JP2011189278A - Apparatus and method for wastewater treatment - Google Patents

Apparatus and method for wastewater treatment Download PDF

Info

Publication number
JP2011189278A
JP2011189278A JP2010057837A JP2010057837A JP2011189278A JP 2011189278 A JP2011189278 A JP 2011189278A JP 2010057837 A JP2010057837 A JP 2010057837A JP 2010057837 A JP2010057837 A JP 2010057837A JP 2011189278 A JP2011189278 A JP 2011189278A
Authority
JP
Japan
Prior art keywords
concentration
sulfate
treated
wastewater
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010057837A
Other languages
Japanese (ja)
Inventor
Yasuhiko Nagamori
泰彦 永森
Hiroyuki Tokimoto
寛幸 時本
Nobuyuki Ashikaga
伸行 足利
Takumi Obara
卓巳 小原
Takeo Yamamori
武夫 山森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010057837A priority Critical patent/JP2011189278A/en
Publication of JP2011189278A publication Critical patent/JP2011189278A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and method for wastewater treatment capable of decomposing an organic material at a high speed by preventing the inhibition of a sulfate-reducing bacterium by a sulfide in an anaerobic treatment environment and favorably growing the sulfate-reducing bacterium. <P>SOLUTION: The apparatus for wastewater treatment includes: an organic material concentration measuring device 3 which measures the concentration of the organic material of discharged water to be treated; an infusion pump 5b which adds a sulfate 5a to the discharged water to be treated so that the concentration of a sulfate ion is higher than one-third of the concentration of the organic material; a reaction vessel 2 which decomposes the organic material holding the anaerobic bacteria and taking in the discharged water to be treated; a sulfide concentration measuring device 6 which measures the concentration of the sulfide of the treated water subjected to the decomposing process of the organic material thereof in the reaction vessel 2; and a blower 8b which blows a nitrogen gas from a nitrogen gas cylinder 8a to the reaction vessel 2 when the measured sulfide concentration is higher than a predetermined threshold, and when it is lower than the threshold, stops blowing the nitrogen gas. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、産業排水、下水等の排水から、有機物を除去する排水処理装置および排水処理方法に関する。   The present invention relates to a wastewater treatment apparatus and a wastewater treatment method for removing organic substances from wastewater such as industrial wastewater and sewage.

従来、産業排水や下水等の排水を生物処理することにより有機物を除去する排水処理技術があり、この生物処理による排水処理方法には好気性処理と嫌気性処理がある。   Conventionally, there is a wastewater treatment technology for removing organic matter by biologically treating wastewater such as industrial wastewater and sewage, and there are aerobic treatment and anaerobic treatment as wastewater treatment methods by this biological treatment.

好気性処理は酸素を必要とする微生物が有機物を炭酸ガスと水とに分解し、嫌気性処理では酸素を必要としない微生物が有機物をメタンと二酸化炭素とに分解する。   In the aerobic treatment, microorganisms that require oxygen decompose organic substances into carbon dioxide and water, and in anaerobic treatment, microorganisms that do not require oxygen decompose organic substances into methane and carbon dioxide.

一般的に処理後の水質は好気性処理が優れるが、好気性処理を行うには酸素を供給するための動力を要し、費用が高くなることから、下水のような比較的有機物が低濃度の排水処理に用いられている。一方嫌気性処理は、畜産業や食品業施設から排出される有機物が高濃度の排水処理に用いられ、その処理水は要求される放流水質に応じて好気性処理等で後処理されることが多い。   In general, the water quality after treatment is excellent in aerobic treatment, but the aerobic treatment requires power for supplying oxygen and the cost is high, so that relatively low concentration of organic matter such as sewage is low. It is used for wastewater treatment. On the other hand, in anaerobic treatment, organic matter discharged from livestock and food industry facilities is used for wastewater treatment of high concentration, and the treated water is post-treated by aerobic treatment etc. according to the required discharged water quality. Many.

また嫌気性処理では、メタン生成菌により酢酸等の低級脂肪酸が分解されメタンが生成されるメタン生成処理が行われるとともに、排水中に硫酸イオンが含まれる場合は、この硫酸イオンが硫酸還元菌により還元されることで酢酸等の低級脂肪酸が分解され硫化水素が生成される硫化水素生成処理が行われる。   In the anaerobic treatment, a methanogenic process is performed in which lower fatty acids such as acetic acid are decomposed by methane producing bacteria to produce methane, and when sulfate ions are contained in the waste water, the sulfate ions are A hydrogen sulfide generation process in which lower fatty acids such as acetic acid are decomposed and hydrogen sulfide is generated by reduction is performed.

そのため、このメタン生成処理と硫化水素生成処理とは、酢酸等の基質を巡って競合関係にある。また、硫酸還元菌による還元で生成される硫化水素は、硫酸還元菌やメタン生成菌の活性を阻害し、有機物分解の処理効率の低下を招く。   Therefore, the methane production process and the hydrogen sulfide production process are in a competitive relationship over a substrate such as acetic acid. Moreover, the hydrogen sulfide produced | generated by the reduction | restoration by a sulfate reduction bacterium inhibits the activity of a sulfate reduction bacterium and a methanogen, and causes the processing efficiency of organic substance decomposition | disassembly to fall.

そこで、硫酸イオンを多量に含む排水を嫌気性処理により適切に処理する技術として、特許文献1に記載の嫌気性水処理装置がある。   Then, there exists an anaerobic water treatment apparatus of patent document 1 as a technique which processes appropriately the waste_water | drain containing a large amount of sulfate ion by anaerobic treatment.

この特許文献1に記載の嫌気性水処理装置は、嫌気性細菌を用いて反応槽で排水を浄化し、この反応槽上部の気相部に放出された硫化水素ガスを吸収、除去することで、液相中の硫化水素濃度を低減させている。このように液相中の硫化水素濃度を低減させることにより、メタン生成菌への阻害作用を減じ、良好な排水処理を行うことができる。   The anaerobic water treatment apparatus described in Patent Document 1 purifies the wastewater in a reaction tank using anaerobic bacteria, and absorbs and removes hydrogen sulfide gas released to the gas phase part above the reaction tank. The hydrogen sulfide concentration in the liquid phase is reduced. Thus, by reducing the hydrogen sulfide concentration in the liquid phase, it is possible to reduce the inhibitory action on the methane-producing bacteria and perform good wastewater treatment.

特開平3−278892号公報Japanese Patent Laid-Open No. 3-278892

ところで硫酸還元菌には、水素、アルコール類、酢酸やプロピオン酸などの低級脂肪酸に加え、C18までの高級脂肪酸、芳香族、ブドウ糖、果糖などの基質を利用して硫酸還元処理の進行可能な菌種があることから、メタン生成菌よりも阻害に強く、有機物の分解を高速に行うことが期待できる。 By the way, in sulfate-reducing bacteria, in addition to lower fatty acids such as hydrogen, alcohols, acetic acid and propionic acid, a substrate such as higher fatty acids up to C18 , aromatics, glucose and fructose can be used to proceed with the sulfate reduction treatment. Since there are bacterial species, it is more resistant to inhibition than methanogenic bacteria and can be expected to decompose organic substances at high speed.

そこで、嫌気性処理において排水に硫酸塩を添加することで、硫化水素生成処理が活性化され、これにより硫酸還元菌が増殖して優占種として働き、有機物の分解速度が高くなるものと示唆される。   Therefore, by adding sulfate to wastewater in anaerobic treatment, hydrogen sulfide generation treatment is activated, which suggests that sulfate-reducing bacteria grow and work as dominant species, and the organic matter decomposition rate increases. Is done.

しかし、上述したように硫酸還元菌による還元で生成される硫化水素は、硫酸還元菌の活性も阻害するため、硫酸塩の添加のみでは硫酸還元菌を十分に増殖させるには不十分である。   However, as described above, hydrogen sulfide produced by reduction by sulfate-reducing bacteria also inhibits the activity of sulfate-reducing bacteria, so that the addition of sulfate alone is not sufficient to sufficiently propagate the sulfate-reducing bacteria.

本発明は上記事情に鑑みてなされたものであり、嫌気性処理環境において硫化物による硫酸還元菌の阻害を防止し、硫酸還元菌を好適に増殖させることで、高速に有機物を分解させることが可能な排水処理装置および排水処理方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to decompose organic substances at high speed by preventing inhibition of sulfate-reducing bacteria by sulfides in an anaerobic treatment environment and suitably growing the sulfate-reducing bacteria. It is an object of the present invention to provide a possible waste water treatment apparatus and waste water treatment method.

上記目的を達成するための本発明の排水処理装置は、処理対象の排水の有機物濃度を測定する有機物濃度測定装置と、硫酸イオン濃度が、前記有機物濃度測定装置で測定した有機物濃度の1/3よりも高くなるように、硫酸塩を前記処理対象の排水に添加する硫酸塩添加装置と、嫌気性菌を保持し、前記処理対象の排水を取り込んで有機物を分解させる反応槽と、前記反応槽において有機物の分解処理が行われた処理水の硫化物濃度を測定する硫化物濃度測定装置と、前記硫化物濃度測定装置で測定した硫化物濃度が、予め設定された閾値よりも高いときに前記反応槽に不活性ガスを吹き込み、前記閾値よりも低いときには不活性ガスの吹き込みを停止するガス供給装置とを備えることを特徴とする。   In order to achieve the above object, the waste water treatment apparatus of the present invention includes an organic substance concentration measuring apparatus for measuring the organic substance concentration of waste water to be treated, and a sulfate ion concentration of 1/3 of the organic substance concentration measured by the organic substance concentration measuring apparatus A sulfate addition device for adding sulfate to the waste water to be treated, a reaction tank for holding anaerobic bacteria, taking the waste water for treatment and decomposing organic matter, and the reaction tank And a sulfide concentration measuring device for measuring the sulfide concentration of treated water subjected to the decomposition treatment of organic matter, and when the sulfide concentration measured by the sulfide concentration measuring device is higher than a preset threshold value And a gas supply device that blows an inert gas into the reaction tank and stops the blowing of the inert gas when lower than the threshold value.

またこの排水処理装置は、前記処理対象の排水の硫黄濃度を測定する硫黄濃度測定装置をさらに有し、前記硫酸塩添加装置は、前記硫黄濃度測定装置で測定された硫黄濃度と添加する硫酸塩とを合わせることにより、硫酸イオン濃度が、前記有機物濃度測定装置で測定された有機物濃度の1/3よりも高い値になるように硫酸塩を添加するようにしてもよい。   The waste water treatment apparatus further includes a sulfur concentration measurement device that measures the sulfur concentration of the waste water to be treated, and the sulfate addition device includes the sulfur concentration measured by the sulfur concentration measurement device and the sulfate to be added. Thus, sulfate may be added so that the sulfate ion concentration is higher than 1/3 of the organic concentration measured by the organic concentration measuring device.

またこの排水処理装置は、前記反応槽内に設置された分離膜と、前記分離膜の下部に設置された散気装置と、前記反応槽から、有機物の分解処理が行われた処理水を前記分離膜を経由して流出させるポンプとをさらに有し、前記ガス供給装置は、前記硫化物濃度測定装置で測定した硫化物濃度が予め設定された閾値よりも高いとき、また前記ポンプが稼働するときに、不活性ガスを前記散気装置から散気させることで反応槽に吹き込むようにしてもよい。   In addition, the waste water treatment apparatus includes a separation membrane installed in the reaction tank, an air diffuser installed in a lower portion of the separation membrane, and treated water that has been subjected to organic substance decomposition treatment from the reaction tank. A pump that causes the gas to flow out through the separation membrane, and the gas supply device operates when the sulfide concentration measured by the sulfide concentration measuring device is higher than a preset threshold value. Sometimes, the inert gas may be diffused from the diffuser to blow into the reaction vessel.

また本発明の排水処理方法は、排水処理装置が、処理対象の排水の有機物濃度を測定し、硫酸イオン濃度が、前記有機物濃度測定装置で測定した有機物濃度の1/3よりも高くなるように、硫酸塩を前記処理対象の排水に添加し、嫌気性菌を保持した反応槽に、前記処理対象の排水を取り込んで有機物を分解させ、前記反応槽において有機物の分解処理が行われた処理水の硫化物濃度を測定し、前記測定した硫化物濃度が、予め設定された閾値よりも高いときに前記反応槽に不活性ガスを吹き込み、前記閾値よりも低いときには不活性ガスの吹き込みを停止することを特徴とする。   In the wastewater treatment method of the present invention, the wastewater treatment device measures the organic matter concentration of the wastewater to be treated, and the sulfate ion concentration is higher than 1/3 of the organic matter concentration measured by the organic matter concentration measurement device. The treated water in which sulfate is added to the wastewater to be treated, the organic matter is decomposed by taking the wastewater to be treated into the reaction vessel holding the anaerobic bacteria, and the organic matter is decomposed in the reaction vessel. When the measured sulfide concentration is higher than a preset threshold value, an inert gas is blown into the reaction vessel, and when the measured sulfide concentration is lower than the threshold value, the blowing of the inert gas is stopped. It is characterized by that.

またこの排水処理方法は、前記処理対象の排水の硫黄濃度を測定し、前記硫酸塩を添加するときに、測定された硫黄濃度と添加する硫酸塩とを合わせることにより、硫酸イオン濃度が、前記測定された有機物濃度の1/3よりも高い値になるように添加するようにしてもよい。   Moreover, this waste water treatment method measures the sulfur concentration of the waste water to be treated, and when adding the sulfate, by combining the measured sulfur concentration with the sulfate to be added, the sulfate ion concentration is You may make it add so that it may become a value higher than 1/3 of the measured organic substance density | concentration.

またこの排水処理方法は、前記反応槽に不活性ガスを吹き込むときは、前記測定した硫化物濃度が予め設定された閾値よりも高いとき、また前記反応槽内に設置された分離膜を経由して処理水を流出させるポンプが稼働するときに、不活性ガスを前記分離膜の下部に設置された散気装置から散気させることで反応槽に吹き込むようにしてもよい。   Further, this wastewater treatment method is performed when an inert gas is blown into the reaction tank, when the measured sulfide concentration is higher than a preset threshold value, and via a separation membrane installed in the reaction tank. When the pump that discharges the treated water is operated, the inert gas may be blown into the reaction tank by being diffused from the diffuser installed at the lower part of the separation membrane.

本発明の排水処理装置および排水処理方法によれば、嫌気性処理環境において硫化物による硫酸還元菌の阻害を防止し、硫酸還元菌を好適に増殖させることで、高速に有機物を分解させることができる。   According to the wastewater treatment apparatus and the wastewater treatment method of the present invention, it is possible to prevent the sulfate-reducing bacteria from being inhibited by sulfides in an anaerobic treatment environment and to allow the sulfate-reducing bacteria to grow appropriately, thereby decomposing organic matter at high speed. it can.

本発明の第1実施形態による排水処理装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the waste water treatment equipment by 1st Embodiment of this invention. 本発明の第1実施形態による排水処理装置を模擬的に形成した装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the apparatus which formed the waste water treatment apparatus by 1st Embodiment of this invention in simulation. 本発明の第1実施形態による排水処理装置を模擬的に形成した装置で排水処理を行ったときの、各種分析結果を示す表である。It is a table | surface which shows various analysis results when drainage processing is performed with the apparatus which formed the wastewater treatment apparatus by 1st Embodiment of this invention in simulation. 本発明の第1実施形態による排水処理装置を模擬的に形成した装置で排水処理を行ったときのガス発生量を測定するガス測定装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the gas measurement apparatus which measures the gas generation amount when drainage treatment is performed with the apparatus which formed the wastewater treatment apparatus by 1st Embodiment of this invention in simulation. 本発明の第1実施形態による排水処理装置を模擬的に形成した装置で人工排水の排水処理を行ったときのガス発生量を測定した測定結果を示すグラフである。It is a graph which shows the measurement result which measured the gas generation amount when the waste_water | drain process of artificial waste_water | drain is performed with the apparatus which formed the waste water treatment apparatus by 1st Embodiment of this invention in simulation. 本発明の第1実施形態による排水処理装置を模擬的に形成した装置で工場排水の排水処理を行ったときのガス発生量を測定した測定結果を示すグラフである。It is a graph which shows the measurement result which measured the gas generation amount when the waste water treatment of factory waste water was performed with the apparatus which formed the waste water treatment apparatus by 1st Embodiment of this invention in simulation. 本発明の第2実施形態による排水処理装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the waste water treatment equipment by 2nd Embodiment of this invention. 本発明の第3実施形態による排水処理装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the waste water treatment equipment by 3rd Embodiment of this invention.

《第1実施形態》
本発明の第1実施形態として、硫黄が含まれないか、微量であるか、または予め硫黄濃度が判明しているかあるいは経験的に推察可能な排水を処理する排水処理装置1Aについて説明する。
<< First Embodiment >>
As a first embodiment of the present invention, a wastewater treatment apparatus 1A that treats wastewater that does not contain sulfur, is in a very small amount, or has a known sulfur concentration or can be estimated empirically will be described.

本発明の第1実施形態による排水処理装置1Aの構成について、図1を参照して説明する。   The configuration of the wastewater treatment apparatus 1A according to the first embodiment of the present invention will be described with reference to FIG.

本実施形態による排水処理装置1Aは、メタン生成菌、硫酸還元菌等の嫌気性菌が保持され、処理対象の排水を取り込んで有機物を分解処理させる反応槽2と、排水の有機物濃度を測定する有機物濃度測定装置3と、有機物濃度測定装置3で測定した有機物濃度に基づいて硫酸塩の添加量を算出し、この添加量の硫酸塩を添加するよう制御する硫酸塩添加制御装置4と、硫酸塩添加制御装置4の制御により硫酸塩を排水に添加する硫酸塩添加装置5と、反応槽2で処理した処理水の硫化物濃度を測定する硫化物濃度測定装置6と、硫化物濃度測定装置6で測定した硫化物濃度に基づいて窒素ガスの供給の要否を判定し、判定結果により窒素ガスの供給ON/OFFを制御するガス供給制御装置7と、ガス供給制御装置7の制御により反応槽2に窒素ガスを供給するガス供給装置8とを有する。このうち硫酸塩添加装置5は、硫酸塩5aおよび注入ポンプ5bにより構成され、ガス供給装置8は、窒素ガスボンベ8aおよびブロア8bにより構成される。   The wastewater treatment apparatus 1A according to the present embodiment holds anaerobic bacteria such as methanogens and sulfate-reducing bacteria, measures a reaction tank 2 that takes in wastewater to be treated and decomposes organic matter, and measures the concentration of organic matter in the wastewater. An organic substance concentration measuring device 3, a sulfate addition control device 4 that calculates the addition amount of sulfate based on the organic substance concentration measured by the organic substance concentration measurement device 3, and controls to add the addition amount of sulfate, sulfuric acid A sulfate addition device 5 for adding sulfate to waste water under the control of the salt addition control device 4, a sulfide concentration measurement device 6 for measuring the sulfide concentration of treated water treated in the reaction tank 2, and a sulfide concentration measurement device 6 determines whether or not nitrogen gas needs to be supplied based on the sulfide concentration measured in Step 6, and the gas supply control device 7 controls the supply ON / OFF of the nitrogen gas based on the determination result, and the reaction is controlled by the gas supply control device 7. Nitrogen gas in tank 2 And a gas supply device 8 supplies. Among these, the sulfate addition device 5 is constituted by a sulfate 5a and an injection pump 5b, and the gas supply device 8 is constituted by a nitrogen gas cylinder 8a and a blower 8b.

この排水処理装置1Aにおいて排水処理が開始されると、有機物濃度測定装置3において処理対象の排水の有機物濃度が測定される。   When the wastewater treatment is started in the wastewater treatment apparatus 1A, the organic matter concentration of the wastewater to be treated is measured in the organic matter concentration measurement device 3.

次に硫酸塩添加制御装置4において、硫酸イオン濃度が有機物濃度測定装置3で測定された有機物濃度の1/3よりも高い値になるように、硫酸塩添加量が算出される。このとき、本実施形態においては排水中に硫黄が含まれないか、微量であるか、または予め硫黄濃度が判明しているかあるいは推察可能であるため、これらに基づいて予め設定された硫黄濃度値に基づいて硫酸塩添加量が算出される。   Next, in the sulfate addition control device 4, the sulfate addition amount is calculated so that the sulfate ion concentration becomes higher than 1 / of the organic substance concentration measured by the organic substance concentration measurement device 3. At this time, in the present embodiment, the sulfur is not contained in the waste water, is a very small amount, or the sulfur concentration is known in advance or can be inferred. The sulfate addition amount is calculated based on the above.

そして硫酸塩添加制御装置4により、算出された添加量の硫酸塩が排水に添加されるように硫酸塩添加装置5が制御される。   Then, the sulfate addition control device 4 controls the sulfate addition device 5 so that the calculated addition amount of sulfate is added to the waste water.

このように硫酸イオン濃度が有機物濃度の1/3よりも高い値になるように硫酸塩が排水に添加されることにより、反応槽2内に排水が流入され嫌気性菌により有機物が分解される浄化処理が行われたときに、硫酸還元菌との競合でメタン生成菌が減少する一方硫酸還元菌が増殖し、有機物を分解する反応速度が高速化される。   Thus, by adding sulfate to the waste water so that the sulfate ion concentration is higher than 1/3 of the organic matter concentration, the waste water flows into the reaction tank 2 and the organic matter is decomposed by anaerobic bacteria. When the purification treatment is performed, methanogenic bacteria decrease due to competition with sulfate-reducing bacteria, while sulfate-reducing bacteria grow and the reaction rate for decomposing organic matter is increased.

また、硫化物濃度測定装置6では反応槽2で処理された処理水の硫化物濃度が測定される。   The sulfide concentration measuring device 6 measures the sulfide concentration of the treated water treated in the reaction tank 2.

次にガス供給制御装置7において、この測定された硫化物濃度が予め設定された閾値と比較され、測定された硫化物濃度がこの閾値よりも高いときには窒素ガスの供給が必要であり、測定された硫化物濃度がこの閾値よりも低いときには窒素ガスの供給が不要であると判定される。   Next, in the gas supply control device 7, the measured sulfide concentration is compared with a preset threshold value. When the measured sulfide concentration is higher than the threshold value, supply of nitrogen gas is necessary and measured. When the sulfide concentration is lower than this threshold, it is determined that the supply of nitrogen gas is unnecessary.

そして、ガス供給制御装置7における判定結果により、窒素ガスの供給が必要であると判定されたときには、ガス供給装置8により反応槽2に窒素ガスが供給されるように制御され、窒素ガスの供給が不要であると判定されたときには、窒素ガスの供給を停止するように制御される。   Then, when it is determined from the determination result in the gas supply control device 7 that the supply of nitrogen gas is necessary, the gas supply device 8 is controlled to supply the nitrogen gas to the reaction tank 2, and the supply of nitrogen gas Is determined to be unnecessary, the supply of nitrogen gas is controlled to be stopped.

このように硫化物濃度が高いときに窒素ガスが供給されることにより、硫酸還元菌により生成された解離状態の硫化物イオンを非解離状態の硫化水素ガスとして放出させ、硫酸を添加したことによる、硫化水素による阻害が防止される。   By supplying nitrogen gas when the sulfide concentration is high in this way, dissociated sulfide ions produced by sulfate-reducing bacteria are released as non-dissociated hydrogen sulfide gas, and sulfuric acid is added. Inhibition by hydrogen sulfide is prevented.

(実施例1)
実施例1として、上述した第1実施形態による排水処理装置1Aを模擬的に形成した図2に示す排水処理装置20により、以下のとおり、試薬を調整した模擬排水を浄化処理させる試験を実施した。
Example 1
As Example 1, a test for purifying the simulated wastewater prepared with the reagents as follows was performed by the wastewater treatment device 20 shown in FIG. 2, which simulatedly formed the wastewater treatment device 1A according to the first embodiment described above. .

本実施例においては、既存の嫌気処理施設から採取した消化汚泥を種汚泥とし、試薬を調製した液を模擬排水とし、排水処理装置20により連続排水処理運転を行った。本実施例では、試験期間は約1ヶ月とし、RUN1(比較例)、RUN2(比較例)、RUN3(比較例)、RUN4(本願発明に該当)、RUN5(本願発明に該当)の5パターンの条件で排水処理試験を実施した。   In this example, the digested sludge collected from the existing anaerobic treatment facility was used as seed sludge, the liquid prepared with the reagent was used as simulated waste water, and the continuous waste water treatment operation was performed by the waste water treatment device 20. In this example, the test period is about one month, and five patterns of RUN1 (comparative example), RUN2 (comparative example), RUN3 (comparative example), RUN4 (corresponding to the present invention), and RUN5 (corresponding to the present invention) A wastewater treatment test was conducted under the conditions.

図2において、種汚泥となる消化汚泥21は有機性浮遊物濃度が10000mg/lとなるように調製し、反応槽22に収めた。   In FIG. 2, digested sludge 21 as seed sludge was prepared so as to have an organic suspended solid concentration of 10000 mg / l and stored in a reaction tank 22.

反応槽22は、恒温水槽23内に保持され、恒温水槽23には恒温水の温度を計測する温度計24および恒温水の温度を制御する温度コントローラ25が接続され、恒温水槽23の中には温度コントローラ25の制御により作動するヒーター27が設置されている。本実施例に際しては、温度コントローラ25により、恒温水槽23内の温度が37℃になるように、恒温水槽23内の温度を計測する温度計26の計測値を監視しながらヒーター27を制御した。   The reaction tank 22 is held in a constant temperature water tank 23, and a thermometer 24 for measuring the temperature of the constant temperature water and a temperature controller 25 for controlling the temperature of the constant temperature water are connected to the constant temperature water tank 23. A heater 27 that is operated under the control of the temperature controller 25 is installed. In the present embodiment, the heater 27 was controlled by the temperature controller 25 while monitoring the measured value of the thermometer 26 that measures the temperature in the constant temperature water tank 23 so that the temperature in the constant temperature water tank 23 becomes 37 ° C.

また反応槽22とは別に設けた原水槽28内に模擬排水29を入れ、スターラー30により撹拌子31を回転させて水質が一定になるように撹拌した。この模擬排水29は、炭素源としてグルコースを、窒素源として塩化アンモニウムを、リン源としてリン酸二水素カリウムを加えた溶液に、RUN1は0mgSO4/L(添加なし)、RUN2は250mgSO4/L、RUN3およびRUN4は1000mgSO4/L、RUN5は4500 mgSO4/Lの硫酸を添加したものを用いた。また、消化汚泥21量に対する模擬排水29の有機物量は、0.2kg/日となるように供給した。 Moreover, the simulated waste water 29 was put in the raw | natural water tank 28 provided separately from the reaction tank 22, and the stirrer 31 was rotated with the stirrer 30, and it stirred so that water quality might become fixed. This simulated wastewater 29 is prepared by adding glucose as a carbon source, ammonium chloride as a nitrogen source, and potassium dihydrogen phosphate as a phosphorus source, RUN1 is 0 mg SO4 / L (no addition), RUN2 is 250 mg SO4 / L RUN3 and RUN4 were added with 1000 mg SO4 / L, and RUN5 was added with 4500 mg SO4 / L sulfuric acid. The amount of organic matter in the simulated waste water 29 relative to the amount of digested sludge 21 was supplied to be 0.2 kg / day.

そして、原水槽28内の模擬排水29を原水ポンプ32により反応槽22に注入した。この模擬排水29の反応槽22への注入量および注入周期は、原水ポンプ32の流量設定および原水ポンプ32の作動ON/OFFを制御するタイマ33により制御した。   The simulated waste water 29 in the raw water tank 28 was injected into the reaction tank 22 by the raw water pump 32. The injection amount and injection cycle of the simulated waste water 29 into the reaction tank 22 were controlled by a timer 33 that controls the flow rate setting of the raw water pump 32 and the operation ON / OFF of the raw water pump 32.

反応槽22に注入された模擬排水29は、反応槽22内を撹拌するように設置された撹拌機34を作動させることにより、反応槽22内の消化汚泥21と接触させた。このとき、模擬排水29と消化汚泥21とが均一に混合するように目視で確認しながら、撹拌機34の回転数を25rpmに設定した。   The simulated waste water 29 injected into the reaction tank 22 was brought into contact with the digested sludge 21 in the reaction tank 22 by operating a stirrer 34 installed to stir the reaction tank 22. At this time, the rotational speed of the stirrer 34 was set to 25 rpm while visually confirming that the simulated waste water 29 and the digested sludge 21 were uniformly mixed.

この撹拌機34の作動ON/OFFはタイマ35により制御しており、模擬排水29と消化汚泥21とを十分に接触させ排水処理させた後、少なくとも2時間は撹拌機34を停止させ、これにより消化汚泥21を沈殿させた。   The operation ON / OFF of the stirrer 34 is controlled by a timer 35, and after the simulated waste water 29 and the digested sludge 21 are sufficiently brought into contact with the waste water treatment, the stirrer 34 is stopped for at least two hours. Digested sludge 21 was precipitated.

そして反応槽22内の溶液の、消化汚泥21を沈殿させた上澄みを、処理水36として処理水ポンプ37により引き抜いた。この反応槽22からの引き抜き量および周期は、処理水ポンプ37の流量設定および処理水ポンプ37の作動ON/OFFを制御するタイマ38により制御した。反応槽22から引き抜いた処理水36は、処理水槽39に注入した。   Then, the supernatant of the solution in the reaction tank 22 on which the digested sludge 21 was precipitated was drawn out as the treated water 36 by the treated water pump 37. The amount and period of withdrawal from the reaction tank 22 were controlled by a timer 38 that controls the flow rate setting of the treated water pump 37 and the operation ON / OFF of the treated water pump 37. The treated water 36 withdrawn from the reaction tank 22 was injected into the treated water tank 39.

また、反応槽22内の反応液のpHを計測するpH計40を設置し、アルカリ注入ポンプ41によりアルカリ溶液42を注入するアルカリ注入機構が利用されることにより、反応槽22内のpHが中性域になるようにpHコントローラ43により制御した。   Further, a pH meter 40 for measuring the pH of the reaction solution in the reaction tank 22 is installed, and an alkali injection mechanism in which an alkali solution 42 is injected by an alkali injection pump 41 is used, so that the pH in the reaction tank 22 is reduced. It was controlled by the pH controller 43 so as to be in the sex range.

また、模擬排水29と消化汚泥21とを接触させたことにより反応槽22内に生成されたバイオガス44は、トラップ45で凝縮水を除去した後、乾式脱硫剤を備えた脱硫装置46で硫化水素を除去し、ガスメータ47でガス流量を測定した。   In addition, the biogas 44 generated in the reaction tank 22 by bringing the simulated waste water 29 and the digested sludge 21 into contact with each other is removed by the trap 45 and then sulfidized by the desulfurizer 46 equipped with a dry desulfurizing agent. Hydrogen was removed and the gas flow rate was measured with a gas meter 47.

また、ガスラインには別途分析サンプル採取用のガス採取口48を分岐させて設け、ガス採取時以外はこのガス採取口48をピンチコック49で閉じた。   Further, a gas sampling port 48 for collecting an analytical sample is separately provided in the gas line, and this gas sampling port 48 is closed with a pinch cock 49 except during gas sampling.

また、反応槽22内の処理水から溶存硫化物を除去することを目的に、反応槽22の溶液中に窒素ガスを吹き込む機構を設け、RUN1〜RUN3は窒素ガスを吹き込まず、RUN4およびRUN5は試験条件によって数〜100ml/min程度窒素ガスを吹き込んだ。   In addition, for the purpose of removing dissolved sulfide from the treated water in the reaction tank 22, a mechanism for blowing nitrogen gas into the solution in the reaction tank 22 is provided. RUN1 to RUN3 do not blow nitrogen gas, and RUN4 and RUN5 Nitrogen gas was blown in about several to 100 ml / min depending on the test conditions.

窒素ガスを反応槽22に吹き込む機構として、窒素ガスボンベ50から供給される窒素ガスをバブラー51で溶液中に散気するように構成し、窒素ガスボンベ50とバブラー51とを接続する管上に設置された流量計52により供給された窒素ガス量は、散気したガスの気泡が液面を揺らす程度になるように目視で確認することにより調整した。   As a mechanism for blowing nitrogen gas into the reaction tank 22, nitrogen gas supplied from the nitrogen gas cylinder 50 is diffused into the solution by a bubbler 51, and is installed on a pipe connecting the nitrogen gas cylinder 50 and the bubbler 51. The amount of nitrogen gas supplied by the flow meter 52 was adjusted by visual confirmation so that the bubble of the diffused gas would shake the liquid level.

このバブラー51による散気は、流量計52に接続されたタイマ53によって定期的に動作するように設定し、バブラー51の位置は消化汚泥21の沈殿時でも消化汚泥21が巻き上がらないような上側の高さに設定した。   The air diffused by the bubbler 51 is set to operate periodically by a timer 53 connected to the flow meter 52, and the position of the bubbler 51 is such that the digested sludge 21 does not roll up even when the digested sludge 21 is settled. Set to the height of.

上記のように実施した処理において、模擬排水29を原水槽28から採取してCOD(化学的酸素要求量)、硫酸イオン濃度の分析を行うとともに、処理後の処理水36を処理水槽39から採取してCOD、硫酸イオン濃度、硫化物イオン濃度の分析を行った。また、ガス採取口48からバイオガスを採取し、硫化水素濃度、メタン含有率、二酸化炭素含有率の分析を行った。   In the treatment carried out as described above, the simulated waste water 29 is collected from the raw water tank 28 and analyzed for COD (chemical oxygen demand) and sulfate ion concentration, and the treated water 36 after the treatment is collected from the treated water tank 39. The COD, sulfate ion concentration, and sulfide ion concentration were analyzed. In addition, biogas was sampled from the gas sampling port 48 and analyzed for hydrogen sulfide concentration, methane content rate, and carbon dioxide content rate.

各RUNの実施条件および分析結果を、図3に示す。   The execution conditions and analysis results for each RUN are shown in FIG.

[RUN1(比較例)]
RUN1は、模擬排水29に対し硫酸の添加および窒素ガスの供給がない条件下、つまり通常の嫌気性条件下で試験を行った場合の結果である。
[RUN1 (comparative example)]
RUN1 is a result when the test is performed on the simulated waste water 29 under a condition where sulfuric acid is not added and nitrogen gas is not supplied, that is, under a normal anaerobic condition.

RUN1では、処理前の模擬排水のCODが3000mg/Lであったのに対し処理後の処理水のCODが490mg/Lであることから、COD除去率が80%を超えており、適切に排水が浄化されたことがわかる。   In RUN1, the COD of the treated wastewater before treatment was 3000 mg / L, while the COD of the treated water after treatment was 490 mg / L, so the COD removal rate exceeded 80%, and the wastewater was discharged appropriately. It can be seen that has been purified.

またこの際、採取したバイオガス中のメタン含有率が69%と高い値であることから、メタン生成菌が優占種として働き排水処理が行われたことがわかる。   At this time, since the methane content in the collected biogas is as high as 69%, it is understood that the methane producing bacteria acted as dominant species and the wastewater treatment was performed.

[RUN2(比較例)]
RUN2は、CODが3000mg/Lの模擬排水29に対し、硫酸を硫酸イオン濃度で250 mgSO4/L添加した場合の結果である。
[RUN2 (comparative example)]
RUN2 is a result of adding 250 mg SO4 / L of sulfuric acid at a sulfate ion concentration to the simulated waste water 29 having a COD of 3000 mg / L.

このRUN2においても処理後の処理水のCODが490mg/LであることからCOD除去率が80%を超えており、適切に排水が浄化されたことがわかる。   Also in this RUN2, since the COD of the treated water after treatment is 490 mg / L, the COD removal rate exceeds 80%, and it can be seen that the waste water was appropriately purified.

またこの際、採取したバイオガス中に硫化水素濃度が19000ppmであるとともに、処理水中の硫化物イオン濃度が20mgS2-/Lであるため、排水中に添加された硫酸の硫酸イオンが還元され硫化水素となり、未解離の硫化水素はバイオガス中に含まれ、解離した硫化水素は硫化物イオンとして存在していることがわかる。 At this time, the concentration of hydrogen sulfide in the collected biogas is 19000 ppm and the concentration of sulfide ions in the treated water is 20 mg S2- / L, so the sulfate ions of sulfuric acid added to the wastewater are reduced and sulfided. It turns out that it becomes hydrogen and undissociated hydrogen sulfide is contained in biogas, and dissociated hydrogen sulfide exists as sulfide ions.

また採取したバイオガス中に含有率が含有率51%と、RUN1の場合に比べて低下したことから、メタン生成菌と硫酸還元菌が共生して排水処理が行われたことがわかる。   Moreover, since the content rate in the collected biogas was 51%, which was lower than that of RUN1, it can be seen that wastewater treatment was carried out by coexistence of methane-producing bacteria and sulfate-reducing bacteria.

また処理水の硫酸イオン濃度が40 mgSO4/Lであり硫酸イオン除去率が80%を超えているため、添加された硫酸が適切に除去されたことがわかる。 Moreover, since the sulfate ion concentration of treated water is 40 mg SO4 / L and the sulfate ion removal rate exceeds 80%, it can be seen that the added sulfuric acid was appropriately removed.

[RUN3(比較例)]
RUN3は、CODが3000mg/Lの模擬排水29に対し、硫酸を硫酸イオン濃度で1000 mgSO4/L、つまり模擬排水の有機物濃度に対する硫酸イオン濃度が1/3になるように添加した場合の結果である。
[RUN3 (comparative example)]
RUN3 is the result of adding sulfuric acid to 1000 mg SO4 / L of sulfuric acid ion concentration to the simulated wastewater 29 with COD of 3000 mg / L, that is, the sulfuric acid ion concentration to 1/3 of the organic matter concentration of the simulated wastewater. It is.

このRUN3においては、硫酸の添加量が増加したため、採取したバイオガス中の硫化水素濃度がRUN2の場合よりも増加し25000ppmであるとともに、処理水中に硫化物イオン濃度も増加し180mgS2-/Lであるため、排水中に添加された硫酸の硫酸イオンが還元され硫化水素となり、未解離の硫化水素はバイオガス中に含まれ、解離した硫化水素は硫化物イオンとしてさらに多く存在していることがわかる。 In this RUN3, the amount of sulfuric acid added increased, so the hydrogen sulfide concentration in the collected biogas increased to 25000 ppm compared to RUN2, and the sulfide ion concentration also increased in the treated water, 180 mg S2- / L. Therefore, the sulfate ion of sulfuric acid added to the wastewater is reduced to hydrogen sulfide, undissociated hydrogen sulfide is contained in the biogas, and more dissociated hydrogen sulfide exists as sulfide ions. I understand.

また上述したようにバイオガス中の硫化水素濃度および処理水中の硫化物イオン濃度がRUN2より高くなるとともに、採取したバイオガス中のメタン含有率が31%と、RUN1、RUN2の場合に比べて低下したことから、硫酸還元菌により生成した硫化水素によりメタン生成菌が阻害を受け、メタン生成菌が減少したことが示唆される。   In addition, as described above, the hydrogen sulfide concentration in biogas and the sulfide ion concentration in treated water are higher than RUN2, and the methane content in the collected biogas is 31%, which is lower than in RUN1 and RUN2. This suggests that methanogens were inhibited by hydrogen sulfide produced by sulfate-reducing bacteria, and methanogens were reduced.

一方、処理水の硫酸イオン濃度が201 mgSO4/Lであり硫酸イオン除去率が80%であるため、添加された硫酸が適切に除去され、硫酸還元菌は硫化水素により阻害を受けていないことが示唆される。 On the other hand, the sulfate concentration in the treated water is 201 mg SO4 / L and the sulfate ion removal rate is 80%, so the added sulfuric acid is properly removed and the sulfate-reducing bacteria are not inhibited by hydrogen sulfide. Is suggested.

しかし、このRUN3においては処理後の処理水のCODが960mg/LでありCOD除去率が68%に低下していることから、硫酸還元菌が、メタン生成菌の減少による未分解有機物を分解できるほど増殖していないことが示唆される。すなわちRUN3の場合は、生成した硫化水素によってメタン生成菌が阻害されて減少したが、硫酸還元菌の増殖も大きくないことから、硫酸還元菌に対する有機物分解処理負荷が相対的に増加し、COD除去率が低下したものと考えられる。   However, in this RUN3, since the COD of treated water after treatment is 960 mg / L and the COD removal rate is reduced to 68%, sulfate-reducing bacteria can decompose undegraded organic matter due to the reduction of methanogenic bacteria This suggests that it has not proliferated as much. In other words, in the case of RUN3, methanogenic bacteria were inhibited and decreased by the generated hydrogen sulfide, but the growth of sulfate-reducing bacteria was not large, so the organic substance decomposition treatment load on sulfate-reducing bacteria increased relatively, and COD removal The rate is thought to have declined.

[RUN4(本願発明)]
RUN4は、CODが3000mg/Lの模擬排水29に対し、硫酸を硫酸イオン濃度で1000 mgSO4/L、つまり模擬排水の有機物濃度に対する硫酸イオン濃度が1/3になるように添加し、さらに窒素ガスの吹き込みを行った場合の結果である。
[RUN4 (present invention)]
RUN4 adds sulfuric acid to the simulated wastewater 29 with a COD of 3000 mg / L so that the sulfuric acid ion concentration is 1000 mg SO4 / L, that is, the sulfuric acid ion concentration relative to the organic matter concentration of the simulated wastewater is 1/3. It is a result at the time of blowing in gas.

このRUN4においては、採取したバイオガス中の硫化水素濃度がさらに増加して38000ppmであるのに対し、処理水中の硫化物イオン濃度は0mgS2-/Lであり、これは硫化水素を含まない窒素ガスの吹き込みにより処理水中の硫化物イオンが、ガス中に非解離状態の硫化水素ガスとして放出されたことが示唆される。 In this RUN4, the hydrogen sulfide concentration in the collected biogas further increased to 38000 ppm, whereas the sulfide ion concentration in the treated water was 0 mg S2- / L, which is nitrogen that does not contain hydrogen sulfide. It is suggested that sulfide ions in the treated water were released as non-dissociated hydrogen sulfide gas into the gas by blowing the gas.

したがって、RUN4においてバイオガス中のメタン含有率が低下しているが、これは硫化水素によりメタン生成菌が阻害を受けたものではなく、硫酸還元菌との基質の競合の影響でメタン生成菌が減少したものと考えられる。   Therefore, in RUN4, the methane content in the biogas has decreased, but this is not due to the inhibition of the methanogen by hydrogen sulfide. It is thought that it decreased.

また、処理水の硫酸イオン濃度が160 mgSO4/Lであり硫酸イオン除去率が80%を超えているため、添加された硫酸が適切に除去され、硫酸還元菌が適切に働いていることが示唆される。 In addition, the sulfate ion concentration in the treated water is 160 mg SO4 / L and the sulfate ion removal rate exceeds 80%, so the added sulfuric acid is properly removed and the sulfate-reducing bacteria are working properly. It is suggested.

また、このRUN4において処理後の処理水のCODが506 mg/LとRUN1、RUN2の場合と同程度の値に減少し、COD除去率が80%を超えたことから、硫酸還元菌が、メタン生成菌の減少による未分解有機物を分解できる程度に増殖したことが示唆される。   In this RUN4, the COD of treated water after treatment was reduced to 506 mg / L, the same level as in RUN1 and RUN2, and the COD removal rate exceeded 80%. It is suggested that it grew to such an extent that undegraded organic matter can be decomposed due to the reduction of the produced bacteria.

すなわちRUN4の場合は、処理水中への窒素ガスの吹き込みにより、硫酸添加量の増加による硫化水素の阻害の影響が取り除かれ、硫酸還元菌が増殖されたものと考えられる。   That is, in the case of RUN4, it is considered that the influence of inhibition of hydrogen sulfide due to an increase in the amount of sulfuric acid added was removed by blowing nitrogen gas into the treated water, and sulfate-reducing bacteria were grown.

[RUN5(本願発明)]
RUN5は、CODが3000mg/Lの模擬排水29に対し、硫酸を硫酸イオン濃度で4500 mgSO4/L、つまり模擬排水の有機物濃度に対する硫酸イオン濃度が1.5倍になるように添加し、さらに窒素ガスの吹き込みを行った場合の結果である。
[RUN5 (present invention)]
RUN5 adds sulfuric acid to the simulated wastewater 29 with a COD of 3000 mg / L so that the sulfate ion concentration is 4500 mg SO4 / L, that is, the sulfate ion concentration is 1.5 times the organic matter concentration of the simulated wastewater. It is a result at the time of blowing in nitrogen gas.

このRUN5においては、RUN4の場合と比較して処理水中の硫酸イオン濃度と硫化物イオン濃度は増加し、またバイオガス中の硫化水素濃度が増加してメタン含有量が低下した。またCOD除去率は低下したものの80%であり、硫化物イオン除去率も91%と高いことから、RUN5の場合にはRUN4の場合と同様に、処理水中への窒素ガスの吹き込みにより硫酸添加量の増加による硫化水素の阻害の影響が取り除かれて硫酸還元菌が増殖され、硫酸還元菌が優占種となり有機物が分解されているものと示唆される。   In this RUN5, compared with RUN4, the sulfate ion concentration and sulfide ion concentration in the treated water increased, and the hydrogen sulfide concentration in biogas increased and the methane content decreased. Although the COD removal rate is reduced, it is 80% and the sulfide ion removal rate is high at 91%. In the case of RUN5, the amount of sulfuric acid added by blowing nitrogen gas into the treated water as in the case of RUN4. It is suggested that the effect of the inhibition of hydrogen sulfide due to the increase in the amount of sulfate was removed, and sulfate-reducing bacteria were proliferated, and the sulfate-reducing bacteria became the dominant species and the organic matter was decomposed.

なお、図3の実験結果中、処理水の硫酸イオン濃度、硫化物イオン濃度、およびバイオガス中の硫化水素の硫黄濃度を集計すると排水中の硫酸添加量に基づく硫酸イオンの硫黄量よりも少ないが、排水処理装置20の運転中に反応槽22内部に短黄色の固形物の付着、堆積が観察されたことから、硫酸イオンが硫化水素に還元される途中で単体硫黄として析出したことにより、バイオガス中の硫黄量が少なくなったものと示唆される。   In addition, in the experimental results of FIG. 3, the sulfate ion concentration, the sulfide ion concentration, and the sulfur concentration of hydrogen sulfide in the biogas are less than the sulfur amount of sulfate ion based on the added amount of sulfuric acid in the wastewater. However, during the operation of the wastewater treatment apparatus 20, since the adhesion and deposition of a short yellow solid substance was observed inside the reaction tank 22, it was precipitated as elemental sulfur during the reduction of sulfate ions to hydrogen sulfide, It is suggested that the amount of sulfur in biogas has decreased.

以上の実施例1により、排水のCODに対して硫酸イオン濃度が1/3以上になるように硫酸を添加し、且つ反応槽22の溶液中に硫化水素を含まない窒素ガスを吹き込むことで、硫酸還元菌を増殖させて優先種とすることができ、且つ生成した硫化物イオンによりメタン生成菌や硫酸還元菌の活性が阻害されることを防止できることが示唆される。   By adding the sulfuric acid so that the sulfate ion concentration becomes 1/3 or more with respect to the COD of the waste water by the above Example 1, and blowing nitrogen gas not containing hydrogen sulfide into the solution in the reaction tank 22, This suggests that sulfate-reducing bacteria can be proliferated to become preferred species, and that the generated sulfide ions can prevent the activity of methanogenic bacteria and sulfate-reducing bacteria from being inhibited.

また本実施例においては、模擬排水に硫酸を添加する場合について説明したが、これには限定されず、硫酸イオンを添加することができるものであれば、例えば硫酸ナトリウム等の硫酸塩溶液でも同等の効果が得られる。   In this embodiment, the case where sulfuric acid is added to the simulated waste water has been described. However, the present invention is not limited to this, and any sulfate solution such as sodium sulfate can be used as long as sulfate ions can be added. The effect is obtained.

また本実施例においては、模擬排水に窒素ガスを吹き込む場合について説明したが、これには限定されず、模擬排水中に解離状態で存在する硫化物イオンを、非解離状態の硫化水素ガスとしてガス中に放出させることができるガスであればよく、酸素など嫌気性菌の消化汚泥に阻害を与えるガスではなく、硫化水素を含まない不活性ガスであれば、使用することができる。   In this embodiment, the case where nitrogen gas is blown into the simulated waste water has been described. However, the present invention is not limited to this, and sulfide ions existing in a dissociated state in the simulated waste water are gas as non-dissociated hydrogen sulfide gas. Any gas can be used as long as it is an inert gas that does not contain hydrogen sulfide, rather than a gas that inhibits digested sludge of anaerobic bacteria such as oxygen.

また本実施形態において、排水に常時窒素ガスを吹き込むことは経済的に好適ではないため、処理水の硫酸イオン濃度および硫化物イオン濃度が増加したときにのみ、それらが低下するまで吹き込むようにすることで、コストを低減させることができる。その際、上記実施例1によれば、窒素ガスの吹き込みの有無によりRUN3とRUN4との結果を比較すると、処理水の硫化物イオン濃度に明確な差があることから、硫化物濃度測定装置6により測定した硫化物イオン濃度を指標としてガス供給制御装置7により窒素ガスの供給の要否を判定し、窒素ガスの供給が必要であると判定されたときにガス供給装置8から供給されるようにすることで、コストを低減させて硫化水素による阻害を防止することができる。   In the present embodiment, it is not economically preferable to constantly blow nitrogen gas into the waste water. Therefore, only when the sulfate ion concentration and the sulfide ion concentration of the treated water are increased, the nitrogen gas is blown until they are reduced. Thus, the cost can be reduced. At that time, according to Example 1 described above, when the results of RUN3 and RUN4 are compared depending on whether nitrogen gas is blown or not, there is a clear difference in the sulfide ion concentration of the treated water. The gas supply control device 7 determines whether or not the supply of nitrogen gas is necessary using the sulfide ion concentration measured by the above as an index, and the gas supply device 8 supplies the nitrogen gas when it is determined that the supply of nitrogen gas is necessary. By doing so, the cost can be reduced and inhibition by hydrogen sulfide can be prevented.

(実施例2)
次に実施例2として、易分解性の排水と、分解速度が遅い排水とについて、それぞれメタン生成菌が優占種として働く場合と硫酸還元菌が優占種として働く場合の有機物分解速度を比較する試験を実施した。
(Example 2)
Next, as Example 2, the organic matter decomposition rate in the case where the methanogen works as the dominant species and the case where the sulfate-reducing bacteria work as the dominant species for the easily degradable wastewater and the wastewater with a slow decomposition rate are compared. A test was conducted.

本実施例においては、グルコースとポリペプトンとを主成分とする人工排水である易分解性の模擬排水と、これと比較して分解速度が遅いA工場排水とについて、実施例1のRUN1およびRUN4の2パターンの処理条件で、図4のガス測定装置60により排水中の有機物の分解により生成されるガス量により、有機物の分解速度の比較試験を実施した。ここで、RUN1の場合にはメタン生成菌が優占種として働き、RUN4の場合には硫酸還元菌が優占種として働いていると想定される。   In this example, the RUN1 and RUN4 of Example 1 were used for the easy-decomposable simulated wastewater that is an artificial wastewater mainly composed of glucose and polypeptone, and the A factory wastewater having a slow decomposition speed. A comparison test of the decomposition rate of the organic matter was performed by the gas measurement device 60 of FIG. 4 and the amount of gas generated by the decomposition of the organic matter in the waste water under the treatment conditions of two patterns. Here, in the case of RUN1, it is assumed that the methanogen acts as the dominant species, and in the case of RUN4, the sulfate-reducing bacteria act as the dominant species.

本実施例において、消化汚泥は予め図2の試験装置より瓶(図示せず)に取り、窒素パージを行って封入して保管した。   In this example, the digested sludge was previously taken in a bottle (not shown) from the test apparatus shown in FIG. 2, purged with nitrogen, sealed and stored.

次に、処理対象の排水61である模擬排水、工場排水をそれぞれ密閉可能な瓶62に入れ、リン酸バッファーを加えた後、一度窒素パージを行って蓋を閉じた。   Next, simulated waste water and factory waste water, which are waste water 61 to be treated, were placed in sealable bottles 62, added with phosphate buffer, and then purged with nitrogen once to close the lid.

その後、消化汚泥を瓶62に入れ、窒素パージを行って蓋を閉じた。これらの窒素パージは、本実施例で使用する消化汚泥に含まれる嫌気性微生物が空気(酸素)と接触しないようにするために行った。   Thereafter, the digested sludge was put in the bottle 62, and nitrogen was purged to close the lid. These nitrogen purges were performed to prevent anaerobic microorganisms contained in the digested sludge used in this example from coming into contact with air (oxygen).

次に、消化汚泥に対するそれぞれの排水61の有機物量が0.2kg/kgとなるように、排水61と消化汚泥量とを調整した。また、それぞれの排水61についてRUN4の条件で実施する瓶62には、排水のCODに対する硫酸イオン濃度が1/3になるように硫酸を添加した。   Next, the waste water 61 and the digested sludge amount were adjusted so that the organic matter amount of each waste water 61 with respect to the digested sludge was 0.2 kg / kg. Moreover, sulfuric acid was added to the bottle 62 implemented on the condition of RUN4 about each waste_water | drain 61 so that the sulfate ion density | concentration with respect to COD of a waste_water | drain might become 1/3.

その後瓶62を37℃の恒温水槽63内に保持し、瓶62内に生成したバイオガス64を水封したメスフラスコ65に導入してバイオガス量を所定時間間隔で測定し、バイオガス発生速度を、評価対象の有機物分解速度として算出した。   Thereafter, the bottle 62 is held in a constant temperature water bath 63 at 37 ° C., the biogas 64 generated in the bottle 62 is introduced into a water-sealed volumetric flask 65, the amount of biogas is measured at predetermined time intervals, and the biogas generation rate Was calculated as the organic matter decomposition rate to be evaluated.

人工排水を、RUN1およびRUN4の条件で処理した場合の有機物分解速度の算出結果を、図5に示す。   FIG. 5 shows the calculation result of the organic matter decomposition rate when the artificial drainage is treated under the conditions of RUN1 and RUN4.

図5に示すように、人工排水の処理においては、RUN1の条件、RUN4の条件共に有機物分解速度は同程度であった。これは、人工排水が分解し易く、メタン生成菌が優占種として働く場合と硫酸還元菌が優占種として働く場合とで差が出にくかったものと考えられる。   As shown in FIG. 5, in the treatment of artificial waste water, the organic matter decomposition rates were almost the same for both the RUN1 and RUN4 conditions. This is considered to be because the artificial wastewater is easily decomposed, and it is difficult to make a difference between the case where the methanogen acts as the dominant species and the case where the sulfate-reducing bacteria act as the dominant species.

また工場排水を、RUN1およびRUN4の条件で処理した場合の有機物分解速度の算出結果を、図6に示す。   Moreover, the calculation result of the organic matter decomposition speed at the time of processing a factory waste water on the conditions of RUN1 and RUN4 is shown in FIG.

図6に示すように、工場排水の処理においては、RUN4の条件における有機物分解速度がRUN1の条件における有機物分解速度の約2倍の速さを示した。   As shown in FIG. 6, in the treatment of factory waste water, the organic matter decomposition rate under the RUN4 condition was about twice as fast as the organic matter decomposition rate under the RUN1 condition.

以上の実施例2により、多くの気質を利用可能な硫酸還元菌を優占種とした消化汚泥を用いることで、分解しづらい低分解性の排水に対しては、有機物分解速度が向上することが示唆された。   By using the digested sludge with sulfate-reducing bacteria that can use a lot of temperament as the dominant species, the organic matter decomposition rate is improved for low-decomposable wastewater that is difficult to decompose. Was suggested.

《第2実施形態》
本発明の第2実施形態として、硫黄含有量が不明であるかまたは、変化する可能性のある排水を処理する排水処理装置1Bについて説明する。
<< Second Embodiment >>
As a second embodiment of the present invention, a wastewater treatment apparatus 1B that treats wastewater whose sulfur content is unknown or that may change will be described.

本発明の第2実施形態による排水処理装置1Bの構成について、図7を参照して説明する。   The configuration of the wastewater treatment apparatus 1B according to the second embodiment of the present invention will be described with reference to FIG.

本実施形態による排水処理装置1Bは、第1実施形態の排水処理装置1Aに排水中の硫黄濃度を測定する硫黄濃度測定装置9を付加した構成である。この硫黄濃度測定装置9では、全硫黄、または硫酸イオン濃度を測定する。   The wastewater treatment apparatus 1B according to the present embodiment has a configuration in which a sulfur concentration measurement device 9 that measures the sulfur concentration in the wastewater is added to the wastewater treatment apparatus 1A of the first embodiment. The sulfur concentration measuring device 9 measures the total sulfur or sulfate ion concentration.

本実施形態による排水処理装置1Bの硫酸塩添加制御装置4は、有機物濃度測定装置3で測定した有機物濃度と、硫黄濃度測定装置9で測定した硫黄濃度とに基づいて、硫酸イオン濃度が有機物濃度測定装置3で測定された有機物濃度の1/3よりも高い値になるように、硫酸塩の添加量を算出する。つまり、硫黄濃度測定装置9で測定した硫黄濃度と添加する硫酸塩とを合わせることにより、硫酸イオン濃度が有機物濃度測定装置3で測定された有機物濃度の1/3よりも高い値になるようにする。   The sulfate addition control device 4 of the wastewater treatment apparatus 1B according to the present embodiment is configured such that the sulfate ion concentration is based on the organic matter concentration measured by the organic matter concentration measuring device 3 and the sulfur concentration measured by the sulfur concentration measuring device 9. The amount of sulfate added is calculated so as to be a value higher than 1/3 of the organic substance concentration measured by the measuring device 3. That is, by combining the sulfur concentration measured by the sulfur concentration measuring device 9 and the sulfate to be added, the sulfate ion concentration is higher than 1/3 of the organic concentration measured by the organic concentration measuring device 3. To do.

そして、硫酸塩添加制御装置4により、算出された添加量の硫酸塩5aが硫酸塩添加装置として機能する注入ポンプ5bにより排水に添加されるように制御される。   Then, the sulfate addition control device 4 controls the calculated addition amount of the sulfate 5a to be added to the wastewater by the injection pump 5b functioning as the sulfate addition device.

このように硫酸イオン濃度が有機物濃度の1/3よりも高い値になるように硫酸塩5aが排水に添加されることにより、硫酸還元菌との競合でメタン生成菌が減少する一方硫酸還元菌が増殖し、有機物を分解する反応速度が高速化される。   Thus, by adding sulfate 5a to the waste water so that the sulfate ion concentration is higher than 1/3 of the organic matter concentration, methanogenic bacteria are reduced by competition with sulfate-reducing bacteria, while sulfate-reducing bacteria. And the reaction rate for decomposing organic matter is increased.

また第1実施形態における排水処理装置1Aと同様に、硫化物濃度測定装置6において硫化物濃度が測定され、この測定値に基づいて必要であれば窒素ガスボンベ8aの窒素ガスがガス供給装置として機能するブロア8bにより反応槽2に供給されることにより、硫酸還元菌により生成された解離状態の硫化物イオンを非解離状態の硫化水素ガスとして放出させ、硫酸を添加したことによる、硫化水素による阻害が防止される。   Similarly to the wastewater treatment apparatus 1A in the first embodiment, the sulfide concentration is measured by the sulfide concentration measuring device 6, and if necessary, the nitrogen gas in the nitrogen gas cylinder 8a functions as a gas supply device based on this measured value. The dissociated sulfide ions produced by the sulfate reducing bacteria are released as non-dissociated hydrogen sulfide gas by being supplied to the reaction tank 2 by the blower 8b, and the hydrogen sulfide is inhibited by adding sulfuric acid. Is prevented.

本実施形態において、硫化物濃度測定装置6により反応槽2内の硫化物濃度を測定する際は、反応槽2の形状により反応槽2内で濃度がほぼ均一と考えられる場合には反応槽2内の溶液で測定してもよいし、反応槽2内で濃度にむらがあると考えられる場合には反応槽2の出口付近または出口の外側で測定するようにしてもよい。   In this embodiment, when the sulfide concentration measuring device 6 measures the sulfide concentration in the reaction tank 2, the reaction tank 2 is considered to have a substantially uniform concentration in the reaction tank 2 due to the shape of the reaction tank 2. It may be measured with the solution inside, or when it is considered that the concentration is uneven in the reaction tank 2, it may be measured near the outlet of the reaction tank 2 or outside the outlet.

《第3実施形態》
本発明の第3実施形態としての排水処理装置1Cについて説明する。本実施形態による排水処理装置1Cは、第1実施形態の排水処理装置1Aまたは第2実施形態の排水処理装置1Bの反応槽2内に分離膜10および散気装置11を付加し、さらに処理済みの処理水を分離膜10を経由して反応槽2から流出させるポンプ12を付加した構成である。この散気装置11は、分離膜10の下部から散気するように設置されている。
<< Third Embodiment >>
A wastewater treatment apparatus 1C as a third embodiment of the present invention will be described. The wastewater treatment apparatus 1C according to the present embodiment adds a separation membrane 10 and an air diffuser 11 to the reaction tank 2 of the wastewater treatment apparatus 1A of the first embodiment or the wastewater treatment apparatus 1B of the second embodiment, and is further processed. The pump 12 for flowing the treated water out of the reaction tank 2 through the separation membrane 10 is added. The air diffuser 11 is installed so as to diffuse from the lower part of the separation membrane 10.

本実施形態においては、窒素ガスボンベ8aから反応槽2に窒素ガスを供給する際に散気装置11から散気されることにより供給するように構成し、ガス供給制御装置7により窒素ガスの供給が必要であると判定されるとき、またはポンプ12が稼働して反応槽2から処理済みの処理水が分離膜10を経由して流出されるときに、窒素ガスが散気装置11から散気されることで吹き込まれるようにする。   In this embodiment, when supplying nitrogen gas from the nitrogen gas cylinder 8 a to the reaction tank 2, the gas is supplied by being diffused from the air diffuser 11, and the gas supply control device 7 supplies the nitrogen gas. Nitrogen gas is diffused from the diffuser 11 when it is determined that it is necessary or when the treated water is discharged from the reaction tank 2 through the separation membrane 10 when the pump 12 is operated. To be blown in.

このように散気装置11およびポンプ12を作動させることで、反応槽2から処理水を流出させる際に分離膜10により固形物が除去され処理水の水質が向上するとともに、散気装置11からの散気により分離膜10の目詰まりを防止することができる。また、反応槽2からの菌の流出を防止することができ、硫酸還元菌の増殖速度を増加させることができる。   By operating the air diffuser 11 and the pump 12 in this way, the solid matter is removed by the separation membrane 10 when the treated water flows out of the reaction tank 2, and the quality of the treated water is improved. The clogging of the separation membrane 10 can be prevented by the air diffusion. Moreover, the outflow of bacteria from the reaction tank 2 can be prevented, and the growth rate of sulfate-reducing bacteria can be increased.

1A,1B,1C…排水処理装置
2…反応槽
3…有機物濃度測定装置
4…硫酸塩添加制御装置
5…硫酸塩添加装置
5a…硫酸塩
5b…注入ポンプ
6…硫化物濃度測定装置
7…ガス供給制御装置
8…ガス供給装置
8a…窒素ガスボンベ
8b…ブロア
9…硫黄濃度測定装置
10…分離膜
11…散気装置
12…ポンプ
20…排水処理装置
21…消化汚泥
22…反応槽
23…恒温水槽
24…温度計
25…温度コントローラ
26…温度計
27…ヒーター
28…原水槽
29…模擬排水
30…スターラー
31…撹拌子
32…原水ポンプ
33…タイマ
34…撹拌機
35…タイマ
36…処理水
37…処理水ポンプ
38…タイマ
39…処理水槽
40…pH計
41…アルカリ注入ポンプ
42…アルカリ溶液
43…pHコントローラ
44…バイオガス
45…トラップ
46…脱硫装置
47…ガスメータ
48…ガス採取口
49…ピンチコック
50…窒素ガスボンベ
51…バブラー
52…流量計
53…タイマ
60…ガス測定装置
61…排水
62…瓶
63…恒温水槽
64…バイオガス
65…メスフラスコ
DESCRIPTION OF SYMBOLS 1A, 1B, 1C ... Waste water treatment device 2 ... Reaction tank 3 ... Organic substance concentration measuring device 4 ... Sulfate addition control device 5 ... Sulfate addition device 5a ... Sulfate 5b ... Injection pump 6 ... Sulfide concentration measuring device 7 ... Gas Supply control device 8 ... Gas supply device 8a ... Nitrogen gas cylinder 8b ... Blower 9 ... Sulfur concentration measuring device 10 ... Separation membrane 11 ... Aeration device 12 ... Pump 20 ... Waste water treatment device 21 ... Digested sludge 22 ... Reaction tank 23 ... Constant temperature water tank 24 ... Thermometer 25 ... Temperature controller 26 ... Thermometer 27 ... Heater 28 ... Raw water tank 29 ... Simulated drainage 30 ... Stirrer 31 ... Stirrer 32 ... Raw water pump 33 ... Timer 34 ... Stirrer 35 ... Timer 36 ... Treated water 37 ... Treated water pump 38 ... Timer 39 ... Treated water tank 40 ... pH meter 41 ... Alkaline injection pump 42 ... Alkaline solution 43 ... pH controller 44 ... Ogas 45 ... Trap 46 ... Desulfurization device 47 ... Gas meter 48 ... Gas sampling port 49 ... Pinch cock 50 ... Nitrogen gas cylinder 51 ... Bubbler 52 ... Flow meter 53 ... Timer 60 ... Gas measurement device 61 ... Waste water 62 ... Bottle 63 ... Constant temperature water bath 64 ... biogas 65 ... volumetric flask

Claims (6)

処理対象の排水の有機物濃度を測定する有機物濃度測定装置と、
硫酸イオン濃度が、前記有機物濃度測定装置で測定した有機物濃度の1/3よりも高くなるように、硫酸塩を前記処理対象の排水に添加する硫酸塩添加装置と、
嫌気性菌を保持し、前記処理対象の排水を取り込んで有機物を分解させる反応槽と、
前記反応槽において有機物の分解処理が行われた処理水の硫化物濃度を測定する硫化物濃度測定装置と、
前記硫化物濃度測定装置で測定した硫化物濃度が、予め設定された閾値よりも高いときに前記反応槽に不活性ガスを吹き込み、前記閾値よりも低いときには不活性ガスの吹き込みを停止するガス供給装置と、
を備えることを特徴とする排水処理装置。
An organic matter concentration measuring device that measures the organic matter concentration of the wastewater to be treated;
A sulfate addition device for adding sulfate to the wastewater to be treated so that the sulfate ion concentration is higher than 1/3 of the organic concentration measured by the organic concentration measurement device;
A reaction tank that holds anaerobic bacteria and takes in the wastewater to be treated to decompose organic matter,
A sulfide concentration measuring device for measuring the sulfide concentration of treated water in which organic matter decomposition treatment is performed in the reaction vessel;
Gas supply that blows inert gas into the reaction vessel when the sulfide concentration measured by the sulfide concentration measuring device is higher than a preset threshold value, and stops blowing inert gas when the sulfide concentration is lower than the threshold value Equipment,
A wastewater treatment apparatus comprising:
前記処理対象の排水の硫黄濃度を測定する硫黄濃度測定装置をさらに有し、
前記硫酸塩添加装置は、前記硫黄濃度測定装置で測定された硫黄濃度と添加する硫酸塩とを合わせることにより、硫酸イオン濃度が、前記有機物濃度測定装置で測定された有機物濃度の1/3よりも高い値になるように硫酸塩を添加する
ことを特徴とする請求項1に記載の排水処理装置。
A sulfur concentration measuring device for measuring the sulfur concentration of the waste water to be treated;
The sulfate addition device combines the sulfur concentration measured by the sulfur concentration measurement device with the sulfate to be added, so that the sulfate ion concentration is more than 1/3 of the organic matter concentration measured by the organic concentration measurement device. The waste water treatment apparatus according to claim 1, wherein sulfate is added so as to have a high value.
前記反応槽内に設置された分離膜と、前記分離膜の下部に設置された散気装置と、前記反応槽から、有機物の分解処理が行われた処理水を前記分離膜を経由して流出させるポンプとをさらに有し、
前記ガス供給装置は、前記硫化物濃度測定装置で測定した硫化物濃度が予め設定された閾値よりも高いとき、または前記ポンプが稼働するときに、不活性ガスを前記散気装置から散気させることで反応槽に吹き込む
ことを特徴とする請求項1または2に記載の排水処理装置。
A separation membrane installed in the reaction tank, an air diffuser installed in the lower part of the separation membrane, and treated water from which the organic substance has been decomposed outflowed from the reaction tank via the separation membrane. And a pump
The gas supply device diffuses an inert gas from the air diffuser when the sulfide concentration measured by the sulfide concentration measuring device is higher than a preset threshold value or when the pump is operated. The waste water treatment apparatus according to claim 1, wherein the waste water treatment apparatus is blown into the reaction tank.
排水処理装置が、
処理対象の排水の有機物濃度を測定し、
硫酸イオン濃度が、前記有機物濃度測定装置で測定した有機物濃度の1/3よりも高くなるように、硫酸塩を前記処理対象の排水に添加し、
嫌気性菌を保持した反応槽に、前記処理対象の排水を取り込んで有機物を分解させ、
前記反応槽において有機物の分解処理が行われた処理水の硫化物濃度を測定し、
前記測定した硫化物濃度が、予め設定された閾値よりも高いときに前記反応槽に不活性ガスを吹き込み、前記閾値よりも低いときには不活性ガスの吹き込みを停止する、
ことを特徴とする排水処理方法。
Wastewater treatment equipment
Measure the organic matter concentration in the wastewater to be treated,
Sulfate is added to the wastewater to be treated so that the sulfate ion concentration is higher than 1/3 of the organic matter concentration measured by the organic matter concentration measuring device,
Into the reaction tank holding anaerobic bacteria, the wastewater to be treated is taken to decompose organic matter,
Measure the sulfide concentration of treated water in which organic matter decomposition treatment was performed in the reaction vessel,
When the measured sulfide concentration is higher than a preset threshold value, an inert gas is blown into the reaction tank, and when the measured sulfide concentration is lower than the threshold value, the blowing of the inert gas is stopped.
A wastewater treatment method characterized by that.
前記処理対象の排水の硫黄濃度を測定し、
前記硫酸塩を添加するときに、測定された硫黄濃度と添加する硫酸塩とを合わせることにより、硫酸イオン濃度が、前記測定された有機物濃度の1/3よりも高い値になるように添加する
ことを特徴とする請求項4に記載の排水処理方法。
Measure the sulfur concentration of the wastewater to be treated,
When adding the sulfate, by adding the measured sulfur concentration to the added sulfate, the sulfate ion concentration is added to a value higher than 1/3 of the measured organic concentration. The wastewater treatment method according to claim 4.
前記反応槽に不活性ガスを吹き込むときは、前記測定した硫化物濃度が予め設定された閾値よりも高いとき、または前記反応槽内に設置された分離膜を経由して処理水を流出させるポンプが稼働するときに、不活性ガスを前記分離膜の下部に設置された散気装置から散気させることで反応槽に吹き込む
ことを特徴とする請求項4または5に記載の排水処理方法。
When the inert gas is blown into the reaction tank, the pump for causing the treated water to flow out when the measured sulfide concentration is higher than a preset threshold or through a separation membrane installed in the reaction tank The wastewater treatment method according to claim 4 or 5, wherein when the is operated, an inert gas is diffused from a diffuser installed at a lower portion of the separation membrane to blow into the reaction tank.
JP2010057837A 2010-03-15 2010-03-15 Apparatus and method for wastewater treatment Pending JP2011189278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010057837A JP2011189278A (en) 2010-03-15 2010-03-15 Apparatus and method for wastewater treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010057837A JP2011189278A (en) 2010-03-15 2010-03-15 Apparatus and method for wastewater treatment

Publications (1)

Publication Number Publication Date
JP2011189278A true JP2011189278A (en) 2011-09-29

Family

ID=44794771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010057837A Pending JP2011189278A (en) 2010-03-15 2010-03-15 Apparatus and method for wastewater treatment

Country Status (1)

Country Link
JP (1) JP2011189278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000400A (en) * 2013-06-18 2015-01-05 水ing株式会社 Fixed bed type biological denitrification method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000400A (en) * 2013-06-18 2015-01-05 水ing株式会社 Fixed bed type biological denitrification method and device

Similar Documents

Publication Publication Date Title
US20140360933A1 (en) Methods and apparatus for nitrogen removal from wastewater
JP5481255B2 (en) Waste water treatment apparatus and waste water treatment method
Chen et al. Tertiary nitrogen removal using simultaneous partial nitrification, anammox and denitrification (SNAD) process in packed bed reactor
JP5197223B2 (en) Water treatment system
CN104276660A (en) Sequencing-batch real-time control sewage treatment device
US9359240B2 (en) Method for desulphuration of the digestate and the biogas of a digester, and biogas production facility implementing said method
JP2010269255A (en) Sewage treatment method
JP2011078938A (en) Waste water treatment method
KR102311712B1 (en) Shortcut Nitrogen Removal Process and System by using Partial Nitritation in SBBR(Sequencing Batch Biofilm Reactor) with Media
WO2012028778A1 (en) Method for purifying water
EP2279153B1 (en) Method for treating and/or pretreating liquid manure or biogas plant reject for the elimination of harmful substances, particularly nitrogen, phosphorus, and odor molecules
JP2011189278A (en) Apparatus and method for wastewater treatment
KR20100102818A (en) Advanced wastewater treatment apparatus for water reuse with sludge reduction in the process and wastewater treatment method using the same
JP4735561B2 (en) Method for treating wastewater containing sulfur-based COD components
CN204138426U (en) A kind of sequence batch (controls waste disposal plant in real time
JP2011062656A (en) Nitrogen-containing wastewater treatment method
TWI564253B (en) Wastewater treatment system
KR101449194B1 (en) The continuous monitoring device for biological reactor
CN202430086U (en) Device for synthesizing and treating landfill leachate
TW202202454A (en) Aerobic biological processing method and device
JP2004275820A (en) Wastewater treatment apparatus
CN214881325U (en) Device for simultaneously removing hydrogen sulfide and nitric acid nitrogen
JP2007044661A (en) Methane fermentation method
JP2008238026A (en) Wastewater treatment apparatus
KR101367711B1 (en) Operating method of submerged membrane bioreactor