JP2011190184A - New dicarboxylic acid type compound - Google Patents

New dicarboxylic acid type compound Download PDF

Info

Publication number
JP2011190184A
JP2011190184A JP2010055154A JP2010055154A JP2011190184A JP 2011190184 A JP2011190184 A JP 2011190184A JP 2010055154 A JP2010055154 A JP 2010055154A JP 2010055154 A JP2010055154 A JP 2010055154A JP 2011190184 A JP2011190184 A JP 2011190184A
Authority
JP
Japan
Prior art keywords
group
acid
carbon atoms
mol
dicarboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010055154A
Other languages
Japanese (ja)
Other versions
JP5565677B2 (en
Inventor
Yuichiro Takamatsu
雄一朗 高松
Takashi Ogawa
隆 小川
Katsuyuki Sugiyama
克之 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyoshi Yushi KK
Miyoshi Oil and Fat Co Ltd
Original Assignee
Miyoshi Yushi KK
Miyoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyoshi Yushi KK, Miyoshi Oil and Fat Co Ltd filed Critical Miyoshi Yushi KK
Priority to JP2010055154A priority Critical patent/JP5565677B2/en
Publication of JP2011190184A publication Critical patent/JP2011190184A/en
Application granted granted Critical
Publication of JP5565677B2 publication Critical patent/JP5565677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new dicarboxylic acid type compound that has hydrolysis stability and biodegradability and exhibits excellent surface activity. <P>SOLUTION: The dicarboxylic acid type compound is one represented by formula (1) (wherein C<SB>n</SB>H<SB>2n+1</SB>is a linear or branched alkyl group; n is an integer of 1-22; R<SB>1</SB>is a 1-22C alkylene group; R<SB>2</SB>is a 1-22C alkyl group; R<SB>3</SB>is a hydrogen atom or a methyl group; X is a hydrogen ion, an alkali metal ion, an alkaline earth metal ion or an ammonium ion; provided that R<SB>1</SB>and R<SB>2</SB>are selected so that the -R<SB>1</SB>-CH-CH-R<SB>2</SB>portion forms a 9-25C hydrocarbon structure). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は新規ジカルボン酸型化合物に関する。   The present invention relates to a novel dicarboxylic acid type compound.

天然原料である脂肪酸を利用した固形石鹸等の1鎖1親水基型界面活性剤は、生分解性や安全性が高いため、世間一般に広く用いられている。カルボキシル基をもつ界面活性剤には様々な構造のものがあるが、水溶性がよく、洗浄力、泡立ちが良好で、皮膚や毛髪にマイルドなものや、少量で効果のあるものが望まれている。これらに対応するものとして、アシル化アミノ酸塩やエーテルカルボン酸塩、アミドエーテルカルボン酸塩、アミドエーテル硫酸塩などが知られている。最近では、優れた界面活性を有し、界面活性剤の使用量を削減できる環境に優しい次世代の界面活性剤として2鎖2親水基型界面活性剤(ジェミニ型界面活性剤)に期待が寄せられ、その新規界面活性剤の様々な研究開発がなされている(非特許文献1)。
例えば特許文献1にはビス−アミドカルボン酸またはその塩が開示され、特許文献2には多鎖二極性基化合物が開示されている。また、親水基の種類が異なるもの、アルキル鎖の長さが非対称な構造を持つもの、親水基とアルキル鎖の長さがそれぞれ非対称な構造を持つ2鎖2親水基型界面活性剤も研究されている(非特許文献2)。
また、疎水鎖中にアミド結合を有するジェミニ型のカチオン性界面活性剤あるいは糖系界面活性剤も報告されている(非特許文献3、非特許文献4)。
また、疎水鎖中にエステル結合を有するジェミニ型界面活性剤も報告されている(非特許文献5)。
One-chain one-hydrophilic surfactants such as solid soaps using fatty acids that are natural raw materials are widely used in the world because of their high biodegradability and safety. Surfactants with carboxyl groups have various structures, but water-soluble, good detergency and foaming, mild to skin and hair, and effective in small amounts are desired. Yes. Corresponding to these, acylated amino acid salts, ether carboxylates, amide ether carboxylates, amide ether sulfates and the like are known. Recently, expectation for 2-chain 2-hydrophilic surfactant (Gemini surfactant) as an environmentally friendly next-generation surfactant that has excellent surface activity and can reduce the amount of surfactant used. Various research and development of the novel surfactant has been made (Non-patent Document 1).
For example, Patent Document 1 discloses a bis-amide carboxylic acid or a salt thereof, and Patent Document 2 discloses a multi-chain bipolar group compound. In addition, those with different types of hydrophilic groups, those with asymmetric structures of alkyl chains, and two-chain two-hydrophilic surfactants with asymmetric structures of hydrophilic groups and alkyl chains are also being studied. (Non-Patent Document 2).
In addition, gemini-type cationic surfactants or sugar surfactants having an amide bond in the hydrophobic chain have been reported (Non-patent Documents 3 and 4).
A gemini surfactant having an ester bond in a hydrophobic chain has also been reported (Non-patent Document 5).

特開平10−175934号公報JP-A-10-175934 特開2000−219654号公報JP 2000-219654 A

R.Zana,Journal of Colloid and Interface Science 248,203−220(2002)R. Zana, Journal of Colloid and Interface Science 248, 203-220 (2002) E.Alami and K.Holmberg,Advances in Colloid and Interface Science 100−102(2003)13−46E. Alami and K.M. Holberg, Advances in Colloid and Interface Science 100-102 (2003) 13-46 T.Tatsumi, W.Zhang, T.Kida, Y.Nakatsuji, D.Ono,T.Takeda, I,Ikeda Journal of Surfactants and Detergents 3, 167 (2000)T.A. Tatsumi, W. et al. Zhang, T .; Kida, Y .; Nakatsuji, D.H. Ono, T .; Takeda, I, Ikeda Journal of Surfactants and Detergents 3, 167 (2000) K.A.Wilk, L.Syper, B.W.Domagalska, U.Komorek, I.Maliszewska, R.Gancarz, Journal of Surfactants and Detergents 5, 235 (2002)K. A. Wilk, L.M. Syper, B.M. W. Domagalska, U .; Komorek, I.D. Maliszewska, R.M. Gancarz, Journal of Surfactants and Detergents 5, 235 (2002) T.Tatsumi, W.Zhang, T.Kida, Y.Nakatsuji, D.Ono,T.Takeda, I,Ikeda Journal of Surfactants and Detergents 4, 279 (2001)T.A. Tatsumi, W. et al. Zhang, T .; Kida, Y .; Nakatsuji, D.H. Ono, T .; Takeda, I, Ikeda Journal of Surfactants and Detergents 4, 279 (2001)

しかし、2鎖2親水基型界面活性剤は、その製造にあたって比較的高価な原材料の使用を余儀なくされることが多く、通常、1鎖1親水基型界面活性剤同士をつなぐ連結基(スペーサー)と呼ばれる部分をその界面活性剤の主鎖に結合するための反応を行う必要があるため、工程数が増えてしまい合成経路が複雑となる。さらに、疎水基2鎖の非対称な長さを有する2鎖2親水基型界面活性剤の合成には、それぞれ鎖長の違う疎水基を持つ1鎖1親水基型界面活性剤を2種類準備し、それらを結合させる必要があるため、より反応工程数が増えてしまうなどの問題がある。またその化合物構造に起因して一般に生分解性が劣ることから、その優れた性能にもかかわらず、未だ実用に至っているものはほとんどないというのが実情である。例えば、アミド結合を有する非特許文献3および非特許文献4のジェミニ型界面活性剤は、生分解性をまったく示さない、もしくは、生分解性を示すものの分解速度が遅いなどの欠点が挙げられる。
非特許文献5にあるように、生分解性を持たせるためジェミニ型界面活性剤の疎水鎖部分にエステル結合を有する構造が考えられているが、加水分解安定性に欠けることが懸念される。
本発明者等は、上記の問題を解決するために鋭意研究した結果、原料として工業的に入手し易く、連結基へと誘導する二重結合部位を有する不飽和脂肪酸または、そのアミドを用いることにより、容易に合成が可能で、生分解性を有し、加水分解安定性を有する界面活性剤としての利用が可能な新規ジカルボン酸型化合物を得ることに成功し、本発明を完成するに至った。
However, 2-chain 2-hydrophilic surfactants often require the use of relatively expensive raw materials in their production, and usually a linking group (spacer) that connects 1-chain 1-hydrophilic surfactants together. It is necessary to carry out a reaction for binding a portion called “the main chain of the surfactant”, which increases the number of steps and complicates the synthesis route. Furthermore, for the synthesis of 2-chain 2-hydrophilic surfactants having asymmetric lengths of 2-hydrophobic groups, two types of 1-chain 1-hydrophilic surfactants having hydrophobic groups with different chain lengths are prepared. , There is a problem that the number of reaction steps increases because it is necessary to combine them. In addition, since the biodegradability is generally inferior due to the compound structure, it is the fact that there is almost nothing that has been put into practical use despite its excellent performance. For example, the gemini-type surfactants of Non-Patent Document 3 and Non-Patent Document 4 having an amide bond do not exhibit biodegradability at all, or exhibit defects such as a slow degradation rate although they exhibit biodegradability.
As described in Non-Patent Document 5, a structure having an ester bond in the hydrophobic chain portion of the gemini surfactant is considered in order to impart biodegradability, but there is a concern that it lacks hydrolysis stability.
As a result of intensive studies to solve the above problems, the present inventors use an unsaturated fatty acid that is industrially easily available as a raw material and has a double bond site that leads to a linking group, or an amide thereof. Succeeded in obtaining a novel dicarboxylic acid type compound that can be easily synthesized, biodegradable, and usable as a surfactant having hydrolytic stability, leading to the completion of the present invention. It was.

即ち本発明は、下記一般式(1)で示される新規ジカルボン酸型化合物である。

Figure 2011190184
但し、上記一般式(1)中、
n2n+1は直鎖状の又は分岐状のアルキル基を示し、
nは1〜22の整数を示し、
1は炭素原子数1〜22のアルキレン基を示し、
2は炭素原子数1〜22のアルキル基を示し、
3は、水素原子または、メチル基を示し、
Xは、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、又はアンモニウムイオンを示すが、但し、前記R1及びR2は−R1−CH−CH−R2部分が炭素原子数9〜25の炭化水素構造をなすように選択される。
本発明はまた、前記のジカルボン酸型化合物を含む、界面活性剤に関する。
本発明は更に、下記一般式(2´)
Figure 2011190184
(式中、
n2n+1は直鎖状の又は分岐状のアルキル基を示し、
nは1〜22の整数を示し、
1は炭素原子数1〜22のアルキレン基を示し、
2は炭素原子数1〜22のアルキル基を示し、
3は、水素原子または、メチル基を示すが、但し、前記R1及びR2は−R1−CH−CH−R2部分が炭素原子数9〜25の炭化水素構造をなすように選択される。)で表される化合物と無水コハク酸を反応させて下記一般式(1´)
Figure 2011190184
(式中、Cn2n+1、n、R1、R2及びR3は、一般式(2´)における定義と同様の意味を表わす。)で表される化合物を製造する段階と、続いて、場合により、一般式(1´)で表される化合物をアルカリ金属若しくはアルカリ土類金属の水酸化物又はアミンと反応させて下記一般式(1)
Figure 2011190184
(式中、Cn2n+1、n、R1、R2及びR3は、一般式(2´)における定義と同様の意味を表わし、Xは、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、又はアンモニウムイオンを示す。)で表される化合物を製造する段階とを含む、ジカルボン酸型化合物の製造方法にも関する。 That is, the present invention is a novel dicarboxylic acid type compound represented by the following general formula (1).
Figure 2011190184
However, in the general formula (1),
C n H 2n + 1 represents a linear or branched alkyl group,
n represents an integer of 1 to 22,
R 1 represents an alkylene group having 1 to 22 carbon atoms,
R 2 represents an alkyl group having 1 to 22 carbon atoms,
R 3 represents a hydrogen atom or a methyl group,
X represents a hydrogen ion, an alkali metal ion, an alkaline earth metal ion, or an ammonium ion, provided that R 1 and R 2 have a —R 1 —CH—CH—R 2 moiety of 9 to 25 carbon atoms. The hydrocarbon structure is selected.
The present invention also relates to a surfactant comprising the dicarboxylic acid type compound.
The present invention further includes the following general formula (2 ′):
Figure 2011190184
(Where
C n H 2n + 1 represents a linear or branched alkyl group,
n represents an integer of 1 to 22,
R 1 represents an alkylene group having 1 to 22 carbon atoms,
R 2 represents an alkyl group having 1 to 22 carbon atoms,
R 3 represents a hydrogen atom or a methyl group, provided that R 1 and R 2 are selected so that the —R 1 —CH—CH—R 2 moiety forms a hydrocarbon structure having 9 to 25 carbon atoms. Is done. ) And a succinic anhydride are reacted to give the following general formula (1 ′)
Figure 2011190184
(Wherein, C n H 2n + 1 , n, R 1 , R 2 and R 3 have the same meaning as defined in formula ( 2 ′)), Subsequently, in some cases, the compound represented by the general formula (1 ′) is reacted with an alkali metal or alkaline earth metal hydroxide or amine to give the following general formula (1):
Figure 2011190184
(In the formula, C n H 2n + 1 , n, R 1 , R 2 and R 3 represent the same meaning as defined in the general formula ( 2 ′ ), and X represents a hydrogen ion, an alkali metal ion, an alkaline earth, And a method for producing a compound represented by the following formula:

本発明のジカルボン酸型化合物は、工業的に入手し易い天然由来の不飽和脂肪酸または、そのアミドを原料に用いることで、当該原料の不飽和脂肪酸部分の二重結合部位が連結基となり、且つその二重結合部分を酸化して得られた水酸基にジカルボン酸又はその塩を容易に結合させることができるので、その製造において、反応工程数が少なく容易に合成することができるという利点を有する。また、本発明のジカルボン酸型化合物において、
親水性−疎水性バランスは、脂肪酸鎖の末端カルボン酸部分にアミド結合させる原料のアミンにおけるアルキル鎖の長さ(Cn2n+1)あるいは、不飽和脂肪酸を選択することにより、容易に調整することが可能であり、したがって本発明の化合物は界面活性剤として有用である。さらに、本発明の界面活性剤は、少量で乳化力に優れ、優れた界面活性能を有し、さらには、界面活性剤として使用するためには不可欠な条件である生分解性を持ち、産業利用上、用途に応じた使用を想定した場合、性能を損なわない程度に必要となる加水分解安定性にも優れている。これらの特徴を併せ持つ本発明のジカルボン酸型化合物は、産業利用の可能性、資源の節約、環境への低負荷という点から見ても非常に有用である。
The dicarboxylic acid type compound of the present invention is a naturally occurring unsaturated fatty acid that is industrially easily available or its amide used as a raw material, so that the double bond site of the unsaturated fatty acid part of the raw material becomes a linking group, and Since the dicarboxylic acid or a salt thereof can be easily bonded to the hydroxyl group obtained by oxidizing the double bond portion, the production has an advantage that it can be easily synthesized with a small number of reaction steps. In the dicarboxylic acid type compound of the present invention,
The hydrophilic-hydrophobic balance is easily adjusted by selecting the length of the alkyl chain (C n H 2n + 1 ) in the starting amine to be amide-bonded to the terminal carboxylic acid moiety of the fatty acid chain, or an unsaturated fatty acid. Thus, the compounds of the present invention are useful as surfactants. Further, the surfactant of the present invention is excellent in emulsifying power in a small amount, has excellent surface activity, and has biodegradability which is an indispensable condition for use as a surfactant. From the viewpoint of use, it is excellent in hydrolysis stability that is required to the extent that performance is not impaired when it is assumed to be used according to the application. The dicarboxylic acid type compound of the present invention having these characteristics is also very useful from the viewpoints of industrial applicability, resource saving, and low load on the environment.

図1は、実施例2で得られたジカルボン酸型化合物の1H−NMRスペクトルを示す。FIG. 1 shows the 1 H-NMR spectrum of the dicarboxylic acid type compound obtained in Example 2. 図2は、実施例2で得られたジカルボン酸型化合物の13C−NMRスペクトルを示す。FIG. 2 shows the 13 C-NMR spectrum of the dicarboxylic acid type compound obtained in Example 2.

本発明のジカルボン酸型化合物は、下記一般式(1)で示される。

Figure 2011190184
但し、上記一般式(1)中、Cn2n+1は直鎖状の又は分岐状のアルキル基を示し、nは1〜22の整数を示す。R1は炭素原子数1〜22のアルキレン基を示し、R2は炭素原子数1〜22のアルキル基を示す。但し、R1及びR2は−R1−CH−CH−R2部分が炭素原子数9〜25の炭化水素構造をなすように選択される。R3は、水素原子または、メチル基を示す。Xは、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、又はアンモニウムイオンを示す。 The dicarboxylic acid type compound of the present invention is represented by the following general formula (1).
Figure 2011190184
However, in the general formula (1), C n H 2n + 1 is a straight or branched alkyl group, n is an integer of 1 to 22. R 1 represents an alkylene group having 1 to 22 carbon atoms, and R 2 represents an alkyl group having 1 to 22 carbon atoms. However, R 1 and R 2 are selected so that the —R 1 —CH—CH—R 2 moiety forms a hydrocarbon structure having 9 to 25 carbon atoms. R 3 represents a hydrogen atom or a methyl group. X represents a hydrogen ion, an alkali metal ion, an alkaline earth metal ion, or an ammonium ion.

上記一般式(1)において、Cn2n+1で示される炭素原子数1〜22の直鎖状又は分岐状のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−イコシル基、n−ヘニコシル基、n−ドコシル基、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、2−エチルヘキシル基等が挙げられるが、n−ブチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ドデシル基、n−テトラデシル基、n−ヘキサデシル基、n−オクタデシル基、n−ドコシル基、イソプロピル基、イソブチル基、2−エチルヘキシル基が好ましい。 In the general formula (1), examples of the linear or branched alkyl group having 1 to 22 carbon atoms represented by C n H 2n + 1 include a methyl group, an ethyl group, an n-propyl group, an n- Butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n- Tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group, n-henicosyl group, n-docosyl group, isopropyl group, isobutyl group, sec -Butyl group, tert-butyl group, isopentyl group, neopentyl group, tert-pentyl group, 2-ethylhexyl group and the like are mentioned, but n-butyl group, n-hexyl group, n- Ptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-tetradecyl group, n-hexadecyl group, n-octadecyl group, n-docosyl group, isopropyl group, isobutyl group, 2 -An ethylhexyl group is preferred.

上記一般式(1)において、R1で示される炭素原子数1〜22のアルキレン基としては、例えばメチレン基、エチレン基、n−プロピレン基、n−ブチレン基、n−ペンチレン基、n−ヘキシレン基、n−ヘプチレン基、n−オクチレン基、n−ノニレン基、n−
デシレン基、n−ウンデシレン基、n−ドデシレン基、n−トリデシレン基、n−テトラデシレン基、n−ペンタデシレン基、n−ヘキサデシレン基、n−ヘプタデシレン基、n−オクタデシレン基、n−ノナデシレン基、n−イコシレン基、n−ヘンイコシレン基、n−ドコシレン基等が挙げられるが、好ましくは、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基、n−ペンチレン基、n−ヘキシレン基、n−ヘプチレン基、n−オクチレン基、n−ノニレン基、n−デシレン基、n−ウンデシレン基、n−ドデシレン基、n−トリデシレン基、n−ペンタデシレン基が挙げられる。より好ましくは、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基、n−ペンチレン基、n−ヘキシレン基、n−ヘプチレン基、n−ノニレン基、n−デシレン基、n−ウンデシレン基等が挙げられる。
In the general formula (1), examples of the alkylene group having 1 to 22 carbon atoms represented by R 1 include methylene group, ethylene group, n-propylene group, n-butylene group, n-pentylene group, and n-hexylene. Group, n-heptylene group, n-octylene group, n-nonylene group, n-
Decylene group, n-undecylene group, n-dodecylene group, n-tridecylene group, n-tetradecylene group, n-pentadecylene group, n-hexadecylene group, n-heptadecylene group, n-octadecylene group, n-nonadecylene group, n- Examples include icosylene group, n-henicosylene group, n-docosylene group, etc., preferably methylene group, ethylene group, n-propylene group, n-butylene group, n-pentylene group, n-hexylene group, n-heptylene. Group, n-octylene group, n-nonylene group, n-decylene group, n-undecylene group, n-dodecylene group, n-tridecylene group and n-pentadecylene group. More preferably, a methylene group, ethylene group, n-propylene group, n-butylene group, n-pentylene group, n-hexylene group, n-heptylene group, n-nonylene group, n-decylene group, n-undecylene group, etc. Is mentioned.

上記一般式(1)において、R2で示される炭素原子数1〜22のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−イコシル基、n−ヘニコシル基、n−ドコシル基等が挙げられるが、疎水性相互作用を確保するため、好ましくは、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ノナデシル基が挙げられる。 In the general formula (1), examples of the alkyl group having 1 to 22 carbon atoms represented by R 2 include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, and an n-hexyl group. Group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group Group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group, n-henicosyl group, n-docosyl group, etc., in order to ensure hydrophobic interaction, preferably n -Hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-nonadecyl Group, and the like.

上記一般式(1)において、炭素原子数9〜25の炭化水素構造をなすように選択される−R1−CH−CH−R2部分は、例えば、−(CH22−CH−CH−(CH24CH3、−(CH27−CH−CH−CH3、−CH2−CH−CH−(CH27−CH3、−(CH22−CH−CH−(CH26CH3、−(CH23−CH−CH−(CH25CH3、−(CH27−CH−CH−(CH22CH3、−(CH22−CH−CH−(CH28CH3、−(CH23−CH−CH−(CH27CH3、−(CH27−CH−CH−(CH23CH3、−(CH24−CH−CH−(CH27CH3、−(CH27−CH−CH−(CH24CH3、−CH2−CH−CH−(CH211CH3、−(CH25−CH−CH−(CH27CH3、−(CH27−CH−CH−(CH25CH3、−(CH25−CH−CH−(CH28CH3、−(CH26−CH−CH−(CH27CH3、−(CH27−CH−CH−(CH26CH3、−CH2−CH−CH−(CH213CH3、−(CH22−CH−CH−(CH212CH3、−(CH24−CH−CH−(CH210CH3、−(CH25−CH−CH−(CH29CH3、−(CH26−CH−CH−(CH28CH3、−(CH27−CH−CH−(CH27CH3、−(CH29−CH−CH−(CH25CH3、−(CH27−CH−CH−(CH28CH3、−(CH29−CH−CH−(CH27CH3、−(CH210−CH−CH−(CH27CH3、−(CH211−CH−CH−(CH27CH3、−(CH28−CH−CH−(CH211CH3、−(CH212−CH−CH−(CH27CH3、−(CH213−CH−CH−(CH27CH3、−(CH23−CH−CH−(CH218CH3、−(CH215−CH−CH−(CH26CH3、−(CH215−CH−CH−(CH27CH3等が挙げられるが、この中でも、−CH2−CH−CH−(CH27−CH3、−(CH22−CH−CH−(CH26CH3、−(CH23−CH−CH−(CH25CH3、−(CH22−CH−CH−(CH28CH3、−(CH23−CH−CH−(CH27CH3、−(CH24−CH−CH−(CH27CH3、−CH2−CH−CH−(CH211CH3、−(CH25−CH−CH−(CH27CH3、−(CH27−CH−CH−(CH25CH3、−(CH25−CH−CH−(CH28CH3、−(CH26−CH−CH−(CH27CH3、−(CH27−CH−CH−(CH26CH3、−CH2−CH−CH−(CH213CH3、−(CH22−CH−CH−(CH212CH3、−(CH24−CH−CH−(CH210CH3、−(CH25−CH−CH−(CH29CH3、−(CH26−CH−CH−(CH28
CH3、−(CH27−CH−CH−(CH27CH3、−(CH29−CH−CH−(CH25CH3、−(CH27−CH−CH−(CH28CH3、−(CH29−CH−CH−(CH27CH3、−(CH210−CH−CH−(CH27CH3、−(CH211−CH−CH−(CH27CH3が好ましい。
In the above general formula (1), the —R 1 —CH—CH—R 2 moiety selected to form a hydrocarbon structure having 9 to 25 carbon atoms is, for example, — (CH 2 ) 2 —CH—CH. - (CH 2) 4 CH 3 , - (CH 2) 7 -CH-CH-CH 3, -CH 2 -CH-CH- (CH 2) 7 -CH 3, - (CH 2) 2 -CH-CH - (CH 2) 6 CH 3 , - (CH 2) 3 -CH-CH- (CH 2) 5 CH 3, - (CH 2) 7 -CH-CH- (CH 2) 2 CH 3, - (CH 2) 2 -CH-CH- (CH 2) 8 CH 3, - (CH 2) 3 -CH-CH- (CH 2) 7 CH 3, - (CH 2) 7 -CH-CH- (CH 2) 3 CH 3 , — (CH 2 ) 4 —CH—CH— (CH 2 ) 7 CH 3 , — (CH 2 ) 7 —CH—CH— (CH 2 ) 4 CH 3 , —CH 2 —CH—CH— (CH 2) 11 H 3, - (CH 2) 5 -CH-CH- (CH 2) 7 CH 3, - (CH 2) 7 -CH-CH- (CH 2) 5 CH 3, - (CH 2) 5 -CH- CH- (CH 2) 8 CH 3 , - (CH 2) 6 -CH-CH- (CH 2) 7 CH 3, - (CH 2) 7 -CH-CH- (CH 2) 6 CH 3, -CH 2 -CH—CH— (CH 2 ) 13 CH 3 , — (CH 2 ) 2 —CH—CH— (CH 2 ) 12 CH 3 , — (CH 2 ) 4 —CH—CH— (CH 2 ) 10 CH 3 , — (CH 2 ) 5 —CH—CH— (CH 2 ) 9 CH 3 , — (CH 2 ) 6 —CH—CH— (CH 2 ) 8 CH 3 , — (CH 2 ) 7 —CH—CH - (CH 2) 7 CH 3 , - (CH 2) 9 -CH-CH- (CH 2) 5 CH 3, - (CH 2) 7 -CH-CH- (CH 2) 8 CH 3, - (CH 2) 9 -CH-CH- (CH 2) 7 CH 3, - (CH 2) 10 -CH-CH- (CH 2) 7 CH 3, - (CH 2) 11 -CH-CH- (CH 2) 7 CH 3, - (CH 2) 8 -CH- CH- (CH 2) 11 CH 3 , - (CH 2) 12 -CH-CH- (CH 2) 7 CH 3, - (CH 2) 13 -CH-CH- (CH 2) 7 CH 3, - ( CH 2) 3 -CH-CH- ( CH 2) 18 CH 3, - (CH 2) 15 -CH-CH- (CH 2) 6 CH 3, - (CH 2) 15 -CH-CH- (CH 2 ) 7 CH 3 and the like, among which —CH 2 —CH—CH— (CH 2 ) 7 —CH 3 , — (CH 2 ) 2 —CH—CH— (CH 2 ) 6 CH 3 , — (CH 2) 3 -CH-CH- (CH 2) 5 CH 3, - (CH 2) 2 -CH-CH- (CH 2) 8 CH 3, - (CH 2) 3 -CH-CH- (CH 2) 7 CH 3, - ( H 2) 4 -CH-CH- ( CH 2) 7 CH 3, -CH 2 -CH-CH- (CH 2) 11 CH 3, - (CH 2) 5 -CH-CH- (CH 2) 7 CH 3 , — (CH 2 ) 7 —CH—CH— (CH 2 ) 5 CH 3 , — (CH 2 ) 5 —CH—CH— (CH 2 ) 8 CH 3 , — (CH 2 ) 6 —CH—CH - (CH 2) 7 CH 3 , - (CH 2) 7 -CH-CH- (CH 2) 6 CH 3, -CH 2 -CH-CH- (CH 2) 13 CH 3, - (CH 2) 2 -CH-CH- (CH 2) 12 CH 3, - (CH 2) 4 -CH-CH- (CH 2) 10 CH 3, - (CH 2) 5 -CH-CH- (CH 2) 9 CH 3 , — (CH 2 ) 6 —CH—CH— (CH 2 ) 8
CH 3, - (CH 2) 7 -CH-CH- (CH 2) 7 CH 3, - (CH 2) 9 -CH-CH- (CH 2) 5 CH 3, - (CH 2) 7 -CH- CH- (CH 2) 8 CH 3 , - (CH 2) 9 -CH-CH- (CH 2) 7 CH 3, - (CH 2) 10 -CH-CH- (CH 2) 7 CH 3, - ( CH 2) 11 -CH-CH- ( CH 2) 7 CH 3 are preferred.

本発明のジカルボン酸型化合物の原料である、下記一般式(2)

Figure 2011190184
The following general formula (2) which is a raw material of the dicarboxylic acid type compound of the present invention
Figure 2011190184

で示される不飽和脂肪酸アルキルアミドは、炭素原子数10〜26の不飽和脂肪酸と炭素原子数1〜22の脂肪族アミンとのアミド化反応、あるいは炭素原子数10〜26の不飽和脂肪酸の低級アルキルエステルと、炭素原子数1〜22の脂肪族アミンとのエステルアミド交換反応によって得ることができる。
前記炭素原子数10〜26の不飽和脂肪酸としては、例えば、炭素原子数10の4−デセン酸、炭素原子数11の9−ウンデセン酸、炭素原子数12のリンデル酸、トウハク酸、ラウロレイン酸等の3−ドデセン酸、4−ドデセン酸、5−ドデセン酸、炭素原子数13のcis−9−トリデセン酸、炭素原子数14のツズ酸、ミリストレイン酸等の4−テトラデセン酸、5−テトラデセン酸、9−テトラデセン酸、炭素原子数15の6−ペンタデセン酸、cis−9−ペンタデセン酸、炭素原子数16のパルミトレイン酸等のtrans−3−ヘキサデセン酸、cis−7−ヘキサデセン酸、cis−9−ヘキサデセン酸、trans−9−ヘキサデセン酸、炭素原子数17のcis−7−ヘプタデセン酸、cis−8−ヘプタデセン酸、cis−9−ヘプタデセン酸、炭素原子数18のペトロセリン酸、ペトロセエライジン酸、オレイン酸、エライジン酸、パセニン酸等のtrans−3−オクタデセン酸、cis−3−オクタデセン酸、trans−4−オクタデセン酸、cis−6−オクタデセン酸、trans−6−オクタデセン酸、cis−7−オクタデセン酸、trans−7−オクタデセン酸、cis−8−オクタデセン酸、trans−8−オクタデセン酸、cis−9−オクタデセン酸、trans−9−オクタデセン酸、cis−11−オクタデセン酸、trans−11−オクタデセン酸、炭素原子数19のcis−9−ノナデセン酸、炭素原子数20のゴンドイン酸等のcis−11−エイコセン酸、trans−11−エイコセン酸、炭素原子数21の12−ヘニコセン酸、炭素原子数22のエルカ酸、ブラシン酸等のcis−13−ドコセン酸、trans−13−ドコセン酸、炭素原子数23の10−トリコセン酸、14−トリコセン酸、炭素原子数24のセラコレイン酸等のcis−15−テトラコセン酸、trans−15−テトラコセン酸、炭素原子数25のcis−15−ペンタコセン酸、cis−17−ペンタコセン酸、炭素原子数26のcis−17−ヘキサコセン酸等の不飽和脂肪酸が挙げられるが、炭素原子数12以上22以下の不飽和脂肪酸が好ましく、さらに好ましくは、工業的な原料供給の面と原料が安価である点からオレイン酸やエルカ酸が好ましい。
Is an amidation reaction of an unsaturated fatty acid having 10 to 26 carbon atoms and an aliphatic amine having 1 to 22 carbon atoms, or a lower level of an unsaturated fatty acid having 10 to 26 carbon atoms. It can be obtained by an ester amide exchange reaction between an alkyl ester and an aliphatic amine having 1 to 22 carbon atoms.
Examples of the unsaturated fatty acid having 10 to 26 carbon atoms include 4-decenoic acid having 10 carbon atoms, 9-undecenoic acid having 11 carbon atoms, Linderic acid having 12 carbon atoms, succinic acid, lauroleic acid and the like. 3-dodecenoic acid, 4-dodecenoic acid, 5-dodecenoic acid, cis-9-tridecenoic acid having 13 carbon atoms, tzuic acid having 14 carbon atoms, 4-tetradecenoic acid such as myristoleic acid, 5-tetradecene Acid, 9-tetradecenoic acid, 6-pentadecenoic acid having 15 carbon atoms, cis-9-pentadecenoic acid, trans-3-hexadecenoic acid such as palmitoleic acid having 16 carbon atoms, cis-7-hexadecenoic acid, cis-9 Hexadecenoic acid, trans-9-hexadecenoic acid, cis-7-heptadecenoic acid having 17 carbon atoms, cis-8-heptadecenoic acid, c trans-9-octadecenoic acid, cis-3-octadecenoic acid, trans-4-octadecenoic acid such as s-9-heptadecenoic acid, petroselinic acid having 18 carbon atoms, petroseleidic acid, oleic acid, elaidic acid, pasenic acid Cis-6-octadecenoic acid, trans-6-octadecenoic acid, cis-7-octadecenoic acid, trans-7-octadecenoic acid, cis-8-octadecenoic acid, trans-8-octadecenoic acid, cis-9-octadecenoic acid, cis-11-eicosenoic acid such as trans-9-octadecenoic acid, cis-11-octadecenoic acid, trans-11-octadecenoic acid, cis-9-nonadecenoic acid having 19 carbon atoms, and gondonoic acid having 20 carbon atoms, trans -11-eicosenoic acid, 21 carbon atoms 2-Henicosenoic acid, erucic acid having 22 carbon atoms, cis-13-docosenoic acid such as brassic acid, trans-13-docosenoic acid, 10-tricosenoic acid having 23 carbon atoms, 14-tricosenoic acid, 24 carbon atoms Cis-15-tetracosenoic acid such as ceracoleic acid, trans-15-tetracosenoic acid, cis-15-pentacosenoic acid having 25 carbon atoms, cis-17-pentacenoic acid, cis-17-hexacosenic acid having 26 carbon atoms, etc. Unsaturated fatty acids having 12 to 22 carbon atoms are preferred, and oleic acid and erucic acid are preferred from the viewpoint of industrial raw material supply and inexpensive raw materials.

また前記炭素原子数1〜22の脂肪族アミンとしては、例えば、メチルアミン、エチルアミン、n−プロピルアミン、n−ブチルアミン、n−ペンチルアミン、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン、n−ウンデシルアミン、n−ドデシルアミン、n−トリデシルアミン、n−テトラデシルアミン、n−ペンタデシルアミン、n−ヘキサデシルアミン、n−ヘプタデシルアミン、n−オクタデシルアミン、n−ノナデシルアミン、n−イコシルアミン、n−ヘニコシルアミン、n−ドコシルアミン、イソプロピルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、イソペンチルアミン、ネオペンチルアミン、tert−ペンチルアミン、2−エチルヘキシルアミン等の飽和脂肪族第1級アミン、ジメチル
アミン、N−メチルエチルアミン、N−メチルプロピルアミン、N−メチルブチルアミン、N−メチルペンチルアミン、N−メチルヘキシルアミン、N−メチルヘプチルアミン、N−メチルオクチルアミン、N−メチルノニルアミン、N−メチルデシルアミン、N−メチルウンデシルアミン、N−メチルドデシルアミン、N−メチルトリデシルアミン、N−メチルテトラデシルアミン、N−メチルペンタデシルアミン、N−メチルヘキサデシルアミン、N−メチルヘプタデシルアミン、N−メチルオクタデシルアミン、N−メチルノナデシルアミン、N−メチルイコシルアミン、N−メチルヘニコシルアミン、N−メチルドコシルアミン、N−メチルイソプロピルアミン、N−メチルイソブチルアミン、N−メチル−sec−ブチルアミン、N−メチル−tert−ブチルアミン、N−メチルイソペンチルアミン、N−メチル−ネオペンチルアミン、N−メチル−tert−ペンチルアミン、N−メチル−2−エチルヘキシルアミン等の飽和脂肪族第2級アミンが挙げられるが、n−ブチルアミン、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン、n−ドデシルアミン、n−テトラデシルアミン、n−ヘキサデシルアミン、n−オクタデシルアミン、n−ドコシルアミン、イソプロピルアミン、イソブチルアミン、2−エチルヘキシルアミン、N−メチルブチルアミン、N−メチルヘキシルアミン、N−メチルヘプチルアミン、N−メチルオクチルアミン、N−メチルノニルアミン、N−メチルデシルアミン、N−メチルドデシルアミン、N−メチルテトラデシルアミン、N−メチルヘキサデシルアミン、N−メチルオクタデシルアミン、N−メチルドコシルアミン、N−メチルイソプロピルアミン、N−メチルイソブチルアミン、N−メチル−2−エチルヘキシルアミンが好ましい。
Examples of the aliphatic amine having 1 to 22 carbon atoms include methylamine, ethylamine, n-propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, and n-octylamine. N-nonylamine, n-decylamine, n-undecylamine, n-dodecylamine, n-tridecylamine, n-tetradecylamine, n-pentadecylamine, n-hexadecylamine, n-heptadecylamine, n-octadecylamine, n-nonadecylamine, n-icosylamine, n-hecosylamine, n-docosylamine, isopropylamine, isobutylamine, sec-butylamine, tert-butylamine, isopentylamine, neopentylamine, tert-pentylamine, 2- Echi Saturated aliphatic primary amines such as hexylamine, dimethylamine, N-methylethylamine, N-methylpropylamine, N-methylbutylamine, N-methylpentylamine, N-methylhexylamine, N-methylheptylamine, N -Methyloctylamine, N-methylnonylamine, N-methyldecylamine, N-methylundecylamine, N-methyldodecylamine, N-methyltridecylamine, N-methyltetradecylamine, N-methylpentadecylamine N-methylhexadecylamine, N-methylheptadecylamine, N-methyloctadecylamine, N-methylnonadecylamine, N-methylicosylamine, N-methylhenicosylamine, N-methyldocosylamine, N -Methylisopropylamine, N-methyl Sobutylamine, N-methyl-sec-butylamine, N-methyl-tert-butylamine, N-methylisopentylamine, N-methyl-neopentylamine, N-methyl-tert-pentylamine, N-methyl-2-ethylhexyl Saturated aliphatic secondary amines such as amines can be mentioned, but n-butylamine, n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, n-dodecylamine, n-tetra Decylamine, n-hexadecylamine, n-octadecylamine, n-docosylamine, isopropylamine, isobutylamine, 2-ethylhexylamine, N-methylbutylamine, N-methylhexylamine, N-methylheptylamine, N-methyloctyl Amine, N-methyl Nonylamine, N-methyldecylamine, N-methyldodecylamine, N-methyltetradecylamine, N-methylhexadecylamine, N-methyloctadecylamine, N-methyldocosylamine, N-methylisopropylamine, N-methyl Isobutylamine and N-methyl-2-ethylhexylamine are preferred.

上述の通り、一般式(1)におけるXは、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、又はアンモニウムイオンを示す。
上記アルカリ金属イオンとしては、例えばリチウムイオン、ナトリウムイオン、カリウムイオン等が挙げられる。
上記アルカリ土類金属イオンとしては、例えばカルシウムイオン、ストロンチウムイオン、バリウムイオン等が挙げられる。
上記アンモニウムイオンとしては、例えば、脂肪族アミン、環状脂肪族アミン、芳香族アミン、アルカノールアミン由来のアンモニウムイオン等が挙げられる。
上記脂肪族アミンとしては、アンモニア、ヒドロキシアミン、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン等が挙げられる。
上記環状脂肪族アミンとしては、ピロリジン、ピペリジン、ピペラジン等が挙げられる。
上記芳香族アミンとしては、ピリジン、ピロール等が挙げられる。
上記アルカノールアミンとしては、エタノールアミン、ジエタノールアミン、トリエタノールアミン等が挙げられる。
As described above, X in the general formula (1) represents a hydrogen ion, an alkali metal ion, an alkaline earth metal ion, or an ammonium ion.
Examples of the alkali metal ions include lithium ions, sodium ions, and potassium ions.
Examples of the alkaline earth metal ions include calcium ions, strontium ions, barium ions, and the like.
Examples of the ammonium ions include aliphatic amines, cycloaliphatic amines, aromatic amines, ammonium ions derived from alkanolamines, and the like.
Examples of the aliphatic amine include ammonia, hydroxyamine, monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, and triethylamine.
Examples of the cyclic aliphatic amine include pyrrolidine, piperidine, piperazine and the like.
Examples of the aromatic amine include pyridine and pyrrole.
Examples of the alkanolamine include ethanolamine, diethanolamine, and triethanolamine.

次に本発明のジカルボン酸型化合物の合成方法を述べる。一般には、不飽和脂肪酸と脂肪族アミンとの反応物である不飽和脂肪酸アルキルアミドを過酸化水素とギ酸等の有機酸とから得られる有機過酸化物と反応させて二重結合を酸化して、炭酸ナトリウムや炭酸カリウムなどの塩基を作用させ、水酸基を導入することにより、ジヒドロキシ脂肪酸アルキルアミドを合成する。あるいは、ジヒドロキシ脂肪酸アルキルアミドの別の合成方法としては、最初に不飽和脂肪酸に過酸化水素とギ酸等の有機酸とから得られる有機過酸化物を反応させて二重結合を酸化して、水酸化ナトリウムや炭酸カリウムなどの塩基を作用させ、水酸基を導入することにより得られる下記一般式(3)

Figure 2011190184
Next, a method for synthesizing the dicarboxylic acid type compound of the present invention will be described. In general, an unsaturated fatty acid alkylamide, which is a reaction product of an unsaturated fatty acid and an aliphatic amine, is reacted with an organic peroxide obtained from hydrogen peroxide and an organic acid such as formic acid to oxidize double bonds. Then, a base such as sodium carbonate or potassium carbonate is allowed to act to introduce a hydroxyl group to synthesize a dihydroxy fatty acid alkylamide. Alternatively, another method for synthesizing dihydroxy fatty acid alkylamides is to first react an unsaturated fatty acid with an organic peroxide obtained from hydrogen peroxide and an organic acid such as formic acid to oxidize double bonds, The following general formula (3) obtained by introducing a hydroxyl group by acting a base such as sodium oxide or potassium carbonate
Figure 2011190184

で示されるジヒドロキシ脂肪酸と、脂肪族アミンをジシクロヘキシルカルボンジイミド(DCC)、ジイソプロピルカルボジイミド(DIPC)、N−エチル−N’−3−ジメチルアミノプロピルカルボジイミドおよびその塩酸塩、ベンゾトリアゾール−1−イル−トリス(ジメチルアミノ)ホスホニウムヘキサフルオロリン化物塩、ジフェニルホスホリルアジド等の縮合剤、あるいはこれらの縮合剤とともに、N−ヒドロキシスクシンイミド、1−ヒドロキシベンゾトリアゾール(HOBt)や3−ヒドロキシ−4−オキソ−3,4−ジヒドロ−1,2,3−ベンゾトリアジン等の添加剤により、縮合してアミド結合を形成して得ることも出来る。
次にこのジヒドロキシ脂肪酸アルキルアミドを無水コハク酸と反応させることにより、本発明のジカルボン酸型化合物(Xが水素イオン)を得ることができる。更にXをアルカリ金属イオン、アルカリ土類金属イオン、又はアンモニウムイオン(例えば、脂肪族アミン、環状脂肪族アミン、芳香族アミン、アルカノールアミン等に由来するアンモニウムイオン)とする場合には、例えば、前記ジカルボン酸型化合物(Xが水素イオン)を水やエチルアルコールなどの溶媒中で、対応するアルカリ金属やアルカリ土類金属などの水酸化物やアミン(例えば、脂肪族アミン、環状脂肪族アミン、芳香族アミン、アルカノールアミン等のアミン)などと中和反応させることにより得ることができる。
A dihydroxy fatty acid represented by the formula: dicyclohexylcarboxylic diimide (DCC), diisopropylcarbodiimide (DIPC), N-ethyl-N′-3-dimethylaminopropylcarbodiimide and its hydrochloride, benzotriazol-1-yl-tris (Dimethylamino) phosphonium hexafluorophosphide salt, diphenylphosphoryl azide and other condensing agents, or these condensing agents, N-hydroxysuccinimide, 1-hydroxybenzotriazole (HOBt) and 3-hydroxy-4-oxo-3, It can also be obtained by condensation with an additive such as 4-dihydro-1,2,3-benzotriazine to form an amide bond.
Next, by reacting the dihydroxy fatty acid alkylamide with succinic anhydride, the dicarboxylic acid type compound (X is hydrogen ion) of the present invention can be obtained. Furthermore, when X is an alkali metal ion, an alkaline earth metal ion, or an ammonium ion (for example, an ammonium ion derived from an aliphatic amine, a cyclic aliphatic amine, an aromatic amine, an alkanolamine, etc.), for example, A dicarboxylic acid type compound (X is a hydrogen ion) in a solvent such as water or ethyl alcohol, and a corresponding hydroxide or amine such as an alkali metal or alkaline earth metal (for example, aliphatic amine, cycloaliphatic amine, aromatic Group amines, amines such as alkanolamines) and the like.

ジカルボン酸型化合物(Xが水素イオン)の具体的な合成方法の1例として、cis−9−オクタデセン酸アルキルアミド(オレイン酸アルキルアミド)を出発物質として用いた場合の合成方法を説明する。

Figure 2011190184
上記合成フローに示すように、まずcis−9−オクタデセン酸アルキルアミド(オレイン酸アルキルアミド)を、過酸化水素及びギ酸を用いて酸化し、その後、メチルアルコール、エチルアルコール等のアルコール中で炭酸カリウムを用いて処理することにより、9,10−ジヒドロキシオクタデカン酸アルキルアミドを合成する(第1工程)。次に、トルエン、ジクロロメタン、ヘキサン、ヘプタン、テトラヒドロフラン等の有機溶媒中で9,10−ジヒドロキシオクタデカン酸アルキルアミドと、該アミドの2〜4倍mol当量の無水コハク酸と、該アミドの1.0〜3.0倍mol当量のトリエチルアミン(TEA)とを、20〜110℃、好ましくは60〜100℃の温度で、8〜24時間攪拌しながら反応させ、次にこの反応液を塩酸水溶液で洗浄し、その後水洗した後、冷却し、析出した結晶をろ別する、又は、溶媒を減圧留去させる、又は、スプレードライヤー装置を用
いて溶媒を乾燥させることで、目的物を得ることができる。また必要に応じてトルエン、酢酸エチル等の溶媒を用いた再結晶或いは、シリカゲルを固定相とし、クロロホルム・アセトン・メタノール混合溶媒を移動相とするカラムクロマトグラフィー等によって精製することにより、上記合成フローで示されるジカルボン酸化合物を得ることができる(第2工程)。 As an example of a specific synthesis method of a dicarboxylic acid type compound (X is hydrogen ion), a synthesis method in the case of using cis-9-octadecenoic acid alkylamide (oleic acid alkylamide) as a starting material will be described.
Figure 2011190184
As shown in the above synthesis flow, cis-9-octadecenoic acid alkylamide (oleic acid alkylamide) is first oxidized using hydrogen peroxide and formic acid, and then potassium carbonate in alcohol such as methyl alcohol and ethyl alcohol. 9,10-dihydroxyoctadecanoic acid alkylamide is synthesized by treating with (first step). Next, 9,10-dihydroxyoctadecanoic acid alkylamide in an organic solvent such as toluene, dichloromethane, hexane, heptane, tetrahydrofuran and the like, succinic anhydride of 2 to 4 mol equivalents of the amide, and 1.0 of the amide are added. -3.0 times mol equivalent of triethylamine (TEA) is allowed to react with stirring at a temperature of 20 to 110 ° C, preferably 60 to 100 ° C for 8 to 24 hours, and then the reaction solution is washed with an aqueous hydrochloric acid solution. Then, after washing with water, it is cooled and the precipitated crystals are filtered off, or the solvent is distilled off under reduced pressure, or the solvent is dried using a spray dryer device, whereby the desired product can be obtained. If necessary, recrystallization using a solvent such as toluene or ethyl acetate, or purification by column chromatography using silica gel as a stationary phase and chloroform / acetone / methanol mixed solvent as a mobile phase, the above synthesis flow. Can be obtained (second step).

以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited only to these Examples.

<測定機器>
[FT−IR]
FTIR−8900(島津製作所製)
[NMR]
AV400M(ブルカーバイオスピン社製)
[元素分析]
SeriesII CHNS/O Analyzer 2400(パーキンエルマー社製)
<Measurement equipment>
[FT-IR]
FTIR-8900 (manufactured by Shimadzu Corporation)
[NMR]
AV400M (Bruker Biospin)
[Elemental analysis]
Series II CHNS / O Analyzer 2400 (Perkin Elmer)

実施例1:式(4)で表される化合物の製造

Figure 2011190184
Example 1: Production of a compound represented by the formula (4)
Figure 2011190184

1)ジヒドロキシ化反応
cis−9−オクタデセン酸ヘキシルアミド(50g、0.14mol)と88%ギ酸(143.0g、2.73mol)を反応容器に入れ攪拌を行い、40℃にて、35%過酸化水素(26.6g、0.27mol)を滴下した。滴下終了後、40℃で24時間攪拌を行った。ギ酸層を除去し、その後水洗を2回行った後、炭酸カリウム(18.9g、0.14mol)、エチルアルコール123mLを加え、25℃で24時間攪拌を行い、ろ過して過剰の炭酸カリウムを除いた後、エチルアルコールを除去し、メチルエチルケトンを用いて再結晶化を行い、9,10−ジヒドロキシオクタデカン酸ヘキシルアミド(28.1g、0.07mol)を得た。
2)ジカルボン酸化反応
9,10−ジヒドロキシオクタデカン酸ヘキシルアミド(20g、0.049mol)、トリエチルアミン(12.3g、0.12mol)、及び無水コハク酸(12.1g、0.12mol)にトルエン200mLを加え、窒素雰囲気下、80℃で12時間攪拌した。TLCにて目的物の生成を確認後、50℃まで温度を下げ、2Mの塩酸73mLを加えて攪拌し、洗浄した後、146mLの水で3回洗浄した。その後、この反応液に無水硫酸ナトリウムを加え、脱水した後、ろ過し、ろ液を減圧留去後、得られた固体を酢酸エチルを用いて再結晶を行い、白色固体20.5g(収率70.4%)を得た。
得られた白色固体を、FT−IR(KBr法)、1H−NMR、13C−NMR及び元素分析で測定した結果を以下に示す。この結果から、得られた白色固体の構造(表題の式(4)で表される化合物)と純度を確認した。
1) Dihydroxylation reaction cis-9-octadecenoic acid hexylamide (50 g, 0.14 mol) and 88% formic acid (143.0 g, 2.73 mol) were placed in a reaction vessel and stirred, and at 40 ° C., 35% excess. Hydrogen oxide (26.6 g, 0.27 mol) was added dropwise. After completion of dropping, the mixture was stirred at 40 ° C. for 24 hours. After removing the formic acid layer and washing twice with water, potassium carbonate (18.9 g, 0.14 mol) and 123 mL of ethyl alcohol were added, stirred at 25 ° C. for 24 hours, and filtered to remove excess potassium carbonate. After removal, ethyl alcohol was removed, and recrystallization was performed using methyl ethyl ketone to obtain 9,10-dihydroxyoctadecanoic acid hexylamide (28.1 g, 0.07 mol).
2) Dicarboxylic oxidation reaction 9,10-dihydroxyoctadecanoic acid hexylamide (20 g, 0.049 mol), triethylamine (12.3 g, 0.12 mol), and succinic anhydride (12.1 g, 0.12 mol) were added with 200 mL of toluene. In addition, the mixture was stirred at 80 ° C. for 12 hours in a nitrogen atmosphere. After confirming the formation of the desired product by TLC, the temperature was lowered to 50 ° C., 73 mL of 2M hydrochloric acid was added, stirred and washed, and then washed 3 times with 146 mL of water. Thereafter, anhydrous sodium sulfate was added to the reaction solution, followed by dehydration and filtration. After the filtrate was distilled off under reduced pressure, the resulting solid was recrystallized using ethyl acetate to obtain 20.5 g of a white solid (yield 70.4%).
The results of measuring the obtained white solid by FT-IR (KBr method), 1 H-NMR, 13 C-NMR and elemental analysis are shown below. From this result, the structure (compound represented by the title formula (4)) and purity of the obtained white solid were confirmed.

FT−IR:1726.0cm-1(C=O(エステル),st),1714.5cm-1(C=O(カルボン酸),st),1647.0cm-1(C=O(アミド)st)
1H−NMR(400MHz,CDCl3):δ0.86−0.89(m,6H),1.24−1.62(m,34H),2.21(t,2H),2.59−2.72(m,8H),3.21−3.26(m,2H),4.99−5.06(m,2H),5.70(t、1H)
13C−NMR(100MHz,CDCl3):δ14.8,14.9,22.6,22.7,24.6,25.1,25.6,28.4−29.5,30.7,30.8,31.8,36.5,39.7,74.2,74.4,171.8,174.5,176.5,176.6
元素分析(C325719):
実測値(%) C:64.14%,H:9.87%,N:2.41
計算値(%) C:64.08%,H:9.58%,N:2.34
FT-IR: 1726.0 cm −1 (C═O (ester), st), 1714.5 cm −1 (C═O (carboxylic acid), st), 1647.0 cm −1 (C═O (amide) st )
1 H-NMR (400 MHz, CDCl 3 ): δ 0.86-0.89 (m, 6H), 1.24-1.62 (m, 34H), 2.21 (t, 2H), 2.59- 2.72 (m, 8H), 3.21-3.26 (m, 2H), 4.99-5.06 (m, 2H), 5.70 (t, 1H)
13 C-NMR (100 MHz, CDCl 3 ): δ 14.8, 14.9, 22.6, 22.7, 24.6, 25.1, 25.6, 28.4-29.5, 30.7 30.8, 31.8, 36.5, 39.7, 74.2, 74.4, 171.8, 174.5, 176.5, 176.6
Elemental analysis (C 32 H 57 N 1 O 9 ):
Actual value (%) C: 64.14%, H: 9.87%, N: 2.41
Calculated value (%) C: 64.08%, H: 9.58%, N: 2.34

実施例2:式(5)で表される化合物の製造

Figure 2011190184
Example 2: Production of compound represented by formula (5)
Figure 2011190184

1)ジヒドロキシ化反応
cis−9−オクタデセン酸オクチルアミド(50g、0.12mol)と88%ギ酸(128.2g、2.5mol)を反応容器に入れ攪拌を行い、40℃にて、35%過酸化水素(23.8g、0.25mol)を滴下した。滴下終了後、40℃で24時間攪拌を行った。ギ酸層を除去し、その後水洗を2回行った後、炭酸カリウム(17.0g、0.12mol)、エチルアルコール110mLを加え、25℃で24時間攪拌を行い、ろ過して過剰の炭酸カリウムを除いた後、エチルアルコールを除去し、メチルエチルケトンを用いて再結晶化を行い、9,10−ジヒドロキシオクタデカン酸オクチルアミド(24g、0.056mol)を得た。
2)ジカルボン酸化反応
9,10−ジヒドロキシオクタデカン酸オクチルアミド(20g、0.046mol)、トリエチルアミン(11.6g、0.12mol)、及び無水コハク酸(11.5g、0.0.12mol)にトルエン200mLを加え、窒素雰囲気下、80℃で12時間攪拌した。TLCにて目的物の生成を確認後、50℃まで温度を下げ、2Mの塩酸69mLを加えて攪拌し、洗浄した後、138mLの水で3回洗浄した。その後、この反応液に無水硫酸ナトリウムを加え、脱水した後、ろ過し、ろ液を減圧留去後、得られた固体を酢酸エチルを用いて再結晶化を行い、白色固体23.2g(収率80.1%)を得た。
得られた白色固体を、FT−IR(KBr法)、1H−NMR、13C−NMR及び元素分析で測定した結果を以下に示す。この結果から、得られた白色固体の構造(表題の式(5)で表される化合物)と純度を確認した。
1) Dihydroxylation reaction cis-9-octadecenoic acid octylamide (50 g, 0.12 mol) and 88% formic acid (128.2 g, 2.5 mol) were placed in a reaction vessel and stirred, and at 40 ° C., 35% excess. Hydrogen oxide (23.8 g, 0.25 mol) was added dropwise. After completion of dropping, the mixture was stirred at 40 ° C. for 24 hours. After removing the formic acid layer and washing twice with water, potassium carbonate (17.0 g, 0.12 mol) and 110 mL of ethyl alcohol were added, stirred at 25 ° C. for 24 hours, and filtered to remove excess potassium carbonate. After removal, ethyl alcohol was removed and recrystallization was performed using methyl ethyl ketone to obtain 9,10-dihydroxyoctadecanoic acid octylamide (24 g, 0.056 mol).
2) Dicarboxylic oxidation reaction 9,10-dihydroxyoctadecanoic acid octylamide (20 g, 0.046 mol), triethylamine (11.6 g, 0.12 mol), and succinic anhydride (11.5 g, 0.0.12 mol) in toluene 200 mL was added and stirred at 80 ° C. for 12 hours under a nitrogen atmosphere. After confirming the formation of the desired product by TLC, the temperature was lowered to 50 ° C., 69 mL of 2M hydrochloric acid was added and stirred, washed, and then washed 3 times with 138 mL of water. Thereafter, anhydrous sodium sulfate was added to the reaction solution, followed by dehydration and filtration. After the filtrate was distilled off under reduced pressure, the obtained solid was recrystallized using ethyl acetate to obtain 23.2 g of a white solid (yield). 80.1%).
The results of measuring the obtained white solid by FT-IR (KBr method), 1 H-NMR, 13 C-NMR and elemental analysis are shown below. From this result, the structure (compound represented by the title formula (5)) and purity of the obtained white solid were confirmed.

FT−IR:1726.2cm-1(C=O(エステル),st),1714.6cm-1(C=O(カルボン酸),st),1647.1cm-1(C=O(アミド)st)
1H−NMR(400MHz,CDCl3):δ0.86−0.89(m,6H),1.24−1.62(m,38H),2.21(t,2H),2.59−2.72(m,8H),3.
21−3.26(m,2H),4.99−5.06(m,2H),5.70(t、1H)
13C−NMR(100MHz,CDCl3):δ14.8,14.9,22.6,22.7,24.6,25.1,25.6,28.4−29.5,30.7,30.8,31.8,36.5,39.7,74.2,74.4,171.8,174.5,176.5,176.6
元素分析(C346119):
実測値(%) C:65.21%,H:10.10%,N:2.23
計算値(%) C:65.04%,H:9.79%,N:2.23
FT-IR: 1726.2 cm −1 (C═O (ester), st), 1714.6 cm −1 (C═O (carboxylic acid), st), 1647.1 cm −1 (C═O (amide) st )
1 H-NMR (400 MHz, CDCl 3 ): δ0.86-0.89 (m, 6H), 1.24-1.62 (m, 38H), 2.21 (t, 2H), 2.59- 2.72 (m, 8H), 3.
21-3.26 (m, 2H), 4.99-5.06 (m, 2H), 5.70 (t, 1H)
13 C-NMR (100 MHz, CDCl 3 ): δ 14.8, 14.9, 22.6, 22.7, 24.6, 25.1, 25.6, 28.4-29.5, 30.7 30.8, 31.8, 36.5, 39.7, 74.2, 74.4, 171.8, 174.5, 176.5, 176.6
Elemental analysis (C 34 H 61 N 1 O 9 ):
Actual value (%) C: 65.21%, H: 10.10%, N: 2.23
Calculated value (%) C: 65.04%, H: 9.79%, N: 2.23

実施例3:式(6)で表される化合物の製造

Figure 2011190184
Example 3: Production of compound represented by formula (6)
Figure 2011190184

1)ジヒドロキシ化反応
cis−9−オクタデセン酸ドデシルアミド(40g、0.082mol)と88%ギ酸(86.1g、1.65mol)を反応容器に入れ攪拌を行い、40℃にて、35%過酸化水素(16g、0.16mol)を滴下した。滴下終了後、40℃で24時間攪拌を行った。ギ酸層を除去し、その後水洗を2回行った後、炭酸カリウム(11.4g、0.082mol)、エチルアルコール74mLを加え、25℃で24時間攪拌を行い、ろ過して過剰の炭酸カリウムを除いた後、エチルアルコールを除去し、メチルエチルケトンを用いて再結晶化を行い、9,10−ジヒドロキシオクタデカン酸ドデシルアミド(26.4g、0.055mol)を得た。
2)ジカルボン酸化反応
9,10−ジヒドロキシオクタデカン酸ドデシルアミド(20g、0.039mol)、トリエチルアミン(9.9g、0.098mol)、及び無水コハク酸(9.8g、0.098mol)にトルエン200mLを加え、窒素雰囲気下、80℃で12時間攪拌した。TLCにて目的物の生成を確認後、50℃まで温度を下げ、2Mの塩酸59mLを加えて攪拌し、洗浄した後、118mLの水で3回洗浄した。その後、この反応液に無水硫酸ナトリウムを加え、脱水した後、ろ過し、ろ液を減圧留去後、得られた固体を酢酸エチルを用いて再結晶化を行い、白色固体22.3g(収率83%)を得た。
得られた白色固体を、FT−IR(KBr法)、1H−NMR、13C−NMR及び元素分析で測定した結果を以下に示す。この結果から、得られた白色固体の構造(表題の式(6)で表される化合物)と純度を確認した。
1) Dihydroxylation reaction cis-9-octadecenoic acid dodecylamide (40 g, 0.082 mol) and 88% formic acid (86.1 g, 1.65 mol) were placed in a reaction vessel and stirred, and at 40 ° C., 35% excess. Hydrogen oxide (16 g, 0.16 mol) was added dropwise. After completion of dropping, the mixture was stirred at 40 ° C. for 24 hours. After removing the formic acid layer and washing twice with water, potassium carbonate (11.4 g, 0.082 mol) and 74 mL of ethyl alcohol were added, and the mixture was stirred at 25 ° C. for 24 hours and filtered to remove excess potassium carbonate. After removal, ethyl alcohol was removed and recrystallization was performed using methyl ethyl ketone to obtain 9,10-dihydroxyoctadecanoic acid dodecylamide (26.4 g, 0.055 mol).
2) Dicarboxylic oxidation reaction 9,10-dihydroxyoctadecanoic acid dodecylamide (20 g, 0.039 mol), triethylamine (9.9 g, 0.098 mol), and succinic anhydride (9.8 g, 0.098 mol) were added with 200 mL of toluene. In addition, the mixture was stirred at 80 ° C. for 12 hours in a nitrogen atmosphere. After confirming the formation of the desired product by TLC, the temperature was lowered to 50 ° C., 59 mL of 2M hydrochloric acid was added and stirred, washed, and then washed 3 times with 118 mL of water. Thereafter, anhydrous sodium sulfate was added to the reaction solution, followed by dehydration and filtration. After the filtrate was distilled off under reduced pressure, the obtained solid was recrystallized using ethyl acetate to obtain 22.3 g of a white solid (yield). 83%).
The results of measuring the obtained white solid by FT-IR (KBr method), 1 H-NMR, 13 C-NMR and elemental analysis are shown below. From this result, the structure (compound represented by the title formula (6)) and purity of the obtained white solid were confirmed.

FT−IR:1726.2cm-1(C=O(エステル),st),1712.2cm-1(C=O(カルボン酸),st),1646.6cm-1(C=O(アミド)st)
1H−NMR(400MHz,CDCl3):δ0.86−0.89(m,6H),1.24−1.62(m,46H),2.21(t,2H),2.59−2.72(m,8H),3.21−3.26(m,2H),4.99−5.06(m,2H),5.70(t、1H)
13C−NMR(100MHz,CDCl3):δ14.8,14.9,22.6,22.7,24.6,25.1,25.6,28.4−29.5,30.7,30.8,31.8,36.5,39.7,74.2,74.4,171.8,174.6,176.4,176.5
元素分析(C386919):
実測値(%) C:66.64%,H:10.41%,N:2.03
計算値(%) C:66.73%,H:10.17%,N:2.05
FT-IR: 1726.2 cm −1 (C═O (ester), st), 1712.2 cm −1 (C═O (carboxylic acid), st), 1646.6 cm −1 (C═O (amide) st )
1 H-NMR (400 MHz, CDCl 3 ): δ 0.86-0.89 (m, 6H), 1.24-1.62 (m, 46H), 2.21 (t, 2H), 2.59- 2.72 (m, 8H), 3.21-3.26 (m, 2H), 4.99-5.06 (m, 2H), 5.70 (t, 1H)
13 C-NMR (100 MHz, CDCl 3 ): δ 14.8, 14.9, 22.6, 22.7, 24.6, 25.1, 25.6, 28.4-29.5, 30.7 30.8, 31.8, 36.5, 39.7, 74.2, 74.4, 171.8, 174.6, 176.4, 176.5
Elemental analysis (C 38 H 69 N 1 O 9 ):
Actual value (%) C: 66.64%, H: 10.41%, N: 2.03
Calculated value (%) C: 66.73%, H: 10.17%, N: 2.05

実施例4:式(7)で表される化合物の製造

Figure 2011190184
Example 4: Production of compound represented by formula (7)
Figure 2011190184

1)不飽和脂肪酸ジヒドロキシ化反応
cis−9−オクタデセン酸(50g、0.1mol)と88%ギ酸(170.3g、3.25mol)を反応容器に入れ攪拌を行い、40℃にて、35%過酸化水素(33.2g、0.34mol)を滴下した。滴下終了後、40℃で24時間攪拌を行った。その後、水洗を行った後、3Mの水酸化ナトリウム水溶液250mLを入れ、80℃で4時間攪拌を行い、室温に冷却後、2MのHCl水溶液450mLを入れて室温で2時間攪拌を行った。ろ過後、メチルエチルケトンを用いて再結晶を行い、9,10−ジヒドロキシオクタデカン酸(43g、0.14mol)を得た。
2)アミド化反応
9,10−ジヒドロキシオクタデカン酸(40g、0.126モル)とDIPC(16.7g、0.13モル)、HOBt(20.1g、0.13モル)、テトラヒドロフラン400mLをいれ、60℃で1時間反応後、N−メチルドデシルアミン(26.5g、0.13モル)をテトラヒドロフラン100ミリリットルで溶解させた溶液を滴下し、還流下で3時間反応を行った。反応液を室温まで冷却し、ろ過した結晶を、エタノールで再結晶を行い、白色結晶(45.1g、0.091モル)を得た。
3)ジカルボン酸化反応
9,10−ジヒドロキシオクタデカン酸N−メチルドデシルアミド(40g、0.079mol)、トリエチルアミン(20g、0.20mol)、及び無水コハク酸(19.8g、0.20mol)にトルエン400mLを加え、窒素雰囲気下、80℃で12時間攪拌した。TLCにて目的物の生成を確認後、50℃まで温度を下げ、2Mの塩酸119mLを加えて攪拌し、洗浄した後、238mLの水で3回洗浄した。その後、この反応液に無水硫酸ナトリウムを加え、脱水した後、ろ過し、ろ液を減圧留去後、得られた固体をクロロホルム−アセトン−メタノールを溶離液に用いて、シリカゲルカラムクロマトグラフィー精製を行い、白色固体39.4g(収率71.3%)を得た。
得られた白色固体を、FT−IR(KBr法)、1H−NMR、13C−NMR及び元素分析で測定した結果を以下に示す。この結果から、得られた白色固体の構造(表題の式(7)で表される化合物)と純度を確認した。
1) Unsaturated fatty acid dihydroxylation reaction cis-9-octadecenoic acid (50 g, 0.1 mol) and 88% formic acid (170.3 g, 3.25 mol) were placed in a reaction vessel and stirred, and at 40 ° C., 35% Hydrogen peroxide (33.2 g, 0.34 mol) was added dropwise. After completion of dropping, the mixture was stirred at 40 ° C. for 24 hours. Then, after washing with water, 250 mL of 3M aqueous sodium hydroxide solution was added and stirred at 80 ° C. for 4 hours. After cooling to room temperature, 450 mL of 2M HCl aqueous solution was added and stirred at room temperature for 2 hours. After filtration, recrystallization was performed using methyl ethyl ketone to obtain 9,10-dihydroxyoctadecanoic acid (43 g, 0.14 mol).
2) Amidation reaction 9,10-dihydroxyoctadecanoic acid (40 g, 0.126 mol), DIPC (16.7 g, 0.13 mol), HOBt (20.1 g, 0.13 mol) and tetrahydrofuran 400 mL were added, After reacting at 60 ° C. for 1 hour, a solution in which N-methyldodecylamine (26.5 g, 0.13 mol) was dissolved in 100 ml of tetrahydrofuran was dropped, and the reaction was performed under reflux for 3 hours. The reaction solution was cooled to room temperature, and the filtered crystals were recrystallized with ethanol to obtain white crystals (45.1 g, 0.091 mol).
3) Dicarboxylic acid oxidation reaction 9,10-dihydroxyoctadecanoic acid N-methyldodecylamide (40 g, 0.079 mol), triethylamine (20 g, 0.20 mol), and succinic anhydride (19.8 g, 0.20 mol) in 400 mL of toluene And stirred at 80 ° C. for 12 hours under a nitrogen atmosphere. After confirming the formation of the desired product by TLC, the temperature was lowered to 50 ° C., 119 mL of 2M hydrochloric acid was added, stirred, washed, and washed 3 times with 238 mL of water. Thereafter, anhydrous sodium sulfate was added to the reaction solution, dehydrated, filtered, the filtrate was distilled off under reduced pressure, and the resulting solid was purified by silica gel column chromatography using chloroform-acetone-methanol as an eluent. And 39.4 g (yield 71.3%) of a white solid was obtained.
The results of measuring the obtained white solid by FT-IR (KBr method), 1 H-NMR, 13 C-NMR and elemental analysis are shown below. From this result, the structure (compound represented by the title formula (7)) and purity of the obtained white solid were confirmed.

FT−IR:1726.2cm-1(C=O(エステル),st),1712.2cm-1(C=O(カルボン酸),st),1641.2cm-1(C=O(アミド)st)
1H−NMR(400MHz,CDCl3):δ0.86−0.89(m,6H),1.24−1.62(m,46H),2.21(t,2H),2.59−2.72(m,8H),2.92(s、3H),3.21−3.26(m,2H),4.99−5.06(m,2H)
13C−NMR(100MHz,CDCl3):δ14.8,14.9,22.6,22.7,24.6,25.1,25.6,28.4−29.5,30.7,30.8,31
.8,32.9,36.5,39.7,74.2,74.4,171.8,174.6,176.4,176.5
元素分析(C397119):
実測値(%) C:67.15%,H:10.28%,N:2.01
計算値(%) C:67.11%,H:10.25%,N:2.01
FT-IR: 1726.2 cm −1 (C═O (ester), st), 1712.2 cm −1 (C═O (carboxylic acid), st), 1641.2 cm −1 (C═O (amide) st )
1 H-NMR (400 MHz, CDCl 3 ): δ 0.86-0.89 (m, 6H), 1.24-1.62 (m, 46H), 2.21 (t, 2H), 2.59- 2.72 (m, 8H), 2.92 (s, 3H), 3.21-3.26 (m, 2H), 4.99-5.06 (m, 2H)
13 C-NMR (100 MHz, CDCl 3 ): δ 14.8, 14.9, 22.6, 22.7, 24.6, 25.1, 25.6, 28.4-29.5, 30.7 , 30.8, 31
. 8, 32.9, 36.5, 39.7, 74.2, 74.4, 171.8, 174.6, 176.4, 176.5
Elemental analysis (C 39 H 71 N 1 O 9):
Actual value (%) C: 67.15%, H: 10.28%, N: 2.01
Calculated value (%) C: 67.11%, H: 10.25%, N: 2.01

実施例5:式(8)で表される化合物の製造

Figure 2011190184
Example 5: Production of compound represented by formula (8)
Figure 2011190184

1)ジヒドロキシ化反応
cis−13−ドコセン酸ヘキシルアミド(50g、0.119mol)と88%ギ酸(123.9g、2.4mol)を反応容器に入れ攪拌を行い、40℃にて、35%過酸化水素(23.0g、0.24mol)を滴下した。滴下終了後、40℃で24時間攪拌を行った。ギ酸層を除去し、その後水洗を2回行った後、炭酸カリウム(16.4g、0.119mol)、エチルアルコール107mLを加え、25℃で24時間攪拌を行い、ろ過して過剰の炭酸カリウムを除いた後、エチルアルコールを除去し、メチルエチルケトンを用いて再結晶化を行い、13,14−ジヒドロキシドコサン酸ヘキシルアミド(40.2g、0.088mol)を得た。
2)ジカルボン酸化反応
13,14−ジヒドロキシドコサン酸ヘキシルアミド(40g、0.088mol)、トリエチルアミン(22.2g、0.22mol)、及び無水コハク酸(22.0g、0.22mol)にトルエン400mLを加え、窒素雰囲気下、80℃で12時間攪拌した。TLCにて目的物の生成を確認後、50℃まで温度を下げ、2Mの塩酸132mLを加えて攪拌し、洗浄した後、263mLの水で3回洗浄した。その後、この反応液に無水硫酸ナトリウムを加え、脱水した後、ろ過し、ろ液を冷却し、吸引ろ過後、得られた固体を酢酸エチルを用いて再結晶化を行い、白色固体47.6g(収率82.7%)を得た。
得られた白色固体を、FT−IR(KBr法)、1H−NMR、13C−NMR及び元素分析で測定した結果を以下に示す。この結果から、得られた白色固体の構造(表題の式(8)で表される化合物)と純度を確認した。
1) Dihydroxylation reaction Cis-13-docosenoic acid hexylamide (50 g, 0.119 mol) and 88% formic acid (123.9 g, 2.4 mol) were placed in a reaction vessel and stirred. Hydrogen oxide (23.0 g, 0.24 mol) was added dropwise. After completion of dropping, the mixture was stirred at 40 ° C. for 24 hours. After removing the formic acid layer and washing twice with water, potassium carbonate (16.4 g, 0.119 mol) and 107 mL of ethyl alcohol were added, and the mixture was stirred at 25 ° C. for 24 hours and filtered to remove excess potassium carbonate. After removal, ethyl alcohol was removed, and recrystallization was performed using methyl ethyl ketone to obtain 13,14-dihydroxydocosanoic acid hexylamide (40.2 g, 0.088 mol).
2) Dicarboxylic oxidation reaction 13,14-dihydroxydocosanoic acid hexylamide (40 g, 0.088 mol), triethylamine (22.2 g, 0.22 mol), and succinic anhydride (22.0 g, 0.22 mol) in 400 mL of toluene And stirred at 80 ° C. for 12 hours under a nitrogen atmosphere. After confirming the formation of the desired product by TLC, the temperature was lowered to 50 ° C., 132 mL of 2M hydrochloric acid was added, stirred and washed, and then washed 3 times with 263 mL of water. Thereafter, anhydrous sodium sulfate was added to the reaction solution, dehydrated and filtered, and the filtrate was cooled and filtered with suction. The resulting solid was recrystallized using ethyl acetate to obtain 47.6 g of a white solid. (Yield 82.7%) was obtained.
The results of measuring the obtained white solid by FT-IR (KBr method), 1 H-NMR, 13 C-NMR and elemental analysis are shown below. From this result, the structure (compound represented by the title formula (8)) and purity of the obtained white solid were confirmed.

FT−IR:1727.1cm-1(C=O(エステル),st),1713.4cm-1(C=O(カルボン酸),st),1645.6cm-1(C=O(アミド)st)
1H−NMR(400MHz,CDCl3):δ0.86−0.91(m,6H),1.24−1.62(m,42H),2.21(t,2H),2.59−2.72(m,8H),3.21−3.26(m,2H),4.99−5.06(m,2H),5.70(t、1H)
13C−NMR(100MHz,CDCl3):δ14.8,14.9,22.6,22.7,24.6,25.1,25.6,28.4−29.5,30.7,30.8,31.8,36.5,39.7,74.2,74.4,171.8,174.6,176.5,176.6
元素分析(C366519):
実測値(%) C:65.88%,H:10.11%,N:2.13
計算値(%) C:65.92%,H:9.99%,N:2.14
FT-IR: 1727.1 cm −1 (C═O (ester), st), 1713.4 cm −1 (C═O (carboxylic acid), st), 1645.6 cm −1 (C═O (amide) st )
1 H-NMR (400 MHz, CDCl 3 ): δ 0.86-0.91 (m, 6H), 1.24-1.62 (m, 42H), 2.21 (t, 2H), 2.59- 2.72 (m, 8H), 3.21-3.26 (m, 2H), 4.99-5.06 (m, 2H), 5.70 (t, 1H)
13 C-NMR (100 MHz, CDCl 3 ): δ 14.8, 14.9, 22.6, 22.7, 24.6, 25.1, 25.6, 28.4-29.5, 30.7 30.8, 31.8, 36.5, 39.7, 74.2, 74.4, 171.8, 174.6, 176.5, 176.6
Elemental analysis (C 36 H 65 N 1 O 9 ):
Actual value (%) C: 65.88%, H: 10.11%, N: 2.13
Calculated value (%) C: 65.92%, H: 9.99%, N: 2.14

実施例6:式(9)で表される化合物の製造

Figure 2011190184
Example 6: Production of compound represented by formula (9)
Figure 2011190184

1)ジヒドロキシ化反応
cis−4−ドデセン酸オクタデシルアミド(20g、0.045mol)と88%ギ酸(46.5g、0.89mol)を反応容器に入れ攪拌を行い、40℃にて、35%過酸化水素(8.6g、0.089mol)を滴下した。滴下終了後、40℃で24時間攪拌を行った。ギ酸層を除去し、その後水洗を2回行った後、炭酸カリウム(6.2g、0.045mol)、エチルアルコール40mLを加え、25℃で24時間攪拌を行い、ろ過して過剰の炭酸カリウムを除いた後、エチルアルコールを除去し、メチルエチルケトンを用いて再結晶化を行い、4,5−ジヒドロキシドデカン酸オクタデシルアミド(15.3g、0.032mol)を得た。
2)ジカルボン酸化反応
4,5−ジヒドロキシドデカン酸オクタデシルアミド(15g、0.031mol)、トリエチルアミン(7.8g、0.078mol)、及び無水コハク酸(7.8g、0.078mol)にトルエン150mLを加え、窒素雰囲気下、80℃で18時間攪拌した。TLCにて目的物の生成を確認後、50℃まで温度を下げ、2Mの塩酸47mLを加えて攪拌し、洗浄した後、93mLの水で3回洗浄した。その後、この反応液に無水硫酸ナトリウムを加え、脱水した後、ろ過し、ろ液を減圧留去後、得られた固体を酢酸エチルを用いて再結晶化を行い、白色固体14.9g(収率70.3%)を得た。
得られた白色固体を、FT−IR(KBr法)、1H−NMR、13C−NMR及び元素分析で測定した結果を以下に示す。この結果から、得られた白色固体の構造(表題の式(9)で表される化合物)と純度を確認した。
1) Dihydroxylation reaction cis-4-dodecenoic acid octadecylamide (20 g, 0.045 mol) and 88% formic acid (46.5 g, 0.89 mol) were placed in a reaction vessel and stirred. Hydrogen oxide (8.6 g, 0.089 mol) was added dropwise. After completion of dropping, the mixture was stirred at 40 ° C. for 24 hours. After removing the formic acid layer and washing twice with water, potassium carbonate (6.2 g, 0.045 mol) and 40 mL of ethyl alcohol were added, and the mixture was stirred at 25 ° C. for 24 hours and filtered to remove excess potassium carbonate. After removal, ethyl alcohol was removed, and recrystallization was performed using methyl ethyl ketone to obtain 4,5-dihydroxydodecanoic acid octadecylamide (15.3 g, 0.032 mol).
2) Dicarboxylic oxidation reaction 150 mL of toluene was added to 4,5-dihydroxydodecanoic acid octadecylamide (15 g, 0.031 mol), triethylamine (7.8 g, 0.078 mol), and succinic anhydride (7.8 g, 0.078 mol). In addition, the mixture was stirred at 80 ° C. for 18 hours under a nitrogen atmosphere. After confirming the formation of the desired product by TLC, the temperature was lowered to 50 ° C., 47 mL of 2M hydrochloric acid was added, stirred, washed, and then washed with 93 mL of water three times. Thereafter, anhydrous sodium sulfate was added to the reaction solution, followed by dehydration and filtration. After the filtrate was distilled off under reduced pressure, the obtained solid was recrystallized using ethyl acetate to obtain 14.9 g of a white solid (yield). Rate 70.3%).
The results of measuring the obtained white solid by FT-IR (KBr method), 1 H-NMR, 13 C-NMR and elemental analysis are shown below. From this result, the structure (compound represented by the title formula (9)) and purity of the obtained white solid were confirmed.

FT−IR:1724.5cm-1(C=O(エステル),st),1710.4cm-1(C=O(カルボン酸),st),1649.2cm-1(C=O(アミド)st)
1H−NMR(400MHz,CDCl3):δ0.86−0.89(m,6H),1.24−1.64(m,44H),1.81−1.84(m,2H),2.22(t,2H),2.60−2.73(m,8H),3.20−3.25(m,2H),5.00−5.08(m,2H),5.68(t、1H)
13C−NMR(100MHz,CDCl3):δ14.8,14.9,22.6,22.7,24.6,25.1,25.6,28.4−29.5,30.7,30.8,31.8,36.5,39.7,73.2,73.6,171.8,174.6,176.4,176.5
元素分析(C386919):
実測値(%) C:66.85%,H:10.35%,N:2.07
計算値(%) C:66.73%,H:10.17%,N:2.05
FT-IR: 1724.5 cm −1 (C═O (ester), st), 1710.4 cm −1 (C═O (carboxylic acid), st), 1649.2 cm −1 (C═O (amide) st )
1 H-NMR (400 MHz, CDCl 3 ): δ 0.86 to 0.89 (m, 6H), 1.24 to 1.64 (m, 44H), 1.81 to 1.84 (m, 2H), 2.22 (t, 2H), 2.60-2.73 (m, 8H), 3.20-3.25 (m, 2H), 5.00-5.08 (m, 2H), 5. 68 (t, 1H)
13 C-NMR (100 MHz, CDCl 3 ): δ 14.8, 14.9, 22.6, 22.7, 24.6, 25.1, 25.6, 28.4-29.5, 30.7 30.8, 31.8, 36.5, 39.7, 73.2, 73.6, 171.8, 174.6, 176.4, 176.5
Elemental analysis (C 38 H 69 N 1 O 9 ):
Actual value (%) C: 66.85%, H: 10.35%, N: 2.07
Calculated value (%) C: 66.73%, H: 10.17%, N: 2.05

実施例7
実施例1〜6で得られたジカルボン酸型化合物を水溶媒中で水酸化ナトリウムと反応させたナトリウム塩化合物(Xがナトリウム)について、表面張力計CBVP−Z(協和界面科学社製)を用いて、白金プレートを用いたWilhelmy法により、25℃、pH
10(水酸化ナトリウム水溶液で調整)で、各界面活性剤濃度において表面張力の測定を行い、表面張力―濃度プロットを作成し、臨界ミセル濃度(cmc)及び臨界ミセル濃度における表面張力(γcmc)を求めた。その結果を表1に示す。なお、比較例1として1鎖1親水基型界面活性剤であるドデカン酸ナトリウム(ラウリン酸ナトリウム)を用いた。
Example 7
For the sodium salt compound (X is sodium) obtained by reacting the dicarboxylic acid type compounds obtained in Examples 1 to 6 with sodium hydroxide in an aqueous solvent, a surface tension meter CBVP-Z (manufactured by Kyowa Interface Science Co., Ltd.) was used. By the Wilhelmy method using a platinum plate,
10 (adjusted with aqueous sodium hydroxide), measure surface tension at each surfactant concentration, create surface tension-concentration plot, critical micelle concentration (cmc) and surface tension at critical micelle concentration (γ cmc ) Asked. The results are shown in Table 1. As Comparative Example 1, sodium dodecanoate (sodium laurate), which is a 1-chain 1-hydrophilic surfactant, was used.

Figure 2011190184
Figure 2011190184

2鎖2親水基型界面活性剤は、1鎖1親水基型界面活性剤に比べて、臨界ミセル濃度(cmc)及び臨界ミセル濃度における表面張力(γcmc)が低いことが一般的に知られている。
そこで、本発明のジカルボン酸型化合物についても、従来の2鎖2親水基型界面活性剤同様、優れた界面活性能を有するか検討した。
表1の結果より、実施例1〜6で得られたジカルボン酸化合物は、比較例1に比べて、約1/3〜1/2000程度の低い臨界ミセル濃度(cmc)を示した。また、臨界ミセル濃度における表面張力(γcmc)についても、比較例1に比べて低く、高い表面張力低下能を示した。
以上の結果から、本発明のジカルボン酸型化合物を洗浄剤や乳化剤として使用する際に、従来の1鎖1親水基型界面活性剤に比べて、少量の添加量で済むことがわかる。
It is generally known that a two-chain two-hydrophilic surfactant has a lower critical micelle concentration (cmc) and a surface tension (γ cmc ) at the critical micelle concentration than a one-chain one hydrophilic group-type surfactant. ing.
Therefore, it was examined whether the dicarboxylic acid type compound of the present invention has an excellent surface activity as well as the conventional two-chain two-hydrophilic type surfactant.
From the results in Table 1, the dicarboxylic acid compounds obtained in Examples 1 to 6 showed a lower critical micelle concentration (cmc) of about 1/3 to 1/2000 than that of Comparative Example 1. Also, the surface tension (γ cmc ) at the critical micelle concentration was lower than that of Comparative Example 1 and showed a high surface tension reducing ability.
From the above results, it can be understood that when the dicarboxylic acid type compound of the present invention is used as a cleaning agent or an emulsifier, a small amount of addition is required as compared with the conventional one-chain one-hydrophilic surfactant.

実施例8 乳化力試験
実施例1〜6で得られたジカルボン酸型化合物をエタノール溶媒中でトリエタノールアミンと反応させたトリエタノールアミン塩化合物と、比較例1、2として1鎖1親水基型界面活性剤であるドデカン酸トリエタノールアミン塩(ラウリン酸トリエタノールアミン塩)を用いて、0.1wt%水溶液に調製した各トリエタノールアミン塩化合物水溶液50mL(比較例2のみ1wt%水溶液)をトルエン25mLとともに、40℃にてホモジナイザーにて10000rpmで3分攪拌を行い、その後、50mLのメスシリンダーに移して室温で静置し、分離した水分量を目視で直後と6時間後に計測し、乳化力を評価した。分離した水分量が10%未満であれば○、10%以上〜20%未満であれば△、20%以上であれば×とした。
Example 8 Emulsifying power test A triethanolamine salt compound obtained by reacting the dicarboxylic acid type compound obtained in Examples 1 to 6 with triethanolamine in an ethanol solvent, and 1 chain 1 hydrophilic group type as Comparative Examples 1 and 2 50 ml of each triethanolamine salt compound aqueous solution prepared in 0.1 wt% aqueous solution using dodecanoic acid triethanolamine salt (lauric acid triethanolamine salt), which is a surfactant, was dissolved in toluene. Stir at 10000 rpm with a homogenizer at 40 ° C. for 3 minutes together with 25 mL, then transfer to a 50 mL graduated cylinder and let stand at room temperature. Evaluated. If the separated water content was less than 10%, it was evaluated as ◯ if it was 10% or more and less than 20%, and x if it was 20% or more.

Figure 2011190184
Figure 2011190184

表2の結果より、実施例1〜6で得られたジカルボン酸化合物のトリエタノールアミン塩は、比較例1に比べて、高い乳化力を示し、界面活性剤濃度の高い比較例2と比べても同等であった。
以上の結果から、本発明のジカルボン酸型化合物を乳化剤として使用する際に、従来の1鎖1親水基型界面活性剤に比べて、少量の添加量で乳化力が高いことがわかる。
From the results of Table 2, the triethanolamine salt of the dicarboxylic acid compound obtained in Examples 1 to 6 showed higher emulsifying power than Comparative Example 1, and compared to Comparative Example 2 having a high surfactant concentration. Was also equivalent.
From the above results, it can be seen that when the dicarboxylic acid type compound of the present invention is used as an emulsifier, the emulsifying power is high with a small amount of addition compared to the conventional one-chain one-hydrophilic surfactant.

実施例9
実施例1〜6で得られたジカルボン酸化合物の生分解性試験を、圧力センサー式BOD測定器(アクタック社製)を用いて、OECDテストガイドライン301C修正MITI試験に基づき、供試物質濃度:100mg/L、活性汚泥濃度:40mg/L、試験温度:25℃、試験期間:28日間の条件で行った。その結果を表3に示す。実施例1〜6で得られたジカルボン酸型は、いずれも60%以上の生分解性を示し、良好な生分解性を示した。
Example 9
The biodegradability test of the dicarboxylic acid compounds obtained in Examples 1 to 6 was performed based on the OECD test guideline 301C modified MITI test using a pressure sensor type BOD measuring device (manufactured by Actac Co.): 100 mg test substance concentration / L, activated sludge concentration: 40 mg / L, test temperature: 25 ° C., test period: 28 days. The results are shown in Table 3. The dicarboxylic acid types obtained in Examples 1 to 6 all showed biodegradability of 60% or more, and showed good biodegradability.

Figure 2011190184
Figure 2011190184

実施例10 加水分解安定性試験
実施例1〜6で得られたジカルボン酸型化合物を重水溶媒中で重水酸化ナトリウム水溶液と反応させたナトリウム塩化合物(Xがナトリウム)を用いて、pH10(重水酸化ナトリウム水溶液で調整)に調製した0.1wt%水溶液の1H−NMRを、直後、1ヵ月後、3ヵ月後、6ヶ月後(室温で保存)に測定した。3.2ppm付近のアミド結合近傍のNHの隣のメチレンのプロトンの積分比と、5.0ppm付近のエステル結合近傍のメ
チンのプロトンの積分比から構造が維持された場合を構造維持率100%として、各化合物の構造維持率を見積もった。その結果を表4に示す。実施例1〜6で得られたジカルボン酸型は、いずれも90%以上の構造維持率を示し、アルカリ領域での良好な加水分解安定性を示した。

Figure 2011190184
Example 10 Hydrolysis stability test Using a sodium salt compound (X is sodium) obtained by reacting the dicarboxylic acid type compound obtained in Examples 1 to 6 with an aqueous sodium bicarbonate solution in a heavy water solvent, pH 10 (deuterated hydroxide) was used. 1 H-NMR of a 0.1 wt% aqueous solution prepared in a sodium aqueous solution was measured immediately, 1 month later, 3 months later, and 6 months later (stored at room temperature). When the structure is maintained from the integral ratio of methylene protons next to NH near the amide bond near 3.2 ppm and the integral ratio of methine protons near the ester bond near 5.0 ppm, the structure maintenance ratio is 100%. The structure maintenance rate of each compound was estimated. The results are shown in Table 4. All of the dicarboxylic acid types obtained in Examples 1 to 6 showed a structure retention rate of 90% or more, and showed good hydrolysis stability in the alkaline region.
Figure 2011190184

本発明のジカルボン酸型化合物は、工業的に入手し易い天然由来の脂肪酸などを出発原料としており、容易に合成することができるので、産業上の利用可能性は非常に大きい。
本発明の界面活性剤は頭髪用洗浄剤、皮膚洗浄剤、台所用洗剤、機械金属用洗浄剤等の種々の用途に利用可能であるが、少量で乳化力等が良好であり、優れた界面活性能を有し、かつ加水分解安定性や生分解性にも優れていることから、シャンプー、リンス、ボディーシャンプー等の香粧品用基剤として好適である。また本発明の界面活性剤は製紙工業分野における紙力の増強剤、紙質改善剤、サイズ剤、各種充填材、顔料、染料などの歩留まり向上剤として、接着工業分野における接着促進剤、繊維工業分野における各種繊維の染色性改善剤、防縮剤、防燃加工処理剤、帯電防止処理剤などに、さらに化粧品組成物、洗浄剤組成物、潤滑油添加剤、防錆剤、防曇剤等に用いることができる。また本発明の界面活性剤を香粧品に用いる場合、必要に応じて従来から香粧品に用いられている他の添加剤を本発明の界面活性剤の特性を損なわない範囲において適宜添加することができる。併用可能な添加剤としては、例えば抗菌剤、増粘剤、香料、コンディショニング剤、金属イオン封鎖剤、パール化剤、起泡剤、滑り性向上剤、平滑剤、整髪剤、保湿剤、分散安定剤、ふけとり剤、殺菌剤、清涼刺激緩和剤、防腐剤、外観調整剤等が挙げられる。
The dicarboxylic acid type compound of the present invention uses a naturally derived fatty acid which is easily available industrially as a starting material, and can be easily synthesized. Therefore, the industrial applicability is very large.
The surfactant of the present invention can be used for various purposes such as a hair cleaner, a skin cleaner, a kitchen detergent, a machine metal cleaner, etc. Since it has active ability and is excellent in hydrolysis stability and biodegradability, it is suitable as a base for cosmetics such as shampoos, rinses and body shampoos. Further, the surfactant of the present invention is a paper strength enhancer, paper quality improver, sizing agent, various fillers, pigments, dyes, etc., yield improvers in the paper industry, adhesion promoter in the adhesive industry, textile industry. Used for dyeing property improvers, antishrink agents, flameproofing treatment agents, antistatic treatment agents, etc., and cosmetic compositions, cleaning compositions, lubricant additives, rust inhibitors, antifogging agents, etc. be able to. In addition, when the surfactant of the present invention is used in cosmetics, other additives conventionally used in cosmetics may be added as needed as long as the properties of the surfactant of the present invention are not impaired. it can. Additives that can be used in combination include, for example, antibacterial agents, thickeners, fragrances, conditioning agents, sequestering agents, pearlizing agents, foaming agents, slipperiness improvers, smoothing agents, hair styling agents, moisturizing agents, and dispersion stability. Agents, anti-dandruff agents, bactericides, refreshing stimulants, preservatives, appearance modifiers, and the like.

Claims (3)

下記一般式(1)で示されるジカルボン酸型化合物。
Figure 2011190184
但し、上記一般式(1)中、
n2n+1は直鎖状の又は分岐状のアルキル基を示し、
nは1〜22の整数を示し、
1は炭素原子数1〜22のアルキレン基を示し、
2は炭素原子数1〜22のアルキル基を示し、
3は、水素原子または、メチル基を示し、
Xは、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、又はアンモニウムイオンを示すが、但し、前記R1及びR2は−R1−CH−CH−R2部分が炭素原子数9〜25の炭化水素構造をなすように選択される。
A dicarboxylic acid type compound represented by the following general formula (1).
Figure 2011190184
However, in the general formula (1),
C n H 2n + 1 represents a linear or branched alkyl group,
n represents an integer of 1 to 22,
R 1 represents an alkylene group having 1 to 22 carbon atoms,
R 2 represents an alkyl group having 1 to 22 carbon atoms,
R 3 represents a hydrogen atom or a methyl group,
X represents a hydrogen ion, an alkali metal ion, an alkaline earth metal ion, or an ammonium ion, provided that R 1 and R 2 have a —R 1 —CH—CH—R 2 moiety of 9 to 25 carbon atoms. The hydrocarbon structure is selected.
請求項1に記載のジカルボン酸型化合物を含む、界面活性剤。   A surfactant comprising the dicarboxylic acid type compound according to claim 1. 下記一般式(2´)
Figure 2011190184
(式中、
n2n+1は直鎖状の又は分岐状のアルキル基を示し、
nは1〜22の整数を示し、
1は炭素原子数1〜22のアルキレン基を示し、
2は炭素原子数1〜22のアルキル基を示し、
3は、水素原子または、メチル基を示すが、但し、前記R1及びR2は−R1−CH−CH−R2部分が炭素原子数9〜25の炭化水素構造をなすように選択される。)で表される化合物と無水コハク酸を反応させて下記一般式(1´)
Figure 2011190184
(式中、Cn2n+1、n、R1、R2及びR3は、一般式(2´)における定義と同様の意味を表わす。)で表される化合物を製造する段階と、続いて、場合により、一般式(1´)で表される化合物をアルカリ金属若しくはアルカリ土類金属の水酸化物又はアミンと反応させて下記一般式(1)
Figure 2011190184
(式中、Cn2n+1、n、R1、R2及びR3は、一般式(2´)における定義と同様の意味を表わし、Xは、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、又はアンモニウムイオンを示す。)で表される化合物を製造する段階とを含む、ジカルボン酸型化合物の製造方法。
The following general formula (2 ')
Figure 2011190184
(Where
C n H 2n + 1 represents a linear or branched alkyl group,
n represents an integer of 1 to 22,
R 1 represents an alkylene group having 1 to 22 carbon atoms,
R 2 represents an alkyl group having 1 to 22 carbon atoms,
R 3 represents a hydrogen atom or a methyl group, provided that R 1 and R 2 are selected so that the —R 1 —CH—CH—R 2 moiety forms a hydrocarbon structure having 9 to 25 carbon atoms. Is done. ) And a succinic anhydride are reacted to give the following general formula (1 ′)
Figure 2011190184
(Wherein, C n H 2n + 1 , n, R 1 , R 2 and R 3 have the same meaning as defined in formula ( 2 ′)), Subsequently, in some cases, the compound represented by the general formula (1 ′) is reacted with an alkali metal or alkaline earth metal hydroxide or amine to give the following general formula (1):
Figure 2011190184
(In the formula, C n H 2n + 1 , n, R 1 , R 2 and R 3 represent the same meaning as defined in the general formula ( 2 ′ ), and X represents a hydrogen ion, an alkali metal ion, an alkaline earth, A method for producing a dicarboxylic acid type compound, comprising the step of:
JP2010055154A 2010-03-11 2010-03-11 New dicarboxylic acid type compounds Active JP5565677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055154A JP5565677B2 (en) 2010-03-11 2010-03-11 New dicarboxylic acid type compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055154A JP5565677B2 (en) 2010-03-11 2010-03-11 New dicarboxylic acid type compounds

Publications (2)

Publication Number Publication Date
JP2011190184A true JP2011190184A (en) 2011-09-29
JP5565677B2 JP5565677B2 (en) 2014-08-06

Family

ID=44795485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055154A Active JP5565677B2 (en) 2010-03-11 2010-03-11 New dicarboxylic acid type compounds

Country Status (1)

Country Link
JP (1) JP5565677B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037355A (en) * 2012-08-10 2014-02-27 Miyoshi Oil & Fat Co Ltd Novel fluorocarbon chain-containing compound, production method and use of the same
WO2014193652A3 (en) * 2013-05-30 2015-02-26 The Brigham & Women's Hospital Inc. Novel n-3 immunoresolvents: structures and actions
WO2018062450A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Hydrocarbon-containing carboxylic acid, hydrocarbon-containing sulfonic acid, hydrocarbon-containing sulfuric acid ester or salt thereof, and surfactant
GB2578519A (en) * 2018-09-19 2020-05-13 Innospec Ltd Compositions and methods and uses relating thereto
JP2020075247A (en) * 2018-11-06 2020-05-21 ミヨシ油脂株式会社 Dispersant and dispersing liquid using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198864A (en) * 1995-07-28 1996-08-06 Nippon Iyakuhin Kaihatsu Kenkyusho:Kk Spiculisporic acid derivative and its production
JPH107635A (en) * 1996-06-21 1998-01-13 Lion Corp N-alkylamide ether carboxylic acid or its salt, production thereof and detergent composition containing the acid or its salt
JP2001181250A (en) * 1999-12-24 2001-07-03 Mitsui Chemicals Inc Malic acid derivative and method for producing the same
JP2002167313A (en) * 2000-07-24 2002-06-11 Asahi Kasei Corp Surface active agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198864A (en) * 1995-07-28 1996-08-06 Nippon Iyakuhin Kaihatsu Kenkyusho:Kk Spiculisporic acid derivative and its production
JPH107635A (en) * 1996-06-21 1998-01-13 Lion Corp N-alkylamide ether carboxylic acid or its salt, production thereof and detergent composition containing the acid or its salt
JP2001181250A (en) * 1999-12-24 2001-07-03 Mitsui Chemicals Inc Malic acid derivative and method for producing the same
JP2002167313A (en) * 2000-07-24 2002-06-11 Asahi Kasei Corp Surface active agent

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037355A (en) * 2012-08-10 2014-02-27 Miyoshi Oil & Fat Co Ltd Novel fluorocarbon chain-containing compound, production method and use of the same
WO2014193652A3 (en) * 2013-05-30 2015-02-26 The Brigham & Women's Hospital Inc. Novel n-3 immunoresolvents: structures and actions
US9902681B2 (en) 2013-05-30 2018-02-27 The Brigham And Women's Hospital, Inc. N-3 immunoresolvents: structures and actions
AU2014272044B2 (en) * 2013-05-30 2019-11-07 The Brigham & Women's Hospital Inc. Novel n-3 immunoresolvents: structures and actions
US11667598B2 (en) 2013-05-30 2023-06-06 The Brigham & Women's Hospital Inc. N-3 immunoresolvents: structures and actions
WO2018062450A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Hydrocarbon-containing carboxylic acid, hydrocarbon-containing sulfonic acid, hydrocarbon-containing sulfuric acid ester or salt thereof, and surfactant
JPWO2018062450A1 (en) * 2016-09-30 2019-04-11 ダイキン工業株式会社 Hydrocarbon-containing carboxylic acid, hydrocarbon-containing sulfonic acid, hydrocarbon-containing sulfuric acid ester or salts thereof, surfactant
CN109790102A (en) * 2016-09-30 2019-05-21 大金工业株式会社 Containing alkylene dicarboxylate, containing hydrocarbon sulfonate, hydrocarbonaceous sulfuric ester or their salt, surfactant
CN109790102B (en) * 2016-09-30 2024-04-19 大金工业株式会社 Hydrocarbon-containing carboxylic acid, hydrocarbon-containing sulfonic acid, hydrocarbon-containing sulfate or salts thereof, surfactant
US11198670B2 (en) * 2016-09-30 2021-12-14 Daikin Industries, Ltd. Hydrocarbon-containing carboxylic acid, hydrocarbon-containing sulfonic acid, hydrocarbon-containing sulfuric acid ester or salt thereof, and surfactant
JP2022009160A (en) * 2016-09-30 2022-01-14 ダイキン工業株式会社 Carboxylic acid containing hydrocarbon, sulfonic acid containing hydrocarbon, sulfuric ester containing hydrocarbon or salts thereof, surfactant
JP7248926B2 (en) 2016-09-30 2023-03-30 ダイキン工業株式会社 Hydrocarbon-containing carboxylic acid, hydrocarbon-containing sulfonic acid, hydrocarbon-containing sulfate ester or salt thereof, surfactant
US11566197B2 (en) 2018-09-19 2023-01-31 Innospec Limited Quaternary ammonium compound and fuel composition
GB2578519B (en) * 2018-09-19 2022-07-13 Innospec Ltd Compositions and methods and uses relating thereto
GB2578519A (en) * 2018-09-19 2020-05-13 Innospec Ltd Compositions and methods and uses relating thereto
JP2020075247A (en) * 2018-11-06 2020-05-21 ミヨシ油脂株式会社 Dispersant and dispersing liquid using the same
JP7418181B2 (en) 2018-11-06 2024-01-19 ミヨシ油脂株式会社 Dispersants and dispersions using them

Also Published As

Publication number Publication date
JP5565677B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP5565677B2 (en) New dicarboxylic acid type compounds
CN101098851B (en) Beta-alkoxypropionamides, solvents, detergents and liquid pharmaceutical compositions and process for preparing beta-alkoxypropionamides
JP6000846B2 (en) NOVEL GEMINI TYPE COMPOUND, PROCESS FOR PRODUCING THE SAME, AND CATIONIC SURFACTANT AND DISPERSANT USING SAME
JPH08103646A (en) Anionic surface active agent and detergent composition containing same
WO2000039241A1 (en) Cationic gemini and related multiple hydrophilic/hydrophobic functional compounds and their use as surfactants
JP3773950B2 (en) AMINE DERIVATIVE AND CLEANING COMPOSITION CONTAINING THE SAME
JP5720880B2 (en) New dicarboxylic acid type compounds
US11739052B2 (en) Process for the preparation of organosulfate salts of amino acids esters
JPS61291571A (en) Production of 1,2-substituted imidazoline compound
JP5582930B2 (en) Antibacterial cationic surfactant
JPH1087576A (en) Polyester polyquaternary compounds, compositions containing the same, and use thereof
JP5912508B2 (en) Softener composition
US5239095A (en) Method for the preparation of flowable, aqueous dispersions of betaines
JP5479882B2 (en) Nonionic surfactant
JP3974709B2 (en) Method for producing malic acid monoamide composition
RU2809166C2 (en) Method of obtaining organosulphate salts of amino acids esters
JP3563505B2 (en) Novel quaternary ammonium salt, method for producing the same, and hair cosmetic containing the same
KR101574341B1 (en) Gemini surfactants and preparing method thereof and fabric softner composition containing thereof
PL207345B1 (en) New N-[2-(alkoxy carbonyl) ethyl]-N-alkyl-1-amine-1-desoxy-D-glucitoles and method for their manufacture
CN102134203B (en) Beta-alkoxypropionamides, solvents, detergents and liquid pharmaceutical compositions and process for preparing beta-alkoxypropionamides
JP4271562B2 (en) Triester cation composition and process for producing the same
JP5601789B2 (en) Carbohydrate compounds
JP4342645B2 (en) Method for producing imidazoline compound
JPH07267909A (en) New glycine derivative, its production, its intermediate and cleaning agent composition containing glycine derivative
JP4073179B2 (en) Process for producing N-carboxyalkyl-amino acids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140605

R150 Certificate of patent or registration of utility model

Ref document number: 5565677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250