JP2011181634A - Method of manufacturing heat dissipation structure for mounting semiconductor heating component - Google Patents

Method of manufacturing heat dissipation structure for mounting semiconductor heating component Download PDF

Info

Publication number
JP2011181634A
JP2011181634A JP2010043434A JP2010043434A JP2011181634A JP 2011181634 A JP2011181634 A JP 2011181634A JP 2010043434 A JP2010043434 A JP 2010043434A JP 2010043434 A JP2010043434 A JP 2010043434A JP 2011181634 A JP2011181634 A JP 2011181634A
Authority
JP
Japan
Prior art keywords
aluminum
heat
brazing
plated steel
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010043434A
Other languages
Japanese (ja)
Inventor
Yugo Nakane
悠悟 中根
Yasunori Hattori
保徳 服部
Takeshi Shimizu
剛 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2010043434A priority Critical patent/JP2011181634A/en
Publication of JP2011181634A publication Critical patent/JP2011181634A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat dissipation structure which has a brazing joint structure employing an aluminum-based plated steel plate as a raw material of a shock absorbing material, the heat dissipation structure having, in particular, durability to thermal shock. <P>SOLUTION: A method of manufacturing a heat dissipation structure for mounting a semiconductor heating component is provided by which, when the heat dissipation structure for mounting the semiconductor heating component is manufactured by brazing and joining an insulating substrate 2, the aluminum-based plated steel plate 3, and a heat transfer material 4 together, brazing filler metal 5 and 6 are interposed between an aluminum-based metal layer A of the insulating substrate 2 and the aluminum-based plated steel plate 3, and between the aluminum-based plated steel plate 3 and heat transfer material 4 respectively, and brazing is carried out in a state wherein an interfacial exposed part 7 between a ceramic plate 21 and the aluminum-based metal layer A is coated with a heat-resisting coating 8 which does not react with molten metal of the brazing filler metal. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体素子やLSIなどで構成される半導体発熱部品を搭載し、その発熱部品から発生する熱を空気中または他の接合部材に伝えるための放熱構造体を製造する方法に関する。   The present invention relates to a method of manufacturing a heat dissipation structure for mounting a semiconductor heat generating component composed of a semiconductor element, an LSI, or the like, and transferring heat generated from the heat generating component to the air or other joining members.

電力制御用の半導体スイッチング素子に代表される半導体発熱部品は、放熱構造体に取り付けられた状態で使用される。放熱構造体はセラミックスの表面に金属を接合した「絶縁基板」と金属製の「伝熱材」とを備えるものである。伝熱材は、それ自体が空気中へ熱を放散させるためのヒートシンクである場合もあるし、あるいは他の部材へ熱を逃がすための放熱板である場合もある。   A semiconductor heat generating component represented by a semiconductor switching element for power control is used in a state of being attached to a heat dissipation structure. The heat dissipating structure includes an “insulating substrate” in which a metal is bonded to the surface of ceramics and a metal “heat transfer material”. The heat transfer material may itself be a heat sink for dissipating heat into the air, or may be a heat radiating plate for releasing heat to other members.

伝熱材の金属は絶縁基板のセラミックスと比べ熱膨張率が大きいため、放熱板と伝熱材を直接ろう付けなどにより接合すると、接合時の加熱・冷却過程で伝熱材に反りが生じやすく、また絶縁基板に割れが発生しやすい。このため、絶縁基板と伝熱材の間には両者の熱膨張差に起因する歪を緩和するための「緩衝材」を介在させることがある。   Since the metal of the heat transfer material has a larger coefficient of thermal expansion than the ceramics of the insulating substrate, if the heat sink and the heat transfer material are joined directly by brazing, the heat transfer material is likely to warp during the heating / cooling process at the time of joining. In addition, the insulating substrate is easily cracked. For this reason, a “buffer material” may be interposed between the insulating substrate and the heat transfer material to relieve strain caused by the difference in thermal expansion between the two.

緩衝材としては、従来、熱膨張率の低いCu−Mo合金を銅材で挟んだ3層構造のクラッド材が使用されている。しかし、Cu−Mo合金は非常に高価であること、厚さが3mm程度と厚いこと、ヒートシンクとのろう付けが難しくゲル系接着剤などを使用する必要があることなど、種々の問題がある。   Conventionally, a clad material having a three-layer structure in which a Cu—Mo alloy having a low coefficient of thermal expansion is sandwiched between copper materials is used as the buffer material. However, the Cu—Mo alloy has various problems such as being very expensive, having a thickness as thick as about 3 mm, and being difficult to braze to a heat sink and using a gel-based adhesive.

特許文献1には絶縁基板とヒートシンクの間に低熱膨張材(インバー合金)を高熱伝導材(アルミニウム、銅)で挟んだ積層体を介在させることが記載されている。しかし、低熱膨張材と高熱伝導材を一体化させることは必ずしも容易ではない。   Patent Document 1 describes that a laminated body in which a low thermal expansion material (Invar alloy) is sandwiched between high thermal conductive materials (aluminum, copper) is interposed between an insulating substrate and a heat sink. However, it is not always easy to integrate the low thermal expansion material and the high thermal conductivity material.

近年、ハイブリッド自動車や電気自動車の普及に伴い、その駆動モーターを制御するパワーコントロールユニット(PCU)に使用するためのパワーモジュール(電力制御用半導体回路と放熱構造体のユニット)の需要が増大している。このような用途においては、今後、さらに振動に強く、よりコンパクトで、且つ安価な放熱構造体の適用が望まれる。   In recent years, with the spread of hybrid vehicles and electric vehicles, the demand for power modules (units for power control semiconductor circuits and heat dissipation structures) for use in power control units (PCUs) that control their drive motors has increased. Yes. In such applications, it is desired to apply a heat dissipation structure that is more resistant to vibration, more compact, and less expensive in the future.

そこで本出願人は、フェライト系鋼種をめっき原板とする溶融アルミニウム系めっき鋼板を緩衝材の素材として用いた放熱装置を特許文献2に開示した。フェライト系鋼種はヒートシンクの材料(例えばアルミニウム)に比べ熱膨張率が小さいため、それをめっき原板とするアルミニウム系めっき鋼板を緩衝材の素材に使用することによって、絶縁基板とヒートシンクの間の歪を効果的に低減することが可能となった。また、アルミニウム系めっき鋼板は大量生産が可能であり、上記のような特殊合金を使用した緩衝材に比べ大幅なコスト低減が実現された。特に絶縁基板としてDBA(Direct Brazed Aluminum)を使用し、ヒートシンクとしてAl系材料を使用すると、「絶縁基板」、「アルミニウム系めっき鋼板」および「ヒートシンク」を真空ろう付けにて一体化することができる。この場合、接着剤やグリースによる接合が回避されるため、耐振動性、熱伝導性が向上し、且つ接着剤等による接合工程が不要となる。また、板厚が例えば1mm以下といった薄肉のアルミニウム系めっき鋼板を緩衝材の素材として容易に適用できるため、放熱構造体の小型化も可能となる。   Therefore, the present applicant disclosed in Patent Document 2 a heat radiating device using a hot-dip aluminum-based plated steel sheet having a ferritic steel type as a plating base plate as a material for a buffer material. Ferritic steel grades have a lower coefficient of thermal expansion than heat sink materials (for example, aluminum), so the use of aluminum-plated steel plates with the plating base as the buffer material reduces the strain between the insulating substrate and the heat sink. It became possible to reduce effectively. Moreover, the aluminum-based plated steel sheet can be mass-produced, and a significant cost reduction has been realized as compared with the cushioning material using the special alloy as described above. In particular, when DBA (Direct Brazed Aluminum) is used as an insulating substrate and an Al-based material is used as a heat sink, the “insulating substrate”, “aluminum-based plated steel plate” and “heat sink” can be integrated by vacuum brazing. . In this case, since bonding with an adhesive or grease is avoided, vibration resistance and thermal conductivity are improved, and a bonding step with an adhesive or the like is not required. Moreover, since a thin aluminum-plated steel sheet having a plate thickness of, for example, 1 mm or less can be easily applied as a buffer material, the heat dissipation structure can be downsized.

特開2004−153075号公報JP 2004-153075 A 特開2009−158715号公報JP 2009-158715 A

最近では、ハイブリッド自動車のPCUなどにおいて高電圧が印加できるタイプのパワー半導体素子(IGBTなど)を採用するケースが増えている。それに伴い、半導体発熱部品を搭載する放熱構造体にもより一層高い耐久性が要求される。上述の特許文献2に開示される放熱構造体は溶融アルミニウム系鋼板を緩衝材の素材として用いたろう付け接合構造を有することから本来振動に対しては高い耐久性を呈するものである。しかしながら、発明者らのその後の検討によれば、特許文献2の放熱構造体は「熱衝撃」に対する耐久性に関して改善の余地があることがわかってきた。すなわち、半導体発熱部品からの発熱量が激しく変動するような熱衝撃を繰り返す厳しい条件下での試験において、絶縁基板のDBAを構成するセラミックスとアルミニウム層の間の界面で剥離が生じることが確認された。IGBTなどの高電圧印加タイプのパワー半導体素子を搭載した場合でも高い信頼性を維持するためには、熱衝撃に対する耐久性を向上させることが望まれる。   Recently, there is an increasing number of cases where a power semiconductor element (IGBT or the like) of a type capable of applying a high voltage is adopted in a PCU or the like of a hybrid vehicle. Along with this, even higher durability is required for the heat dissipating structure on which the semiconductor heat generating component is mounted. The heat dissipating structure disclosed in Patent Document 2 described above has a brazed joint structure using a molten aluminum steel plate as a material for the buffer material, and thus exhibits high durability against vibration. However, according to the inventors' subsequent studies, it has been found that the heat dissipating structure of Patent Document 2 has room for improvement in terms of durability against “thermal shock”. In other words, it was confirmed that peeling occurred at the interface between the ceramic and the aluminum layer constituting the DBA of the insulating substrate in a test under severe conditions in which a thermal shock repeatedly fluctuating the amount of heat generated from the semiconductor heat generating component was confirmed. It was. In order to maintain high reliability even when a high-voltage application type power semiconductor element such as an IGBT is mounted, it is desired to improve durability against thermal shock.

本発明では、アルミニウム系めっき鋼板を緩衝材の素材として用いたろう付け接合構造の放熱構造体において、特に熱衝撃に対する耐久性を向上させたものを提供する。   The present invention provides a heat dissipation structure having a brazed joint structure in which an aluminum-based plated steel sheet is used as a material for a buffer material, and particularly improved in durability against thermal shock.

発明者らは上述のセラミックスとアルミニウム層間での界面剥離が生じる原因について詳細な調査を行ってきた。その結果、ろう付け時にろう材溶融金属が当該界面に浸入してアルミニウム層と反応し、界面に新たな金属相が生成することが原因であることを突き止めた。本発明はこのような知見に基づき、上記の界面が露出している部分を耐熱性の塗膜で被覆した状態としてろう付けを行うものである。なお、本明細書では溶融したろう材の金属を「ろう材溶融金属」と呼んでいる。   The inventors have conducted a detailed investigation on the cause of interfacial delamination between the ceramics and the aluminum layer. As a result, it was found that the molten metal infiltrated into the interface at the time of brazing and reacted with the aluminum layer to generate a new metal phase at the interface. Based on such knowledge, the present invention performs brazing in such a state that the portion where the interface is exposed is covered with a heat-resistant coating film. In this specification, the molten metal of the brazing material is referred to as “brazing material molten metal”.

すなわち本発明では、セラミックス板の少なくとも片面にアルミニウム系金属層Aを有する板状材料からなる「絶縁基板」と、基材鋼板の両面にアルミニウム系めっき層を有する「アルミニウム系めっき鋼板」と、アルミニウム系金属材料からなる「伝熱材」とをろう付け接合して、前記絶縁基板上に半導体発熱部品を搭載するための放熱構造体を製造するに際し、
絶縁基板のアルミニウム系金属層Aとアルミニウム系めっき鋼板の間、およびアルミニウム系めっき鋼板と伝熱材の間にろう材を介在させ、且つ、セラミックス板とアルミニウム系金属層Aの界面露出部分をろう材溶融金属と反応しない耐熱塗膜で被覆した状態としてろう付けを行う、半導体発熱部品搭載用放熱構造体の製造法が提供される。
That is, in the present invention, an “insulating substrate” made of a plate-like material having an aluminum-based metal layer A on at least one surface of a ceramic plate, an “aluminum-based plated steel plate” having aluminum-based plating layers on both surfaces of a base steel plate, aluminum When manufacturing a heat dissipation structure for mounting a semiconductor heating component on the insulating substrate by brazing and joining a "heat transfer material" made of a metallic metal material,
A brazing material is interposed between the aluminum-based metal layer A of the insulating substrate and the aluminum-based plated steel plate, and between the aluminum-based plated steel plate and the heat transfer material, and the interface exposed portion between the ceramic plate and the aluminum-based metal layer A is brazed. Provided is a method for manufacturing a heat-dissipating structure for mounting a semiconductor heating component, which is brazed in a state where it is coated with a heat-resistant coating that does not react with the molten metal.

本明細書において「アルミニウム系金属」とは、純アルミニウムまたはアルミニウム合金であり、ここでいうアルミニウム合金は合金元素の中でAlの含有量(質量%)が最も多く、且つ固相線温度が、当該放熱構造体を一体化するときに使用するろう材の液相線温度よりも高いものをいう。純アルミニウムおよびアルミニウム合金の例としては、JIS H4000:2006の成分表に規定されるものが挙げられる。   In the present specification, the “aluminum-based metal” is pure aluminum or an aluminum alloy, and the aluminum alloy here has the highest Al content (mass%) among the alloy elements, and the solidus temperature is It means a material having a temperature higher than the liquidus temperature of the brazing material used when integrating the heat dissipation structure. Examples of pure aluminum and aluminum alloys include those specified in the component table of JIS H4000: 2006.

また本明細書でいう「アルミニウム系めっき鋼板」は、基材鋼板(めっき原板)の両面に純Alめっき層またはSiを12質量%以下の範囲で含有するAl−Si合金めっき層を有するものである。片面当たりのめっき層厚さが5〜50μmの溶融アルミニウム系めっき鋼板を採用することが望ましい。また、基材鋼板(めっき原板)として線膨張係数(常温)が13×10-6/K以下の鋼種を採用することが好ましい。耐食性を考慮すると、JIS G4305:2005の表4またはJIS G4312の表3に規定されるフェライト系鋼種を基材鋼板に用いることが有利となる。基材鋼板(めっき原板)の板厚は例えば0.1〜2mmである。 The “aluminum-based plated steel sheet” as used in the present specification has a pure Al plated layer or an Al—Si alloy plated layer containing Si in a range of 12 mass% or less on both surfaces of a base steel sheet (plating original sheet). is there. It is desirable to employ a molten aluminum-based plated steel sheet having a plating layer thickness of 5 to 50 μm per side. Moreover, it is preferable to employ a steel type having a linear expansion coefficient (normal temperature) of 13 × 10 −6 / K or less as the base steel plate (plating original plate). In consideration of corrosion resistance, it is advantageous to use a ferritic steel type specified in Table 4 of JIS G4305: 2005 or Table 3 of JIS G4312 for the base steel sheet. The plate | board thickness of a base-material steel plate (plating original plate) is 0.1-2 mm, for example.

絶縁基板のセラミックス板としては例えばAlNが挙げられる。ろう材としては液相線温度が570〜600℃であるAl−Si−Mg系合金、または液相線温度が520〜545℃であるAl−Cu−Si−Mg系合金が好適に使用できる。   An example of the ceramic plate of the insulating substrate is AlN. As the brazing material, an Al—Si—Mg alloy having a liquidus temperature of 570 to 600 ° C. or an Al—Cu—Si—Mg alloy having a liquidus temperature of 520 to 545 ° C. can be preferably used.

半導体発熱部品は、種々の半導体素子やLSI等が対象となるが、発熱量の大きい電力制御用のスイッチング素子が好適な対象となる。   The semiconductor heat generating component is a target of various semiconductor elements, LSIs, and the like, but a power control switching element having a large heat generation amount is a preferable target.

本発明によれば、以下のようなメリットが得られる。
(1)緩衝材の素材として安価な素材であるアルミニウム系めっき鋼板を使用するので、放熱構造体のコスト低減が図れる。
(2)絶縁基板、アルミニウム系めっき鋼板および伝熱材(例えばヒートシンク)を真空ろう付けにより直接接合できるので、製造工程が短縮化され、得られた放熱構造体は振動に対して強いものとなる。
(3)ろう付け時に絶縁基板のセラミックス板とアルミニウム系金属層の界面からろう材溶融金属が浸入することが回避され、当該界面にアルミニウム系金属層とろう材溶融金属との反応相が無い放熱構造体が構築される。これにより熱衝撃に対する耐久性が向上する。
(4)緩衝材の厚さは例えば1mm程度以下と薄肉化することが容易にできるので、パワーモジュールの小型化にも対応しやすい。
According to the present invention, the following advantages can be obtained.
(1) Since an aluminum-based plated steel sheet, which is an inexpensive material, is used as the material for the cushioning material, the cost of the heat dissipation structure can be reduced.
(2) Since the insulating substrate, the aluminum-based plated steel plate, and the heat transfer material (for example, heat sink) can be directly joined by vacuum brazing, the manufacturing process is shortened and the obtained heat dissipation structure is strong against vibration. .
(3) Heat dissipation without brazing material molten metal entering from the interface between the ceramic plate of the insulating substrate and the aluminum-based metal layer during brazing, and no reaction phase between the aluminum-based metal layer and the brazing material molten metal at the interface. A structure is constructed. This improves durability against thermal shock.
(4) Since the thickness of the cushioning material can be easily reduced to, for example, about 1 mm or less, it is easy to cope with downsizing of the power module.

緩衝材の素材としてアルミニウム系めっき鋼板を用いた従来の放熱構造体(半導体発熱部品を搭載した状態)の断面を模式的に示した図。The figure which showed typically the cross section of the conventional thermal radiation structure (state which mounted the semiconductor heat-emitting component) which used the aluminum-plated steel plate as a raw material of a buffer material. 本発明におけるろう付けに供する材料(積層体)の断面状態を模式的に示した図。The figure which showed typically the cross-sectional state of the material (laminated body) with which it uses for brazing in this invention. 本発明によって得られるろう付け後の放熱構造体(半導体発熱部品を搭載した状態)の断面を模式的に示した図。The figure which showed typically the cross section of the heat dissipation structure (state which mounted the semiconductor heat-emitting component) after brazing obtained by this invention. Al−Si−Mg系ろう材を用いて界面露出部分7を被覆せずにろう付け接合した放熱構造体(比較例)における図3符号25に相当する領域のSEM写真。The SEM photograph of the area | region corresponded to FIG. 3 code | symbol 25 in the thermal radiation structure (comparative example) which brazed and joined without coat | covering the interface exposed part 7 using the Al-Si-Mg type | system | group brazing material. Al−Si−Mg系ろう材を用いて界面露出部分7を耐熱塗膜8で被覆した状態でろう付け接合した放熱構造体(本発明例)における図3符号25に相当する領域のSEM写真。The SEM photograph of the area | region corresponded to FIG. 3 code | symbol 25 in the thermal radiation structure (example of this invention) which brazed and joined in the state which coat | covered the interface exposed part 7 with the heat-resistant coating film 8 using the Al-Si-Mg type | system | group brazing material. Al−Cu−Si−Mg系ろう材を用いて界面露出部分7を被覆せずにろう付け接合した放熱構造体(比較例)における図3符号25に相当する領域のSEM写真。The SEM photograph of the area | region corresponded to FIG. 3 code | symbol 25 in the thermal radiation structure (comparative example) which brazed and joined without coat | covering the interface exposed part 7 using the Al-Cu-Si-Mg type | system | group brazing material. Al−Cu−Si−Mg系ろう材を用いて界面露出部分7を耐熱塗膜8で被覆した状態でろう付け接合した放熱構造体(本発明例)における図3符号25に相当する領域のSEM写真。SEM in a region corresponding to reference numeral 25 in FIG. 3 in a heat dissipation structure (example of the present invention) in which an interface exposed portion 7 is brazed and bonded using an Al—Cu—Si—Mg based brazing material. Photo.

図1に、緩衝材の素材としてアルミニウム系めっき鋼板を用いた従来の放熱構造体(半導体発熱部品を搭載した状態)の断面を模式的に示す。この図は説明の便宜のため厚さ方向の寸法などを一部誇張して描いてあり、実際の寸法形状をそのまま反映したものではない(後述図2、図3において同じ)。半導体発熱部品1側から順に絶縁基板20、緩衝材30、伝熱材40が、ろう付け金属50および60により接合されて積層している。半導体発熱部品1から発生した熱はこの積層構造を伝わり伝熱材40から外部へ放熱される。   FIG. 1 schematically shows a cross section of a conventional heat dissipating structure (a state in which a semiconductor heat generating component is mounted) using an aluminum-plated steel sheet as a buffer material. For convenience of explanation, this drawing partially exaggerates the dimension in the thickness direction and the like, and does not reflect the actual dimensional shape as it is (the same applies to FIGS. 2 and 3 described later). The insulating substrate 20, the buffer material 30, and the heat transfer material 40 are joined and laminated by brazing metals 50 and 60 in order from the semiconductor heating component 1 side. Heat generated from the semiconductor heat generating component 1 is transmitted through the laminated structure and radiated from the heat transfer material 40 to the outside.

ろう付け後の絶縁基板20は、セラミックス板21の緩衝材30側の表面にアルミニウム系金属層Aを有している。半導体発熱部品1側には導電層23を有している。絶縁基板20としてDBA(Direct Brazed Aluminum)を使用する場合は、導電層23もアルミニウム系金属層である。ろう付け後のアルミニウム系金属層Aは、ろう付け前の状態と比べ、ろう材溶融金属と反応した部分(A’)の厚さだけ薄くなっている。   The insulating substrate 20 after brazing has an aluminum-based metal layer A on the surface of the ceramic plate 21 on the buffer material 30 side. A conductive layer 23 is provided on the semiconductor heating component 1 side. When DBA (Direct Brazed Aluminum) is used as the insulating substrate 20, the conductive layer 23 is also an aluminum-based metal layer. The aluminum-based metal layer A after brazing is thinner than the state before brazing by the thickness of the portion (A ′) that has reacted with the brazing filler metal.

ろう付け後の緩衝材30は、素材として用いたアルミニウム系めっき鋼板の基材鋼板31に相当する部分で構成されている。アルミニウム系めっき層はろう付け時にろう材溶融金属と反応して、ろう付け金属50または60の一部を構成している。ろう付け後の伝熱材40も表面部分の一部がろう付け時にろう材溶融金属と反応している。基材鋼板31は鉄系材料であることから、その熱膨張率は絶縁基板20(低熱膨張率)と伝熱材40(高熱膨張率)の中間の値を示す。このため基材鋼板31は絶縁基板20(低熱膨張率)と伝熱材40の間に生じる熱膨張差に起因した歪を緩和する作用を呈する。また、伝熱材40の熱膨張を拘束する作用を呈し、ろう付け時または使用時における伝熱材40の「反り」を軽減する。   The brazing material 30 after brazing is configured by a portion corresponding to the base steel plate 31 of the aluminum-based plated steel plate used as the material. The aluminum-based plating layer reacts with the brazing material molten metal during brazing, and constitutes a part of the brazing metal 50 or 60. A part of the surface portion of the heat transfer material 40 after brazing also reacts with the brazing material molten metal during brazing. Since the base steel plate 31 is an iron-based material, its thermal expansion coefficient is an intermediate value between the insulating substrate 20 (low thermal expansion coefficient) and the heat transfer material 40 (high thermal expansion coefficient). For this reason, the base steel plate 31 exhibits an action of relaxing strain caused by a difference in thermal expansion generated between the insulating substrate 20 (low thermal expansion coefficient) and the heat transfer material 40. Moreover, the effect | action which restrains the thermal expansion of the heat-transfer material 40 is exhibited, and the "warp" of the heat-transfer material 40 at the time of brazing or use is reduced.

本明細書において「ろう付け金属」とは、ろう付け時に溶融・凝固した部分をいう。具体的には、ろう付け金属50は、ろう材溶融金属由来部分、並びにろう材溶融金属と反応して溶融・凝固したアルミニウム系金属層由来部分A’およびアルミニウム系めっき層由来部分32’によって構成される。また、ろう付け金属60は、ろう材溶融金属由来部分、並びにろう材溶融金属と反応して溶融・凝固したアルミニウム系めっき層由来部分33’および伝熱材由来部分4’によって構成される。   In the present specification, the “brazing metal” refers to a portion that has melted and solidified during brazing. Specifically, the brazing metal 50 is composed of a part derived from the brazing filler metal, an aluminum-based metal layer-derived part A ′ and an aluminum-based plating layer-derived part 32 ′ that has melted and solidified by reacting with the brazing filler metal. Is done. The brazing metal 60 is composed of a brazing filler metal-derived portion, an aluminum-based plating layer-derived portion 33 'and a heat transfer material-derived portion 4' that have melted and solidified by reacting with the brazing filler metal.

伝熱材40は、アルミニウム系金属からなり、それ自体が空気中に熱を逃がすためのヒートシンクであっても構わないし、あるいは、他の接触部材(例えば水冷された金属部材)に熱を逃がすためのアルミニウム系金属板(放熱板)であっても構わない。図1にはヒートシンクを模式的に示した。   The heat transfer material 40 is made of an aluminum-based metal and may itself be a heat sink for releasing heat into the air, or for releasing heat to another contact member (for example, a water-cooled metal member). An aluminum-based metal plate (heat radiating plate) may be used. FIG. 1 schematically shows a heat sink.

このように、表面にアルミニウム系金属層を有する絶縁基板とアルミニウム系金属からなる伝熱材とを、アルミニウム系めっき鋼板を介してろう付け接合した放熱構造体は、絶縁基板、緩衝材および伝熱材がろう付け金属50、60によってタイトに密着することにより良好な熱伝導性および耐振動性を呈するものとなる。しかしながら、アルミニウム系金属と濡れ性の良いろう材を使用することが原因して、ろう付け時にろう材溶融金属の一部が表面張力により絶縁基板を構成するアルミニウム系金属層Aの端面部分を覆い、セラミックス板21とアルミニウム系金属層Aの界面10の露出部分にまで伝わってくるという現象が起こる。発明者らは詳細な検討の結果、この現象が熱衝撃に対する耐久性を低下させる要因となっていることを突き止めた。すなわち、セラミックス板21とアルミニウム系金属層Aの界面露出部分から当該界面10の内部へろう材溶融金属が浸入し、その浸入部分でアルミニウム系金属層Aがろう材溶融金属と反応するのである。界面10に沿ってろう材浸入反応領域24が形成されることによって、その部分でのセラミックス板21とアルミニウム系金属層Aの密着性が低下し、繰り返しの熱衝撃を受けたときに、ろう材浸入反応領域24を起点として剥離が生じることが明らかとなった。   Thus, a heat dissipation structure in which an insulating substrate having an aluminum-based metal layer on its surface and a heat transfer material made of an aluminum-based metal are brazed and bonded via an aluminum-based plated steel plate includes an insulating substrate, a buffer material, and a heat transfer material. When the material adheres tightly to the brazing metal 50, 60, it exhibits good thermal conductivity and vibration resistance. However, due to the use of the brazing material having good wettability with the aluminum-based metal, a part of the brazing material molten metal covers the end surface portion of the aluminum-based metal layer A constituting the insulating substrate by surface tension during brazing. A phenomenon occurs in which the light is transmitted to the exposed portion of the interface 10 between the ceramic plate 21 and the aluminum-based metal layer A. As a result of detailed studies, the inventors have found that this phenomenon is a factor that reduces durability against thermal shock. That is, the brazing material molten metal enters the inside of the interface 10 from the exposed portion of the ceramic plate 21 and the aluminum-based metal layer A, and the aluminum-based metal layer A reacts with the brazing material molten metal at the intrusion portion. When the brazing material intrusion reaction region 24 is formed along the interface 10, the adhesion between the ceramic plate 21 and the aluminum-based metal layer A at that portion is lowered, and when the brazing material is subjected to repeated thermal shock, It became clear that peeling occurred from the infiltration reaction region 24 as a starting point.

図2に、本発明におけるろう付けに供する材料(積層体)の断面状態を模式的に示す。本発明では上述の知見に基づき、絶縁基板2のアルミニウム系金属層Aとアルミニウム系めっき鋼板3の間、およびアルミニウム系めっき鋼板3と伝熱材4の間にそれぞれろう材5および6を介在させ、且つ、セラミックス板21とアルミニウム系金属層Aの界面10が露出している部分(界面露出部7)をろう材溶融金属と反応しない耐熱塗膜8で被覆した状態としてろう付けを行う。図2中、耐熱塗膜8の膜厚は誇張して描いてある。   In FIG. 2, the cross-sectional state of the material (laminated body) used for brazing in this invention is shown typically. In the present invention, based on the above knowledge, brazing materials 5 and 6 are interposed between the aluminum-based metal layer A of the insulating substrate 2 and the aluminum-based plated steel plate 3 and between the aluminum-based plated steel plate 3 and the heat transfer material 4, respectively. In addition, brazing is performed in a state where a portion where the interface 10 between the ceramic plate 21 and the aluminum-based metal layer A is exposed (interface exposed portion 7) is covered with a heat-resistant coating film 8 that does not react with the brazing filler metal. In FIG. 2, the film thickness of the heat-resistant coating film 8 is exaggerated.

半導体発熱部品を搭載する絶縁基板2は、セラミックス板21の少なくともアルミニウム系めっき鋼板3側の表面にアルミニウム系金属層Aを有しており、半導体発熱部品の搭載面には導電層23を有している。導電層23はアルミニウム系金属層22と同質の素材であっても構わない。このような構成を有する限り、従来から使用されている絶縁基板が広く適用対象となる。セラミックス板21としては例えばAlNが挙げられる。特にAlNプレートの両面にアルミニウム系金属層を接合して一体化したDBA基板が普及しており、本発明でもそれを適用することができる。   The insulating substrate 2 on which the semiconductor heat generating component is mounted has an aluminum-based metal layer A on at least the surface of the ceramic plate 21 on the aluminum-based plated steel plate 3 side, and a conductive layer 23 on the mounting surface of the semiconductor heat-generating component. ing. The conductive layer 23 may be the same material as the aluminum-based metal layer 22. As long as it has such a configuration, conventionally used insulating substrates are widely applied. Examples of the ceramic plate 21 include AlN. In particular, DBA substrates in which aluminum-based metal layers are joined and integrated on both surfaces of an AlN plate are widespread, and can be applied to the present invention.

ろう付け前のアルミニウム系めっき鋼板3は、めっき原板である基材鋼板31の両面にアルミニウム系めっき層32、33を有するアルミニウム系めっき鋼板からなる。このアルミニウム系めっき鋼板3を構成する基材鋼板31が放熱構造体において緩衝材として機能することとなる。基材鋼板31は、常温(20℃)の線膨張係数が13×10-6/K以下の鋼種を採用することが望ましい。常温での線膨張係数は、アルミニウム系金属が約22〜23(×10-6/K)程度、銅合金が約16〜18(×10-6/K)程度、オーステナイト系ステンレス鋼が約15〜17(×10-6/K)程度、フェライト系鋼(フェライト系ステンレス鋼を含む)が約9.5〜12.5(×10-6/K)程度である。一方、AlNの線膨張係数は4.5(×10-6/K)程度である。したがって、基材鋼板31はできるだけ線膨張係数の小さい鋼種とすることが望ましい。検討の結果、常温の線膨張係数が13×10-6/K以下の鋼種を採用することがより効果的であることがわかった。この要求はフェライト系鋼種を採用することによって満たすことができる。なかでもフェライト系ステンレス鋼は線膨張係数が低く、且つ耐食性にも優れるので、本発明における基材鋼板31としては特に好適である。なお、一般に金属の線膨張係数は温度上昇に伴ってわずかに上昇する傾向にあるが、常温での線膨張係数の序列は、300℃程度までの線膨張係数の序列と概ね一致するので、常温の線膨張係数で評価して差し支えない。 The aluminum-based plated steel plate 3 before brazing is made of an aluminum-based plated steel plate having aluminum-based plated layers 32 and 33 on both surfaces of a base steel plate 31 that is a plating original plate. The base steel plate 31 constituting the aluminum-based plated steel plate 3 functions as a buffer material in the heat dissipation structure. The base steel plate 31 desirably employs a steel type having a linear expansion coefficient of 13 × 10 −6 / K or less at room temperature (20 ° C.). The linear expansion coefficient at room temperature is about 22 to 23 (× 10 −6 / K) for aluminum metal, about 16 to 18 (× 10 −6 / K) for copper alloy, and about 15 for austenitic stainless steel. ˜17 (× 10 −6 / K), and ferritic steel (including ferritic stainless steel) is about 9.5 to 12.5 (× 10 −6 / K). On the other hand, the linear expansion coefficient of AlN is about 4.5 (× 10 −6 / K). Therefore, it is desirable that the base steel plate 31 is made of a steel type having a linear expansion coefficient as small as possible. As a result of the examination, it was found that it is more effective to adopt a steel type having a linear expansion coefficient at room temperature of 13 × 10 −6 / K or less. This requirement can be met by adopting a ferritic steel grade. Among these, ferritic stainless steel is particularly suitable as the base steel plate 31 in the present invention because it has a low coefficient of linear expansion and excellent corrosion resistance. In general, the coefficient of linear expansion of metals tends to increase slightly as the temperature rises, but the order of linear expansion coefficients at room temperature is almost the same as the order of linear expansion coefficients up to about 300 ° C. It may be evaluated by the linear expansion coefficient.

緩衝材の素材として使用するアルミニウム系めっき鋼板3は、従来一般的な溶融アルミニウム系めっき鋼板を採用することができる。基材鋼板31(めっき原板)の板厚は、用途に応じて0.1〜2mmの範囲で選択すればよい。板厚0.1mm未満では、割れや反りを抑止する機能が十分に果たせない。あまり厚いと小型化のニーズに逆行する。アルミニウム系めっき鋼板3のアルミニウム系めっき層32、33の厚さは、片面当たり5〜50μm程度とすればよい。   As the aluminum-based plated steel sheet 3 used as the material of the buffer material, a conventionally general molten aluminum-based plated steel sheet can be adopted. What is necessary is just to select the board thickness of the base-material steel plate 31 (plating original plate) in the range of 0.1-2 mm according to a use. If the plate thickness is less than 0.1 mm, the function of suppressing cracking and warping cannot be performed sufficiently. If it is too thick, it goes against the need for miniaturization. The thickness of the aluminum-based plating layers 32 and 33 of the aluminum-based plated steel sheet 3 may be about 5 to 50 μm per side.

ろう材は、アルミニウム系金属用のものが適用される。例えば、Al−Si系合金、Al−Si−Mg系合金、Al−Cu−Si−Mg系合金などを用いたろう材が使用される。規格材としては、JIS Z3263:2002に規定されるろう材が使用可能であるが、さらに液相線温度の低いものが好適である。なかでも液相線温度が570〜600、より好ましくは580〜590℃であるAl−Si−Mg系合金や、液相線温度が520〜545℃、より好ましくは530〜540であるAl−Cu−Si−Mg系合金が特に好適な対象となる。   As the brazing material, one for aluminum metal is applied. For example, a brazing material using an Al—Si alloy, an Al—Si—Mg alloy, an Al—Cu—Si—Mg alloy, or the like is used. As the standard material, a brazing material defined in JIS Z3263: 2002 can be used, but a material having a lower liquidus temperature is preferable. Among them, an Al—Si—Mg-based alloy having a liquidus temperature of 570 to 600, more preferably 580 to 590 ° C., and an Al—Cu alloy having a liquidus temperature of 520 to 545 ° C., more preferably 530 to 540, are used. A -Si-Mg alloy is a particularly suitable target.

本発明では、各部材を積層した状態で真空ろう付けを行う手法が採用される。具体的には絶縁基板2とアルミニウム系めっき鋼板3の間、およびアルミニウム系めっき鋼板3と伝熱材4の間に、それぞれシート状のろう材5および6を置けばよい。ただし、絶縁基板2を構成するセラミックス板21とアルミニウム系金属層Aの界面露出部分7をろう材溶融金属と反応しない耐熱塗膜8で被覆した状態としてろう付けを行うことが肝要である。この耐熱塗膜8により、ろう材5の溶融金属がアルミニウム系金属層Aの界面露出部分7近傍の端面と濡れることが防止され、セラミックス板21とアルミニウム系金属層Aの界面10の部分に図1に示したろう材浸入反応領域24が形成されることが回避される。その結果、熱衝撃に対する耐久性が顕著に向上する。ここで、「界面露出部7を被覆する」とは、界面露出部7を挟んで両側に露出しているセラミックス板21の一部およびアルミニウム系金属層Aの一部と共に、界面露出部7を覆うことを意味する。特にアルミニウム系金属層Aについては、その端面全体を耐熱塗膜8で覆うことが一層好ましい。   In the present invention, a technique of performing vacuum brazing in a state where the respective members are laminated is adopted. Specifically, sheet-like brazing materials 5 and 6 may be placed between the insulating substrate 2 and the aluminum-based plated steel plate 3 and between the aluminum-based plated steel plate 3 and the heat transfer material 4, respectively. However, it is important to perform brazing in such a state that the exposed portion 7 of the interface between the ceramic plate 21 and the aluminum metal layer A constituting the insulating substrate 2 is covered with the heat-resistant coating film 8 that does not react with the brazing filler metal. The heat-resistant coating film 8 prevents the molten metal of the brazing material 5 from getting wet with the end face in the vicinity of the interface exposed portion 7 of the aluminum-based metal layer A, and is shown on the interface 10 portion of the ceramic plate 21 and the aluminum-based metal layer A. The formation of the brazing material intrusion reaction region 24 shown in FIG. 1 is avoided. As a result, the durability against thermal shock is significantly improved. Here, “covering the interface exposed portion 7” means that the interface exposed portion 7 is covered together with a part of the ceramic plate 21 and a part of the aluminum-based metal layer A exposed on both sides of the interface exposed portion 7. It means covering. Particularly for the aluminum-based metal layer A, it is more preferable to cover the entire end face with the heat-resistant coating film 8.

耐熱塗膜8は、アルミニウム系の溶融金属と反応せず、且つ塗膜の耐熱温度がろう付け温度よりも高いものが採用される。そのような耐熱塗膜を形成させる塗料としては、例えば焼結金属成形(ホットプレス)、金型鋳造、溶湯鍛造などに使用されている無機バインダーを用いた市販の潤滑離型剤などが適用できる。   As the heat-resistant coating film 8, a film that does not react with an aluminum-based molten metal and has a heat-resistant temperature higher than the brazing temperature is adopted. As a paint for forming such a heat-resistant coating film, for example, a commercially available lubricant release agent using an inorganic binder used in sintered metal forming (hot press), die casting, molten metal forging, and the like can be applied. .

図3に、本発明によって得られるろう付け後の放熱構造体(半導体発熱部品を搭載した状態)の断面を模式的に示す。セラミックス板21とアルミニウム系金属層Aとの間の界面露出部を耐熱塗膜8で被覆した状態でろう付けが施されたことにより、当該被覆箇所はろう材溶融金属と濡れることが防止され、セラミックス板21とアルミニウム系金属層Aとの界面10にろう材溶融金属が浸入することが回避されている。すなわち、前述の図1に示したろう材浸入反応領域24が形成されることなく、界面10は初期の健全な状態が維持されている。これにより熱衝撃を受けた場合に当該界面で剥離が生じる問題が解消される。界面10が健全に維持されていること以外は前述の図1のものと同様の構造を有している。したがって、各材料がタイトに積層した断面形態によって良好な熱伝導性および耐振動性が確保される。なお、ろう付け後に残留した耐熱塗膜8は必要に応じて除去される。   FIG. 3 schematically shows a cross section of the heat dissipation structure (in a state where a semiconductor heating component is mounted) after brazing obtained by the present invention. By performing brazing in a state where the interface exposed portion between the ceramic plate 21 and the aluminum-based metal layer A is covered with the heat-resistant coating film 8, the covered portion is prevented from getting wet with the brazing filler metal, Intrusion of the brazing filler metal into the interface 10 between the ceramic plate 21 and the aluminum-based metal layer A is avoided. That is, the initial healthy state of the interface 10 is maintained without forming the brazing material intrusion reaction region 24 shown in FIG. This eliminates the problem of peeling at the interface when subjected to thermal shock. 1 has the same structure as that of FIG. 1 described above except that the interface 10 is kept healthy. Therefore, good thermal conductivity and vibration resistance are ensured by the cross-sectional form in which each material is tightly laminated. The heat-resistant coating film 8 remaining after brazing is removed if necessary.

DBA基板からなる「絶縁基板2」、両面に溶融Alめっき層を有する「アルミニウム系めっき鋼板3」、およびアルミニウム系金属板からなる「伝熱材4」を図2に示すようにろう材を介在させた状態で積層し、その積層体を炉に装入して真空ろう付けを施すことにより放熱構造体を作製した。その際、絶縁基板2のセラミックス板21とアルミニウム系金属層Aの界面露出部分7を耐熱塗膜8で覆った状態でろう付けを施したもの(本発明例)と、耐熱塗膜8を形成しない状態でろう付けを施したもの(比較例)を作製した。   As shown in FIG. 2, a “insulating substrate 2” made of a DBA substrate, an “aluminum-based plated steel plate 3” having a molten Al plating layer on both sides, and a “heat transfer material 4” made of an aluminum-based metal plate are interposed as shown in FIG. The heat dissipation structure was fabricated by stacking the stacked bodies in a state of being allowed to stand, and charging the stacked bodies into a furnace and performing vacuum brazing. At that time, a brazed material (invention example) and a heat-resistant coating film 8 formed while the interface exposed portion 7 between the ceramic plate 21 of the insulating substrate 2 and the aluminum-based metal layer A is covered with the heat-resistant coating film 8 are formed. A brazed product (comparative example) was prepared.

絶縁基板2として、市販のDBA基板を用意した。これは厚さ0.65mmのAlN板の両側にそれぞれ厚さ4mmのアルミニウム系金属板をAl−Si系ろう材によりろう付け接合した材料である。AlN板(図2のセラミックス板21に相当)の寸法は20mm×30mm×0.65mm、両側のアルミニウム系金属板(図2の導電層23およびアルミニウム系金属層Aに相当)の寸法はいずれも18mm×28mm×0.4mmである。以下、図2の符号に対応させて説明する。   A commercially available DBA substrate was prepared as the insulating substrate 2. This is a material in which an aluminum-based metal plate having a thickness of 4 mm is brazed and bonded to both sides of an AlN plate having a thickness of 0.65 mm with an Al—Si-based brazing material. The dimensions of the AlN plate (corresponding to the ceramic plate 21 in FIG. 2) are 20 mm × 30 mm × 0.65 mm, and the dimensions of the aluminum metal plates on both sides (corresponding to the conductive layer 23 and the aluminum metal layer A in FIG. 2) are both It is 18 mm x 28 mm x 0.4 mm. Hereinafter, description will be made in correspondence with the reference numerals in FIG.

絶縁基板2のうち、本発明例の製造法に適用するものについては予め、セラミックス板21とアルミニウム系金属層Aの間の界面露出部分7を、アルミニウム系金属層Aの端面全体、およびセラミックス板21のアルミニウム系金属層Aより外周に張り出した部分のアルミニウム系めっき鋼板3側に面した表面全体と共に、耐熱塗膜8で被覆した。耐熱塗膜8を形成させるために塗料として、耐熱温度が約800℃であるオキツモ株式会社製の潤滑離型剤「ボロンコート」を使用した。絶縁基板2の耐熱塗膜8を形成させる部分以外を表面に塗料がかからないようにテープでマスキングしたのち、約10cmの距離から前記潤滑離型剤を約10秒間吹き付けることによりアルミニウム系金属層Aの周囲全体の界面露出部分7を被覆した。   Of the insulating substrate 2 that is applied to the manufacturing method of the example of the present invention, the interface exposed portion 7 between the ceramic plate 21 and the aluminum-based metal layer A, the entire end surface of the aluminum-based metal layer A, and the ceramic plate are previously formed. The entire surface facing the aluminum-plated steel plate 3 side of the portion protruding from the aluminum-based metal layer A to the outer periphery was covered with the heat-resistant coating film 8. In order to form the heat-resistant coating film 8, a lubricant release agent “Boron Coat” manufactured by Okitsumo Co., Ltd. having a heat-resistant temperature of about 800 ° C. was used. After masking the surface of the insulating substrate 2 other than the portion where the heat-resistant coating film 8 is formed with a tape so as not to cover the surface, the lubricant release agent is sprayed from a distance of about 10 cm for about 10 seconds to form the aluminum-based metal layer A. The entire interface exposed portion 7 was covered.

アルミニウム系めっき鋼板3として、JIS G4312:1991に規定のSUH409に相当するフェライト系ステンレス鋼を基材鋼板(めっき原板)31とする溶融アルミニウム系めっき鋼板を用いた。基材鋼板31の板厚は0.4mmである。溶融アルミニウム系めっきの組成はAl−9質量%Siであり、アルミニウム系めっき層32、33の厚さはいずれも約15μmである。放熱構造体に使用したアルミニウム系めっき鋼板3の寸法は25mm×35mmである。   As the aluminum-based plated steel plate 3, a hot-dip aluminum-based plated steel plate having a base steel plate (plating original plate) 31 of ferritic stainless steel corresponding to SUH409 defined in JIS G4312: 1991 was used. The thickness of the base steel plate 31 is 0.4 mm. The composition of the molten aluminum-based plating is Al-9 mass% Si, and the thicknesses of the aluminum-based plating layers 32 and 33 are both about 15 μm. The dimension of the aluminum-based plated steel sheet 3 used for the heat dissipation structure is 25 mm × 35 mm.

伝熱材4として、ここではフラットな形状のアルミニウム系金属板(JIS H4000:2006の合金番号1050A相当材、板厚5mm)を用いた。伝熱材4の寸法は50mm×50mm×5mmである。   As the heat transfer material 4, a flat aluminum metal plate (JIS H4000: 2006 alloy number 1050A equivalent material, plate thickness 5 mm) was used here. The dimension of the heat transfer material 4 is 50 mm × 50 mm × 5 mm.

ろう材として、液相線温度が580〜590℃であるAl−Si−Mg系合金のシートと、液相線温度が530〜540℃であるAl−Cu−Si−Mg系合金のシートを用意した。ろう材シートの厚さはいずれも100μmとした。1つの放熱構造体において、ろう材5およびろう材6は同一種類のろう材とした。   As a brazing material, an Al—Si—Mg alloy sheet having a liquidus temperature of 580 to 590 ° C. and an Al—Cu—Si—Mg alloy sheet having a liquidus temperature of 530 to 540 ° C. are prepared. did. The thickness of the brazing material sheet was 100 μm. In one heat dissipation structure, the brazing material 5 and the brazing material 6 were the same type of brazing material.

上記各材料を図2に示す積層順序で所定の位置に積み重ね、真空ろう付けに供した。ろう付け条件は、真空度:10-3Pa、温度:610℃(Al−Si−Mg系ろう材)または550℃(Al−Cu−Si−Mg系ろう材)の雰囲気に15min保持した後、真空を保った炉内で300℃まで冷却し、その後炉外で常温まで空冷する条件とした。このようにして、耐熱塗膜8を形成したものと形成していないものそれぞれについてろう材の種類を異にする2種類ずつ合計4種類の放熱構造体を作製した。 The above materials were stacked at predetermined positions in the stacking order shown in FIG. 2 and subjected to vacuum brazing. Brazing conditions were as follows: vacuum degree: 10 −3 Pa, temperature: 610 ° C. (Al—Si—Mg based brazing material) or 550 ° C. (Al—Cu—Si—Mg based brazing material) for 15 min. It was set as the conditions which cooled to 300 degreeC within the furnace which maintained the vacuum, and was then air-cooled to normal temperature outside the furnace. In this way, a total of four types of heat dissipation structures were prepared, each of two types with different types of brazing material for those with and without the heat-resistant coating film 8 formed.

上記のようにして得られた放熱構造体のうち、各種類の一部のものについて熱衝撃を加える冷熱衝撃試験を行った。試験は、−40℃と125℃の不活性液中にそれぞれ5minずつ交互に浸漬保持する操作を1サイクル(10min/サイクル)として、これを1000サイクル実施した。   Among the heat dissipation structures obtained as described above, a thermal shock test was performed on a part of each type to apply a thermal shock. In the test, the operation of alternately dipping and holding in an inert solution at −40 ° C. and 125 ° C. for 5 min each was regarded as 1 cycle (10 min / cycle), and 1000 cycles were performed.

冷熱衝撃試験前および試験後の放熱構造体から、図3中に符号25で示した領域に相当する断面部分が観察できる試料を採取し、SEM観察により絶縁基板2のセラミックス板21とアルミニウム系金属層Aの界面10における剥離状態を調べた。その結果を図4〜図7に示す。また、参考のため、これらの図中に記入したa〜dの部分についてEDXにより組成分析を行った結果を表1に示す。   A sample capable of observing a cross-sectional portion corresponding to the region indicated by reference numeral 25 in FIG. 3 is taken from the heat dissipation structure before and after the thermal shock test, and the ceramic plate 21 of the insulating substrate 2 and the aluminum-based metal are observed by SEM observation. The peeling state at the interface 10 of the layer A was examined. The results are shown in FIGS. For reference, Table 1 shows the results of composition analysis by EDX for the parts a to d entered in these figures.

図4はAl−Si−Mg系ろう材を用いて界面露出部分7を被覆せずにろう付けを行った比較例である。セラミックス板21(AlN)と接している金属部分にはろう材溶融金属と反応して生成した金属相が見られる。図4中に記号aで示した金属相はAlを固溶するSi相であると考えられ(表1参照)、アルミニウム系金属層Aがろう材溶融金属と反応したことが裏付けられる。ろう材溶融金属と反応した金属領域は図1に符号24で示した「ろう材浸入反応領域」に相当するものである。冷熱衝撃試験後にはセラミックス板21との界面近傍の金属部分に割れが観察され(図4中の*1)、熱衝撃に対する耐久性に劣ることがわかる。   FIG. 4 shows a comparative example in which brazing was performed without covering the interface exposed portion 7 using an Al—Si—Mg brazing material. In the metal portion in contact with the ceramic plate 21 (AlN), a metal phase generated by reaction with the brazing filler metal is seen. The metal phase indicated by symbol a in FIG. 4 is considered to be a Si phase in which Al is dissolved (see Table 1), which confirms that the aluminum-based metal layer A has reacted with the brazing filler metal. The metal region reacted with the brazing filler metal corresponds to the “brazing material intrusion reaction region” indicated by reference numeral 24 in FIG. After the thermal shock test, cracks are observed in the metal portion near the interface with the ceramic plate 21 (* 1 in FIG. 4), indicating that the durability against thermal shock is poor.

図5はAl−Si−Mg系ろう材を用いて界面露出部分7を耐熱塗膜8で被覆した状態でろう付けを行った本発明例である。セラミックス板21(AlN)と接している金属部分はろう材溶融金属と接触していないため、「ろう材浸入反応領域」は形成されていない。冷熱衝撃試験後においてもセラミックス板21(AlN)とアルミニウム系金属層Aとのタイトな接合が維持されていた。   FIG. 5 shows an example of the present invention in which brazing is performed in a state where the interface exposed portion 7 is covered with the heat resistant coating 8 using an Al—Si—Mg brazing material. Since the metal portion in contact with the ceramic plate 21 (AlN) is not in contact with the brazing material molten metal, the “brazing material infiltration reaction region” is not formed. Even after the thermal shock test, the tight bonding between the ceramic plate 21 (AlN) and the aluminum-based metal layer A was maintained.

図6はAl−Cu−Si−Mg系ろう材を用いて界面露出部分7を被覆せずにろう付けを行った比較例である。セラミックス板21(AlN)と接している金属部分にはろう材溶融金属と反応して生成した金属相が見られる。図6中に記号b、c、dで示した金属相にはろう材由来の成分が濃化しており(表1参照)、アルミニウム系金属層Aがろう材溶融金属と反応したことが裏付けられる。ろう材溶融金属と反応した金属領域は図1に符号24で示した「ろう材浸入反応領域」に相当するものである。この例では、ろう付け直後(冷熱衝撃試験前)の時点で既にセラミックス板21(AlN)とアルミニウム系金属層Aの界面で剥離が生じていた(図6中の*2)。   FIG. 6 is a comparative example in which brazing was performed without covering the interface exposed portion 7 using an Al—Cu—Si—Mg brazing material. In the metal portion in contact with the ceramic plate 21 (AlN), a metal phase generated by reaction with the brazing filler metal is seen. In the metal phases indicated by symbols b, c, and d in FIG. 6, the components derived from the brazing material are concentrated (see Table 1), confirming that the aluminum-based metal layer A has reacted with the brazing material molten metal. . The metal region reacted with the brazing filler metal corresponds to the “brazing material intrusion reaction region” indicated by reference numeral 24 in FIG. In this example, delamination had already occurred at the interface between the ceramic plate 21 (AlN) and the aluminum-based metal layer A immediately after brazing (before the thermal shock test) (* 2 in FIG. 6).

図7はAl−Cu−Si−Mg系ろう材を用いて界面露出部分7を耐熱塗膜8で被覆した状態でろう付けを行った本発明例である。図5の場合と同様、「ろう材浸入反応領域」は形成されておらず、冷熱衝撃試験後においてもセラミックス板21(AlN)とアルミニウム系金属層Aとのタイトな接合が維持されていた。   FIG. 7 shows an example of the present invention in which brazing was performed in a state where the interface exposed portion 7 was covered with the heat-resistant coating film 8 using an Al—Cu—Si—Mg brazing material. As in the case of FIG. 5, the “brazing material intrusion reaction region” was not formed, and the tight bonding between the ceramic plate 21 (AlN) and the aluminum-based metal layer A was maintained even after the thermal shock test.

1 半導体発熱部品
2 絶縁基板
3 アルミニウム系めっき鋼板
4 伝熱材
4’ 伝熱材由来部分
5、6 ろう材
7 界面露出部
8 耐熱塗膜
10 セラミックス板とアルミニウム系金属層Aの界面
20 ろう付け後の絶縁基板
A アルミニウム系金属層
A’ アルミニウム系金属層由来部分
21 セラミックス板
23 導電層
25 SEM観察領域
30 緩衝材
31 基材鋼板
32、33 アルミニウム系めっき層
32’、33’ アルミニウム系めっき層由来部分
40 ろう付け後の伝熱材
50、60 ろう付け金属
DESCRIPTION OF SYMBOLS 1 Semiconductor heating component 2 Insulating substrate 3 Aluminum system plated steel plate 4 Heat transfer material 4 'Heat transfer material origin part 5, 6 Brazing material 7 Interface exposure part 8 Heat-resistant coating film 10 Interface between ceramic plate and aluminum-based metal layer A 20 Brazing Subsequent insulating substrate A Aluminum-based metal layer A ′ Aluminum-based metal layer-derived portion 21 Ceramic plate 23 Conductive layer 25 SEM observation region 30 Buffer material 31 Base steel plate 32, 33 Aluminum-based plating layer 32 ′, 33 ′ Aluminum-based plating layer Origin 40 Heat transfer material after brazing 50, 60 Brazing metal

Claims (7)

セラミックス板の少なくとも片面にアルミニウム系金属層Aを有する板状材料からなる「絶縁基板」と、基材鋼板の両面にアルミニウム系めっき層を有する「アルミニウム系めっき鋼板」と、アルミニウム系金属材料からなる「伝熱材」とをろう付け接合して、前記絶縁基板上に半導体発熱部品を搭載するための放熱構造体を製造するに際し、
絶縁基板のアルミニウム系金属層Aとアルミニウム系めっき鋼板の間、およびアルミニウム系めっき鋼板と伝熱材の間にろう材を介在させ、且つ、セラミックス板とアルミニウム系金属層Aの界面露出部分をろう材溶融金属と反応しない耐熱塗膜で被覆した状態としてろう付けを行う、半導体発熱部品搭載用放熱構造体の製造法。
An “insulating substrate” made of a plate-like material having an aluminum-based metal layer A on at least one surface of a ceramic plate, an “aluminum-plated steel plate” having an aluminum-based plated layer on both surfaces of a base steel plate, and an aluminum-based metal material When manufacturing a heat dissipation structure for mounting a semiconductor heating component on the insulating substrate by brazing and joining the “heat transfer material”,
A brazing material is interposed between the aluminum-based metal layer A of the insulating substrate and the aluminum-based plated steel plate, and between the aluminum-based plated steel plate and the heat transfer material, and the interface exposed portion between the ceramic plate and the aluminum-based metal layer A is brazed. A method for manufacturing a heat-dissipating structure for mounting a semiconductor heat-generating component, which is brazed in a state of being covered with a heat-resistant coating that does not react with the molten metal.
アルミニウム系めっき鋼板は、片面当たりのめっき層厚さが5〜50μmの溶融アルミニウム系めっき鋼板である請求項1に記載の半導体発熱部品搭載用放熱構造体の製造法。   The method for producing a heat-radiating structure for mounting a semiconductor heating component according to claim 1, wherein the aluminum-based plated steel sheet is a molten aluminum-based plated steel sheet having a plating layer thickness of 5 to 50 µm per side. アルミニウム系めっき鋼板は、線膨張係数(常温)が13×10-6/K以下の鋼種を基材鋼板(めっき原板)とするものである請求項1または2に記載の半導体発熱部品搭載用放熱構造体の製造法。 The aluminum-based plated steel sheet has a linear expansion coefficient (normal temperature) of 13 × 10 −6 / K or less as a base steel sheet (plating original sheet). Manufacturing method of structure. 基材鋼板の鋼種がJIS G4305:2005の表4またはJIS G4312の表3に規定されるフェライト系鋼種である請求項1〜3のいずれかに記載の半導体発熱部品搭載用放熱構造体の製造法。   The method for producing a heat-radiating structure for mounting a semiconductor heating component according to any one of claims 1 to 3, wherein a steel type of the base steel sheet is a ferritic steel type specified in Table 4 of JIS G4305: 2005 or Table 3 of JIS G4312. . アルミニウム系めっき鋼板は、基材鋼板(めっき原板)の板厚が0.1〜2mmである請求項1〜4のいずれかに記載の半導体発熱部品搭載用放熱構造体の製造法。   The method for manufacturing a heat-radiating structure for mounting a semiconductor heat-emitting component according to any one of claims 1 to 4, wherein the aluminum-based plated steel sheet has a base steel sheet (plating original sheet) thickness of 0.1 to 2 mm. 絶縁基板のセラミックス板がAlNである請求項1〜5のいずれかに記載の半導体発熱部品搭載用放熱構造体の製造法。   The method for manufacturing a heat-radiating structure for mounting a semiconductor heating component according to any one of claims 1 to 5, wherein the ceramic plate of the insulating substrate is AlN. ろう材として、液相線温度が570〜600℃であるAl−Si−Mg系合金、または液相線温度が520〜545℃であるAl−Cu−Si−Mg系合金を使用する請求項1〜6のいずれかに記載の半導体発熱部品搭載用放熱構造体の製造法。   2. An Al—Si—Mg alloy having a liquidus temperature of 570 to 600 ° C. or an Al—Cu—Si—Mg alloy having a liquidus temperature of 520 to 545 ° C. is used as the brazing material. The manufacturing method of the heat radiating structure for semiconductor heat-emitting component mounting in any one of -6.
JP2010043434A 2010-02-26 2010-02-26 Method of manufacturing heat dissipation structure for mounting semiconductor heating component Withdrawn JP2011181634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010043434A JP2011181634A (en) 2010-02-26 2010-02-26 Method of manufacturing heat dissipation structure for mounting semiconductor heating component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010043434A JP2011181634A (en) 2010-02-26 2010-02-26 Method of manufacturing heat dissipation structure for mounting semiconductor heating component

Publications (1)

Publication Number Publication Date
JP2011181634A true JP2011181634A (en) 2011-09-15

Family

ID=44692859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010043434A Withdrawn JP2011181634A (en) 2010-02-26 2010-02-26 Method of manufacturing heat dissipation structure for mounting semiconductor heating component

Country Status (1)

Country Link
JP (1) JP2011181634A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367211B1 (en) * 2012-02-13 2014-02-26 광전자 주식회사 Aluminum base plate for power module
WO2022014319A1 (en) * 2020-07-15 2022-01-20 Dowaメタルテック株式会社 Insulation substrate and method for manufacturing same
CN114759106A (en) * 2021-01-12 2022-07-15 宝山钢铁股份有限公司 Coated steel plate suitable for in-line thin film photovoltaic module and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367211B1 (en) * 2012-02-13 2014-02-26 광전자 주식회사 Aluminum base plate for power module
WO2022014319A1 (en) * 2020-07-15 2022-01-20 Dowaメタルテック株式会社 Insulation substrate and method for manufacturing same
CN114759106A (en) * 2021-01-12 2022-07-15 宝山钢铁股份有限公司 Coated steel plate suitable for in-line thin film photovoltaic module and manufacturing method thereof
CN114759106B (en) * 2021-01-12 2024-03-08 宝山钢铁股份有限公司 Coated steel plate suitable for inline thin film photovoltaic module and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6127833B2 (en) Manufacturing method of joined body and manufacturing method of power module substrate
KR102422607B1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
TWI614845B (en) Method of producing substrate for power module
JP6079505B2 (en) Bonded body and power module substrate
TWI637466B (en) Jointed body and power module substrate
TWI661516B (en) Bonded body, power module substrate with heat sink, heat sink, method of producing bonded body, method of producing power module substrate with heat sink and method of producing heat sink
JP2015062953A (en) Joined body, and substrate for power module
WO2018180159A1 (en) Method for producing insulated circuit board with heat sink
TW201644017A (en) Method of producing power module substrate with heat sink
JP2011181634A (en) Method of manufacturing heat dissipation structure for mounting semiconductor heating component
JP2011035308A (en) Radiator plate, semiconductor device, and method of manufacturing radiator plate
JP2011023545A (en) Heat dissipation structure and power module
JP6031784B2 (en) Power module substrate and manufacturing method thereof
TW201739725A (en) Bonded body, power module substrate, method of producing bonded body and method of producing power module substrate
JP5640569B2 (en) Power module substrate manufacturing method
TW201038911A (en) Heat dissipation module and fabrication method thereof
JP5011088B2 (en) Heat dissipation device and power module
JP2017228693A (en) Conjugate, substrate for power module, manufacturing method of conjugate, and manufacturing method of substrate for power module
JP6790945B2 (en) Manufacturing method of insulated circuit board and manufacturing method of insulated circuit board with heat sink
TW201617300A (en) Method of producing ceramics/aluminum bonded body, method of producing power module substrate, and ceramics/aluminum bonded body, power module substrate
JP5724273B2 (en) Power module substrate, power module substrate with heat sink, power module, method for manufacturing power module substrate, and method for manufacturing power module substrate with heat sink
WO2016167217A1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
TW201739726A (en) Bonded body, power module substrate, power mosule, method of producing bonded body and method of producing power module substrate
JP7039933B2 (en) Bond, Insulated Circuit Board, Insulated Circuit Board with Heat Sink, Heat Sink, and Joined Body Manufacturing Method, Insulated Circuit Board Manufacturing Method, Heat Sinked Insulated Circuit Board Manufacturing Method, Heat Sink Manufacturing Method
JP5618659B2 (en) Anisotropic heat transfer body and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507