JP2010154629A - Method for obtaining persistent electrical energy from prime number of magnetic fields of stationary permanent magnet, and persistent action of force from prime number of magnetic fields of stationary permanent magnet - Google Patents

Method for obtaining persistent electrical energy from prime number of magnetic fields of stationary permanent magnet, and persistent action of force from prime number of magnetic fields of stationary permanent magnet Download PDF

Info

Publication number
JP2010154629A
JP2010154629A JP2008329172A JP2008329172A JP2010154629A JP 2010154629 A JP2010154629 A JP 2010154629A JP 2008329172 A JP2008329172 A JP 2008329172A JP 2008329172 A JP2008329172 A JP 2008329172A JP 2010154629 A JP2010154629 A JP 2010154629A
Authority
JP
Japan
Prior art keywords
prime
force
equation
magnetic field
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008329172A
Other languages
Japanese (ja)
Inventor
Tetsuo Kato
哲雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008329172A priority Critical patent/JP2010154629A/en
Publication of JP2010154629A publication Critical patent/JP2010154629A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for obtaining a persistent electric energy for giving a work to the outside and a method for obtaining the action of a force that imparts a persistent accelerating motion to a charged body or a magnetic substance, each from a stationary permanent magnet. <P>SOLUTION: A combination of a plurality of prime number of magnetic fields can make resonance vibration of a prime number of magnetic flux generated to obtain persistent electrical energy for giving a work to the outside. The vertical and horizontal vibrations of the force generated by the combination of a centripetal force in the prime number of magnetic fields and the force in a tangent-vector direction relative to curve surface can obtain the action of force to give the persistent accelerating motion to the electrifying body or the magnetic substance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数の素数磁場を組み合わせることにより、縦方向と横方向に振
動する素数磁束の共鳴を発生させ永続的な電気エネルギーを得る方法、並びに単独の素数磁場での力の発生により、帯電体、磁性体に永続的な加速度運動を与える力の作用を得る方法に関するものである。
The present invention relates to a method for obtaining permanent electric energy by generating resonance of prime magnetic fluxes oscillating in the longitudinal and transverse directions by combining a plurality of prime magnetic fields, and by generating force in a single prime magnetic field. The present invention relates to a method for obtaining an action of a force that gives a permanent acceleration motion to a body and a magnetic body.

従来電気磁気学では、静止した永久磁石は、外に仕事を与える永続的な電気
エネルギーとか永続的な加速度運動を与える力の作用は発生しないとされてきた。
Conventionally, in electromagnetism, a stationary permanent magnet has not been subjected to the action of permanent electric energy that gives work to the outside or force that gives permanent acceleration motion.

数学上の素数に関する数論式が電気磁気学と対応関係にあるとする理論も、
現在の段階で発表されていない。
The theory that number theoretic formulas related to mathematical primes have a corresponding relationship with electromagnetism,
Not announced at this stage.

永久磁石より、外に仕事を与える電気エネルギー、そして帯電体とか磁性体
に加速度運動を与える力の作用を得るには、素数磁束の縦方向と横方向への振動が必要である。
特願2008−140318 特願2008−256979
In order to obtain the action of the electric energy that gives work to the outside and the action of the force that gives acceleration motion to the charged body or the magnetic body than the permanent magnet, it is necessary to vibrate the prime magnetic flux in the vertical and horizontal directions.
Japanese Patent Application No. 2008-140318 Japanese Patent Application No. 2008-256979

従来静止した永久磁石より、永続的な電気エネルギー、永続的な力の作用を取り出すことは、エネルギー保存の原理より不可能とされてきた。   Conventionally, it has been impossible to extract the action of permanent electric energy and permanent force from a stationary permanent magnet because of the principle of energy conservation.

永久磁石の保有する磁場エネルギーは一定であり、これより電気エネルギーを取り出せばエネルギー保存の原理より、短時間で永久磁石の磁場エネルギーは零となる。つまり、電気エネルギーを永続的に取り出すことは不可能である。本出願人はエネルギー保存の原理と矛盾しない方法で永続的な電気エネルギーの取り出し方があるのではないかということについて研究した。   The magnetic field energy possessed by the permanent magnet is constant. If electric energy is extracted from this, the magnetic field energy of the permanent magnet becomes zero in a short time due to the principle of energy conservation. In other words, it is impossible to take out electrical energy permanently. The applicant has studied whether there is a way to extract permanent electrical energy in a manner consistent with the principle of energy conservation.

従って発明が解決しようとする課題は、静止した永久磁石より、エネルギー保存の原理と矛盾しない方法で永続的な電気エネルギーを得る方法、そして帯電体、磁性体に永続的な加速度運動を与える力の作用を得る方法である。   Therefore, the problems to be solved by the invention are a method of obtaining permanent electric energy by a method consistent with the principle of energy conservation from a stationary permanent magnet, and a force that gives permanent acceleration motion to a charged body and a magnetic body. It is a method of obtaining an action.

静止した永久磁石より電気エネルギーを得るには、磁束を振動させることが必要である。磁束を縦方向のみ、あるいは横方向のみに振動させたときの電気エネルギーを外に仕事を与えると、永久磁石の磁場エネルギーは消費され、やがて零になると考えられる。   In order to obtain electrical energy from a stationary permanent magnet, it is necessary to vibrate the magnetic flux. It is considered that when the magnetic energy is vibrated only in the vertical direction or only in the horizontal direction, the magnetic energy of the permanent magnet is consumed and eventually becomes zero.

従って磁束を縦方向と横方向に振動させることが必要であると考える。磁束を縦方向と横方向に振動させることが可能なのは素数磁場である。素数磁場では、素数磁束は縦方向と横方向に振動する。   Therefore, it is necessary to vibrate the magnetic flux in the vertical and horizontal directions. It is a prime magnetic field that can oscillate the magnetic flux in the vertical and horizontal directions. In a prime magnetic field, the prime magnetic flux vibrates in the vertical and horizontal directions.

素数磁束の縦方向と横方向への振動による電気エネルギーは、(数式2)より永続的な(+)エネルギー、(−)エネルギーを交互にとり、時間平均では零の電気エネルギーとなる。そして、素数磁場では、(素数磁束の振動による電気エネルギー)+(永久磁石の磁場エネルギー)=一定というエネルギー保存の原理が成立し、素数磁束の振動による電気エネルギーを外に仕事を与える永続的なエネルギーとして用いるには、複数の素数磁場を組み合わせることによる、素数磁束の共鳴振動が必要である。   The electrical energy generated by the vibration of the prime magnetic flux in the vertical direction and the horizontal direction alternately takes permanent (+) energy and (−) energy from (Equation 2), and becomes zero electric energy in time average. And in the prime magnetic field, the principle of energy conservation is established: (Electric energy by vibration of prime magnetic flux) + (Magnetic field energy of permanent magnet) = constant. In order to use it as energy, resonance vibration of prime magnetic flux by combining a plurality of prime magnetic fields is required.

素数磁場では(数式3)より、素数磁束の振動による永続的な向心力と曲面での接ベクトル方向の力の合力が発生し、合力も縦方向と横方向に振動することから、素数磁場内に帯電体とか磁性体を配設すれば、これらの物体には永続的な加速度運動を与える力の作用が発生する。   In the prime magnetic field (Equation 3), a permanent centripetal force due to the vibration of the prime magnetic flux and a force in the direction of the tangent vector on the curved surface are generated, and the resultant force vibrates in the vertical and horizontal directions. If a charged body or a magnetic body is provided, the action of a force that gives a permanent acceleration motion is generated in these objects.

従って、永続的な電気エネルギーを得る手段は、複数の素数磁場を組み合わせることにより、素数磁束の共鳴振動を発生させること、そして永続的な加速度運動を与える力の作用を得る手段は、素数磁場内に帯電体とか磁性体を配設することにより課題は解決できる。   Therefore, the means for obtaining the permanent electric energy is to generate the resonance vibration of the prime magnetic flux by combining the plurality of prime magnetic fields, and the means for obtaining the action of the force that gives the permanent acceleration motion is within the prime magnetic field. The problem can be solved by arranging a charged body or a magnetic body on the surface.

複数の素数磁場を組み合わせることによる素数磁束の共鳴振動により、外に仕事を与える永続的な電気エネルギーを得る効果を有する。そして、素数磁場での力の作用により、帯電体とか磁性体に永続的な直進加速度運動又は回転運動を与え、運動による力学的エネルギーを電気エネルギーに変換することにより、永続的な電気エネルギーを得る効果を有する。   Resonant vibration of prime magnetic flux by combining a plurality of prime magnetic fields has the effect of obtaining permanent electrical energy that gives work to the outside. Then, permanent electric energy is obtained by applying permanent linear acceleration motion or rotational motion to the charged body or magnetic body by the action of the force in the prime magnetic field, and converting the mechanical energy from the motion into electrical energy. Has an effect.

発明を実施するためには、共鳴振動による永続的な電気エネルギーの発生、そして永続的な力の作用の発生についての物理的な説明が必要である   In order to carry out the invention, a physical explanation of the generation of permanent electrical energy by resonant vibration and the generation of permanent force action is necessary.

素数磁場は確かに電気エネルギーを発生するが、(+)(−)の交互の値をとり、時間平均では、零のエネルギーとなることから、外に仕事を与える永続的な電気エネルギーとはなりにくい。
従って、(数式1)より素数磁束の縦方向と横方向の分布に起因する素数磁束の共鳴振動により、永続的な電気エネルギーを取り出す。(数式2)は、数論式であるから(数式2)を電磁現象を説明する数論式(数式4)に置換する。その理由は(数式2)に何らかの電磁気量に対応する因子を導入する必要があることによる。(数式4)のf(k)2は振幅の2乗であり、振幅の2乗は、例えば電荷の密度分布を意味する。
(数式4)に2階の時間微分を与える。
但し、d/dt=dlnλ(k)(lnλ(k)+c)/dt×d/d(lnλ(k)(lnλ(k)+c)とする。
結果は(数式5)となる。(数式5)はV(k)を解とする振動方程式である。
(数式5)は、角周波数ω0を用いて、(数式6)と書かれる。
(数式6)に外力A{cosln・lnλ(k)(lnλ(k)+c)+sinln・lnλ(k)(lnλ(k)+c)}(Aは定数)を与えたときの振動方程式は(数式7)となる。
外力の角周波数をωとすると、外力を与えたときの振動方程式の解V(k)は(数式8)となる。
この振動系では、ω0=ωのとき共鳴となる。
従って、素数磁束の共鳴振動により、外に仕事を与える永続的な電気エネルギーを得ることができる。
Although the prime magnetic field certainly generates electric energy, it takes alternating values of (+) and (-), and the time average becomes zero energy, so it becomes permanent electric energy that gives work to the outside. Hateful.
Therefore, permanent electric energy is extracted from the resonance vibration of the prime magnetic flux caused by the vertical and lateral distribution of the prime magnetic flux from (Equation 1). Since (Equation 2) is a number theoretic equation, (Equation 2) is replaced with a number theoretic equation (Equation 4) that explains electromagnetic phenomena. The reason is that it is necessary to introduce a factor corresponding to some electromagnetic quantity into (Equation 2). In Equation 4, f (k) 2 is the square of the amplitude, and the square of the amplitude means, for example, a charge density distribution.
(Expression 4) gives the second-order time derivative.
However, d / dt = dlnλ (k) (lnλ (k) + c) / dt × d / d (lnλ (k) (lnλ (k) + c).
The result is (Formula 5). (Formula 5) is a vibration equation with V (k) as a solution.
(Formula 5) is written as (Formula 6) using the angular frequency ω 0 .
The vibration equation when the external force A {cosln · lnλ (k) (lnλ (k) + c) + sinln · lnλ (k) (lnλ (k) + c)} (A is a constant) is given by 7).
When the angular frequency of the external force is ω, the solution V (k) of the vibration equation when the external force is applied is given by (Equation 8).
In this vibration system, resonance occurs when ω 0 = ω.
Therefore, permanent electrical energy that gives work to the outside can be obtained by the resonance vibration of the prime magnetic flux.

Figure 2010154629
Figure 2010154629

Figure 2010154629
Figure 2010154629

Figure 2010154629
Figure 2010154629

Figure 2010154629
Figure 2010154629

Figure 2010154629
Figure 2010154629

Figure 2010154629
Figure 2010154629

Figure 2010154629
Figure 2010154629

素数磁場での力の表示式(数式3)でのφ(k) 2/λ(k)は向心力、φ(k)/λ(k) 2は曲面上での接ベクトル方向の力を表示する。
素数磁場での力は、向心力と接ベクトル方向の力の合力となり、合力は、cosln関数で表示されるから、縦方向と横方向に振動する。従って、素数磁場から、帯電体とかスピン電流を内在した磁性体に永続的な直進加速度運動とか回転運動を与える力の作用を得ることができる。
Φ (k) 2 / λ (k) in the expression for the force in the prime magnetic field (Equation 3) indicates the centripetal force, and φ (k) / λ (k) 2 indicates the force in the direction of the tangent vector on the curved surface. .
The force in the prime magnetic field is the resultant force of the centripetal force and the force in the direction of the tangent vector, and the resultant force is expressed by a cosln function, and thus vibrates in the vertical direction and the horizontal direction. Therefore, it is possible to obtain an action of a force that gives a permanent linear acceleration motion or a rotational motion to a charged body or a magnetic body containing a spin current from a prime magnetic field.

Figure 2010154629
Figure 2010154629

発明を実施するためには、電磁現象対応の数論式(数式4)と電磁現象との関係、そして力を表示する数論式(数式3)と物理学上の力との関係を説明することが必要である。     In order to carry out the invention, the relationship between an electromagnetic phenomenon corresponding to a number theoretic formula (Formula 4) and an electromagnetic phenomenon, and the relationship between a force theoretic formula (Formula 3) and a physical force will be described. It is necessary.

素数磁場での電気エネルギー表現を求める。
(数式4)は素数磁束の縦方向と横方向への振動を表現する数式であり、
sinln形式となっている。
このことは縦方向と横方向への振動を表現する三角関数的な表示方法はsinlnとかcoslnとなる。
一般的な三角関数sin、cosに対数表示のlnが入った表示となる。
sinln関数のグラフ(図1)を示す。
(数式4)でのf(k)φ(k) 2は、素数磁場での電圧(V)を表示すると定義し、V(k)=f(k)φ(k) 2とする。
図1よりλ=7のとき、振幅は最大値となることから、振幅の最大値に対応する電圧を素数磁場での基準電圧を考えると、基準電圧=V(0)=f(0)φ(02≒0.374となる。
また、λ=7が角度法ではπ/2に対応することより、角度表示の電圧は、
V(0)=(φ(0)/π)2=1/π2×f(0)×sinπ/2≒0.374となり、同じ数値となる。
Find electric energy expression in prime magnetic field.
(Formula 4) is a mathematical expression expressing the vibration of the prime magnetic flux in the vertical and horizontal directions,
It is a sinln format.
This means that the trigonometric display method for expressing the vibration in the vertical direction and the horizontal direction is sinln or cosln.
A general trigonometric function sin, cos is displayed with logarithmic display ln.
The graph (FIG. 1) of a sinln function is shown.
F (k) φ (k) 2 in (Equation 4) is defined to display the voltage (V) in the prime magnetic field, and V (k) = f (k) φ (k) 2 .
As shown in FIG. 1, when λ = 7, the amplitude is the maximum value. Therefore, when the voltage corresponding to the maximum value of the amplitude is considered as the reference voltage in the prime magnetic field, the reference voltage = V ( 0 ) = f ( 0 ) φ ( 0 ) 2 ≈ 0.374.
In addition, since λ = 7 corresponds to π / 2 in the angle method, the voltage of angle display is
V ( 0 ) = (φ ( 0 ) / π) 2 = 1 / π 2 × f ( 0 ) × sin π / 2≈0.374, which is the same numerical value.

このように算出したV(0)=0.374は数論的色彩の濃いものである。
従って、V(0)を物理的観点に近い考え方より説明する。
物理的には、電気エネルギーは量子場に対応する素数磁場の極小領域での電磁現象であると考える。
素数磁場での極小領域では、λ(k)という素数表現は成立しない。
極小領域では、λ(k)を一定値λ0に置換する。λ0は数論上の素数上の素数ではないが、素数に対応する数値を考える。λ0を求めるため、極小領域で成立すると考える数式(数式9)よりλ0=0.5618295となる。
sinln・|lnλ0(lnλ0+c)|≒sin(−7.9).−7.9は角度法で−7.9/π×180o=−452.6oよりsin(−452.6o)≒sin(−5/2π)=−1.λ=7がπ/2対応であることと関連して考えれば、λ0=0.5618295は−5/2π対応となる。
つまりλ0は全く独立した数値ではなく素数7の裏返しの数値と考える。
そして極小領域での電圧表示を、振動電圧の実効値という考え方を導入して(数式10)とする。(数式10)より、f(k)≒−1.911、|V(0)|≒0.36、ω≒500、周期T≒1/80となる。
この数値は、実験で磁束密度0.85(T)程度の永久磁石の素数磁場での振動電圧±0.37(ボルト)、T=1/50〜1/100とほとんど一致する。
V ( 0 ) = 0.374 calculated in this way is deep in arithmetic colors.
Therefore, V ( 0 ) will be described from a concept close to a physical viewpoint.
Physically, electrical energy is considered to be an electromagnetic phenomenon in the minimum region of a prime magnetic field corresponding to a quantum field.
In a minimal region with a prime magnetic field, the prime number expression λ (k) does not hold.
In the minimum region, λ (k) is replaced with a constant value λ 0 . Although λ 0 is not a prime number on a prime number in number theory, consider a numerical value corresponding to a prime number. In order to obtain λ 0 , λ 0 = 0.5618295 is obtained from an equation (equation 9) that is considered to hold in the minimum region.
sinln · | lnλ 0 (lnλ 0 + c) | ≈sin (−7.9). -7.9 is an angle method, from -7.9 / π × 180 o = −452.6 o , sin (−452.6 o ) ≈sin (−5 / 2π) = − 1. Considering that λ = 7 corresponds to π / 2, λ 0 = 0.5618295 corresponds to −5 / 2π.
In other words, λ 0 is not a completely independent number, but an inverted number of the prime number 7.
Then, the voltage display in the minimum region is expressed as (Equation 10) by introducing the concept of effective value of vibration voltage. From (Equation 10), f (k) ≈-1.911, | V ( 0 ) | ≈0.36, ω≈500, and cycle T≈1 / 80.
This numerical value almost coincides with an oscillation voltage ± 0.37 (volt) in a prime magnetic field of a permanent magnet having a magnetic flux density of about 0.85 (T) and T = 1/50 to 1/100 in an experiment.

Figure 2010154629
Figure 2010154629

Figure 2010154629
Figure 2010154629

原子核力が素数磁場での物理現象と考えることにより、素数磁場での力を原子核力に適用する。原子核力に適用するとき注意すべきことは、原子核力は素数磁場での極小領域の事象であること、そして原子核はトーラス構造でなく球面構造であると考えることである。
従って、原子核力を表示する素数磁束は、π2/4|lnφ|(│lnφ|+c)を用いる必要がある。素数磁場の極小領域でのλ0=0.5618295よりlnλ0(lnλ0+c)=0.00037となり、π2/4|lnφ0|(│lnφ0│+c)=0.00037よりφ0=0.5616となり、π2/4|lnφ0|(│lnφ0│+c)=1.643となる。この数値と(数式3)より、素数磁場の極小領域でのf´(k)はf´(k)=−5.846/πとなる。従って、素数磁場の極小領域での力を表示する数論式を(数式11)とする。
(数式11)を原子核力に適用するには、数論上の因子と原子核力を表示する物理量との対応を知ることが求められる。
φ0とかπ2/4|lnφ0|(│lnφ0|+c)が中性子とか陽子の内部双極子能率に対応することは予想される。
2φ0/π2/4|lnφ0|(│lnφ0|+c)=0.684、そしてμ(n)は中性子の内部双極子能率−1.9135μ(N)、μ(P)は陽子の内部双極子能率2.79275μ(N)(但しμ(N)は核磁子)とするとμ(n)/μ(p)=−0.684となり、数値的に一致する。
よって、2φ0が中性子の内部双極子能率、π2/4|lnφ0|(│lnφ0│+c)が陽子の内部双極子能率に対応している。そして、f´(k)は(数式11)の左辺と右辺の関係より、f´(k)は、2φ0/π2/4|lnφ0|(│lnφ0|+c)に対応していることから中性子と陽子に働く原子核力の数論的表示は(数式12)となる。
1/π(2φ0+c/λ0)=4/π2、2φ0/|lnφ0|(1lnφ0|+c)が数論上成立することから(数式12)より物理的な中性子と陽子間の原子核力を表示する物理式(数式13)が求められる。(数式13)は、数値的にも満足していることより、原子核力は中性子と陽子の内部双極子能率の縦方向と横方向の交換による交換力であると考えることができる。(数式13)より原子核力の数論的表示による大きさは4.0となり、ボーア半径での陽子と電子に働くクーロン力の約487倍となる。
By considering the nuclear force as a physical phenomenon in a prime magnetic field, the force in the prime magnetic field is applied to the nuclear force. It should be noted that when applied to nuclear forces, nuclear forces are minimal domain events in prime magnetic fields, and that nuclei are spherical structures rather than torus structures.
Thus, prime flux for displaying nuclear forces, [pi 2/4 | it is necessary to use a | (+ c │lnφ |) lnφ . Lambda 0 = .5618295 than lnλ 0 (lnλ 0 + c) = 0.00037 next in minimum area of prime field, π 2/4 | lnφ 0 | (│lnφ 0 │ + c) = 0.00037 from phi 0 = 0.5616 next, π 2/4 | a (│lnφ 0 │ + c) = 1.643 | lnφ 0. From this value and (Equation 3), f ′ (k) in the minimal region of the prime magnetic field is f ′ (k) = − 5.846 / π. Therefore, the number formula expressing the force in the minimum region of the prime magnetic field is represented by (Formula 11).
In order to apply (Formula 11) to the nuclear force, it is required to know the correspondence between the number-theoretic factor and the physical quantity representing the nuclear force.
phi 0 Toka π 2/4 | lnφ 0 | to | (│lnφ 0 + c) corresponds to the internal dipole moment of the neutron Toka protons is expected.
2φ 0 / π 2/4 | lnφ 0 | (│lnφ 0 | + c) = 0.684, and mu (n) the neutrons inside dipole moment -1.9135μ (N), μ (P ) is the proton If the internal dipole efficiency is 2.79275 μ (N) (where μ (N) is a nuclear magneton), μ (n) / μ (p) = − 0.684, which is numerically coincident.
Therefore, the internal dipole moment 2 [phi 0 is the neutron, π 2/4 | lnφ 0 | (│lnφ 0 │ + c) corresponds to the internal dipole moments of protons. Then, f'(k) is the relationship of the left side and the right side of (Equation 11), f'(k) is, 2φ 0 / π 2/4 | corresponds to | (+ c │lnφ 0 |) lnφ 0 Therefore, the numerical representation of the nuclear force acting on neutrons and protons is (Equation 12).
Since 1 / π (2φ 0 + c / λ 0 ) = 4 / π 2 , 2φ 0 / | lnφ 0 | (1lnφ 0 | + c) holds in number theory, the relationship between physical neutrons and protons from (Equation 12) The physical formula (Formula 13) for displaying the nuclear force is obtained. Since (Formula 13) is numerically satisfied, it can be considered that the nuclear force is an exchange force obtained by exchanging the internal dipole efficiency of the neutron and proton in the vertical and horizontal directions. From (Equation 13), the magnitude of the nuclear force in the number-theoretic representation is 4.0, which is about 487 times the Coulomb force acting on protons and electrons at the Bohr radius.

Figure 2010154629
Figure 2010154629

Figure 2010154629
Figure 2010154629

Figure 2010154629
Figure 2010154629

複数の素数磁場を組み合わせることにより、素数磁束の共鳴振動を発生させ、外に仕事を与える永続的な電気エネルギーを得る最良の形態は、複数の素数磁場を対向させて配設し、イオン化傾向の異なる2種類の金属を接触した状態で対向位置に配設すればよい。   By combining multiple prime magnetic fields, the best mode for generating permanent electric energy that generates resonant vibration of prime magnetic flux and gives work to the outside is arranged with multiple prime magnetic fields facing each other. What is necessary is just to arrange | position in the opposing position in the state which contacted two different types of metals.

複数の素数磁場を形成するのに用いる永久磁石は、その形状、材質、磁束密度そして保持力は同一のものが好ましい。永久磁石の磁化方向は上下方向でも左右方向でもどちらでもよい。   The permanent magnet used to form a plurality of prime magnetic fields preferably has the same shape, material, magnetic flux density and coercive force. The magnetization direction of the permanent magnet may be either the vertical direction or the horizontal direction.

素数磁場により、帯電体とか磁性体に永続的な加速度運動を与える力の作用を得る最良の形態は、素数磁場内に回転自在な帯電体とか磁性体の回転装置を配設すればよい。
素数磁場での向心力と曲面の接ベクトル方向の力との合力の作用により、帯電体とか磁性体は回転運動し、その回転エネルギーを永続的な電気エネルギーに変換できる。
The best mode for obtaining the action of a force that gives a permanent acceleration motion to a charged body or magnetic body by a prime magnetic field is to arrange a rotatable charging body or magnetic body rotating device in the prime magnetic field.
By the action of the resultant force of the centripetal force in the prime magnetic field and the force in the tangent vector direction of the curved surface, the charged body or the magnetic body rotates, and the rotational energy can be converted into permanent electric energy.

図1はφ(k) 2/f(k)=sinln・lnλ(k)・(lnλ(k)+c)の角度表示でのグラフである。例えばλ(0)=7のときln・ln7(ln7+c)=1.591
1.591≒π/2より sinπ/2=1
λ(20)=89のとき、ln・ln89(ln89+c)=3.12、3.12≒πよりsinπ=0となるから図1のグラフとなる。0≦φ(k)2/f(k) ≦1のときは、縦方向から横方向への振動、−1≦φ(k)2/f(k) ≦0のときは横方向から縦方向への振動を表現する。
FIG. 1 is a graph in an angle display of φ (k) 2 / f (k) = sinln · lnλ (k) · (lnλ (k) + c). For example, when λ ( 0 ) = 7, ln · ln7 (ln7 + c) = 1.491
Since 1.591≈π / 2, sinπ / 2 = 1
When λ ( 20 ) = 89, since ln · ln89 (ln89 + c) = 3.12, 3.12≈π, sinπ = 0, so the graph of FIG. 1 is obtained. When 0 ≦ φ (k) 2 / f (k) ≦ 1, vibration from the vertical direction to the horizontal direction, and when −1 ≦ φ (k) 2 / f (k) ≦ 0, the horizontal direction to the vertical direction Express vibration to

図2は、2個の素数磁場を対向させて配設し、素数磁束の共鳴振動を発生させ、永続的な電気エネルギーを得る図である。   FIG. 2 is a diagram in which two prime magnetic fields are arranged to face each other to generate a resonance vibration of a prime magnetic flux to obtain permanent electrical energy.

図3は、素数磁場での向心力と曲面の接ベクトル方向の力の合力の縦方向と横方向の振動による力により、素数磁場内に配設された帯電体とか磁性体に永続的な加速度運動を与える力の作用を得る図である。   FIG. 3 shows a permanent acceleration motion in a charged or magnetic body arranged in a prime magnetic field by the force of longitudinal and lateral vibrations of the resultant force of the centripetal force in the prime magnetic field and the force in the tangential direction of the curved surface. It is a figure which acquires the effect | action of the force which gives.

素数磁場での素数磁束の振動現象が高温超電導体の作製に役立つのではないかと考える。素数磁場の極小領域での構造がトーラスであるときの素数磁束は
λ0=0.5618295よりlnλ0(lnλ0+c)=−0.00037となる。
この素数磁束は磁束量子(hc/e)と(素数磁束)2=1/3×磁束量子の関係となっている。磁束量子は超電導現象を説明するのに重要な要素であることから超電導現象は素数磁束の振動に起因する現象であると考えることもできる。つまり、素数磁場の極小領域で素数磁束が縦方向と横方向へ振動することにより、クーロン対が生成し、超電導現象となると考える。
(数式4)のsinln・lnλ(k)・(lnλ(k)+c)を虚数を含む指数表示におきかえて(数式4)を熱平衡の式に変換すると、詳細は省略するが、定性的、概略的な熱平衡式(数式14)となる。
(数式14)により超電導物質の(ε−μ)を計算すると、T=0oKでの超電導物質のエネルギーギャップ値とかなり近い数値となる。
(数式14)はμ>εであるような物質が高温超電導体となり易いことを示している。高温超電導体は産業上各方面に利用できる。
We think that the oscillation phenomenon of the prime magnetic flux in the prime magnetic field may be useful for the fabrication of high temperature superconductors. The prime magnetic flux when the structure in the minimal region of the prime magnetic field is a torus is lnλ 0 (lnλ 0 + c) = − 0.00037 from λ 0 = 0.5618295.
This prime magnetic flux has a relationship of magnetic flux quantum (hc / e) and (prime magnetic flux) 2 = 1/3 × flux quantum. Since the flux quantum is an important element for explaining the superconducting phenomenon, it can be considered that the superconducting phenomenon is a phenomenon caused by the vibration of the prime magnetic flux. In other words, the prime magnetic flux vibrates in the vertical and horizontal directions in the minimal region of the prime magnetic field, so that a Coulomb pair is generated, resulting in a superconducting phenomenon.
Replacing sinn · lnλ (k) · (lnλ (k) + c) in (Equation 4) with an exponential expression including an imaginary number and converting (Equation 4) into an equation of thermal equilibrium will omit details, but qualitatively and roughly The thermal equilibrium formula (Formula 14) is obtained.
When (ε−μ) of the superconducting material is calculated according to (Equation 14), the numerical value is very close to the energy gap value of the superconducting material at T = 0 ° K.
(Equation 14) indicates that a substance with μ> ε is likely to be a high-temperature superconductor. High temperature superconductors can be used in various fields in industry.

Figure 2010154629
Figure 2010154629

図1は、素数磁束の縦方向と横方向への振動を表示するグラフである。FIG. 1 is a graph displaying the vibrations of the prime magnetic flux in the vertical and horizontal directions. 図2は、2個の素数磁場を対向させて配設し、対向位置にイオン化傾向の異なる2種類の金属を配設した図である。FIG. 2 is a diagram in which two prime magnetic fields are arranged to face each other, and two kinds of metals having different ionization tendencies are arranged at the opposed positions. 図3は、素数磁場内に、帯電体とか磁性体の回転体を配設した図である。FIG. 3 is a diagram in which a charged body or a rotating body of a magnetic body is disposed in a prime magnetic field.

符号の説明Explanation of symbols

1 上下方向に磁化された永久磁石
2 プラスチック等の非磁性材質
3 金属板(例えば銅版)
4 3の金属板とイオン化傾向の異なる金属板(例えばアルミニウム板)
5 電圧
6 回転軸
7 帯電体とか磁性体の回転体
1 Permanent magnet magnetized in the vertical direction 2 Non-magnetic material such as plastic 3 Metal plate (eg copper plate)
43 Metal plate with different ionization tendency (for example, aluminum plate)
5 Voltage 6 Rotating shaft 7 Rotating body of charged body or magnetic body

Claims (2)

複数の永久磁石の同磁極を点、線、面で接触又は近接させたときの磁場の特性である幾何学的な構造とか磁束の分布状態は、数学上の素数によって記述される数論式(数式1)の表現する数学的空間でのトーラス、球面構造、素数論上の概念である素数束の分布状態と対応する関係にあることがイオン粒子の運動とか分布による実験で証明された。
複数の永久磁石の同磁極を点、線、面で接触又は近接させたときの磁場を素数磁場、磁束を素数磁束と名称することにより、(数式1)より素数磁束は縦方向と横方向に分布し、そして数論式(数式2)より縦方向と横方向に永続的に振動するので、振動する複数の素数磁場を組み合わせることにより、素数磁束の共鳴振動を発生させ、静止した永久磁石の素数磁場より永続的な電気エネルギーを得る方法。
Figure 2010154629

Figure 2010154629
The geometric structure and magnetic flux distribution, which are the characteristics of the magnetic field when the magnetic poles of a plurality of permanent magnets are brought into contact with or close to each other in terms of points, lines, or surfaces, are expressed by mathematical theorem formulas ( It has been proved by experiments based on the motion and distribution of ion particles that there is a relationship corresponding to the distribution state of the torus, the spherical structure, and the prime number bundle, which is a concept in prime number theory, in the mathematical space expressed by Equation (1).
By naming the magnetic field when the same magnetic poles of a plurality of permanent magnets are contacted or approached by points, lines, or planes as a prime magnetic field and the magnetic flux as a prime magnetic flux, the prime magnetic flux is expressed in the vertical and horizontal directions from (Equation 1). Since it is distributed and vibrates in the longitudinal and transverse directions according to the number formula (Equation 2), by combining a plurality of oscillating prime magnetic fields, resonance vibration of prime magnetic flux is generated, and the stationary permanent magnet A method of obtaining permanent electrical energy from a prime magnetic field.
Figure 2010154629

Figure 2010154629
複数の永久磁石の同磁極を点、線、面で接触又は近接させたときの素数磁場では、素数磁束は(数式2)により、縦方向と横方向に振動する。(数式2)を微分することにより素数磁場での力を表示する数論式(数式3)が求められ、(数式3)は向心力とトーラス、球面での接ベクトル方向の力の発生、そしてその合力も縦方向と横方向への振動を意味することにより、静止した永久磁石からローレンツの原理により帯電体とか磁性体に永続的な直進加速度運動、回転運動という加速度運動を与え、静止した永久磁石の素数磁場より永続的な力の作用を得る方法。
Figure 2010154629
In a prime magnetic field when the same magnetic poles of a plurality of permanent magnets are brought into contact with or close to each other by points, lines, and surfaces, the prime magnetic flux vibrates in the vertical and horizontal directions according to (Equation 2). By differentiating (Equation 2), a number theoretic equation (Equation 3) that expresses the force in the prime magnetic field is obtained. (Equation 3) is the generation of centripetal force and torus, tangential vector force on the sphere, and The resultant force also means the vibration in the vertical and horizontal directions. From the stationary permanent magnet, the charged permanent or magnetic body is given a permanent linear acceleration motion or rotational motion by the Lorentz principle, and the stationary permanent magnet To obtain a more permanent action than the prime magnetic field.
Figure 2010154629
JP2008329172A 2008-12-25 2008-12-25 Method for obtaining persistent electrical energy from prime number of magnetic fields of stationary permanent magnet, and persistent action of force from prime number of magnetic fields of stationary permanent magnet Pending JP2010154629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008329172A JP2010154629A (en) 2008-12-25 2008-12-25 Method for obtaining persistent electrical energy from prime number of magnetic fields of stationary permanent magnet, and persistent action of force from prime number of magnetic fields of stationary permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008329172A JP2010154629A (en) 2008-12-25 2008-12-25 Method for obtaining persistent electrical energy from prime number of magnetic fields of stationary permanent magnet, and persistent action of force from prime number of magnetic fields of stationary permanent magnet

Publications (1)

Publication Number Publication Date
JP2010154629A true JP2010154629A (en) 2010-07-08

Family

ID=42573064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008329172A Pending JP2010154629A (en) 2008-12-25 2008-12-25 Method for obtaining persistent electrical energy from prime number of magnetic fields of stationary permanent magnet, and persistent action of force from prime number of magnetic fields of stationary permanent magnet

Country Status (1)

Country Link
JP (1) JP2010154629A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081347A (en) * 2011-10-04 2013-05-02 Fujita Yasohito Generator of electromagnetic induction application type and electrostatic induction application type
JP2014103758A (en) * 2012-11-20 2014-06-05 Tetsuo Kato Method of converting magnetic field energy of stationary permanent magnet into energy for giving work to the outside
JP2014204564A (en) * 2013-04-05 2014-10-27 加藤 哲雄 Method for extracting permanent electric energy from stationary permanent magnet
JP2015084611A (en) * 2013-10-25 2015-04-30 加藤 哲雄 Method for obtaining electromagnetic force providing electric charges with lineup motion by magnetic field of static permanent magnet
JP2015213391A (en) * 2014-05-02 2015-11-26 加藤 哲雄 Method for obtaining electron from magnetostatic field of permanent magnet
JP2015213393A (en) * 2014-05-02 2015-11-26 加藤 哲雄 Method for extracting high magnetic field energy from permanent magnet
JP2016086459A (en) * 2014-10-23 2016-05-19 加藤 哲雄 Method for obtaining larger energy, larger electromagnetic force than spin wave distribution

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081347A (en) * 2011-10-04 2013-05-02 Fujita Yasohito Generator of electromagnetic induction application type and electrostatic induction application type
JP2014103758A (en) * 2012-11-20 2014-06-05 Tetsuo Kato Method of converting magnetic field energy of stationary permanent magnet into energy for giving work to the outside
JP2014204564A (en) * 2013-04-05 2014-10-27 加藤 哲雄 Method for extracting permanent electric energy from stationary permanent magnet
JP2015084611A (en) * 2013-10-25 2015-04-30 加藤 哲雄 Method for obtaining electromagnetic force providing electric charges with lineup motion by magnetic field of static permanent magnet
JP2015213391A (en) * 2014-05-02 2015-11-26 加藤 哲雄 Method for obtaining electron from magnetostatic field of permanent magnet
JP2015213393A (en) * 2014-05-02 2015-11-26 加藤 哲雄 Method for extracting high magnetic field energy from permanent magnet
JP2016086459A (en) * 2014-10-23 2016-05-19 加藤 哲雄 Method for obtaining larger energy, larger electromagnetic force than spin wave distribution

Similar Documents

Publication Publication Date Title
Quéval et al. Superconducting magnetic bearings simulation using an H-formulation finite element model
JP2010154629A (en) Method for obtaining persistent electrical energy from prime number of magnetic fields of stationary permanent magnet, and persistent action of force from prime number of magnetic fields of stationary permanent magnet
Dowling et al. Maxwell duality, Lorentz invariance, and topological phase
Wojna et al. Numerical and experimental study of a double physical pendulum with magnetic interaction
Vittoria Magnetics, Dielectrics, and Wave Propagation with MATLAB® Codes
Michaud Gravitation, Quantum Mechanics and the Least Action Electromagnetic Equilibrium States
Shute et al. One-sided fluxes in planar, cylindrical, and spherical magnetized structures
Khushrushahi et al. Ultrasound velocimetry of ferrofluid spin-up flow measurements using a spherical coil assembly to impose a uniform rotating magnetic field
Arbab Complex Maxwell's equations
Mihalcea et al. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions
Cao et al. Wireless power transmission enabled by a triboelectric nanogenerator via a magnetic interaction
Wysin Magnetic excitations and geometric confinement: Theory and simulations
Koide et al. DC spinmotive force from microwave-active resonant dynamics of a skyrmion crystal under a tilted magnetic field
Cao et al. Magnetoelastic primary resonance and bifurcation of an axially moving ferromagnetic plate under harmonic magnetic force
JP2009290977A (en) Method for converting magnetic field of stationary permanent magnet into magnetic field of magnetic flux vibration, and taking out mechanical energy and electric energy
Collett et al. Electromagnetic wave technique to determine radiation torque on micromachines driven by light
Jing et al. Frequency response and eddy current power loss in magneto-mechanical transmitters
Bromley et al. Magnetic interactions in orbital dynamics
Kustler et al. Theoretical and experimental investigation of multiple horizontal diamagnetically stabilized levitation with permanent magnets
JP2012115111A (en) Method for converting magnetic field energy of stationary permanent magnet to electric energy
Bachmann et al. Meron configurations in easy-plane chiral magnets
Zheng et al. Sequentially-excited multi-oscillator piezoelectric rotary energy harvester for charging capacity enhancement
US20110057754A1 (en) Methods &amp; systems for generating a gravity-neutral region between two counter-rotating magnetic sources, in accordance with ece theory
Sun et al. Self-assembly of ferromagnetic particles into chains and spin under the control of traveling magnetic field
JP2010088253A (en) Method of applying motion to stationary electric charge by stationary magnetic field of plural permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101207

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20120925

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226