,3’−ジアミノジフェニルスルホン、アミン型硬化剤、日本合成化工(株)製。ジェットミルにより98質量%以上が10μm以下の粒径になるまで粉砕したものを使用した。
<Description of raw materials used in Examples and Comparative Examples>
EPPN502H: trisphenol novolac type epoxy resin, manufactured by Nippon Kayaku Co., Ltd. jER630: p-aminophenol type epoxy resin, manufactured by Mitsubishi Chemical Corporation LSA7001: epoxy resin having an oxazizolidone ring skeleton. Asahi Kasei E-materials Co., Ltd. jER807: Bisphenol F type epoxy resin, Mitsubishi Chemical Co., Ltd. jER828: Bisphenol A type epoxy resin, Mitsubishi Chemical Co., Ltd. GAN: Diglycidyl aniline type epoxy resin, Nippon Kayaku ( RY300 manufactured by KK: Fumed silica with hydrophobic functional groups reacted on the surface, BPF307 manufactured by Evonik Co., Ltd .: Mixture of crosslinked acrylic elastomer fine particles and bisphenol F type epoxy resin, MX960 manufactured by Nippon Shokubai Co., Ltd. Mixture of elastomer fine particles and bisphenol A type epoxy resin, manufactured by Kaneka Corporation
Zefiac F351; core-shell type acrylic rubber fine particles, manufactured by Ganz Kasei Co., Ltd. E2020P micro: polyethersulfone having a hydroxyl group at the terminal, average particle size 20 μm, manufactured by BASF ULTEM 1040: polyetherimide, manufactured by SABIC Innovative Plastics YP50S: phenoxy Resin, manufactured by Tohto Kasei Co., Ltd. Vinylec E: Polyvinyl formal, manufactured by Chisso Co., Ltd. 3,3′-DDS: 3,3′-diaminodiphenyl sulfone, amine type curing agent, manufactured by Nippon Synthetic Chemical Industry Co., Ltd. What was grind | pulverized until the particle size of 98 mass% or more became 10 micrometers or less with the jet mill was used.

実施例1〜18、比較例1〜9
表1に示した成分の内、成分[A]、成分[C](ゼフィアックF351は除く)、及び成分[B]でエポキシ樹脂に溶解する分量をそれぞれ計量し、セパラブルフラスコに投入し、180℃に加熱しながら攪拌棒をスリーワンモーターにて回転させることにより、成分[B]でエポキシ樹脂に溶解する分量をエポキシ樹脂中に溶解させた。その後、約70℃に放冷し、成分[B]でエポキシ樹脂に溶解させない分量、成分[D]、成分[C]であるゼフィアックF351、硬化剤を計量して投入し、70℃に加熱しながら、真空ポンプを用いてフラスコ内を減圧しエポキシ樹脂組成物の脱泡を行ってエポキシ樹脂組成物を得た。評価結果を表1、2に示す。
Examples 1-18, Comparative Examples 1-9
Of the components shown in Table 1, components [A], [C] (excluding Zefiac F351) and component [B] were weighed and dissolved in an epoxy resin, put into a separable flask, 180 By rotating the stirring rod with a three-one motor while heating at 0 ° C., the amount of the component [B] dissolved in the epoxy resin was dissolved in the epoxy resin. Thereafter, the mixture is allowed to cool to about 70 ° C., an amount not dissolved in the epoxy resin with component [B], Zefiac F351, which is component [D], and component [C], and a curing agent are weighed in and heated to 70 ° C. While using a vacuum pump, the inside of the flask was decompressed to defoam the epoxy resin composition to obtain an epoxy resin composition. The evaluation results are shown in Tables 1 and 2.

実施例19
<プリプレグの調製>
下記の組成比にて原料をセパラブルフラスコに投入し、120℃の温度にて攪拌棒をスリーワンモーターにて回転させることにより、E2020P microがエポキシ樹脂中に溶解するまで攪拌し、ベース樹脂を得た。
Example 19
<Preparation of prepreg>
The raw material is put into a separable flask at the following composition ratio, and the stirring rod is rotated with a three-one motor at a temperature of 120 ° C., and stirring is performed until E2020P micro is dissolved in the epoxy resin, thereby obtaining a base resin. It was.

ベース樹脂組成比
jER630 30質量部
GAN 30質量部
E2020P micro 35質量部
Base resin composition ratio jER630 30 parts by mass GAN 30 parts by mass E2020P micro 35 parts by mass

次いで、下記の触媒樹脂組成比にて、各成分を計量し、3本ロールにて硬化剤である3,3‘−DDSを分散させ、触媒樹脂を調製した。
触媒樹脂組成比
jER630 40質量部
3,3‘−DDS 58質量部
Next, each component was weighed at the following catalyst resin composition ratio, and 3,3′-DDS as a curing agent was dispersed with three rolls to prepare a catalyst resin.
Composition ratio of catalyst resin jER630 40 parts by mass 3,3′-DDS 58 parts by mass

ベース樹脂と触媒樹脂とを下記の比率で計量し、65℃に予熱したニーダーにて混練し、ベースの繊維強化プリプレグ用エポキシ樹脂組成物を得た。
ベース樹脂 95質量部
触媒樹脂 98質量部
The base resin and the catalyst resin were weighed at the following ratios and kneaded in a kneader preheated to 65 ° C. to obtain an epoxy resin composition for a base fiber-reinforced prepreg.
Base resin 95 parts by weight Catalyst resin 98 parts by weight

得られたベースの繊維強化プリプレグ用エポキシ樹脂組成物をコンマコーターにて34g/mの目付となるように離型紙の上に塗布し、樹脂フィルムを得た。
この樹脂フィルム2枚と、ストランド強度6200MPa、ストランド弾性率310GPaの炭素繊維とをダブルフィルム法によりプリプレグマシンにてプリプレグを作製した。得られた炭素繊維目付190g/m、樹脂の質量分率26質量%のプリプレグをベースの繊維強化プリプレグとした。
The obtained base epoxy resin composition for fiber-reinforced prepreg was applied onto release paper so as to have a basis weight of 34 g / m 2 with a comma coater to obtain a resin film.
A prepreg was produced by a prepreg machine using two resin films and a carbon fiber having a strand strength of 6200 MPa and a strand elastic modulus of 310 GPa by a double film method. The obtained prepreg having a carbon fiber basis weight of 190 g / m 2 and a resin mass fraction of 26% by mass was used as a base fiber-reinforced prepreg.

次いで、実施例1で得られた樹脂組成物をコンマコーターにて30g/mの目付にて離型紙の上に塗布し、樹脂フィルムを得た。得られた樹脂フィルムを、ベースの繊維強化プリプレグの表面に載せ、フュージングプレスにて50℃、0.1MPa、滞在時間10秒の条件にて貼り付けることで繊維強化プリプレグを得た。得られたプリプレグの炭素繊維目付は190g/m、樹脂の質量分率は34質量%であった。
このプリプレグの評価結果を表3に記載する。このプリプレグは十分なタックを持ち、タックの保持性能にも優れていた。ただし、タックが強く、プリプレグの取り扱い性はやや悪かった。CAIは高い値であった。
Next, the resin composition obtained in Example 1 was coated on a release paper with a basis weight of 30 g / m 2 using a comma coater to obtain a resin film. The obtained resin film was placed on the surface of the base fiber reinforced prepreg, and a fiber reinforced prepreg was obtained by pasting it with a fusing press at 50 ° C., 0.1 MPa, and a residence time of 10 seconds. The carbon fiber basis weight of the obtained prepreg was 190 g / m 2 , and the resin mass fraction was 34% by mass.
The evaluation results of this prepreg are shown in Table 3. This prepreg had sufficient tack and was excellent in tack holding performance. However, the tack was strong and the handling of the prepreg was somewhat poor. The CAI was high.

比較例10
ベースの繊維強化プリプレグの表面に貼り合わせる樹脂組成物を、ベースの繊維強化プリプレグに使用したエポキシ樹脂組成物と同じとした以外は実施例19と同じ条件で繊維強化プリプレグを製造した。このプリプレグの評価結果を表3に記載する。このプリプレグは十分なタックをしめした。ただし、タックが強く、プリプレグの取り扱い性はやや悪かった。また、24時間経過後のタックがやや弱く、CAIは低い値であった。
Comparative Example 10
A fiber reinforced prepreg was produced under the same conditions as in Example 19 except that the resin composition to be bonded to the surface of the base fiber reinforced prepreg was the same as the epoxy resin composition used for the base fiber reinforced prepreg. The evaluation results of this prepreg are shown in Table 3. This prepreg showed sufficient tack. However, the tack was strong and the handling of the prepreg was somewhat poor. In addition, the tack after 24 hours was slightly weak and the CAI was low.

比較例11
下記の組成比にて原料をセパラブルフラスコに投入し、120℃の温度にて攪拌棒をスリーワンモーターにて回転させることにより、E2020P microがエポキシ樹脂中に溶解するまで攪拌し、ベース樹脂を得た。
ベース樹脂組成比
jER630 30質量部
GAN 30質量部
E2020P micro 35質量部
Comparative Example 11
The raw material is put into a separable flask at the following composition ratio, and the stirring rod is rotated with a three-one motor at a temperature of 120 ° C., and stirring is performed until E2020P micro is dissolved in the epoxy resin, thereby obtaining a base resin. It was.
Base resin composition ratio jER630 30 parts by mass GAN 30 parts by mass E2020P micro 35 parts by mass

次いで、下記の触媒樹脂組成比にて、各成分を計量し、3本ロールにて硬化剤である3,3‘−DDSを分散させ触媒樹脂を調製した。
触媒樹脂組成比
jER630 40質量部
3,3‘−DDS 58質量部
Next, each component was weighed at the following catalyst resin composition ratio, and a catalyst resin was prepared by dispersing 3,3′-DDS as a curing agent with three rolls.
Composition ratio of catalyst resin jER630 40 parts by mass 3,3′-DDS 58 parts by mass

ベース樹脂と触媒樹脂とを下記の比率で計量し、65℃に予熱したニーダーにて混練し、ベースの繊維強化プリプレグ用エポキシ樹脂組成物を得た。
ベース樹脂 95質量部
触媒樹脂 98質量部
The base resin and the catalyst resin were weighed at the following ratios and kneaded in a kneader preheated to 65 ° C. to obtain an epoxy resin composition for a base fiber-reinforced prepreg.
Base resin 95 parts by weight Catalyst resin 98 parts by weight

得られたベースの繊維強化プリプレグ用エポキシ樹脂組成物をコンマコーターにて49g/mの目付にて離型紙の上に塗布し、樹脂フィルムを得た。
この樹脂フィルム2枚と、ストランド強度6200MPa、ストランド弾性率310GPaの炭素繊維とをダブルフィルム法により、プリプレグマシンにて繊維強化プリプレグを作製した。得られたプリプレグは炭素繊維目付190g/m、樹脂の質量分率34質量%であった。
このプリプレグの評価結果を表3に記載する。
このプリプレグは十分なタックを持っていたが、タックが強く、プリプレグの取り扱い性はやや悪かった。また、24時間経過後のタックが弱く、CAIも低い値であった。
The obtained base epoxy resin composition for fiber-reinforced prepreg was coated on a release paper with a basis weight of 49 g / m 2 using a comma coater to obtain a resin film.
A fiber reinforced prepreg was produced by a prepreg machine using two resin films and a carbon fiber having a strand strength of 6200 MPa and a strand elastic modulus of 310 GPa. The obtained prepreg had a carbon fiber basis weight of 190 g / m 2 and a resin mass fraction of 34% by mass.
The evaluation results of this prepreg are shown in Table 3.
This prepreg had a sufficient tack, but the tack was strong and the handling of the prepreg was somewhat poor. Further, the tack after 24 hours was weak and the CAI was also low.

比較例12
下記の組成比にて原料をセパラブルフラスコに投入し、120℃の温度にて攪拌棒をスリーワンモーターにて回転させることにより、E2020P microがエポキシ樹脂中に溶解するまで攪拌し、ベース樹脂を得た。
ベース樹脂組成比
jER630 30質量部
GAN 30質量部
E2020P micro 35質量部
Comparative Example 12
The raw material is put into a separable flask at the following composition ratio, and the stirring rod is rotated with a three-one motor at a temperature of 120 ° C., and stirring is performed until E2020P micro is dissolved in the epoxy resin, thereby obtaining a base resin. It was.
Base resin composition ratio jER630 30 parts by mass GAN 30 parts by mass E2020P micro 35 parts by mass

次いで、下記の触媒樹脂組成比にて、各成分を計量し、3本ロールにて硬化剤である3,3‘−DDSを分散させ触媒樹脂を調製した。
触媒樹脂組成比
jER630 40質量部
3,3‘−DDS 58質量部
Next, each component was weighed at the following catalyst resin composition ratio, and a catalyst resin was prepared by dispersing 3,3′-DDS as a curing agent with three rolls.
Composition ratio of catalyst resin jER630 40 parts by mass 3,3′-DDS 58 parts by mass

ベース樹脂と触媒樹脂とを下記の比率で計量し、65℃に予熱したニーダーにて混練し、ベースの繊維強化プリプレグ用エポキシ樹脂組成物を得た。
ベース樹脂 95質量部
触媒樹脂 98質量部
The base resin and the catalyst resin were weighed at the following ratios and kneaded in a kneader preheated to 65 ° C. to obtain an epoxy resin composition for a base fiber-reinforced prepreg.
Base resin 95 parts by weight Catalyst resin 98 parts by weight

得られたベースの繊維強化プリプレグ用エポキシ樹脂組成物をコンマコーターにて45g/mの目付にて離型紙の上に塗布し、樹脂フィルムを得た。
この樹脂フィルム2枚と、ストランド強度6200MPa、ストランド弾性率310GPaの炭素繊維とをダブルフィルム法により、プリプレグマシンにてプリプレグを作製した。得られた繊維強化プリプレグは炭素繊維目付190g/m、樹脂の質量分率32質量%であり、このプリプレグをベースプリプレグとした。ベースプリプレグにメルトブロー法によって得られたナイロン12の不織布(7.5g/m)を載せ、フュージングプレスにて110℃、0.2MPa、滞在時間60秒の条件にて貼り付けることでプリプレグを得た。
このプリプレグの評価結果を表3に記載する。
このプリプレグは高いCAI値を示したものの、タックが弱く取り扱い性が悪かった。また、24時間経過後のタックも弱く、取り扱い性が悪かった。
The obtained epoxy resin composition for fiber-reinforced prepreg was coated on a release paper with a basis weight of 45 g / m 2 with a comma coater to obtain a resin film.
A prepreg was produced by a prepreg machine using two resin films and a carbon fiber having a strand strength of 6200 MPa and a strand elastic modulus of 310 GPa. The obtained fiber reinforced prepreg had a carbon fiber basis weight of 190 g / m 2 and a resin mass fraction of 32% by mass. This prepreg was used as a base prepreg. Nylon 12 non-woven fabric (7.5 g / m 2 ) obtained by the melt-blowing method is placed on the base prepreg, and a prepreg is obtained by pasting with a fusing press under conditions of 110 ° C., 0.2 MPa, residence time 60 seconds. It was.
The evaluation results of this prepreg are shown in Table 3.
Although this prepreg showed a high CAI value, the tack was weak and the handleability was poor. In addition, the tack after 24 hours was weak and the handleability was poor.

実施例20
実施例19と同様にプリプレグを作成した。ただし、ベース樹脂及び触媒樹脂の組成比は以下の通りとした。
ベース樹脂組成比
jER630 30質量部
GAN 23質量部
E2020P micro 30質量部
触媒樹脂組成比
jER630 30質量部
jER828 17質量部
3,3‘−DDS 54.5質量部
ベース樹脂と触媒樹脂との比率を以下の通りとした。
ベース樹脂 83質量部
触媒樹脂 101.5質量部
Example 20
A prepreg was prepared in the same manner as in Example 19. However, the composition ratio of the base resin and the catalyst resin was as follows.
Base resin composition ratio jER630 30 parts by mass GAN 23 parts by mass E2020P micro 30 parts by mass Catalyst resin composition ratio jER630 30 parts by mass jER828 17 parts by mass 3,3'-DDS 54.5 parts by mass The ratio of the base resin to the catalyst resin is as follows: It was as follows.
Base resin 83 parts by mass Catalyst resin 101.5 parts by mass

また、ベースの繊維強化プリプレグの表面に貼り合わせる樹脂組成物としては実施例15と同じとした。また、炭素繊維はストランド強度5560MPa、ストランド弾性率264GPaのものを用いた。
このプリプレグの評価結果を表4に記載する。
このプリプレグは適度なタックを持ち作業性に優れていた。加えて、24時間経過後も適度なタックを保持しており、タックの保持性能にも優れていた。また、CAIは同じ炭素繊維とベース樹脂を用いた比較例13よりも高く良好な値を示した。
The resin composition to be bonded to the surface of the base fiber reinforced prepreg was the same as in Example 15. Carbon fibers having a strand strength of 5560 MPa and a strand elastic modulus of 264 GPa were used.
The evaluation results of this prepreg are shown in Table 4.
This prepreg had an appropriate tack and excellent workability. In addition, an appropriate tack was retained even after 24 hours, and the tack retaining performance was excellent. Further, CAI was higher and better than Comparative Example 13 using the same carbon fiber and base resin.

実施例21
実施例19と同様にプリプレグを作成した。ただし、ベースの繊維強化プリプレグの表面に貼り合わせる樹脂組成物としては実施例18と同じものを用いた。
このプリプレグの評価結果を表4に記載する。
このプリプレグは適度なタックを持ち作業性に優れていた。加えて、24時間経過後も適度なタックを保持しており、タックの保持性能にも優れていた。また、CAIは同じ炭素繊維とベース樹脂を用いた比較例13よりも高く良好な値を示した。
Example 21
A prepreg was prepared in the same manner as in Example 19. However, the same resin composition as in Example 18 was used as the resin composition to be bonded to the surface of the base fiber-reinforced prepreg.
The evaluation results of this prepreg are shown in Table 4.
This prepreg had an appropriate tack and excellent workability. In addition, an appropriate tack was retained even after 24 hours, and the tack retaining performance was excellent. Further, CAI was higher and better than Comparative Example 13 using the same carbon fiber and base resin.

比較例13
実施例19と同様にプリプレグを作製した。ただし、ベース樹脂から作製する樹脂フィルムの目付けは48g/mとし、ベースの繊維強化プリプレグの表面に追加の樹脂組成物は貼り付けなかった。
このプリプレグの評価結果を表4に記載する。
このプリプレグは十分なタックを持っていたが、タックが強く、プリプレグの取り扱い性はやや悪かった。また、24時間経過後のタックが弱く、CAIも低い値であった。
Comparative Example 13
A prepreg was produced in the same manner as in Example 19. However, the basis weight of the resin film prepared from the base resin was 48 g / m 2, and no additional resin composition was attached to the surface of the base fiber-reinforced prepreg.
The evaluation results of this prepreg are shown in Table 4.
This prepreg had a sufficient tack, but the tack was strong and the handling of the prepreg was somewhat poor. Further, the tack after 24 hours was weak and the CAI was also low.

Figure 2011190430
Figure 2011190430

Figure 2011190430
Figure 2011190430

Figure 2011190430
Figure 2011190430

Figure 2011190430
Figure 2011190430

Figure 2011190430
Figure 2011190430

本発明は、耐衝撃性に優れる複合材料と、表面のタック保持性に優れるプリプレグを与えることができるので、産業上有用である。   INDUSTRIAL APPLICATION Since this invention can give the composite material which is excellent in impact resistance, and the prepreg which is excellent in the surface tack retention, it is industrially useful.

Claims (10)

必須成分[A]、[B]、[C]及び[D]を含み、成分[A]100質量部に対して、成分[B]が5質量部以上40質量部以下、成分[C]が12質量部以上40質量部以下である熱硬化性樹脂組成物のシート状物を、ベースの繊維強化プリプレグの片面又は両面に貼り合わせてなる繊維強化プリプレグ。
[A] エポキシ樹脂
[B] 熱可塑性樹脂
[C] エラストマー微粒子
[D] シリカ微粒子
Including essential components [A], [B], [C] and [D], with respect to 100 parts by mass of component [A], component [B] is 5 to 40 parts by mass, and component [C] is A fiber-reinforced prepreg obtained by bonding a sheet-like material of a thermosetting resin composition of 12 parts by mass or more and 40 parts by mass or less to one side or both sides of a base fiber-reinforced prepreg.
[A] Epoxy resin [B] Thermoplastic resin [C] Elastomer fine particles [D] Silica fine particles
2℃/分の速度にて温度を上げた際の熱硬化性樹脂組成物の最低粘度が1000P以上であり、且つ、該熱硬化性樹脂組成物の60℃におけるチキソトロピー指数(η100/η0.1)が10以上である請求項1記載の繊維強化プリプレグ。 The minimum viscosity of the thermosetting resin composition when the temperature is increased at a rate of 2 ° C./min is 1000 P or more, and the thixotropy index (η 100 / η 0 of the thermosetting resin composition at 60 ° C. The fiber-reinforced prepreg according to claim 1, wherein .1 ) is 10 or more. ベースの繊維強化プリプレグの片面又は両面に貼り合わせた熱可塑性樹脂組成物の目付が10g/m以上45g/m以下である請求項1又は2記載の繊維強化プリプレグ。 The fiber-reinforced prepreg according to claim 1 or 2, wherein the basis weight of the thermoplastic resin composition bonded to one side or both sides of the base fiber-reinforced prepreg is 10 g / m 2 or more and 45 g / m 2 or less. 必須成分[A]、[B]、[C]及び[D]を含み、成分[A]100質量部に対して、成分[B]が5質量部以上40質量部以下、成分[C]が12質量部以上40質量部以下である熱硬化性樹脂組成物。
[A] エポキシ樹脂
[B] 熱可塑性樹脂
[C] エラストマー微粒子
[D] シリカ微粒子
Including essential components [A], [B], [C] and [D], with respect to 100 parts by mass of component [A], component [B] is 5 to 40 parts by mass, and component [C] is The thermosetting resin composition which is 12 mass parts or more and 40 mass parts or less.
[A] Epoxy resin [B] Thermoplastic resin [C] Elastomer fine particles [D] Silica fine particles
成分[B]の熱可塑性樹脂の少なくとも一部が成分[A]のエポキシ樹脂に溶解されている請求項4記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 4, wherein at least a part of the thermoplastic resin of component [B] is dissolved in the epoxy resin of component [A]. 成分[B]の熱可塑性樹脂が、ポリエーテルスルホン、ポリエーテルイミド、ポリビニルホルマール及びフェノキシ樹脂からなる群より選ばれる1種又は2種以上である請求項4又は5記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 4 or 5, wherein the thermoplastic resin of component [B] is one or more selected from the group consisting of polyethersulfone, polyetherimide, polyvinyl formal and phenoxy resin. . 成分[C]のエラストマー微粒子が架橋エラストマー微粒子である請求項4〜6のいずれかに記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to any one of claims 4 to 6, wherein the elastomer fine particles of component [C] are crosslinked elastomer fine particles. 成分[C]のエラストマー微粒子が架橋エラストマー微粒子及び/又はコアシェル型エラストマー微粒子である請求項4〜6のいずれかに記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to any one of claims 4 to 6, wherein the elastomer fine particles of component [C] are crosslinked elastomer fine particles and / or core-shell type elastomer fine particles. 成分[D]が成分[A]100質量部に対し、0.8質量部以上含まれる請求項4〜8のいずれかに記載のエポキシ樹脂組成物。   The epoxy resin composition according to any one of claims 4 to 8, wherein component [D] is contained in an amount of 0.8 parts by mass or more with respect to 100 parts by mass of component [A]. ベースの繊維強化プリプレグの片面及び/又は両面に貼り合わせるシート状物を構成する熱硬化性樹脂の組成物であって、その硬化物が示す破壊靭性値がベースの繊維強化プリプレグに用いられるマトリックス樹脂を硬化して得られる硬化物の破壊靭性値よりも高い、請求項4〜9のいずれかに記載のエポキシ樹脂組成物。   A matrix resin used for a base fiber reinforced prepreg, which is a composition of a thermosetting resin constituting a sheet-like material to be bonded to one side and / or both sides of a base fiber reinforced prepreg, and whose fracture toughness value indicated by the cured product is used for the base fiber reinforced prepreg The epoxy resin composition in any one of Claims 4-9 higher than the fracture toughness value of the hardened | cured material obtained by hardening | curing.
JP2011020022A 2010-02-19 2011-02-01 Thermosetting resin composition and fiber reinforced prepreg Active JP5760463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020022A JP5760463B2 (en) 2010-02-19 2011-02-01 Thermosetting resin composition and fiber reinforced prepreg

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010034861 2010-02-19
JP2010034861 2010-02-19
JP2011020022A JP5760463B2 (en) 2010-02-19 2011-02-01 Thermosetting resin composition and fiber reinforced prepreg

Publications (2)

Publication Number Publication Date
JP2011190430A true JP2011190430A (en) 2011-09-29
JP5760463B2 JP5760463B2 (en) 2015-08-12

Family

ID=44795676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020022A Active JP5760463B2 (en) 2010-02-19 2011-02-01 Thermosetting resin composition and fiber reinforced prepreg

Country Status (1)

Country Link
JP (1) JP5760463B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013087653A1 (en) * 2011-12-12 2013-06-20 Hexcel Composites Limited Improved composite materials
JP2013155330A (en) * 2012-01-31 2013-08-15 Toray Ind Inc Prepreg and carbon fiber-reinforced composite material
WO2014050034A1 (en) * 2012-09-28 2014-04-03 パナソニック株式会社 Prepreg, metal-clad laminated sheet, printed wiring board
JP2014111730A (en) * 2012-11-07 2014-06-19 Kaneka Corp Fine polymer particle dispersed resin composition excellent in moisture and heat strength and method for producing the same
JP2015030745A (en) * 2013-07-31 2015-02-16 住友ベークライト株式会社 Resin composition, semiconductor device, multilayer circuit board, and electronic component
WO2016152856A1 (en) * 2015-03-26 2016-09-29 新日鉄住金化学株式会社 Fiber-reinforced plastic molding material, method for producing same, and molded article
WO2017047033A1 (en) * 2015-09-15 2017-03-23 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate and printed wiring board
WO2019177131A1 (en) 2018-03-16 2019-09-19 帝人株式会社 Epoxy resin composition, prepreg, fiber-reinforced composite material, and production methods therefor
WO2019176935A1 (en) 2018-03-13 2019-09-19 帝人株式会社 Prepreg and carbon fiber-reinforced composite material
WO2019193940A1 (en) 2018-04-02 2019-10-10 東レ株式会社 Prepreg and manufacturing method for same
WO2020032090A1 (en) 2018-08-08 2020-02-13 帝人株式会社 Epoxy compound, epoxy resin, epoxy resin composition, cured resin product, prepreg, fiber-reinforced composite material, and production method for these
US10647849B2 (en) 2015-03-31 2020-05-12 Toho Tenax Co., Ltd. Epoxy resin composition, prepreg, carbon fiber-reinforced composite material, and manufacturing methods therefor
JP2021107470A (en) * 2019-12-27 2021-07-29 帝人株式会社 Fiber-reinforced composite material, and method for producing the same
EP3719072A4 (en) * 2017-11-28 2021-08-25 The Yokohama Rubber Co., Ltd. Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100515A (en) * 1997-07-29 1999-04-13 Toray Ind Inc Resin composition for fiber-reinforced composite material, prepreg and preparation of prepreg
JPH11302507A (en) * 1998-02-17 1999-11-02 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, intermediate substrate for fiber-reinforced composite material and fiber-reinforced composite material
JP2000007889A (en) * 1998-06-25 2000-01-11 Sumitomo Durez Co Ltd Epoxy resin composition
JP2003282772A (en) * 2002-03-20 2003-10-03 Kyocera Corp Wiring board with pin and electronic device using the same
WO2007129662A1 (en) * 2006-05-08 2007-11-15 Sekisui Chemical Co., Ltd. Insulating material, process for producing electronic part/device, and electronic part/device
JP2009231240A (en) * 2008-03-25 2009-10-08 Ajinomoto Co Inc Method of manufacturing multilayer printed wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100515A (en) * 1997-07-29 1999-04-13 Toray Ind Inc Resin composition for fiber-reinforced composite material, prepreg and preparation of prepreg
JPH11302507A (en) * 1998-02-17 1999-11-02 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, intermediate substrate for fiber-reinforced composite material and fiber-reinforced composite material
JP2000007889A (en) * 1998-06-25 2000-01-11 Sumitomo Durez Co Ltd Epoxy resin composition
JP2003282772A (en) * 2002-03-20 2003-10-03 Kyocera Corp Wiring board with pin and electronic device using the same
WO2007129662A1 (en) * 2006-05-08 2007-11-15 Sekisui Chemical Co., Ltd. Insulating material, process for producing electronic part/device, and electronic part/device
JP2009231240A (en) * 2008-03-25 2009-10-08 Ajinomoto Co Inc Method of manufacturing multilayer printed wiring board

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502876A (en) * 2011-12-12 2015-01-29 ヘクセル コンポジッツ、リミテッド Improved composite material
WO2013087653A1 (en) * 2011-12-12 2013-06-20 Hexcel Composites Limited Improved composite materials
JP2013155330A (en) * 2012-01-31 2013-08-15 Toray Ind Inc Prepreg and carbon fiber-reinforced composite material
US9578734B2 (en) 2012-09-28 2017-02-21 Panasonic Intellectual Property Management Co., Ltd. Prepreg, metal-clad laminate, and printed wiring board
WO2014050034A1 (en) * 2012-09-28 2014-04-03 パナソニック株式会社 Prepreg, metal-clad laminated sheet, printed wiring board
JP2014070156A (en) * 2012-09-28 2014-04-21 Panasonic Corp Prepreg, metal clad laminated board, print wiring board
JP2014111730A (en) * 2012-11-07 2014-06-19 Kaneka Corp Fine polymer particle dispersed resin composition excellent in moisture and heat strength and method for producing the same
JP2015030745A (en) * 2013-07-31 2015-02-16 住友ベークライト株式会社 Resin composition, semiconductor device, multilayer circuit board, and electronic component
JPWO2016152856A1 (en) * 2015-03-26 2017-12-14 新日鉄住金化学株式会社 Fiber-reinforced plastic molding material, method for producing the same and molded product
KR102508061B1 (en) 2015-03-26 2023-03-09 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Fiber-reinforced plastic molding material, its manufacturing method and molded product
US10590250B2 (en) * 2015-03-26 2020-03-17 Nippon Steel Chemical & Material Co., Ltd. Fiber-reinforced plastic molding material, method for producing same, and molded article
KR20170131442A (en) * 2015-03-26 2017-11-29 신닛테츠 수미킨 가가쿠 가부시키가이샤 Fiber reinforced plastic molding material, production method thereof, and molded article
WO2016152856A1 (en) * 2015-03-26 2016-09-29 新日鉄住金化学株式会社 Fiber-reinforced plastic molding material, method for producing same, and molded article
JP2019031683A (en) * 2015-03-26 2019-02-28 日鉄ケミカル&マテリアル株式会社 Phenoxy resin powder for fiber-reinforced plastic molding material
JP2019048460A (en) * 2015-03-26 2019-03-28 日鉄ケミカル&マテリアル株式会社 Metal laminate of fiber-reinforced plastic molding material
US10647849B2 (en) 2015-03-31 2020-05-12 Toho Tenax Co., Ltd. Epoxy resin composition, prepreg, carbon fiber-reinforced composite material, and manufacturing methods therefor
WO2017047033A1 (en) * 2015-09-15 2017-03-23 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate and printed wiring board
JP2017057253A (en) * 2015-09-15 2017-03-23 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate and printed wiring board
EP3719072A4 (en) * 2017-11-28 2021-08-25 The Yokohama Rubber Co., Ltd. Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
US11434361B2 (en) 2017-11-28 2022-09-06 The Yokohama Rubber Co., Ltd. Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
WO2019176935A1 (en) 2018-03-13 2019-09-19 帝人株式会社 Prepreg and carbon fiber-reinforced composite material
WO2019177131A1 (en) 2018-03-16 2019-09-19 帝人株式会社 Epoxy resin composition, prepreg, fiber-reinforced composite material, and production methods therefor
WO2019193940A1 (en) 2018-04-02 2019-10-10 東レ株式会社 Prepreg and manufacturing method for same
KR20200139128A (en) 2018-04-02 2020-12-11 도레이 카부시키가이샤 Prepreg and its manufacturing method
US11319404B2 (en) 2018-08-08 2022-05-03 Teijin Limited Epoxy compound, epoxy resin, epoxy resin composition, cured resin product, prepreg, fiber-reinforced composite material, and production methods for these
WO2020032090A1 (en) 2018-08-08 2020-02-13 帝人株式会社 Epoxy compound, epoxy resin, epoxy resin composition, cured resin product, prepreg, fiber-reinforced composite material, and production method for these
JP2021107470A (en) * 2019-12-27 2021-07-29 帝人株式会社 Fiber-reinforced composite material, and method for producing the same

Also Published As

Publication number Publication date
JP5760463B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5760463B2 (en) Thermosetting resin composition and fiber reinforced prepreg
KR101761439B1 (en) Epoxy resin composition for use in a carbon-fiber-reinforced composite material, prepreg, and carbon-fiber-reinforced composite material
KR101096855B1 (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP5800031B2 (en) Epoxy resin composition, prepreg and carbon fiber reinforced composite material
JP5648679B2 (en) Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JP6187586B2 (en) Benzoxazine resin composition, prepreg, and fiber reinforced composite material
KR101794386B1 (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JPWO2016148175A1 (en) Epoxy resin composition, prepreg and carbon fiber reinforced composite material
JP2017119812A (en) Epoxy resin composition, fiber-reinforced composite material, molded product and pressure container
WO2013099862A1 (en) Epoxy resin composition for fiber-reinforced composite materials, prepreg, and fiber-reinforced composite material
JP2010059225A (en) Epoxy resin composition for carbon fiber-reinforced composite material, prepreg, and carbon fiber-reinforced composite material
KR20170007484A (en) Epoxy resin composition, cured resin, prepreg and fiber-reinforced composite material
JP2016132709A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2003238657A (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP2010095557A (en) Prepreg and fiber-reinforced composite material
US10829587B2 (en) Epoxy resin composition, epoxy resin cured product, prepreg and fiber-reinforced composite material
JP2012067190A (en) Epoxy resin composition for fiber reinforced composite material, prepreg, and fiber reinforced composite material
JP2006052385A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
US9738783B2 (en) Curable epoxy compositions
JP2014156582A (en) Prepreg and fiber-reinforced composite material
JP2007119603A (en) Prepreg
JP2006219513A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP6699803B1 (en) Prepreg and its manufacturing method, slit tape prepreg, carbon fiber reinforced composite material
JP2011057851A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2008069216A (en) Prepreg

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R151 Written notification of patent or utility model registration

Ref document number: 5760463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250