JP2011184265A - Method for growing group iii nitride crystal - Google Patents

Method for growing group iii nitride crystal Download PDF

Info

Publication number
JP2011184265A
JP2011184265A JP2010053352A JP2010053352A JP2011184265A JP 2011184265 A JP2011184265 A JP 2011184265A JP 2010053352 A JP2010053352 A JP 2010053352A JP 2010053352 A JP2010053352 A JP 2010053352A JP 2011184265 A JP2011184265 A JP 2011184265A
Authority
JP
Japan
Prior art keywords
crystal
group iii
iii nitride
growth
nitride crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010053352A
Other languages
Japanese (ja)
Inventor
Yuki Hiromura
友紀 廣村
Koji Uematsu
康二 上松
Masanori Morishita
昌紀 森下
Shinsuke Fujiwara
伸介 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010053352A priority Critical patent/JP2011184265A/en
Publication of JP2011184265A publication Critical patent/JP2011184265A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for growing a group III nitride crystal by which a group III nitride crystal having a uniform thickness within a crystal growth plane is grown. <P>SOLUTION: The method for growing a group III nitride crystal includes a process for preparing a group III nitride crystal substrate 10 and a process for growing the group III nitride crystal 20 on the main plane 10m of the group III nitride crystal substrate 10 by repeating crystal growth a plurality of times by a liquid phase method. By the method, the group III nitride crystal having a uniform thickness within a crystal growth plane 20u is grown. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、III族窒化物結晶の成長方法に関し、より詳しくは、結晶成長面内において均一な厚さを有するIII族窒化物結晶を成長させるIII族窒化物結晶の成長方法に関する。   The present invention relates to a method for growing a group III nitride crystal, and more particularly to a method for growing a group III nitride crystal in which a group III nitride crystal having a uniform thickness in a crystal growth plane is grown.

GaN結晶などのIII族窒化物結晶は、発光素子、電子素子、半導体センサなどの各種半導体デバイスの基板を形成するための材料として非常に有用なものである。ここで、各種半導体デバイスの特性を向上させるために、転位密度が低く結晶性のよいIII族窒化物結晶基板が必要とされている。   Group III nitride crystals such as GaN crystals are very useful as materials for forming substrates of various semiconductor devices such as light emitting elements, electronic elements, and semiconductor sensors. Here, in order to improve the characteristics of various semiconductor devices, a group III nitride crystal substrate having a low dislocation density and good crystallinity is required.

ここで、液相法、特にGaを含む融液に窒素を溶解させた溶液を用いる液相法は、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法などの気相法に比べて、転位密度が低く結晶性が高いIII族窒化物結晶の成長が可能であると期待されている。   Here, a liquid phase method, particularly a liquid phase method using a solution in which nitrogen is dissolved in a Ga-containing melt, is a gas phase such as HVPE (hydride vapor phase epitaxy) or MOCVD (metal organic chemical vapor deposition). Compared to the method, it is expected that a group III nitride crystal having a low dislocation density and high crystallinity can be grown.

たとえば、再公表WO99/34037号公報(以下、特許文献1という)は、1000K〜2800K(好ましくは1600K〜2800K)の高温および2000気圧〜45000気圧(好ましくは10000気圧〜45000気圧)の高圧の雰囲気下で、Ga融液中に窒素ガスを溶解させて、GaN結晶を成長させる方法を開示する。   For example, the republished WO99 / 34037 (hereinafter referred to as Patent Document 1) describes a high temperature atmosphere of 1000K to 2800K (preferably 1600K to 2800K) and a high pressure atmosphere of 2000 to 45000 atm (preferably 10,000 to 45000 atm). Below, a method of growing GaN crystals by dissolving nitrogen gas in Ga melt is disclosed.

また、H. Yamane, 他3名,“Preparation of GaN Single Crystals Using a Na Flux”,Chemistry of Materials,(1997),Vol.9,pp.413-416(以下、非特許文献1という)は、Naをフラックスとして用いたGaN結晶成長方法を開示する。この方法は、フラックスとしてのアジ化ナトリウム(NaN3)と金属Gaとを原料として、ステンレス製の反応容器(容器内寸法;内径=7.5mm、長さ=100mm)に窒素雰囲気で封入し、その反応容器を600〜800℃の温度で24〜100時間保持することにより、高々100kgf/cm2程度の雰囲気圧力でGaN結晶を成長させるものである。 In addition, H. Yamane and three others, “Preparation of GaN Single Crystals Using a Na Flux”, Chemistry of Materials, (1997), Vol. 9, pp. 413-416 (hereinafter referred to as Non-Patent Document 1), A GaN crystal growth method using Na as a flux is disclosed. In this method, sodium azide (NaN 3 ) as a flux and metal Ga are used as raw materials, and sealed in a stainless steel reaction vessel (inner vessel dimensions; inner diameter = 7.5 mm, length = 100 mm) in a nitrogen atmosphere, By holding the reaction vessel at a temperature of 600 to 800 ° C. for 24 to 100 hours, a GaN crystal is grown at an atmospheric pressure of at most about 100 kgf / cm 2 .

しかし、上記特許文献1および非特許文献1の結晶成長方法は、いずれも成長するGaN結晶の厚さは結晶成長面においてばらつきが大きくなり、かかる厚さの不均一なGaN結晶から得られるGaN結晶基板の歩留まりが低減するという問題がある。   However, in the crystal growth methods of Patent Document 1 and Non-Patent Document 1, the thickness of the growing GaN crystal varies greatly on the crystal growth surface, and the GaN crystal obtained from the GaN crystal having a nonuniform thickness. There is a problem that the yield of the substrate is reduced.

再公表WO99/34037号公報Republished WO99 / 34037

H. Yamane, 他3名,“Preparation of GaN Single Crystals Using a Na Flux”,Chemistry of Materials,(1997),Vol.9,pp.413-416H. Yamane and three others, “Preparation of GaN Single Crystals Using a Na Flux”, Chemistry of Materials, (1997), Vol. 9, pp.413-416

本発明は、上記問題を解決するため、結晶成長面内において均一な厚さを有するIII族窒化物結晶を成長させるIII族窒化物結晶の成長方法を提供することを目的とする。   In order to solve the above problems, an object of the present invention is to provide a group III nitride crystal growth method for growing a group III nitride crystal having a uniform thickness in the crystal growth plane.

本発明は、III族窒化物結晶基板を準備する工程と、液相法によりIII族窒化物結晶基板の主面上にIII族窒化物結晶を複数回繰り返して成長させる工程と、を備え、結晶成長面内において均一な厚さを有するIII族窒化物結晶を成長させるIII族窒化物結晶の成長方法である。   The present invention comprises a step of preparing a group III nitride crystal substrate and a step of repeatedly growing a group III nitride crystal on the main surface of the group III nitride crystal substrate by a liquid phase method a plurality of times. This is a group III nitride crystal growth method for growing a group III nitride crystal having a uniform thickness in the growth plane.

本発明にかかるIII族窒化物結晶の成長方法において、液相法として、Ga融液に窒素を溶解させた溶液をIII族窒化物結晶基板の主面に接触させることにより、III族窒化物結晶としてGaN結晶を成長させることができる。ここで、GaN結晶の成長は、成長温度が800℃以上1500℃以下、成長圧力が50気圧(5.06MPa)以上2000気圧(202.65MPa)以下で行うことができる。また、III族窒化物結晶基板は、主結晶領域と、主結晶領域に対して[0001]方向の極性が反転した極性反転結晶領域と、を含むことができる。ここで、III族窒化物結晶基板の主面において、主結晶領域の主面に比べて極性反転結晶領域の主面を凹ませることができる。   In the method for growing a group III nitride crystal according to the present invention, as a liquid phase method, a solution in which nitrogen is dissolved in a Ga melt is brought into contact with the main surface of the group III nitride crystal substrate to obtain a group III nitride crystal. A GaN crystal can be grown. Here, the growth of the GaN crystal can be performed at a growth temperature of 800 ° C. or more and 1500 ° C. or less and a growth pressure of 50 atm (5.06 MPa) or more and 2000 atm (202.65 MPa) or less. In addition, the group III nitride crystal substrate can include a main crystal region and a polarity inversion crystal region in which the polarity in the [0001] direction is inverted with respect to the main crystal region. Here, the main surface of the polarity reversal crystal region can be recessed in the main surface of the group III nitride crystal substrate as compared with the main surface of the main crystal region.

本発明によれば、結晶成長面内において均一な厚さを有するIII族窒化物結晶を成長させるIII族窒化物結晶の成長方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the growth method of the group III nitride crystal which grows the group III nitride crystal which has uniform thickness in a crystal growth surface can be provided.

本発明にかかるIII族窒化物結晶の成長方法において準備されるIII族窒化物結晶基板の一例を示す概略図である。(A)は概略平面図であり、(B)は(A)のIB−IBにおける概略断面図である。It is the schematic which shows an example of the group III nitride crystal substrate prepared in the growth method of the group III nitride crystal concerning this invention. (A) is a schematic plan view, (B) is a schematic sectional drawing in IB-IB of (A). 本発明にかかるIII族窒化物結晶の成長方法の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the growth method of the group III nitride crystal concerning this invention. 典型的なIII族窒化物結晶の成長方法の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the growth method of a typical group III nitride crystal. 本発明にかかるIII族窒化物結晶の成長方法において準備されるIII族窒化物結晶基板の他の例を示す概略図である。(A)は概略平面図であり、(B)は(A)のIVB−IVBにおける概略断面図である。It is the schematic which shows the other example of the group III nitride crystal substrate prepared in the growth method of the group III nitride crystal concerning this invention. (A) is a schematic plan view, (B) is a schematic sectional drawing in IVB-IVB of (A). 本発明にかかるIII族窒化物結晶の成長方法の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the growth method of the group III nitride crystal concerning this invention. 典型的なIII族窒化物結晶の成長方法のさらに他の例を示す概略断面図である。It is a schematic sectional drawing which shows the further another example of the growth method of a typical group III nitride crystal. III族窒化物結晶の成長において発生する雑晶を示す概略図である。(A)は概略平面図であり、(B)は(A)のVIIB−VIIBにおける概略断面図である。It is the schematic which shows the miscellaneous crystal | crystallization generated in the growth of a group III nitride crystal. (A) is a schematic plan view, (B) is a schematic sectional drawing in VIIB-VIIB of (A). III族窒化物結晶の成長において、32時間、64時間および128時間でそれぞれ1回の結晶成長後のIII族窒化物結晶の厚さの一例を示すグラフである。In the growth of a group III nitride crystal, it is a graph which shows an example of the thickness of the group III nitride crystal after one crystal growth in 32 hours, 64 hours, and 128 hours, respectively. III族窒化物結晶の成長において、1回〜3回の結晶成長後のIII族窒化物結晶の厚さの一例を示すグラフである。In the growth of a group III nitride crystal, it is a graph which shows an example of the thickness of the group III nitride crystal after 1 to 3 times of crystal growth. III族窒化物結晶の成長において、1回〜3回の結晶成長後のIII族窒化物結晶の結晶成長速度の一例を示すグラフである。4 is a graph showing an example of the growth rate of a group III nitride crystal after one to three crystal growths in the growth of a group III nitride crystal. III族窒化物結晶の成長において、32時間、64時間および128時間でそれぞれ1回の結晶成長後のIII族窒化物結晶の厚さの他の例を示すグラフである。In the growth of a group III nitride crystal, it is a graph which shows the other example of the thickness of the group III nitride crystal after one crystal growth in 32 hours, 64 hours, and 128 hours, respectively. III族窒化物結晶の成長において、1回〜3回の結晶成長後のIII族窒化物結晶の厚さの他の例を示すグラフである。In the growth of a group III nitride crystal, it is a graph which shows the other example of the thickness of the group III nitride crystal after 1 to 3 times of crystal growth. III族窒化物結晶の成長において、1回〜3回の結晶成長後のIII族窒化物結晶の結晶成長速度の他の例を示すグラフである。6 is a graph showing another example of the crystal growth rate of a group III nitride crystal after one to three crystal growths in the growth of a group III nitride crystal. III族窒化物結晶の成長において、III族窒化物結晶の1回の結晶成長時間とIII族窒化物結晶基板の極性反転結晶領域の埋め込み率との関係を示すグラフである。4 is a graph showing a relationship between a single crystal growth time of a group III nitride crystal and a filling rate of a polarity reversal crystal region of a group III nitride crystal substrate in the growth of a group III nitride crystal. III族窒化物結晶の成長において、III族窒化物結晶の結晶成長回数とIII族窒化物結晶基板の極性反転結晶領域の埋め込み率との関係を示すグラフである。4 is a graph showing the relationship between the number of times a group III nitride crystal grows and the filling rate of a polarity reversal crystal region of a group III nitride crystal substrate in the growth of a group III nitride crystal.

図1〜図2および図4〜図5を参照して、本発明にかかるIII族窒化物結晶の成長方法の一実施形態は、III族窒化物結晶基板10を準備する工程(図1、図4)と、液相法によりIII族窒化物結晶基板10の主面10m上にIII族窒化物結晶20を複数回繰り返して成長させる工程(図2、図5)と、を備え、結晶成長面20u内において均一な厚さを有するIII族窒化物結晶20を成長させる。   With reference to FIGS. 1 to 2 and FIGS. 4 to 5, in one embodiment of a group III nitride crystal growth method according to the present invention, a step of preparing a group III nitride crystal substrate 10 (FIG. 1, FIG. 4) and a step (FIGS. 2 and 5) of repeatedly growing group III nitride crystal 20 on main surface 10m of group III nitride crystal substrate 10 by a liquid phase method multiple times. A group III nitride crystal 20 having a uniform thickness is grown in 20u.

本実施形態のIII族窒化物結晶の成長方法は、III族窒化物結晶20を複数回繰り返して成長させることにより、結晶成長面20u内において均一な厚さを有するIII族窒化物結晶20を成長させることができる。以下、本実施形態のIII族窒化物結晶の成長方法を詳細に説明する。   In the method for growing a group III nitride crystal of this embodiment, the group III nitride crystal 20 having a uniform thickness is grown in the crystal growth surface 20u by repeatedly growing the group III nitride crystal 20 a plurality of times. Can be made. The group III nitride crystal growth method of this embodiment will be described in detail below.

(III族窒化物結晶基板を準備する工程)
まず、図1および図4を参照して、本実施形態のIII族窒化物結晶の成長方法は、III族窒化物結晶基板10を準備する工程を備える。III族窒化物結晶基板10を準備することにより、その主面10m上に転位密度が低く結晶性の高いIII族窒化物結晶20を成長させることができる。
(Step of preparing a group III nitride crystal substrate)
First, referring to FIG. 1 and FIG. 4, the group III nitride crystal growth method of this embodiment includes a step of preparing a group III nitride crystal substrate 10. By preparing the group III nitride crystal substrate 10, the group III nitride crystal 20 having a low dislocation density and high crystallinity can be grown on the main surface 10m.

ここで、準備されるIII族窒化物結晶基板10は、その主面10m上に転位密度が低く結晶性の高いIII族窒化物結晶20をエピタキシャル成長させることができるものである限りとくに制限はなく、また、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法、MBE(分子線エピタキシ)法、昇華法などの気相法、III族金属を含む融液に窒素を溶解させた溶液を用いる溶液法、III族金属およびフラックスを含む融液に窒素を溶解させた溶液を用いるフラックス法などの液相法など、いずれの成長方法により製造されたものであってもよい。   Here, the prepared group III nitride crystal substrate 10 is not particularly limited as long as the group III nitride crystal 20 having a low dislocation density and high crystallinity can be epitaxially grown on the main surface 10m, In addition, HVPE (hydride vapor phase epitaxy) method, MOCVD (metal organic chemical vapor deposition) method, MBE (molecular beam epitaxy) method, sublimation method and other gas phase methods, and nitrogen is dissolved in a melt containing a group III metal. It may be produced by any growth method such as a solution method using a solution or a liquid phase method such as a flux method using a solution in which nitrogen is dissolved in a melt containing a group III metal and a flux.

図4を参照して、準備されるIII族窒化物結晶基板10は、その基板の転位密度が低く結晶性が高い観点から、主結晶領域10sと、主結晶領域10sに対して[0001]方向の極性が反転した極性反転結晶領域10tと、を含むことが好ましい。かかるIII族窒化物結晶基板10は、主結晶領域10sの転位密度が極めて低いために、主結晶領域10sの主面10sm上に、転位密度が極めて低いIII族窒化物結晶20をエピタキシャル成長させることができる。   Referring to FIG. 4, group III nitride crystal substrate 10 to be prepared has a main crystal region 10s and a [0001] direction with respect to main crystal region 10s from the viewpoint of low dislocation density and high crystallinity of the substrate. And a polarity-reversed crystal region 10t having a reversed polarity. Since the group III nitride crystal substrate 10 has an extremely low dislocation density in the main crystal region 10s, the group III nitride crystal 20 having an extremely low dislocation density can be epitaxially grown on the main surface 10sm of the main crystal region 10s. it can.

主結晶領域10sと極性反転結晶領域10tとを含むIII族窒化物結晶基板10において、その一つの主面10mが(0001)の面方位を有し、その主面10m上にIII族窒化物結晶20をエピタキシャル成長させる場合、主結晶領域10sの主面10smは(0001)の面方位を有するIII族原子面であり、極性反転結晶領域10tの主面10tmは(000−1)の面方位を有する窒素原子面である。かかる場合においては、極性反転結晶領域10tの主面10tm上に成長するIII族窒化物結晶20の結晶領域に比べて、主結晶領域10sの主面10sm上に成長するIII族窒化物結晶20の結晶領域の結晶成長速度が極めて高い。このため、主結晶領域10sの主面10sm上に成長するIII族窒化物結晶20の結晶領域は、極性反転結晶領域10tの主面10tm上に成長するIII族窒化物結晶20の結晶領域を埋め込むようにして結晶成長する。ここで、III族窒化物結晶基板10の主結晶領域10sの主面10sm上に成長するIII族窒化物結晶20の結晶領域は、主結晶領域10sの結晶性および結晶方位を保持しながら結晶成長するため、転位密度が低く結晶性が高く結晶成長面20uの面方位が(0001)であるIII族窒化物結晶20が得られる。   In a group III nitride crystal substrate 10 including a main crystal region 10s and a polarity inversion crystal region 10t, one main surface 10m has a (0001) plane orientation, and a group III nitride crystal is formed on the main surface 10m. When epitaxially growing 20, the main surface 10 sm of the main crystal region 10 s is a group III atomic surface having a (0001) plane orientation, and the main surface 10 tm of the polarity reversal crystal region 10 t has a (000-1) plane orientation. Nitrogen atom plane. In such a case, the group III nitride crystal 20 grown on the main surface 10sm of the main crystal region 10s is compared with the crystal region of the group III nitride crystal 20 grown on the main surface 10tm of the polarity reversal crystal region 10t. The crystal growth rate in the crystal region is extremely high. Therefore, the crystal region of group III nitride crystal 20 grown on main surface 10sm of main crystal region 10s embeds the crystal region of group III nitride crystal 20 grown on main surface 10tm of polarity reversal crystal region 10t. Thus, the crystal grows. Here, the crystal region of the group III nitride crystal 20 grown on the main surface 10 sm of the main crystal region 10 s of the group III nitride crystal substrate 10 grows while maintaining the crystallinity and crystal orientation of the main crystal region 10 s. Therefore, a group III nitride crystal 20 having a low dislocation density, high crystallinity, and a crystal growth surface 20u having a plane orientation of (0001) is obtained.

図4を参照して、さらに、準備される上記III族窒化物結晶基板10において、主結晶領域10sの主面10smに比べて極性反転結晶領域10tの主面10tmが凹んでいることがより好ましい。主結晶領域10sの主面10smに比べて極性反転結晶領域10tの主面10tmが凹んでいることにより、III族窒化物結晶20の成長の際に、凹んだ極性反転結晶領域10tの主面10tm上にはほとんどIII族窒化物結晶は成長せず、III族窒化物結晶基板10の主結晶領域10sの主面10sm上に成長するIII族窒化物結晶20の結晶領域による極性反転結晶領域10t(または極性反転結晶領域10tの主面10tm上にわずかに成長するIII族窒化物結晶20の結晶領域)の埋め込みが促進されるからである。かかる観点から、主結晶領域10sの主面10smに対する極性反転結晶領域10tの主面10tmの凹み10vの深さは、10μm以上が好ましく、20μm以上がより好ましい。   Referring to FIG. 4, in the prepared group III nitride crystal substrate 10, the main surface 10tm of the polarity reversal crystal region 10t is more preferably recessed than the main surface 10sm of the main crystal region 10s. . Since the main surface 10tm of the polarity reversal crystal region 10t is recessed as compared with the main surface 10sm of the main crystal region 10s, the main surface 10tm of the recessed polarity reversal crystal region 10t is grown during the growth of the group III nitride crystal 20. Almost no group III nitride crystal grows thereon, and the polarity inversion crystal region 10t (by the crystal region of the group III nitride crystal 20 grown on the main surface 10sm of the main crystal region 10s of the group III nitride crystal substrate 10) Alternatively, embedding of the group III nitride crystal 20 crystal region slightly growing on the main surface 10tm of the polarity reversal crystal region 10t is promoted. From this viewpoint, the depth of the recess 10v of the main surface 10tm of the polarity reversal crystal region 10t with respect to the main surface 10sm of the main crystal region 10s is preferably 10 μm or more, and more preferably 20 μm or more.

III族窒化物結晶基板10の極性反転結晶領域10tの主面10tmの凹み10vの形成方法は、特に制限はないが、たとえば、III族窒化物結晶基板10の主面10mに、KOH融液、NaOH融液などのアルカリ性の融液、KOH水溶液、NaOH水溶液などのアルカリ性の水溶液を接触させることにより、主結晶領域10sの主面10smに比べて極性反転結晶領域10tの主面10tmをよりエッチングする方法が挙げられる。   The method for forming the recess 10v in the main surface 10tm of the polarity reversal crystal region 10t of the group III nitride crystal substrate 10 is not particularly limited. For example, the main surface 10m of the group III nitride crystal substrate 10 may have a KOH melt, By contacting an alkaline melt such as NaOH melt, or an alkaline aqueous solution such as KOH aqueous solution or NaOH aqueous solution, the main surface 10tm of the polarity reversal crystal region 10t is more etched than the main surface 10sm of the main crystal region 10s. A method is mentioned.

(III族窒化物結晶の複数回繰り返して成長させる工程)
次に、図2および図5を参照して、本実施形態のIII族窒化物結晶の成長方法は、液相法によりIII族窒化物結晶基板の主面上にIII族窒化物結晶を複数回繰り返して成長させる工程を備える。III族窒化物結晶20を複数回繰り返して成長させることにより、結晶成長面20u内において均一な厚さを有するIII族窒化物結晶20を成長させることができる。
(Step of repeatedly growing group III nitride crystal multiple times)
Next, referring to FIG. 2 and FIG. 5, in the method for growing a group III nitride crystal of this embodiment, a group III nitride crystal is formed on the main surface of the group III nitride crystal substrate a plurality of times by a liquid phase method. It includes a process of repeatedly growing. By repeatedly growing group III nitride crystal 20 a plurality of times, group III nitride crystal 20 having a uniform thickness can be grown in crystal growth surface 20u.

ここで、III族窒化物結晶20を複数回繰り返して成長させるとは、III族窒化物結晶20の成長を1回以上中断して複数回の結晶成長を行うことをいい、結晶を成長させた後結晶成長容器から取り出した結晶を再度結晶成長容器に入れて結晶成長を行う方法の他、結晶を成長させた後その結晶を結晶成長容器から取り出すことなく結晶が成長しない条件下においた後再度その結晶を結晶が成長する条件下におく方法も含まれる。いずれの方法であっても、結晶成長面20u内において均一な厚さを有するIII族窒化物結晶20を成長させることができる。   Here, the growth of the group III nitride crystal 20 by repeating a plurality of times means that the growth of the group III nitride crystal 20 is interrupted one or more times and the crystal growth is performed a plurality of times. In addition to the method of performing crystal growth by putting the crystal taken out from the post-crystal growth vessel into the crystal growth vessel again, after the crystal is grown, the crystal is not taken out from the crystal growth vessel and then placed under conditions where the crystal does not grow again. Also included is a method of placing the crystal under conditions for crystal growth. In any method, the group III nitride crystal 20 having a uniform thickness can be grown in the crystal growth surface 20u.

液相法は、転位密度が低く結晶性の高いIII族窒化物結晶20をエピタキシャル成長させることができるため好適であり、III族金属を含む融液3に窒素5を溶解させた溶液7を用いる溶液法、III族金属およびフラックスを含む融液3に窒素5を溶解させた溶液7を用いるフラックス法などが好適に用いられる。ここで、成長させるIII族窒化物結晶20に混入する不純物を低減する観点から、III族金属を含む融液に窒素を溶解させた溶液を用いる溶液法が特に好適である。   The liquid phase method is suitable because the group III nitride crystal 20 having a low dislocation density and high crystallinity can be epitaxially grown, and a solution using a solution 7 in which nitrogen 5 is dissolved in a melt 3 containing a group III metal. For example, a flux method using a solution 7 in which nitrogen 5 is dissolved in a melt 3 containing a group III metal and a flux is preferably used. Here, from the viewpoint of reducing impurities mixed in the group III nitride crystal 20 to be grown, a solution method using a solution in which nitrogen is dissolved in a melt containing a group III metal is particularly suitable.

図3および図6を参照して、液相法により厚いIII族窒化物結晶20を1回でエピタキシャル成長させる場合、結晶成長の際に、結晶成長条件のIII族窒化物結晶20の結晶成長面20u内におけるばらつきにより、結晶成長速度が結晶成長面20u内においてばらつくため、得られるIII族窒化物結晶20は、結晶成長面20u内において厚さが不均一となる。   Referring to FIGS. 3 and 6, when thick group III nitride crystal 20 is epitaxially grown at a time by the liquid phase method, crystal growth surface 20u of group III nitride crystal 20 under the crystal growth condition is used during crystal growth. Due to the variation in the crystal growth rate, the crystal growth rate varies within the crystal growth surface 20u, so that the obtained group III nitride crystal 20 has a non-uniform thickness within the crystal growth surface 20u.

これに対して、図2および図5を参照して、III族窒化物結晶20の成長を複数回に分けて繰り返し行うことにより、結晶成長条件のIII族窒化物結晶20の結晶成長面20u内における厚さの分布が、各回のIII族窒化物結晶20の成長毎に異なるため、結晶成長面20uにおいて均一な厚さを有するIII族窒化物結晶20が得られる。たとえば、III族窒化物結晶20の1回目の結晶成長領域20a、2回目の結晶成長領域20b、3回目の結晶成長領域20cおよびk回目の結晶成長領域20kのそれぞれの結晶成長領域において結晶成長面内における厚さの分布が異なるため、結晶成長面20u内において均一な厚さを有するIII族窒化物結晶20が得られる。   On the other hand, referring to FIG. 2 and FIG. 5, by repeating the growth of group III nitride crystal 20 in a plurality of times, the crystal growth surface 20u of group III nitride crystal 20 under the crystal growth condition is obtained. Since the distribution of the thickness of each group differs for each growth of the group III nitride crystal 20, the group III nitride crystal 20 having a uniform thickness on the crystal growth surface 20u is obtained. For example, the crystal growth surface in each of the first crystal growth region 20a, the second crystal growth region 20b, the third crystal growth region 20c, and the k-th crystal growth region 20k of the group III nitride crystal 20. Therefore, the group III nitride crystal 20 having a uniform thickness in the crystal growth surface 20u is obtained.

ここで、III族窒化物結晶20が結晶成長面20u内において厚さが均一とは、結晶成長面20u内における最大厚さに対する最小厚さの比、すなわち結晶成長面20u内における複数回の平均の最大成長速度に対する複数回の平均の最小成長速度の比が、0.33以上、好ましくは0.50以上、より好ましくは0.66以上、さらに好ましくは0.80以上、最も好ましくは0.90以上であることをいう。   Here, the thickness of the group III nitride crystal 20 being uniform in the crystal growth surface 20u means that the ratio of the minimum thickness to the maximum thickness in the crystal growth surface 20u, that is, the average of a plurality of times in the crystal growth surface 20u. The ratio of the average minimum growth rate of the plurality of times to the maximum growth rate is 0.33 or more, preferably 0.50 or more, more preferably 0.66 or more, still more preferably 0.80 or more, and most preferably 0.8. It means 90 or more.

また、成長させるIII族窒化物結晶20をその結晶成長面20u内においてその厚さをより均一にさせる観点から、III族窒化物結晶20の成長回数は3回以上であることが好ましく、各回の結晶成長において結晶成長面20uにおける最大厚さに対する最小厚さの比、すなわち結晶成長面20uにおける各回の最大成長速度に対する各回の最小成長速度の比が、0.33以上が好ましく、0.50以上がより好ましく、0.60以上がさらに好ましい。   Further, from the viewpoint of making the thickness of the group III nitride crystal 20 to be grown more uniform in the crystal growth surface 20u, the number of times of growth of the group III nitride crystal 20 is preferably 3 times or more. In the crystal growth, the ratio of the minimum thickness to the maximum thickness at the crystal growth surface 20u, that is, the ratio of the minimum growth rate at each time to the maximum growth rate at each time at the crystal growth surface 20u is preferably 0.33 or more, preferably 0.50 or more. Is more preferable, and 0.60 or more is more preferable.

本実施形態のIII族窒化物結晶の成長方法において、各回の結晶成長の間に、成長させたIII族窒化物結晶の結晶成長面を研磨またはエッチングすることによって、成長させたIII族窒化物結晶の結晶成長面内における厚さを均一化することが好ましい。各回の結晶成長の間における上記の研磨またはエッチングによる結晶成長面内における厚さの均一化により、結晶成長面内における厚さが均一なIII族窒化物結晶をより効率的に成長させることができる。   In the method for growing a group III nitride crystal of the present embodiment, the group III nitride crystal grown by polishing or etching the crystal growth surface of the grown group III nitride crystal during each crystal growth. It is preferable to make the thickness in the crystal growth plane uniform. By making the thickness uniform in the crystal growth surface by the above polishing or etching during each crystal growth, a group III nitride crystal having a uniform thickness in the crystal growth surface can be more efficiently grown. .

また、本実施形態のIII族窒化物結晶の成長方法において、液相法として、III族金属を含む融液3であるGa融液に窒素5を溶解させた溶液7をIII族窒化物結晶基板10の主面10mに接触させることにより、III族窒化物結晶20としてGaN結晶を成長させることが好ましい。かかる成長方法により、結晶成長面20uにおける厚さが均一なGaN結晶が得られる。   Further, in the method for growing a group III nitride crystal of the present embodiment, as a liquid phase method, a solution 7 in which nitrogen 5 is dissolved in a Ga melt that is a melt 3 containing a group III metal is used as a group III nitride crystal substrate. It is preferable to grow a GaN crystal as the group III nitride crystal 20 by bringing it into contact with the 10 major surfaces 10 m. With this growth method, a GaN crystal having a uniform thickness on the crystal growth surface 20u can be obtained.

さらに、上記GaN結晶の成長において、成長温度を800℃以上1500℃以下、成長圧力が50気圧(5.06MPa)以上2000気圧(202.65MPa)以下であることが好ましい。かかる成長温度および成長圧力において結晶成長させることにより、転位密度が低く結晶性の高いGaN結晶が得られる。   Furthermore, in the growth of the GaN crystal, it is preferable that the growth temperature is 800 ° C. or more and 1500 ° C. or less, and the growth pressure is 50 atm (5.06 MPa) or more and 2000 atm (202.65 MPa) or less. By crystal growth at such growth temperature and pressure, a GaN crystal having a low dislocation density and high crystallinity can be obtained.

上述のように、図4を参照して、本実施形態のIII族窒化物結晶の成長方法において、準備されるIII族窒化物結晶基板10は、主結晶領域10sと、主結晶領域10sに対して[0001]方向の極性が反転した極性反転結晶領域10tと、を含むことが好ましい。かかるIII族窒化物結晶基板10は、上述のように、主結晶領域10sの転位密度が極めて低いために、主結晶領域10sの主面10sm上に、転位密度が極めて低いIII族窒化物結晶20をエピタキシャル成長させることができる。   As described above, referring to FIG. 4, in the group III nitride crystal growth method of the present embodiment, the prepared group III nitride crystal substrate 10 is divided into a main crystal region 10 s and a main crystal region 10 s. And a polarity-inverted crystal region 10t whose polarity in the [0001] direction is inverted. Since the group III nitride crystal substrate 10 has a very low dislocation density in the main crystal region 10 s as described above, the group III nitride crystal 20 having a very low dislocation density on the main surface 10 sm of the main crystal region 10 s. Can be epitaxially grown.

また、主結晶領域10sと極性反転結晶領域10tとを含むIII族窒化物結晶基板10において、その一つの主面10mが(0001)の面方位を有し、その主面10m上にIII族窒化物結晶20をエピタキシャル成長させる場合であって、主結晶領域10sの主面10smが(0001)の面方位を有するIII族原子面であり、極性反転結晶領域10tの主面10tmが(000−1)の面方位を有する窒素原子面である場合においては、極性反転結晶領域10tの主面10tm上に成長するIII族窒化物結晶20の結晶領域に比べて、主結晶領域10sの主面10sm上に成長するIII族窒化物結晶20の結晶領域の結晶成長速度が極めて高い。このため、主結晶領域10sの主面10sm上に成長するIII族窒化物結晶20の結晶領域は、極性反転結晶領域10tの主面10tm上に成長するIII族窒化物結晶20の結晶領域を埋め込むようにして結晶成長する。ここで、III族窒化物結晶基板10の主結晶領域10sの主面10sm上に成長するIII族窒化物結晶20の結晶領域は、主結晶領域10sの結晶性および結晶方位を保持しながら結晶成長するため、転位密度が低く結晶性が高く結晶成長面20uの面方位が(0001)であるIII族窒化物結晶20が得られる。   Further, in the group III nitride crystal substrate 10 including the main crystal region 10s and the polarity inversion crystal region 10t, one main surface 10m has a (0001) plane orientation, and the group III nitride is formed on the main surface 10m. In the case of epitaxial growth of the physical crystal 20, the main surface 10sm of the main crystal region 10s is a group III atomic surface having a (0001) plane orientation, and the main surface 10tm of the polarity reversal crystal region 10t is (000-1). In the case of the nitrogen atom plane having the plane orientation of the following, the crystal region of the group III nitride crystal 20 growing on the main surface 10tm of the polarity reversal crystal region 10t is on the main surface 10sm of the main crystal region 10s. The crystal growth rate of the crystal region of the growing group III nitride crystal 20 is extremely high. Therefore, the crystal region of group III nitride crystal 20 grown on main surface 10sm of main crystal region 10s embeds the crystal region of group III nitride crystal 20 grown on main surface 10tm of polarity reversal crystal region 10t. Thus, the crystal grows. Here, the crystal region of the group III nitride crystal 20 grown on the main surface 10 sm of the main crystal region 10 s of the group III nitride crystal substrate 10 grows while maintaining the crystallinity and crystal orientation of the main crystal region 10 s. Therefore, a group III nitride crystal 20 having a low dislocation density, high crystallinity, and a crystal growth surface 20u having a plane orientation of (0001) is obtained.

上述のように、図4を参照して、さらに、準備される上記III族窒化物結晶基板10において、主結晶領域10sの主面10smに比べて極性反転結晶領域10tの主面10tmが凹んでいることがより好ましい。主結晶領域10sの主面10smに比べて極性反転結晶領域10tの主面10tmが凹んでいることにより、III族窒化物結晶20の成長の際に、凹んだ極性反転結晶領域10tの主面10tm上にはほとんどIII族窒化物結晶は成長せず、III族窒化物結晶基板10の主結晶領域10sの主面10sm上に成長するIII族窒化物結晶20の結晶領域による極性反転結晶領域10t(または極性反転結晶領域10tの主面10tm上にわずかに成長するIII族窒化物結晶20の結晶領域)の埋め込みが促進されるからである。かかる観点から、主結晶領域10sの主面10smに対する極性反転結晶領域10tの主面10tmの凹み10vの深さは、10μm以上が好ましく、20μm以上がより好ましい。   As described above, referring to FIG. 4, in the prepared group III nitride crystal substrate 10, the main surface 10tm of the polarity reversal crystal region 10t is recessed as compared with the main surface 10sm of the main crystal region 10s. More preferably. Since the main surface 10tm of the polarity reversal crystal region 10t is recessed as compared with the main surface 10sm of the main crystal region 10s, the main surface 10tm of the recessed polarity reversal crystal region 10t is grown during the growth of the group III nitride crystal 20. Almost no group III nitride crystal grows thereon, and the polarity inversion crystal region 10t (by the crystal region of the group III nitride crystal 20 grown on the main surface 10sm of the main crystal region 10s of the group III nitride crystal substrate 10) Alternatively, embedding of the group III nitride crystal 20 crystal region slightly growing on the main surface 10tm of the polarity reversal crystal region 10t is promoted. From this viewpoint, the depth of the recess 10v of the main surface 10tm of the polarity reversal crystal region 10t with respect to the main surface 10sm of the main crystal region 10s is preferably 10 μm or more, and more preferably 20 μm or more.

(実施例1)
1.GaN結晶基板の準備
図1を参照して、直径が2インチ(50.8mm)で厚さが400μmのGaN結晶基板(III族窒化物結晶基板10)を準備した。このGaN結晶基板の主面10mにおける平均転位密度は、CL(カソードルミネッセンス)法により測定したところ、5×105cm-2であった。
Example 1
1. Preparation of GaN Crystal Substrate Referring to FIG. 1, a GaN crystal substrate (Group III nitride crystal substrate 10) having a diameter of 2 inches (50.8 mm) and a thickness of 400 μm was prepared. The average dislocation density at 10 m of the principal surface of the GaN crystal substrate was 5 × 10 5 cm −2 when measured by a CL (cathode luminescence) method.

2.GaN結晶の成長
図2を参照して、内径が60mmで高さが50mmのpBN(熱分解窒化ホウ素)製坩堝(結晶成長容器1)内に、GaN結晶基板(III族窒化物結晶基板10)および純度が99.99999質量%の金属Gaを100g配置した。
2. 2. Growth of GaN crystal Referring to FIG. 2, a GaN crystal substrate (group III nitride crystal substrate 10) is placed in a pBN (pyrolytic boron nitride) crucible (crystal growth vessel 1) having an inner diameter of 60 mm and a height of 50 mm. And 100 g of metal Ga having a purity of 99.99999 mass% was arranged.

次いで、pBN製坩堝内に純度99.9999質量%の窒素ガス(窒素5)を供給して、pBN製坩堝を30気圧(3.04MPa)下室温(25℃)から1150℃まで加熱した。このとき、pBN製坩堝内に配置された金属Gaが融解してGa融液(融液3)となり、かかるGa融液に窒素5が溶解した溶液7がGaN結晶基板の主面10mに接触している。しかし、かかる条件においては、Ga融液への窒素の溶解が少ないため、GaN結晶は成長することなく、GaN結晶基板の主面がエッチングされて、主面近傍の加工変質層および表面酸化層が除去され主面が清浄化された。   Next, nitrogen gas (nitrogen 5) having a purity of 99.9999% by mass was supplied into the pBN crucible, and the pBN crucible was heated from room temperature (25 ° C.) to 1150 ° C. under 30 atm (3.04 MPa). At this time, the metal Ga arranged in the pBN crucible melts to form a Ga melt (melt 3), and the solution 7 in which nitrogen 5 is dissolved in the Ga melt contacts the main surface 10m of the GaN crystal substrate. ing. However, under such conditions, since the dissolution of nitrogen in the Ga melt is small, the main surface of the GaN crystal substrate is etched without growing the GaN crystal, and the work-affected layer and the surface oxide layer in the vicinity of the main surface are formed. It was removed and the main surface was cleaned.

次いで、さらにpBN坩堝に窒素ガスを供給して圧力を1950気圧(197.5MPa)として、3つのGaN結晶を成長させた。3つのGaN結晶の第1回目のGaN結晶の成長時間は、それぞれ32時間、64時間および128時間とした。得られた3つのGaN結晶のそれぞれについて、蛍光顕微鏡による断面観察により、GaN結晶の厚さを「結晶成長面上の直径の一端から他端に向かって5mmの間隔で測定した。また、得られた3つのGaN結晶の結晶成長面における平均転位密度を、CL法により測定した。32時間成長のGaN結晶は、最大厚さが23μm、最小厚さが12μm、および平均厚さが17μmであり、結晶成長面における平均転位密度は5×105cm-2であった。64時間成長のGaN結晶は、最大厚さが42μm、最小厚さが26μm、および平均厚さが32μmであり、結晶成長面における平均転位密度は5×105cm-2であった。128時間成長のGaN結晶は、最大厚さが90μm、最小厚さが26μm、および平均厚さが56μmであり、結晶成長面における平均転位密度は5×105cm-2であった。結果を表1および図8にまとめた。 Subsequently, nitrogen gas was further supplied to the pBN crucible to adjust the pressure to 1950 atm (197.5 MPa) to grow three GaN crystals. The first GaN crystal growth time of the three GaN crystals was 32 hours, 64 hours, and 128 hours, respectively. For each of the obtained three GaN crystals, the thickness of the GaN crystal was measured at intervals of 5 mm from one end of the diameter on the crystal growth surface to the other end by cross-sectional observation with a fluorescence microscope. The average dislocation density at the crystal growth surface of the three GaN crystals was measured by the CL method, and the GaN crystals grown for 32 hours had a maximum thickness of 23 μm, a minimum thickness of 12 μm, and an average thickness of 17 μm, The average dislocation density at the crystal growth surface was 5 × 10 5 cm −2 , and the GaN crystal grown for 64 hours had a maximum thickness of 42 μm, a minimum thickness of 26 μm, and an average thickness of 32 μm. The average dislocation density in the plane was 5 × 10 5 cm −2 , and the GaN crystal grown for 128 hours had a maximum thickness of 90 μm, a minimum thickness of 26 μm, and an average thickness of 56 μm. The average dislocation density on the long face was 5 × 10 5 cm −2 , and the results are summarized in Table 1 and FIG.

Figure 2011184265
Figure 2011184265

表1および図8を参照して、32時間成長後および64時間成長後のGaN結晶においては、最大厚さに対する最小厚さの比はそれぞれ0.52および0.62であり、いずれも0.33以上であった。これに対して、128時間成長のGaN結晶においては最大厚さに対する最小厚さの比は0.29であり、0.33未満であった。これらの結果から、結晶成長面内における厚さが均一なGaN結晶(III族窒化物結晶20)を得る観点から、GaN結晶の1回の結晶成長における成長時間は、100時間以下が好ましく、65時間以下がより好ましいことがわかる。   Referring to Table 1 and FIG. 8, in the GaN crystals after 32 hours growth and 64 hours growth, the ratio of the minimum thickness to the maximum thickness is 0.52 and 0.62, respectively. It was 33 or more. On the other hand, in the GaN crystal grown for 128 hours, the ratio of the minimum thickness to the maximum thickness was 0.29, which was less than 0.33. From these results, from the viewpoint of obtaining a GaN crystal (Group III nitride crystal 20) having a uniform thickness in the crystal growth plane, the growth time in one crystal growth of the GaN crystal is preferably 100 hours or less, 65 It can be seen that the time is more preferable.

次に、内径が60mmで高さが50mmの新たなpBN(熱分解窒化ホウ素)製坩堝(結晶成長容器1)内に、上記の64時間で1回の結晶成長後のGaN結晶および純度が99.99999質量%の金属Gaを100g配置して、上記と同様にして、さらに64時間、GaN結晶を成長させた(2回目の結晶成長)。こうして得られた2回の結晶成長後のGaN結晶は、上記と同様にして厚さを測定したところ、最大厚さが75μm、最小厚さが60μm、および平均厚さが67μmであり、最大厚さに対する最小厚さの比が0.80であった。また、2回の結晶成長後のGaN結晶の結晶成長面における平均転位密度は5×105cm-2であった。 Next, in a new pBN (pyrolytic boron nitride) crucible (crystal growth vessel 1) having an inner diameter of 60 mm and a height of 50 mm, the GaN crystal after the above-mentioned crystal growth in 64 hours and the purity are 99. 100 g of 99,999% by mass of metal Ga was placed, and a GaN crystal was grown for 64 hours in the same manner as described above (second crystal growth). The thickness of the GaN crystal after the two crystal growths thus obtained was measured in the same manner as described above. As a result, the maximum thickness was 75 μm, the minimum thickness was 60 μm, and the average thickness was 67 μm. The ratio of the minimum thickness to the thickness was 0.80. The average dislocation density in the crystal growth surface of the GaN crystal after the second crystal growth was 5 × 10 5 cm −2 .

次に、内径が60mmで高さが50mmの新たなpBN(熱分解窒化ホウ素)製坩堝(結晶成長容器1)内に、上記の2回の結晶成長後のGaN結晶および純度が99.99999質量%の金属Gaを100g配置して、上記と同様にして、さらに64時間、GaN結晶を成長させた(3回目の結晶成長)。こうして得られた3回の結晶成長後のGaN結晶は、上記と同様にして厚さを測定したところ、最大厚さが105μm、最小厚さが95μm、および平均厚さが100μmであり、最大厚さに対する最小厚さの比が0.90であった。また、3回の結晶成長後のGaN結晶の結晶成長面における平均転位密度は5×105cm-2であった。 Next, in a new pBN (pyrolytic boron nitride) crucible (crystal growth vessel 1) having an inner diameter of 60 mm and a height of 50 mm, the GaN crystal after the above-mentioned two crystal growths and the purity is 99.99999 mass. GaN crystal was grown for 64 hours in the same manner as described above by placing 100 g of% metal Ga (third crystal growth). The thickness of the GaN crystal after the three crystal growths thus obtained was measured in the same manner as described above. As a result, the maximum thickness was 105 μm, the minimum thickness was 95 μm, and the average thickness was 100 μm. The ratio of the minimum thickness to the thickness was 0.90. The average dislocation density in the crystal growth surface of the GaN crystal after the third crystal growth was 5 × 10 5 cm −2 .

上記の結果を表1および図9にまとめた。また、かかる結果に基いて、1回の結晶成長後のGaN結晶、2回の結晶成長後のGaN結晶および3回の結晶成長後のGaN結晶のそれぞれにおける最大成長速度、最小成長速度および平均成長速度を算出して、表1および図10にまとめた。   The above results are summarized in Table 1 and FIG. Based on the results, the maximum growth rate, the minimum growth rate, and the average growth in each of the GaN crystal after one crystal growth, the GaN crystal after two crystal growths, and the GaN crystal after three crystal growths. The speed was calculated and summarized in Table 1 and FIG.

すなわち、GaN結晶の最大成長速度、最小成長速度および平均成長速度とは、1回の結晶成長後のGaN結晶については1回の結晶成長後の最大厚さ、最小厚さおよび平均厚さのそれぞれを1回目の結晶成長時間である64時間で除したものを意味し、2回の結晶成長後のGaN結晶については2回の結晶成長後の最大厚さ、最小厚さおよび平均厚さのそれぞれを1回目および2回目の結晶成長時間の和である128時間で除したものを意味し、3回の結晶成長後のGaN結晶については3回の結晶成長後の最大厚さ、最小厚さおよび平均厚さのそれぞれを1回目、2回目および3回目の結晶成長時間の和である192時間で除したものを意味する。   That is, the maximum growth rate, the minimum growth rate, and the average growth rate of the GaN crystal are the maximum thickness, the minimum thickness, and the average thickness after the single crystal growth for the GaN crystal after the single crystal growth, respectively. Is divided by 64 hours which is the first crystal growth time, and for the GaN crystal after the second crystal growth, each of the maximum thickness, the minimum thickness and the average thickness after the second crystal growth. Is divided by 128 hours, which is the sum of the first and second crystal growth times, and for GaN crystals after three crystal growths, the maximum thickness, the minimum thickness after three crystal growths, and The average thickness is divided by 192 hours, which is the sum of the first, second and third crystal growth times.

表1および図10を参照して、1回の結晶成長後のGaN結晶は、最大成長速度が0.656μm/h、最小成長速度が0.406μm/h、および平均成長速度が0.500μm/hであり、最大成長速度に対する最小成長速度の比が0.62であった。2回の結晶成長後のGaN結晶は、最大成長速度が0.586μm/h、最小成長速度が0.469μm/h、および平均成長速度が0.523μm/であり、最大成長速度に対する最小成長速度の比が0.80であった。3回の結晶成長後のGaN結晶は、最大成長速度が0.547μm/h、最小成長速度が0.495μm/h、および平均成長速度が0.521μm/hであり、最大成長速度に対する最小成長速度の比が0.90であった。こうして、最大厚さに対する最小厚さの比(すなわち、最大成長速度に対する最小成長速度の比)が、0.33以上、好ましくは0.50以上、より好ましくは0.66以上、さらに好ましくは0.80以上、最も好ましくは0.90以上であり、結晶成長面における厚さが均一なGaN結晶が得られた。   Referring to Table 1 and FIG. 10, the GaN crystal after one crystal growth has a maximum growth rate of 0.656 μm / h, a minimum growth rate of 0.406 μm / h, and an average growth rate of 0.500 μm / h. h, and the ratio of the minimum growth rate to the maximum growth rate was 0.62. The GaN crystal after the second crystal growth has a maximum growth rate of 0.586 μm / h, a minimum growth rate of 0.469 μm / h, and an average growth rate of 0.523 μm / h. The ratio was 0.80. The GaN crystal after three crystal growths has a maximum growth rate of 0.547 μm / h, a minimum growth rate of 0.495 μm / h, and an average growth rate of 0.521 μm / h. The speed ratio was 0.90. Thus, the ratio of the minimum thickness to the maximum thickness (that is, the ratio of the minimum growth rate to the maximum growth rate) is 0.33 or more, preferably 0.50 or more, more preferably 0.66 or more, and even more preferably 0. A GaN crystal having a thickness of 0.80 or more, most preferably 0.90 or more and a uniform thickness on the crystal growth surface was obtained.

(実施例2)
1.GaN結晶基板の準備
図4を参照して、特開2003−183100号公報に記載されたファセット成長法により成長させた直径が2インチ(50.8mm)で厚さが400μmで主結晶領域10sと主結晶領域10sに対して[0001]方向の極性が反転した極性反転結晶領域10tとを含むGaN結晶基板(III族窒化物結晶基板10)を準備した。このGaN結晶基板において、極性反転結晶領域10tは、その主面10mから見て、幅が30μmでピッチが400μmのストライプ形状を有していた。このGaN結晶基板を90℃の10質量%のKOH水溶液中に90分間浸漬することにより、主結晶領域10sの(0001)の面方位を有する主面10smに対して極性反転結晶領域10tの(000−1)の面方位を有する主面10tmが20μm〜50μmの深さに凹んだ(凹み10v)。また、このGaN結晶基板の主面10mにおける平均転位密度は、CL(カソードルミネッセンス)法により測定したところ、主結晶領域において5×105cm-2であり、極性反転結晶領域において108cm-2台であった。
(Example 2)
1. 4. Preparation of GaN Crystal Substrate Referring to FIG. 4, a main crystal region 10s having a diameter of 2 inches (50.8 mm) and a thickness of 400 μm grown by the facet growth method described in Japanese Patent Application Laid-Open No. 2003-183100 A GaN crystal substrate (Group III nitride crystal substrate 10) including a polarity reversal crystal region 10t in which the polarity in the [0001] direction was reversed with respect to the main crystal region 10s was prepared. In this GaN crystal substrate, the polarity reversal crystal region 10t had a stripe shape with a width of 30 μm and a pitch of 400 μm when viewed from the main surface 10 m. This GaN crystal substrate is immersed in an aqueous solution of 10% by mass of KOH at 90 ° C. for 90 minutes, so that (000) The main surface 10tm having a surface orientation of -1) was recessed to a depth of 20 μm to 50 μm (dent 10v). The average dislocation density in the main surface 10 m of this GaN crystal substrate was 5 × 10 5 cm −2 in the main crystal region and 10 8 cm in the polarity reversal crystal region as measured by the CL (cathode luminescence) method. There were two .

2.GaN結晶の成長
実施例1と同様にして、3つのGaN結晶について、1回目の結晶成長を行なった。結晶成長時間は、それぞれ32時間、64時間および128時間とした。32時間成長のGaN結晶は、最大厚さが23μm、最小厚さが14μm、平均厚さが18μm、および最大厚さに対する最小厚さの比が0.61であり、結晶成長面における平均転位密度が5×105cm-2であった。64時間成長のGaN結晶は、最大厚さが43μm、最小厚さが25μm、平均厚さが32μm、および最大厚さに対する最小厚さの比が0.58であり、結晶成長面における平均転位密度が5×105cm-2であった。128時間成長のGaN結晶は、最大厚さが93μm、最小厚さが26μm、平均厚さが56μm、および最大厚さに対する最小厚さの比が0.28であり、結晶成長面における平均転位密度が5×105cm-2であった。結果を表2および図11にまとめた。
2. Growth of GaN Crystal In the same manner as in Example 1, the first crystal growth was performed for three GaN crystals. The crystal growth time was 32 hours, 64 hours and 128 hours, respectively. The GaN crystal grown for 32 hours has a maximum thickness of 23 μm, a minimum thickness of 14 μm, an average thickness of 18 μm, and a ratio of the minimum thickness to the maximum thickness of 0.61, and the average dislocation density at the crystal growth surface Was 5 × 10 5 cm −2 . A GaN crystal grown for 64 hours has a maximum thickness of 43 μm, a minimum thickness of 25 μm, an average thickness of 32 μm, and a ratio of the minimum thickness to the maximum thickness of 0.58. Was 5 × 10 5 cm −2 . The GaN crystal grown for 128 hours has a maximum thickness of 93 μm, a minimum thickness of 26 μm, an average thickness of 56 μm, and a ratio of the minimum thickness to the maximum thickness of 0.28. Was 5 × 10 5 cm −2 . The results are summarized in Table 2 and FIG.

Figure 2011184265
Figure 2011184265

表2および図11を参照して、最大厚さに対する最小厚さの比は、32時間成長後および64時間成長後のGaN結晶においては0.33以上であったのに対して、128時間成長のGaN結晶においては0.33未満であった。これらの結果から、結晶成長面内における厚さが均一なGaN結晶(III族窒化物結晶20)を得る観点から、GaN結晶の1回の結晶成長における成長時間は、100時間以下が好ましく、65時間以下がより好ましいことがわかる。   Referring to Table 2 and FIG. 11, the ratio of the minimum thickness to the maximum thickness was 0.33 or more in the GaN crystal after 32 hours growth and after 64 hours growth, whereas it was 128 hours growth. In the GaN crystal, it was less than 0.33. From these results, from the viewpoint of obtaining a GaN crystal (Group III nitride crystal 20) having a uniform thickness in the crystal growth plane, the growth time in one crystal growth of the GaN crystal is preferably 100 hours or less, 65 It can be seen that the time is more preferable.

ここで、GaN結晶基板(III族窒化物結晶基板)の極性反転結晶領域の主面の全面積に対して成長させたGaN結晶(III族窒化物結晶)によって埋め込まれた面積の百分率(%)を、極性反転結晶領域の埋め込み率と定義する。このとき、32時間成長後のGaN結晶における極性反転結晶領域の埋め込み率は、GaN結晶基板およびその主面上に成長させたGaN結晶においてその主面に平行な面の全面にわたるノマルスキー顕微鏡によるマッピング撮影より算出したところ、30%であり、64時間成長後のGaN結晶における極性反転結晶領域の埋め込み率は55%であり、128時間成長後のGaN結晶における極性反転結晶領域の埋め込み率は60%であった。結果を表2および図14にまとめた。   Here, the percentage of the area embedded by the GaN crystal (group III nitride crystal) grown with respect to the entire area of the main surface of the polarity reversal crystal region of the GaN crystal substrate (group III nitride crystal substrate) (%) Is defined as the filling rate of the polarity inversion crystal region. At this time, the filling rate of the polarity inversion crystal region in the GaN crystal after growth for 32 hours is determined by mapping photography using a Nomarski microscope over the entire surface parallel to the main surface of the GaN crystal substrate and the GaN crystal grown on the main surface. The calculated value is 30%, the burying rate of the polarity inversion crystal region in the GaN crystal after 64 hours of growth is 55%, and the burying rate of the polarity inversion crystal region in the GaN crystal after 128 hours of growth is 60%. there were. The results are summarized in Table 2 and FIG.

ここで、図7を参照して、GaN結晶を32時間、64時間および128時間成長させた後のそれぞれのpBN坩堝を観察したところ、いずれのpBN坩堝においても、Ga融液(融液3)に窒素5が溶解した溶液7の表面に雑晶30が析出していた。ここで、雑晶30とは、溶液7中の窒素5の過飽和によって溶液の表面に析出した多結晶を意味する。かかる雑晶30は、結晶成長時間の増大とともに析出量が増大した。このため、結晶成長時間を長くしても、雑晶が大きくなるため、GaN結晶の成長は促進されず、極性反転結晶領域の埋め込み率は約60%程度より高くならないものと考えられる。   Here, referring to FIG. 7, when the pBN crucibles after the GaN crystals were grown for 32 hours, 64 hours and 128 hours were observed, the Ga melt (melt 3) was observed in any pBN crucible. The miscellaneous crystals 30 were deposited on the surface of the solution 7 in which the nitrogen 5 was dissolved. Here, the miscellaneous crystals 30 mean polycrystals deposited on the surface of the solution due to supersaturation of the nitrogen 5 in the solution 7. The miscellaneous crystals 30 increased in precipitation amount as the crystal growth time increased. For this reason, even if the crystal growth time is lengthened, the miscellaneous crystals become larger, so the growth of the GaN crystal is not promoted, and the filling rate of the polarity inversion crystal region is considered not to be higher than about 60%.

次に、実施例1と同様にして、1回目に64時間成長させたGaN結晶について、64時間の2回目の結晶成長、さらに64時間の3回目の結晶成長を行った。上記の2回の結晶成長後のGaN結晶は、最大厚さが70μm、最小厚さが62μm、平均厚さが65μm、および最大厚さに対する最小厚さの比が0.89であり、結晶成長面における平均転位密度は5×105cm-2であった。また、上記の3回の結晶成長後のGaN結晶は、最大厚さが102μm、最小厚さが96μm、平均厚さが99μm、および最大厚さに対する最小厚さの比が0.94であり、結晶成長面における平均転位密度は5×105cm-2であった。結果を表2および図12にまとめた。 Next, in the same manner as in Example 1, the GaN crystal grown for 64 hours at the first time was subjected to the second crystal growth for 64 hours and the third crystal growth for 64 hours. The GaN crystal after the above two crystal growths has a maximum thickness of 70 μm, a minimum thickness of 62 μm, an average thickness of 65 μm, and a ratio of the minimum thickness to the maximum thickness of 0.89. The average dislocation density in the plane was 5 × 10 5 cm −2 . The GaN crystal after the above three crystal growths has a maximum thickness of 102 μm, a minimum thickness of 96 μm, an average thickness of 99 μm, and a ratio of the minimum thickness to the maximum thickness of 0.94. The average dislocation density at the crystal growth surface was 5 × 10 5 cm −2 . The results are summarized in Table 2 and FIG.

また、かかる結果に基いて、1回の結晶成長後のGaN結晶、2回の結晶成長後のGaN結晶および3回の結晶成長後のGaN結晶のそれぞれにおける最大成長速度、最小成長速度および平均成長速度を算出して、表2および図13にまとめた。   Based on the results, the maximum growth rate, the minimum growth rate, and the average growth in each of the GaN crystal after one crystal growth, the GaN crystal after two crystal growths, and the GaN crystal after three crystal growths. The speed was calculated and summarized in Table 2 and FIG.

表2および図13を参照して、1回の結晶成長後のGaN結晶は、最大成長速度が0.672μm/h、最小成長速度が0.391μm/hおよび平均成長速度が0.500μm/hであり、最大成長速度に対する最小成長速度の比が0.58であった。2回の結晶成長後のGaN結晶は、最大成長速度が0.547μm/h、最小成長速度が0.484μm/hおよび最小成長速度が0.508μm/hであり、最大成長速度に対する最小成長速度の比が0.89であった。3回の結晶成長後のGaN結晶は、最大成長速度が0.531μm/h、最小成長速度が0.500μm/hおよび平均成長速度が0.516μm/hであり、最大成長速度に対する最小成長速度の比が0.94であった。こうして、最大厚さに対する最小厚さの比(すなわち、最大成長速度に対する最小成長速度の比)が、0.33以上、好ましくは0.50以上、より好ましくは0.66以上、さらに好ましくは0.80以上、最も好ましくは0.90以上であり、結晶成長面における厚さが均一なGaN結晶が得られた。   Referring to Table 2 and FIG. 13, the GaN crystal after one crystal growth has a maximum growth rate of 0.672 μm / h, a minimum growth rate of 0.391 μm / h, and an average growth rate of 0.500 μm / h. The ratio of the minimum growth rate to the maximum growth rate was 0.58. The GaN crystal after the second crystal growth has a maximum growth rate of 0.547 μm / h, a minimum growth rate of 0.484 μm / h, and a minimum growth rate of 0.508 μm / h. The ratio was 0.89. The GaN crystal after three times of crystal growth has a maximum growth rate of 0.531 μm / h, a minimum growth rate of 0.500 μm / h, and an average growth rate of 0.516 μm / h. The ratio was 0.94. Thus, the ratio of the minimum thickness to the maximum thickness (that is, the ratio of the minimum growth rate to the maximum growth rate) is 0.33 or more, preferably 0.50 or more, more preferably 0.66 or more, and even more preferably 0. A GaN crystal having a thickness of 0.80 or more, most preferably 0.90 or more and a uniform thickness on the crystal growth surface was obtained.

また、成長させたGaN結晶について、1回目の結晶成長後、2回目の結晶成長後および3回目の結晶成長後におけるGaN結晶基板(III族窒化物結晶基板10)の極性反転結晶領域10tの埋め込み率は、上記と同様に測定したところ、それぞれ、55%、95%および100%であった。結果を表2および図12にまとめた。   In addition, the grown GaN crystal is embedded in the polarity reversal crystal region 10t of the GaN crystal substrate (Group III nitride crystal substrate 10) after the first crystal growth, after the second crystal growth, and after the third crystal growth. The percentages were 55%, 95% and 100%, as measured above. The results are summarized in Table 2 and FIG.

表2および図15を参照して、主結晶領域と極性反転結晶領域とを含むGaN結晶基板(III族窒化物結晶基板)上にGaN結晶(III族窒化物結晶)を成長させる場合において、2回の結晶成長をさせることにより極性反転結晶領域の大部分を埋め込むことができ、3回の結晶成長をさせることにより全ての極性反転結晶領域を埋め込むことができた。   Referring to Table 2 and FIG. 15, when a GaN crystal (Group III nitride crystal) is grown on a GaN crystal substrate (Group III nitride crystal substrate) including a main crystal region and a polarity inversion crystal region, 2 The majority of the polarity inversion crystal region can be embedded by performing crystal growth twice, and all the polarity inversion crystal regions can be embedded by performing crystal growth three times.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 結晶成長容器、3 融液、5 窒素、7 溶液、10 III族窒化物結晶基板、10m,10sm,10tm 主面、10s 主結晶領域、10t 極性反転結晶領域、10v 凹み、20 III族窒化物結晶、20a 1回目の結晶成長領域、20b 2回目の結晶成長領域、20c 3回目の結晶成長領域、20k k回目の結晶成長領域、20u 結晶成長面、30 雑晶。   1 Crystal Growth Vessel, 3 Melt, 5 Nitrogen, 7 Solution, 10 Group III Nitride Crystal Substrate, 10m, 10sm, 10tm Main Surface, 10s Main Crystal Region, 10t Polarity Inversion Crystal Region, 10v Recessed, 20 Group III Nitride Crystal, 20a first crystal growth region, 20b second crystal growth region, 20c third crystal growth region, 20k k crystal growth region, 20u crystal growth surface, 30 miscellaneous crystals.

Claims (5)

III族窒化物結晶基板を準備する工程と、
液相法により前記III族窒化物結晶基板の主面上にIII族窒化物結晶を複数回繰り返して成長させる工程と、を備え、
結晶成長面内において均一な厚さを有する前記III族窒化物結晶を成長させるIII族窒化物結晶の成長方法。
Preparing a group III nitride crystal substrate;
And a step of repeatedly growing a group III nitride crystal a plurality of times on the main surface of the group III nitride crystal substrate by a liquid phase method,
A group III nitride crystal growth method for growing the group III nitride crystal having a uniform thickness in a crystal growth plane.
前記液相法として、Ga融液に窒素を溶解させた溶液を前記III族窒化物結晶基板の主面に接触させることにより、前記III族窒化物結晶としてGaN結晶を成長させる請求項1に記載のIII族窒化物結晶の成長方法。   2. The GaN crystal is grown as the group III nitride crystal by bringing a solution obtained by dissolving nitrogen in a Ga melt into contact with a main surface of the group III nitride crystal substrate as the liquid phase method. A method for growing Group III nitride crystals. 前記GaN結晶の成長は、成長温度が800℃以上1500℃以下、成長圧力が50気圧以上2000気圧以下で行われる請求項2に記載のIII族窒化物結晶の成長方法。   The method for growing a group III nitride crystal according to claim 2, wherein the growth of the GaN crystal is performed at a growth temperature of 800 ° C to 1500 ° C and a growth pressure of 50 atm to 2000 atm. 前記III族窒化物結晶基板は、主結晶領域と、前記主結晶領域に対して[0001]方向の極性が反転した極性反転結晶領域と、を含む請求項1に記載のIII族窒化物結晶の成長方法。   2. The group III nitride crystal substrate according to claim 1, wherein the group III nitride crystal substrate includes a main crystal region and a polarity inversion crystal region in which a polarity in a [0001] direction is inverted with respect to the main crystal region. Growth method. 前記III族窒化物結晶基板の主面において、前記主結晶領域の主面に比べて前記極性反転結晶領域の主面が凹んでいる請求項4に記載のIII族窒化物結晶の成長方法。   5. The method for growing a group III nitride crystal according to claim 4, wherein a main surface of the polarity inversion crystal region is recessed on a main surface of the group III nitride crystal substrate as compared with a main surface of the main crystal region.
JP2010053352A 2010-03-10 2010-03-10 Method for growing group iii nitride crystal Withdrawn JP2011184265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010053352A JP2011184265A (en) 2010-03-10 2010-03-10 Method for growing group iii nitride crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010053352A JP2011184265A (en) 2010-03-10 2010-03-10 Method for growing group iii nitride crystal

Publications (1)

Publication Number Publication Date
JP2011184265A true JP2011184265A (en) 2011-09-22

Family

ID=44790997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010053352A Withdrawn JP2011184265A (en) 2010-03-10 2010-03-10 Method for growing group iii nitride crystal

Country Status (1)

Country Link
JP (1) JP2011184265A (en)

Similar Documents

Publication Publication Date Title
JP6031733B2 (en) GaN crystal manufacturing method
JP2008143772A (en) Process for producing group iii element nitride crystal
JP5100919B2 (en) Method for producing gallium nitride layer and seed crystal substrate used therefor
WO2010007983A1 (en) Method for growing gan crystal
JP5359740B2 (en) Method for producing group III nitride compound semiconductor
US10161059B2 (en) Group III nitride bulk crystals and their fabrication method
JP7221493B2 (en) Method for producing group III nitride crystal
JP5765367B2 (en) GaN crystal
JP4914299B2 (en) Method for producing group III nitride crystal
JP6143148B2 (en) Group III nitride crystal manufacturing method and semiconductor device manufacturing method
JP5144192B2 (en) Group III nitride crystal growth method
JP4624381B2 (en) GaN crystal manufacturing method
CN103534391A (en) Process for producing group 13 metal nitride, and seed crystal substrate for use in same
JP5129186B2 (en) Method for manufacturing group III nitride semiconductor layer
JP4867981B2 (en) GaN crystal growth method
JP2011184265A (en) Method for growing group iii nitride crystal
JP2014237568A (en) METHOD OF MANUFACTURING GROUP III NITRIDE SEMICONDUCTOR CRYSTAL, AND METHOD OF MANUFACTURING GaN SUBSTRATE
CN110230102B (en) Very low dislocation density gallium nitride single crystal and its flux method growth method
JP2010111556A (en) GROWTH METHOD OF GaN CRYSTAL
JP2010024125A (en) Method for growing group iii nitride crystal
EP3146093A1 (en) Group iii nitride bulk crystals and their fabrication method
JP6457442B2 (en) GaN crystal substrate
JP2009137771A (en) Method for growing group iii nitride crystal
JP5479419B2 (en) Method for producing group III nitride crystal
JP2019189479A (en) Method for manufacturing group iii nitride crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604