JP2011188582A - Method for obtaining electromotive force from both ends of coil with both permanent magnet and coil in stationary state - Google Patents

Method for obtaining electromotive force from both ends of coil with both permanent magnet and coil in stationary state Download PDF

Info

Publication number
JP2011188582A
JP2011188582A JP2010049074A JP2010049074A JP2011188582A JP 2011188582 A JP2011188582 A JP 2011188582A JP 2010049074 A JP2010049074 A JP 2010049074A JP 2010049074 A JP2010049074 A JP 2010049074A JP 2011188582 A JP2011188582 A JP 2011188582A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
prime
electromotive force
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010049074A
Other languages
Japanese (ja)
Inventor
Tetsuo Kato
哲雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010049074A priority Critical patent/JP2011188582A/en
Publication of JP2011188582A publication Critical patent/JP2011188582A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for obtaining an electromotive force from both ends of a coil, with both permanent magnets and the coil being a stationary state. <P>SOLUTION: Prime number magnetic flux changes with time; which can be explained by an experimental fact that the coil in a magnetic field in contacting or approaching the same magnetic poles of a plurality of permanent magnets in point, line, or surface, i.e., in a prime number magnetic field performs motion and interacts with the permanent magnets and a theoretical research in which physical contents drawn from equation of motion of particles having magnetic moment in the prime number magnetic fields are made to correspond to the electromagnetism; and by newly arranging prime number magnetic fields in the coil in the stationary state inside the prime number magnetic fields, it is possible to obtain electromotive force from both ends of a coil by the resonance vibration of the prime number magnetic flux. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

ともに静止状態の永久磁石とコイルより、コイルの両端から起電力を得るという電磁現象の原理的事象を得る方法に関するものである。   Both relate to a method of obtaining a fundamental phenomenon of an electromagnetic phenomenon in which an electromotive force is obtained from both ends of a coil from a stationary permanent magnet and a coil.

1824年アラゴ−は磁石の回転に伴い銅の円板が回転するという磁気現象を発見した。   In 1824 Arago discovered the magnetic phenomenon that the copper disk rotates as the magnet rotates.

1831年ファラディは中空のコイルの中で磁石を運動させるとコイルの両端に起電力が現れるという電磁現象を発見した。   In 1831 Faraday discovered an electromagnetic phenomenon in which an electromotive force appears at both ends of a coil when a magnet is moved in a hollow coil.

アラゴ−、ファラディの実験に共通していえることは磁石の運動により電磁現象が現れることである。   What is common to Arago and Faraday experiments is that the electromagnetic phenomenon appears due to the movement of the magnet.

しかし磁石、コイルともに運動させずにコイルの両端から起電力が現れるという電磁現象は現段階では見当たらない。   However, the electromagnetic phenomenon that an electromotive force appears from both ends of the coil without moving both the magnet and the coil is not found at this stage.

特願2008−140318号Japanese Patent Application No. 2008-140318 特願2008−256979号Japanese Patent Application No. 2008-256979 特願2008−329172号Japanese Patent Application No. 2008-329172 特願2009−42186号Japanese Patent Application No. 2009-42186 特願2009−160369号Japanese Patent Application No. 2009-160369 特願2009−238120号Japanese Patent Application No. 2009-238120 特願2010−3586号Japanese Patent Application No. 2010-3586

量子力学を学ぶための解析力学入門Introduction to analytical mechanics to learn quantum mechanics 大学講義シリ−ズ量子力学概論Introduction to university lecture series quantum mechanics

磁石とコイルよりコイルの両端から起電力を得るには磁石の運動またはコイルの運動が電気磁気学の基本条件である。   To obtain an electromotive force from both ends of a coil from a magnet and a coil, the movement of the magnet or the movement of the coil is a basic condition of electromagnetism.

電気磁気学の基本条件とは矛盾するが磁石もコイルも運動させずにコイルの両端から起電力が得られればエネルギ−効率の観点からも有益な発電システムとなる。   Although contradicting the basic conditions of electromagnetism, if an electromotive force can be obtained from both ends of the coil without moving the magnet and the coil, a power generation system that is beneficial from the viewpoint of energy efficiency is obtained.

従って発明が解決しようとする課題は、ともに静止状態の永久磁石とコイルよりコイルの両端から起電力を得る方法である。   Therefore, the problem to be solved by the invention is a method of obtaining electromotive force from both ends of a coil from a stationary permanent magnet and a coil.

ともに静止状態の永久磁石とコイルよりコイルの両端から起電力を得るという発想は電気磁気学の基本条件とは矛盾する考え方であり、このような新規の電磁現象を得るためには実験と理論の両面からの研究が必要である。   The idea of obtaining an electromotive force from both ends of a coil from a stationary permanent magnet and coil is inconsistent with the basic conditions of electromagnetism, and in order to obtain such a new electromagnetic phenomenon, experiment and theory Research from both sides is necessary.

実験面からは、複数の永久磁石の同磁極を点、線、面で接触または近接させたときの磁場即ち素数磁場内に糸で吊したコイルを置くとコイルは直線運動とか回転運動をし、銅の丸棒を銅線でコイル状に巻いたものもやはり運動する。但し軟鉄の丸棒を銅線でコイル状に巻いたものはほとんど運動しない。また素数磁場内のコイルは永久磁石と力の作用を及ぼし合う。   From the experimental aspect, when a coil suspended by a thread is placed in the magnetic field when the same magnetic poles of a plurality of permanent magnets are contacted or approached by points, lines, or surfaces, that is, a prime magnetic field, the coil moves linearly or rotationally. A copper round bar coiled with copper wire also moves. However, a soft iron round bar coiled with copper wire hardly moves. In addition, the coil in the prime magnetic field acts as a force with the permanent magnet.

このような実験事実は素数磁場内のコイルを横切る素数磁束が時間変化していることにより説明でき、従って素数磁束は時間変化している。   This experimental fact can be explained by the fact that the prime flux across the coil in the prime magnetic field is time-varying, so the prime flux is time-varying.

素数磁束の時間変化により素数磁場内の静止状態のコイルには起電力が誘導されコイルの両端に起電力が現れる。   An electromotive force is induced in the stationary coil in the prime magnetic field due to a change in the prime magnetic flux with time, and an electromotive force appears at both ends of the coil.

理論面からは、素数磁束の整列分布または素数磁場で実現される運動を説明する変分原理の概念を有する素数に関する数論式より導かれる、数値計算を満足する数論的最小作用の法則を数論的微分方程式で記し、数論的微分方程式に基礎物理量を与え、数値計算を満足する数論的物理的微分方程式に書き換え、更に数論的物理的微分方程式を次元統一の観点から素数磁場内で磁気モ−メントをもつ粒子の運動を説明する運動方程式に書き換える。運動方程式の意味する物理内容を電磁現象に対応させることにより素数磁場内の静止状態のコイルに(プランク定数)×(角振動数)に比例した電気エネルギ−が誘導されコイルの両端に起電力が現れることが説明できる。   From the theoretical point of view, the law of numerical minimum action satisfying the numerical calculation, derived from the number theoretic equation regarding the prime number having the concept of variational principle that explains the alignment distribution of the prime magnetic flux or the motion realized by the prime magnetic field, Write in the mathematical differential equation, give the basic physical quantity to the mathematical differential equation, rewrite it to the mathematical physical differential equation that satisfies the numerical calculation, and further renumber the mathematical physical differential equation from the viewpoint of dimensional unification The equation of motion is rewritten to explain the motion of particles with magnetic moment. By making the physical content of the equation of motion correspond to the electromagnetic phenomenon, electric energy proportional to (Planck constant) x (angular frequency) is induced in the stationary coil in the prime magnetic field, and electromotive force is generated at both ends of the coil. Explain that it appears.

実験、理論の両面から共通していえることは素数磁束の時間変化であり、従って素数磁場内の静止状態のコイルの両端に起電力が現れるが、より大きな起電力を得るためにコイル内に新たな素数磁場即ち同磁極を点、線、面で接触または近接させた永久磁石を配置することによる素数磁束の共鳴振動によりコイルの両端からより大きな起電力が得られる。   What is common in both experiments and theory is the time variation of the prime magnetic flux, and therefore an electromotive force appears at both ends of the stationary coil in the prime magnetic field, but a new electromotive force is generated in the coil to obtain a larger electromotive force. A large electromotive force can be obtained from both ends of the coil due to the resonance vibration of the prime magnetic flux by arranging a permanent magnet having a large prime magnetic field, that is, the same magnetic pole in contact with or close to the point, line, or surface.

二つの素数磁場の永久磁石は、同一の残留磁束密度、保持力を有することが好ましい。またコイル内の永久磁石は振動自在に保持されていれば永久磁石自体の振動の効果も期待できるので好ましい。   The two prime number permanent magnets preferably have the same residual magnetic flux density and coercive force. In addition, it is preferable that the permanent magnet in the coil be held so as to vibrate, since the effect of vibration of the permanent magnet itself can be expected.

従って発明を解決するための手段は、素数磁場内の静止状態のコイル内に新たな素数磁場即ち同磁極を点、線、面で接触または近接させた永久磁石を配置することにある。   Accordingly, a means for solving the problem is to arrange a permanent magnet in which a new prime magnetic field, that is, the same magnetic pole is brought into contact or close in a point, line, or plane in a stationary coil in the prime magnetic field.

本発明は外から力の作用とか仕事を与えなくても起電力を得ることができるのでエネルギ−効率という観点からみれば優れた効果を有する。   Since the present invention can obtain an electromotive force without applying force or work from the outside, it has an excellent effect from the viewpoint of energy efficiency.

起電力の持続的供給の観点からみれば永続的な供給の効果を有する。   From the viewpoint of sustainable supply of electromotive force, it has a permanent supply effect.

ともに静止状態の永久磁石とコイルより、コイルの両端から起電力を得る方法の概略図である。It is the schematic of the method of obtaining an electromotive force from the both ends of a coil from the permanent magnet and coil which are both stationary.

ともに静止状態の永久磁石とコイルより起電力を得るという発想は電気磁気学の基本条件の外側に位置する条件であることから実験と理論の両面からの研究が必要であり、特に理論面からは新たな概念を導入した数理思考が求められる。   Since the idea of obtaining an electromotive force from a stationary permanent magnet and coil is a condition that lies outside the basic conditions of electromagnetism, both experimental and theoretical research is required. Mathematical thinking that introduces new concepts is required.

新たな数理思考は本発明の素数磁場内の静止状態のコイルの両端に起電力が現れることを説明する必要があり、そのためには素数磁場内で磁気モ−メントをもつ粒子の運動を記述する数理理論を求める必要がある。   The new mathematical thinking needs to explain that the electromotive force appears at both ends of the stationary coil in the prime magnetic field of the present invention, and for that purpose, describe the motion of particles with a magnetic moment in the prime magnetic field. It is necessary to seek mathematical theory.

数理理論は本発明においては素数磁場内で磁気モ−メントをもつ粒子の運動方程式を求めることである。   In the present invention, the mathematical theory is to obtain an equation of motion of a particle having a magnetic moment in a prime magnetic field.

運動方程式を求める手法は、解析力学ではL(ラグランジェアン)を定義し、作用積分(数式1)の変分が0となるように場の量の満たす微分方程式を求めることにある。   The method for obtaining the equation of motion is to define L (Lagrange Jean) in analytical mechanics and to obtain a differential equation satisfying the field quantity so that the variation of the action integral (Equation 1) becomes zero.

Figure 2011188582
Figure 2011188582

本発明では素数磁場内の磁気モ−メントをもつ粒子のLを最初から具体的に定義するのは困難であるので、数値計算を満足する素数に関する数論式を変分原理に対応させるという新たな概念を導入する。新たな概念を導入した数理理論の概略を以下に記す。   In the present invention, it is difficult to specifically define L of a particle having a magnetic moment in a prime magnetic field from the beginning. Therefore, a new theorem formula relating a prime number satisfying a numerical calculation is made to correspond to a variational principle. New concepts. The outline of mathematical theory introducing a new concept is described below.

変分原理に対応した数値計算を満足する素数に関する数論式を特許文献5に記した数式(数式2)とする。(数式2)は具体的には素数磁場の運動方程式を表示している。(数式2)は簡単に(数式3)と書ける。(数式3)は素数磁場の数論式表示の運動方程式であるから物理式としての運動方程式を求めるには(数式3)に写像とか座標変換そして変数変換を施し複素平面で記すのが適当である。   A number theoretic expression relating to a prime number satisfying a numerical calculation corresponding to the variational principle is represented by an expression (Expression 2) described in Patent Document 5. Specifically, (Expression 2) represents a motion equation of a prime magnetic field. (Equation 2) can be simply written as (Equation 3). Since (Equation 3) is an equation of motion expressed in the number theoretic expression of the prime magnetic field, it is appropriate to write a complex plane by mapping or coordinate transformation and variable transformation in (Equation 3) to obtain the equation of motion as a physical equation. is there.

Figure 2011188582
Figure 2011188582

Figure 2011188582
Figure 2011188582

詳細な数式導出の課程は省略するが、(数式3)に特許文献7に記した等角写像(数式4)と複素平面への座標変換(数式5)を施し、更に(数式6)で記される変数変換を施すことにより、変分原理に対応し数値計算を満足する最小作用の法則を数論的微分方程式(数式7)として記す。   The detailed mathematical formula derivation process is omitted, but the conformal mapping (Formula 4) and the coordinate conversion to the complex plane (Formula 5) described in Patent Document 7 are applied to (Formula 3), and further expressed by (Formula 6). By applying the variable transformation, the law of minimum action corresponding to the variational principle and satisfying the numerical calculation is described as a mathematical differential equation (Formula 7).

Figure 2011188582
Figure 2011188582

Figure 2011188582
Figure 2011188582

Figure 2011188582
Figure 2011188582

Figure 2011188582
Figure 2011188582

(数式7)は幾何学的な数式として(数式8)と書かれ(数式8)に(数式6)を適用すると当然数値計算を満足している。   (Equation 7) is written as (Equation 8) as a geometrical equation, and when (Equation 6) is applied to (Equation 8), the numerical calculation is naturally satisfied.

Figure 2011188582
Figure 2011188582

(数式8)に基礎物理量であるプランク定数、静止電子質量を与え、数値計算を満足する幾何学的な数式として(数式9)が求まる。(数式9)は数値計算を満足する数論的物理的微分方程式(数式10)に書き換えられる。   (Equation 9) is obtained as a geometrical equation satisfying numerical calculation by giving a Planck constant and a static electron mass which are basic physical quantities to (Equation 8). (Equation 9) can be rewritten as a number-theoretic physical differential equation (Equation 10) that satisfies the numerical calculation.

Figure 2011188582
Figure 2011188582

Figure 2011188582
Figure 2011188582

(数式10)を次元統一の観点より微細構造定数を用いて書き換えると、素数磁場内で磁気モ−メントをもつ粒子の運動方程式とみなされる(数式11)となる。(数式11)の左辺の第1項は素数磁場と磁気モ−メントをもつ粒子との相互作用エネルギ−を意味し、左辺の第2項は位置エネルギ−を意味していると考えることができる。また(数式11)はシュレディンガ−の運動方程式(数式12)と類似した形式となっている。(数式11)と(数式12)の主たる相違点は位置エネルギ−の項が正と負になっている点である。このことは素数磁場での反ク−ロン力を説明する。         When (Equation 10) is rewritten using a fine structure constant from the viewpoint of unification of dimensions, (Equation 11) is regarded as an equation of motion of particles having a magnetic moment in a prime magnetic field. It can be considered that the first term on the left side of (Equation 11) means the interaction energy between the prime magnetic field and the particles having the magnetic moment, and the second term on the left side means the potential energy. . (Formula 11) is similar to Schrodinger's equation of motion (Formula 12). The main difference between (Formula 11) and (Formula 12) is that the potential energy term is positive and negative. This explains the anti-cron force in a prime magnetic field.

Figure 2011188582
Figure 2011188582

Figure 2011188582
Figure 2011188582

次に運動方程式の意味する物理内容を電磁現象に対応させることが求められる。運動方程式の意味する物理内容は、素数磁場と磁気モ−メントをもつ粒子との相互作用エネルギ−はゼ−タ関数上に(プランク定数)×(角振動数)に比例したエネルギ−として誘導されることを意味し、エネルギ−は回転エネルギ−などの力学的エネルギ−とか電気エネルギ−(エレクトロンボルト)に変換される。   Next, it is required to make the physical content of the equation of motion correspond to the electromagnetic phenomenon. The physical content of the equation of motion is that the interaction energy between a particle with a prime magnetic field and a magnetic moment is induced on the zeta function as energy proportional to (Planck constant) x (angular frequency). Energy is converted into mechanical energy such as rotational energy or electrical energy (electron volts).

ゼ−タ関数は特許文献5に記した数式(数式13)で表されるが運動方程式を導出する際の過程での計算により(数式14)に移され(数式14)の絶対値関数のグラフを描くことによりゼ−タ関数は複素平面に垂直上方に伸びるスパイラル曲線か若しくは垂直上方に位置する複数の単一ル−プとなる。   The zeta function is expressed by the equation (Equation 13) described in Patent Document 5, but is transferred to (Equation 14) by the calculation in the process of deriving the equation of motion, and the graph of the absolute value function of (Equation 14) The zeta function becomes a spiral curve extending vertically upward in the complex plane or a plurality of single loops positioned vertically upward.

Figure 2011188582
Figure 2011188582

Figure 2011188582
Figure 2011188582

スパイラル曲線とか複数の単一ル−プという幾何学的な形状を意味するゼ−タ関数を幾何学的な形状を有するコイルにそのまま対応させて考えれば、運動方程式の意味する物理内容はコイル上に(プランク定数)×(角振動数)に比例した電気エネルギ−が誘導されコイルの両端に起電力が現れるという電磁現象を説明する。   If a zeta function that represents a geometric shape such as a spiral curve or a plurality of single loops is directly associated with a coil having a geometric shape, the physical content of the equation of motion is Next, an electromagnetic phenomenon in which electric energy proportional to (Planck constant) × (angular frequency) is induced and electromotive force appears at both ends of the coil will be described.

以上の記述により理論面から素数磁場内のコイルの両端に起電力が現れることが説明でき、また実験面からは素数磁場内のコイルは運動するとか、永久磁石と力の作用を及ぼし合うなどの実験事実がある。   From the above description, it can be explained that the electromotive force appears at both ends of the coil in the prime magnetic field from the theoretical side, and from the experimental side, the coil in the prime magnetic field moves or the permanent magnet acts with the force. There are experimental facts.

従って理論と実験の両面から共通していえることは素数磁束は時間変化していることである。素数磁束の時間変化はゼ−タ関数の意味する物理内容より、素数磁場の不連続構造または素数磁束の不連続分布を保存するために生じる電磁現象であると考えることができる。   Therefore, what can be said in common from both theory and experiment is that the prime magnetic flux changes with time. The temporal change of the prime magnetic flux can be considered as an electromagnetic phenomenon that occurs in order to preserve the discontinuous structure of the prime magnetic field or the discontinuous distribution of the prime magnetic flux from the physical content that the zeta function means.

素数磁束の時間変化を利用し、より大きな起電力を得るためにコイル内に新たな素数磁場即ち同磁極を点、線、面で接触または近接させた永久磁石を配置することによる素数磁束の共鳴振動によりコイルの両端からより大きな起電力が得られる。   Resonance of prime magnetic flux by arranging a new prime magnetic field, that is, a permanent magnet in contact with or close to the same magnetic pole in the point, line, or plane, in order to obtain a larger electromotive force by utilizing the time variation of the prime magnetic flux. A larger electromotive force is obtained from both ends of the coil due to vibration.

コイル内の永久磁石は振動自在に保持されていれば永久磁石自体の振動の効果も期待できて好ましい。   It is preferable if the permanent magnet in the coil is held freely oscillating, since the effect of vibration of the permanent magnet itself can be expected.

従って発明を実施するための形態は、素数磁場内の静止状態のコイル内に新たな素数磁場を配置することによる素数磁束の共鳴振動によりコイルの両端から起電力を得ることにある。   Therefore, an embodiment for carrying out the invention is to obtain an electromotive force from both ends of a coil by resonance vibration of a prime magnetic flux by disposing a new prime magnetic field in a stationary coil in the prime magnetic field.

起電力は発電として産業上種々の方面に利用できる。   The electromotive force can be used in various industrial fields as power generation.

1 永久磁石
2 コイル
3 コイル内の永久磁石を振動自在に保持するための材(例えば非磁性材質のバネ)
4 起電力
DESCRIPTION OF SYMBOLS 1 Permanent magnet 2 Coil 3 Material for holding the permanent magnet in a coil freely oscillating (For example, a nonmagnetic spring)
4 electromotive force

Claims (1)

複数の永久磁石の同磁極を点、線、面で接触または近接させたときの磁場即ち素数磁場内のコイルは運動を行い、また永久磁石と力の作用を及ぼし合うなどの実験事実と素数磁場内の磁気モ−メントをもつ粒子の運動方程式より導かれる物理内容を電磁現象に対応させた理論研究とにより素数磁束は時間変化しており、従って素数磁場内の静止状態のコイルの両端に起電力が現れ、コイル内に新たな素数磁場即ち同磁極を点、線、面で接触または近接させた永久磁石を配置することによる素数磁束の共鳴振動により、コイルの両端により大きな起電力が現れることよりともに静止状態の永久磁石とコイルよりコイルの両端から起電力を得る方法。   The magnetic field when the same magnetic poles of multiple permanent magnets are contacted or approached by points, lines, or planes, that is, the coil in the prime magnetic field moves, and the experimental facts such as the force acting on the permanent magnet and the prime magnetic field The prime magnetic flux is time-varying due to the theoretical study in which the physical content derived from the equation of motion of the particles with the magnetic moment is made to correspond to the electromagnetic phenomenon. Therefore, the prime magnetic flux changes at both ends of the stationary coil in the prime magnetic field. Electric power appears, and a large electromotive force appears at both ends of the coil due to resonance vibration of the prime magnetic flux caused by placing a new prime magnetic field in the coil, that is, a permanent magnet with the same magnetic pole in contact with or close to a point, line, or surface. A method of obtaining electromotive force from both ends of a coil from a permanent magnet and a coil that are both stationary.
JP2010049074A 2010-03-05 2010-03-05 Method for obtaining electromotive force from both ends of coil with both permanent magnet and coil in stationary state Pending JP2011188582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049074A JP2011188582A (en) 2010-03-05 2010-03-05 Method for obtaining electromotive force from both ends of coil with both permanent magnet and coil in stationary state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010049074A JP2011188582A (en) 2010-03-05 2010-03-05 Method for obtaining electromotive force from both ends of coil with both permanent magnet and coil in stationary state

Publications (1)

Publication Number Publication Date
JP2011188582A true JP2011188582A (en) 2011-09-22

Family

ID=44794225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049074A Pending JP2011188582A (en) 2010-03-05 2010-03-05 Method for obtaining electromotive force from both ends of coil with both permanent magnet and coil in stationary state

Country Status (1)

Country Link
JP (1) JP2011188582A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025468A (en) * 2012-07-30 2014-02-06 Makoto Saijo Basic principle of perpetual motion machine and method of inventing the machine
JP2015084611A (en) * 2013-10-25 2015-04-30 加藤 哲雄 Method for obtaining electromagnetic force providing electric charges with lineup motion by magnetic field of static permanent magnet
JP2015213391A (en) * 2014-05-02 2015-11-26 加藤 哲雄 Method for obtaining electron from magnetostatic field of permanent magnet
JP2015213393A (en) * 2014-05-02 2015-11-26 加藤 哲雄 Method for extracting high magnetic field energy from permanent magnet
JP2016086459A (en) * 2014-10-23 2016-05-19 加藤 哲雄 Method for obtaining larger energy, larger electromagnetic force than spin wave distribution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025468A (en) * 2012-07-30 2014-02-06 Makoto Saijo Basic principle of perpetual motion machine and method of inventing the machine
JP2015084611A (en) * 2013-10-25 2015-04-30 加藤 哲雄 Method for obtaining electromagnetic force providing electric charges with lineup motion by magnetic field of static permanent magnet
JP2015213391A (en) * 2014-05-02 2015-11-26 加藤 哲雄 Method for obtaining electron from magnetostatic field of permanent magnet
JP2015213393A (en) * 2014-05-02 2015-11-26 加藤 哲雄 Method for extracting high magnetic field energy from permanent magnet
JP2016086459A (en) * 2014-10-23 2016-05-19 加藤 哲雄 Method for obtaining larger energy, larger electromagnetic force than spin wave distribution

Similar Documents

Publication Publication Date Title
JP2011188582A (en) Method for obtaining electromotive force from both ends of coil with both permanent magnet and coil in stationary state
Wei et al. Investigation of magnetic nanoparticle motion under a gradient magnetic field by an electromagnet
Khushrushahi et al. Ultrasound velocimetry of ferrofluid spin-up flow measurements using a spherical coil assembly to impose a uniform rotating magnetic field
Oh et al. Analysis of electromotive force characteristics and device implementation for ferrofluid based energy harvesting system
Wysin Magnetic Excitations and Geometric Confinement
Kawase et al. 3-D finite element analysis of dynamic characteristics of electromagnet with permanent magnets
WO2021102316A1 (en) Tangentially actuated magnetic momentum transfer generator
Han et al. Four-and eight-piece Halbach array analysis and geometry optimisation for maglev
JP2010154629A (en) Method for obtaining persistent electrical energy from prime number of magnetic fields of stationary permanent magnet, and persistent action of force from prime number of magnetic fields of stationary permanent magnet
Liu et al. Performance analysis of a ferrofluid-based electromagnetic energy harvester
Kim et al. Power generation properties of flow nanogenerator with mixture of magnetic nanofluid and bubbles in circulating system
JP2009290977A (en) Method for converting magnetic field of stationary permanent magnet into magnetic field of magnetic flux vibration, and taking out mechanical energy and electric energy
JP5758068B2 (en) Electromagnetic induction generator
Shinoda et al. Development of energy-harvesting system using deformation of magnetic elastomer
Sahoo et al. Cylindrically symmetric cosmic strings coupled with Maxwell fields in bimetric relativity
Cheng et al. On the use of high-gradient magnetic force field in capturing airborne particles
RU2435290C2 (en) Method of checking equivalence of interaction of current-carrying conductor and ferromagnetic torroid, magnetised on circle, lying in external magnetic field with said external magnetic field
JP2010088253A (en) Method of applying motion to stationary electric charge by stationary magnetic field of plural permanent magnet
Mercado-M et al. Permanent magnets to enable highly-targeted drug delivery applications: A computational and experimental study
JP2010197203A (en) Method for obtaining formation of assembly of charged particle, separation from of charged particle different in kind, and orderly distribution, and method for obtaining permanent electric energy by applying prime magnetic field to dielectric
WO2012079345A1 (en) Electromagnetic driving device
Zhang et al. Magnetic Forces
Ji et al. Magnetic Field Analysis of MSMA Actuator Based on ANSYS
Sun et al. Numerical investigation on the magnetic field of cylindrical permanent magnet for magnetic nanoparticles application
Kwon et al. Analysis of induced voltage for ferrohydrodynamic energy harvester using sloshing motion

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226