JP2011181591A - Thin film semiconductor device, apparatus for manufacturing thin film semiconductor device, and method for manufacturing thin film semiconductor device - Google Patents

Thin film semiconductor device, apparatus for manufacturing thin film semiconductor device, and method for manufacturing thin film semiconductor device Download PDF

Info

Publication number
JP2011181591A
JP2011181591A JP2010042399A JP2010042399A JP2011181591A JP 2011181591 A JP2011181591 A JP 2011181591A JP 2010042399 A JP2010042399 A JP 2010042399A JP 2010042399 A JP2010042399 A JP 2010042399A JP 2011181591 A JP2011181591 A JP 2011181591A
Authority
JP
Japan
Prior art keywords
thin film
roll
semiconductor device
film semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010042399A
Other languages
Japanese (ja)
Inventor
Shinya Yamaguchi
伸也 山口
Toshimasa Eguchi
敏正 江口
Shigeyoshi Otsuki
重義 大槻
Mamoru Okamoto
守 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Sumitomo Bakelite Co Ltd
Toppan Inc
Original Assignee
Sumitomo Chemical Co Ltd
Sumitomo Bakelite Co Ltd
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Sumitomo Bakelite Co Ltd, Toppan Printing Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2010042399A priority Critical patent/JP2011181591A/en
Priority to KR1020127025280A priority patent/KR101459202B1/en
Priority to PCT/JP2010/053511 priority patent/WO2011104894A1/en
Publication of JP2011181591A publication Critical patent/JP2011181591A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Thin Film Transistor (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thin film semiconductor device which is formed by a low-temperature process, achieves a relatively high field effect mobility, and is stable with respect to light and heat and applicable to a bending environment. <P>SOLUTION: The thin film semiconductor device includes a plastic substrate 2, a barrier layer 3, a semiconductor layer 7, an insulating layer 8a formed in contact with one of upper and lower surfaces of the semiconductor layer 7, a source electrode 9a, a drain electrode 9b, a gate electrode 9c, and a gate insulating film 8a. The semiconductor layer 7 contains at least one non-metal element, at least one semi-metal element, and at least one metal element. The non-metal element component is a mixture of at least oxygen (O) and nitrogen (N), and the ratio of the nitrogen (N) to the oxygen (O) ((number density of N)/(number density of O)) is 0 to 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、特にプラスチック基板を用いたフレキシブルディスプレイである薄膜半導体装置、薄膜半導体製造装置及び薄膜半導体製造方法に関するものである。   The present invention relates to a thin film semiconductor device, a thin film semiconductor manufacturing apparatus and a thin film semiconductor manufacturing method which are flexible displays using a plastic substrate.

ディスプレイの画像駆動用薄膜半導体装置(TFT)は、その半導体層として従来からa−Siが用いられており、現在も一般に普及している。しかし、a−Si を半導体層として用いたTFTは、その電界効果移動度は非常に小さいため(〜0.1cm/Vs)、近年急速に需要が増している高精細動画対応などの高機能用途には性能限界に達しつつあった。 Thin film semiconductor devices (TFTs) for image driving of displays have conventionally used a-Si as their semiconductor layers and are still in widespread use today. However, a TFT using a-Si as a semiconductor layer has a very small field effect mobility (˜0.1 cm 2 / Vs). The application was reaching its performance limit.

このため、a−Siに代わる半導体層として、a−Siにエキシマレーザなどを照射して多結晶化することでより高い電界効果移動度(〜10 cm/Vs)が得られるpoly−Siを半導体層として用いたTFTが開発された(特許文献1など)。 For this reason, as a semiconductor layer that replaces a-Si, poly-Si that can obtain higher field-effect mobility (-10 cm 2 / Vs) by irradiating a-Si with an excimer laser or the like to be polycrystallized is used. TFTs used as semiconductor layers have been developed (Patent Document 1, etc.).

この技術は、一部用途で実用化されたが、結晶粒界がランダムに分布することでTFT性能の均一化が困難なことやレーザプロセスコストが甚大なことなどが課題となり十分な普及はされていない。   Although this technology has been put to practical use for some applications, it is difficult to achieve uniform TFT performance due to random distribution of crystal grain boundaries, and the laser process cost is enormous. Not.

さらに、前記したいずれのSi系TFTも半導体層の成膜温度が比較的高温であるため、フレキシブルディスプレイなどに用いるプラスチック基板やロール状フィルム基板の耐熱温度を超えてしまい、基板フレキシブル化への対応が困難であるという問題もあった。   Furthermore, since any of the Si-based TFTs described above has a relatively high semiconductor layer deposition temperature, it exceeds the heat resistance temperature of plastic substrates and roll film substrates used for flexible displays, etc. There was also a problem that it was difficult.

これらに代わる新材料として、InGaZnOx系酸化物半導体が検討されている。このInGaZnOx系酸化物半導体は、スパッタなどの非真空・低温プロセスで成膜できるため、フレキシブル基板上にも形成可能であり、プロセスも低コストである。この酸化物半導体は、低温プロセス成膜後そのままの状態では未だ性能不十分で、成膜後のアニールによる焼き締めを行うことで十分な性能を引き出すことができる。焼き締めは、炉アニールの場合は300℃程度が必要なのでフレキシブル基板の(耐熱温度こそ超えないものの)熱膨張変形などの問題を起こしてしまう。そこでレーザーアニールなどの手法(poly−Si形成時より低エネルギーで良いためコスト上昇要因になりにくい)を併用することにより、低温のまま十分な焼き締めを行うことが考えられている。いずれの手法を用いても、この酸化物半導体はアモルファス状態が保たれるので、上述のpoly−Siのような粒界によるばらつき懸念がないこと、電界効果移動度(〜10cm/Vs)が比較的高く高精細動画対応にも可能なことなど、Siには無い多くの利点を持っている。 InGaZnOx-based oxide semiconductors have been studied as a new material that can replace them. Since this InGaZnOx-based oxide semiconductor can be formed by a non-vacuum / low-temperature process such as sputtering, the InGaZnOx-based oxide semiconductor can be formed on a flexible substrate, and the process is also low in cost. This oxide semiconductor is still insufficient in performance as it is after low-temperature process film formation, and sufficient performance can be obtained by performing baking by annealing after film formation. In the case of furnace annealing, about 300 ° C. is necessary for baking, which causes problems such as thermal expansion deformation of the flexible substrate (although the heat resistance temperature is not exceeded). In view of this, it is considered to perform sufficient baking at a low temperature by using a technique such as laser annealing (which is less likely to cause a cost increase because lower energy is required than when poly-Si is formed). Whichever method is used, the oxide semiconductor is maintained in an amorphous state, so there is no fear of variation due to grain boundaries like the above-described poly-Si, and field effect mobility (-10 cm 2 / Vs). It has many advantages over Si, such as being relatively high and capable of handling high-definition video.

特開2009−211009号公報JP 2009-211009 A

しかし、酸化物半導体は熱、光に対する安定性に課題があることが明らかとなってきた。外光(特に波長500nm以下の近紫外領域の光)が入射するとTFTのオフ電流が増大(波長370nmではオフ電流が約2桁増大)し、それに伴いTFTの閾値が5Vも変動する。ディスプレイはバックライトや外光などがTFTに入射しやすい構造のため、このような特性変動を起こすことは回路動作上非常に大きな問題となり得る。   However, it has become clear that oxide semiconductors have problems with respect to heat and light stability. When external light (particularly light in the near-ultraviolet region with a wavelength of 500 nm or less) enters, the off-current of the TFT increases (the off-current increases by about two orders of magnitude at a wavelength of 370 nm), and the TFT threshold fluctuates by 5 V accordingly. Since the display has a structure in which backlights, external light, etc. are likely to enter the TFT, such a characteristic variation can be a very serious problem in circuit operation.

このような外光への信頼性を増すためには、TFTの上下に金属(配線と共通化されている場合もある)からなる遮光層を設けることが行われるが、遮光層を避けて入射する迷光を完全に遮断することは困難なため完全な対策とはならない。   In order to increase the reliability to such external light, a light shielding layer made of metal (sometimes shared with wiring) is provided above and below the TFT. Because it is difficult to completely block the stray light, it is not a complete measure.

さらに、酸化物半導体は熱に対しても敏感で、上述したように成膜後のアニールにより焼き締めを行ったとしても、使用環境が100℃以上の温度になるとやはりオフ電流が増大し閾値が5V程度シフトする。このシフト量は使用環境温度が高いほど顕著で、200℃以上ではトランジスタがスイッチングできなくなるほどである。これは酸化物半導体中の酸素と他元素との結合状態が熱により変化することが原因と考えられている。この変化は可逆的で、使用環境が元に戻れば、TFT特性も数十分程度で元に戻るものの、ディスプレイ用途としては大きな課題であることに違いはない。   In addition, an oxide semiconductor is sensitive to heat, and even if it is baked by annealing after film formation as described above, the off-state current increases and the threshold value increases when the usage environment reaches 100 ° C. or higher. Shift about 5V. This shift amount becomes more conspicuous as the use environment temperature is higher, and the transistor cannot be switched at 200 ° C. or higher. This is considered to be caused by a change in the bonding state between oxygen and another element in the oxide semiconductor due to heat. This change is reversible, and if the use environment is restored, the TFT characteristics will be restored to a few tens of minutes, but there is no doubt that this is a major problem for display applications.

ディスプレイの通常使用環境ではこれほどの高温になることはないが、例えば車中など50〜60℃で長時間放置されるような場合は、累積的な効果で特性変動する可能性が高い。このように酸化物半導体でも新たな課題が明らかとなりつつある。   In a normal use environment of the display, the temperature does not become so high. However, when the display is left at a temperature of 50 to 60 ° C. for a long time, for example, in a car, there is a high possibility of characteristic fluctuation due to a cumulative effect. Thus, new problems are becoming apparent in oxide semiconductors.

この発明は、以上の点を考慮してなされたもので、低温プロセスで形成可能であり、低プロセスコストを実現し、また比較的高い電界効果移動度を実現でき、かつ光、熱に対して安定な特性を有し、曲げ環境にも適用できる薄膜半導体装置、薄膜半導体製造装置及び薄膜半導体製造方法を提案することを目的とする。   The present invention has been made in consideration of the above points, can be formed by a low-temperature process, can realize a low process cost, can realize a relatively high field-effect mobility, and is resistant to light and heat. An object of the present invention is to propose a thin film semiconductor device, a thin film semiconductor manufacturing apparatus, and a thin film semiconductor manufacturing method that have stable characteristics and can be applied to a bending environment.

前記課題を解決し、かつ目的を達成するために、この発明は、以下のように構成した。   In order to solve the above-described problems and achieve the object, the present invention is configured as follows.

請求項1に記載の発明は、プラスチック基板と、
前記プラスチック基板上に形成されたバリア層と、
前記バリア層上に形成された半導体層と、
前記半導体層の上下いずれかの面に接して形成された絶縁層と、
前記絶縁層に接して形成された金属層と、
を有し、
前記半導体層をチャネル、前記金属層をソース電極、ドレイン電極、およびゲート電極、前記絶縁層をゲート絶縁膜として用い、
前記半導体層は、非金属元素の窒素(N)、酸素(O)のうち少なくともひとつ、半金属元素のホウ素(B)、シリコン(Si)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)、テルル(Te)、ポロニウム(Po)のうち少なくともひとつ、および金属元素のアルミニウム(Al)、亜鉛(Zn)、ガリウム(Ga)、カドニウム(Cd)、インジウム(In)、錫(Sn)、水銀(Hg)、タリウム(Tl)、テルビウム(Pb)、ビスマス(Bi)のうち少なくともひとつを含み、
前記非金属元素が、少なくとも酸素(O)と窒素(N)の混合物で、酸素(O)に対する窒素(N)の比(N数密度/O数密度)が0乃至2であることを特徴とする薄膜半導体装置である。
The invention according to claim 1 is a plastic substrate;
A barrier layer formed on the plastic substrate;
A semiconductor layer formed on the barrier layer;
An insulating layer formed in contact with either upper or lower surface of the semiconductor layer;
A metal layer formed in contact with the insulating layer;
Have
Using the semiconductor layer as a channel, the metal layer as a source electrode, a drain electrode, and a gate electrode, and the insulating layer as a gate insulating film,
The semiconductor layer includes at least one of nonmetallic elements nitrogen (N) and oxygen (O), semimetallic elements boron (B), silicon (Si), germanium (Ge), arsenic (As), and antimony (Sb). ), Tellurium (Te), at least one of polonium (Po), and the metal elements aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), Including at least one of mercury (Hg), thallium (Tl), terbium (Pb), bismuth (Bi),
The nonmetallic element is at least a mixture of oxygen (O) and nitrogen (N), and the ratio of nitrogen (N) to oxygen (O) (N number density / O number density) is 0 to 2. It is a thin film semiconductor device.

請求項2に記載の発明は、前記半金属元素が、少なくともシリコン(Si)とゲルマニウム(Ge)の混合物Si1−xGex(xはSiとGeの混合比でx=0乃至1が成り立つ)で、前記混合物(Si1−xGex)に対する窒素(N)の比(N数密度/Si1−xGex数密度)が1乃至2であることを特徴とする請求項1に記載の薄膜半導体装置である。   In the invention according to claim 2, the metalloid element is at least a mixture Si1-xGex of silicon (Si) and germanium (Ge) (x is a mixture ratio of Si and Ge, and x = 0 to 1 is established), 2. The thin film semiconductor device according to claim 1, wherein a ratio (N number density / Si 1-x Gex number density) of nitrogen (N) to the mixture (Si 1-x Gex) is 1 to 2. 3.

請求項3に記載の発明は、前記プラスチック基板が、少なくともロール状フィルム基板であることを特徴とする請求項1または請求項2に記載の薄膜半導体装置である。   A third aspect of the present invention is the thin film semiconductor device according to the first or second aspect, wherein the plastic substrate is at least a roll-shaped film substrate.

請求項4に記載の発明は、前記半導体層は、アモルファスであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の薄膜半導体装置である。   A fourth aspect of the present invention is the thin film semiconductor device according to any one of the first to third aspects, wherein the semiconductor layer is amorphous.

請求項5に記載の発明は、前記半導体層のバンドギャップは、1eV乃至5eVであることを特徴とする請求項1乃至請求項4のいずれか1項に記載の薄膜半導体装置である。   A fifth aspect of the present invention is the thin film semiconductor device according to any one of the first to fourth aspects, wherein a band gap of the semiconductor layer is 1 eV to 5 eV.

請求項6に記載の発明は、前記半導体層の主キャリアは、電子で、キャリア濃度は300Kの熱平衡状態において1×10E16乃至1×10E21(m−3)、電界効果移動度は0.1乃至50(cm/Vs)であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の薄膜半導体装置である。 According to a sixth aspect of the present invention, the main carrier of the semiconductor layer is an electron, the carrier concentration is 1 × 10E 16 to 1 × 10E 21 (m −3 ) in a thermal equilibrium state of 300K, and the field effect mobility is 0.1. It is 1 thru | or 50 (cm < 2 > / Vs), It is a thin film semiconductor device of any one of Claim 1 thru | or 4 characterized by the above-mentioned.

請求項7に記載の発明は、前記半導体層が、液晶表示装置を駆動する回路を構成することを特徴とする請求項1乃至請求項6のいずれか1項に記載の薄膜半導体装置である。   The invention described in claim 7 is the thin film semiconductor device according to any one of claims 1 to 6, wherein the semiconductor layer constitutes a circuit for driving a liquid crystal display device.

請求項8に記載の発明は、前記ロール状フィルム基板と、
前記ロール状フィルム基板上に形成されたバリア層と、
前記バリア層上に形成された半導体層と、
前記半導体層の上下いずれかの面に接して形成された絶縁層と、
前記絶縁層に接して形成された金属層と、
を有し、
前記半導体層をチャネル、前記金属層をソース電極、ドレイン電極、およびゲート電極、前記絶縁層をゲート絶縁膜として用い、
前記半導体層は、非金属元素の窒素(N)、酸素(O)のうち少なくともひとつ、半金属元素のホウ素(B)、シリコン(Si)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)、テルル(Te)、ポロニウム(Po)のうち少なくともひとつ、および金属元素のアルミニウム(Al)、亜鉛(Zn)、ガリウム(Ga)、カドニウム(Cd)、インジウム(In)、錫(Sn)、水銀(Hg)、タリウム(Tl)、テルビウム(Pb)、ビスマス(Bi)のうち少なくともひとつを含み、
前記非金属元素が、少なくとも酸素(O)と窒素(N)の混合物で酸素(O)に対する窒素(N)の比(N数密度/O数密度)が0乃至2である前記半導体層をスパッタ装置により形成する薄膜半導体製造装置である。
The invention according to claim 8 is the roll film substrate,
A barrier layer formed on the roll film substrate;
A semiconductor layer formed on the barrier layer;
An insulating layer formed in contact with either upper or lower surface of the semiconductor layer;
A metal layer formed in contact with the insulating layer;
Have
Using the semiconductor layer as a channel, the metal layer as a source electrode, a drain electrode, and a gate electrode, and the insulating layer as a gate insulating film,
The semiconductor layer includes at least one of nonmetallic elements nitrogen (N) and oxygen (O), semimetallic elements boron (B), silicon (Si), germanium (Ge), arsenic (As), and antimony (Sb). ), Tellurium (Te), at least one of polonium (Po), and the metal elements aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), Including at least one of mercury (Hg), thallium (Tl), terbium (Pb), bismuth (Bi),
The non-metallic element is a mixture of at least oxygen (O) and nitrogen (N), and the ratio of nitrogen (N) to oxygen (O) (N number density / O number density) is 0 to 2 is sputtered. A thin film semiconductor manufacturing apparatus formed by the apparatus.

請求項9に記載の発明は、前記半金属元素が、少なくともシリコン(Si)とゲルマニウム(Ge)の混合物Si1−xGex(xはSiとGeの混合比でx=0乃至1が成り立つ)で、前記混合物(Si1−xGex)に対する窒素(N)の比(N数密度/Si1−xGex数密度)が1乃至2であることを特徴とする請求項8に記載の薄膜半導体製造装置である。   In the invention according to claim 9, the metalloid element is at least a mixture Si1-xGex of silicon (Si) and germanium (Ge) (x is a mixture ratio of Si and Ge, and x = 0 to 1 is established), 9. The thin film semiconductor manufacturing apparatus according to claim 8, wherein a ratio of nitrogen (N) to the mixture (Si 1-x Gex) (N number density / Si 1-x Gex number density) is 1 to 2. 9.

請求項10に記載の発明は、前記スパッタ装置は、
前記ロール状フィルム基板を装着するロール巻機構と、
前記ロール状フィルム基板を長尺方向に沿って一方の端部から送り出す送出機構と、
送り出された前記ロール状フィルム基板を巻き取る巻取機構と、
位置合わせパターンを有する前記ロール状フィルム基板に対し、前記ロール状フィルム基板の平面位置合わせを行う位置合わせ機構と、
前記ロール状フィルム基板の半導体形成面に対面する金属ターゲットと、
を有し、
前記全ての機構を内部に保持する真空チャンバを備えたことを特徴とする請求項8また請求項9に記載の薄膜半導体製造装置である。
The invention according to claim 10 is characterized in that the sputtering apparatus comprises:
A roll winding mechanism for mounting the roll film substrate;
A delivery mechanism for delivering the roll-shaped film substrate from one end along the longitudinal direction;
A winding mechanism for winding up the rolled film substrate that has been sent out;
An alignment mechanism that performs planar alignment of the roll-shaped film substrate with respect to the roll-shaped film substrate having the alignment pattern,
A metal target facing the semiconductor forming surface of the roll film substrate;
Have
10. The thin film semiconductor manufacturing apparatus according to claim 8, further comprising a vacuum chamber for holding all the mechanisms therein.

請求項11に記載の発明は、前記スパッタ装置は、
前記非金属元素を含む雰囲気ガスを真空チャンバ内に導入するガス導入機構と、
前記金属元素または前記半金属元素またはこれらの混合物を含む金属ターゲットと、を複数有し、
前記金属ターゲットが、前記ロール状フィルム基板の長尺に沿った直線状の位置に配列されていることを特徴とする請求項8または請求項9に記載の薄膜半導体製造装置である。
The invention according to claim 11 is characterized in that the sputtering apparatus comprises:
A gas introduction mechanism for introducing an atmospheric gas containing the nonmetallic element into a vacuum chamber;
A plurality of metal targets including the metal element or the metalloid element or a mixture thereof,
The thin film semiconductor manufacturing apparatus according to claim 8 or 9, wherein the metal targets are arranged at linear positions along the length of the roll film substrate.

請求項12に記載の発明は、前記スパッタ装置は、
前記非金属元素、前記金属元素、前記半金属元素それぞれ少なくともひとつを含む複数の元素を混ぜ合わせた混合物を、単一のターゲットとして用いたことを特徴とする請求項8乃至請求項11のいずれか1項に記載の薄膜半導体製造装置である。
The invention according to claim 12 is characterized in that the sputtering apparatus comprises:
The mixture of a plurality of elements each including at least one of the non-metallic element, the metallic element, and the metalloid element is used as a single target. 2. A thin-film semiconductor manufacturing apparatus according to item 1.

請求項13に記載の発明は、請求項8乃至請求項12のいずれか1項に記載の薄膜半導体製造装置を用い、
薄膜半導体装置を製造することを特徴とする薄膜半導体製造方法である。
Invention of Claim 13 uses the thin film semiconductor manufacturing apparatus of any one of Claim 8 thru | or 12,
A thin film semiconductor device manufacturing method characterized by manufacturing a thin film semiconductor device.

前記構成により、この発明は、以下のような効果を有する。   With the above configuration, the present invention has the following effects.

請求項1に記載の発明では、薄膜半導体装置の半導体層をチャネル、金属層をソース、ドレイン、およびゲート、絶縁層をゲート絶縁膜として用い、半導体層は、非金属元素の窒素(N)、酸素(O)のうち少なくともひとつ、半金属元素のホウ素(B)、シリコン(Si)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)、テルル(Te)、ポロニウム(Po)のうち少なくともひとつ、および金属元素のアルミニウム(Al)、亜鉛(Zn)、ガリウム(Ga)、カドニウム(Cd)、インジウム(In)、錫(Sn)、水銀(Hg)、タリウム(Tl)、テルビウム(Pb)、ビスマス(Bi)のうち少なくともひとつを含み、非金属元素が、少なくとも酸素(O)と窒素(N)の混合物で、酸素(O)に対する窒素(N)の比(N数密度/O数密度)が0乃至2であることで、半導体層への窒素(N)の導入により比較的高い電界効果移動度を実現できる。また、半導体層への窒素(N)の導入によりバンドギャップを広げることで、光、熱による特性変動を抑制することができる。また、半導体層への窒素(N)の導入により弾性定数(ヤング率)を増加させ、プラスチック基板やロール状フィルム基板上での構造的強度を向上させ、曲げ環境にも適用できる。また、半導体層は、スパッタリングの低温プロセスで形成可能であり、低プロセスコストを実現できる。   In the first aspect of the present invention, the semiconductor layer of the thin film semiconductor device is used as a channel, the metal layer is used as a source, drain, and gate, the insulating layer is used as a gate insulating film, and the semiconductor layer includes nitrogen (N) of a nonmetallic element, At least one of oxygen (O), boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te), polonium (Po) at least one of the metalloid elements One and the metal elements aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), mercury (Hg), thallium (Tl), terbium (Pb) , Including at least one of bismuth (Bi), and the nonmetallic element is a mixture of at least oxygen (O) and nitrogen (N), and nitrogen (N By the ratio (N number density / O number density) of from 0 to 2, it can be realized relatively high field-effect mobility by the introduction of nitrogen (N) into the semiconductor layer. Further, by widening the band gap by introducing nitrogen (N) into the semiconductor layer, characteristic fluctuation due to light and heat can be suppressed. Further, by introducing nitrogen (N) into the semiconductor layer, the elastic constant (Young's modulus) is increased, the structural strength on the plastic substrate or the roll-shaped film substrate is improved, and it can be applied to a bending environment. Further, the semiconductor layer can be formed by a low-temperature process of sputtering, and a low process cost can be realized.

請求項2に記載の発明では、半金属元素が、少なくともシリコン(Si)とゲルマニウム(Ge)の混合物Si1−xGex(xはSiとGeの混合比でx=0乃至1が成り立つ)で、前記混合物(Si1−xGex)に対する窒素(N)の比(N数密度/Si1−xGex数密度)が1乃至2であり、半金属元素のシリコン(Si)にゲルマニウム(Ge)を導入することによりバンドギャップを小さくすることができ、これと請求項1の窒素(N)の導入によるバンドギャップ増大とを組み合わせて、自在にバンドギャップを制御でき、また電界効果移動度を増大させることができる。   In the invention according to claim 2, the metalloid element is at least a mixture Si1-xGex of silicon (Si) and germanium (Ge) (where x is a mixture ratio of Si and Ge, x = 0 to 1), and The ratio of nitrogen (N) to the mixture (Si1-xGex) (N number density / Si1-xGex number density) is 1 to 2, and a band is formed by introducing germanium (Ge) into the metalloid silicon (Si). The gap can be reduced, and this can be combined with the band gap increase by introducing nitrogen (N) in claim 1 to freely control the band gap and to increase the field effect mobility.

請求項3に記載の発明では、プラスチック基板が、少なくともロール状フィルム基板であり、製造時にロール状態から送り出しロール状態に巻き取り、低プロセスコストを実現し、低価格のディスプレイを提供することができる。   In the invention according to claim 3, the plastic substrate is at least a roll-shaped film substrate, and is wound from the roll state to the feed roll state at the time of manufacture, realizing a low process cost and providing a low-cost display. .

請求項4に記載の発明では、半導体層は、アモルファスであり、粒界がないことで、特性の均一性を増加させ、かつプラスチック基板やロール状フィルム基板上に形成された場合の曲げ強度を向上させることができる。   In the invention of claim 4, the semiconductor layer is amorphous and has no grain boundary, thereby increasing the uniformity of characteristics and the bending strength when formed on a plastic substrate or a roll film substrate. Can be improved.

請求項5に記載の発明では、半導体層のバンドギャップは、半導体層への窒素(N)の導入により広げることができるが、1eV乃至5eVであることで、可視から近紫外領域の外光入射による特性変動を抑制することができる。   In the invention described in claim 5, the band gap of the semiconductor layer can be widened by introducing nitrogen (N) into the semiconductor layer. However, by being 1 eV to 5 eV, external light incidence in the visible to near-ultraviolet region is achieved. Variations in characteristics due to

請求項6に記載の発明では、半導体層の主キャリアは、電子で、キャリア濃度は300Kの熱平衡状態において1×10E16乃至1×10E21(m−3)、電界効果移動度は0.1乃至50(cm/Vs)であり、より高い電界効果移動度が得られることで、高精細の動画まで対応できる。 In the invention according to claim 6, the main carrier of the semiconductor layer is an electron, the carrier concentration is 1 × 10E16 to 1 × 10E21 (m −3 ) in a thermal equilibrium state of 300 K, and the field effect mobility is 0.1 to 50. (Cm 2 / Vs), and higher field-effect mobility can be obtained, so that even high-definition movies can be handled.

請求項7に記載の発明では、半導体層が、液晶表示装置を駆動する回路を構成し、
アクティブマトリクス型液晶表示装置に対応できる。
In the invention according to claim 7, the semiconductor layer constitutes a circuit for driving the liquid crystal display device,
Compatible with active matrix liquid crystal display devices.

請求項8に記載の発明では、半導体層をスパッタ方式により形成することで、低温プロセスで形成可能であり、低プロセスコストを実現し、また比較的高い移動度を実現でき、かつ光、熱に対して安定な特性を有する薄膜半導体装置を製造することができる。   In the invention according to claim 8, by forming the semiconductor layer by a sputtering method, it can be formed by a low temperature process, a low process cost can be realized, a relatively high mobility can be realized, and light and heat can be realized. In contrast, a thin film semiconductor device having stable characteristics can be manufactured.

請求項9に記載の発明では、自在にバンドギャップを制御でき、また電界効果移動度を増大させることができる薄膜半導体製造装置を製造することができる。   According to the ninth aspect of the present invention, it is possible to manufacture a thin film semiconductor manufacturing apparatus capable of freely controlling the band gap and increasing the field effect mobility.

請求項10に記載の発明では、スパッタ装置は、全ての機構を内部に保持する真空チャンバを備え、製造時にロール状態から送り出しロール状態に巻き取るロールツーロール法を用いて低プロセスコストを実現することができる。   In a tenth aspect of the present invention, the sputtering apparatus includes a vacuum chamber that holds all the mechanisms therein, and realizes a low process cost by using a roll-to-roll method of winding from a roll state to a feed roll state during manufacturing. be able to.

請求項11に記載の発明では、スパッタ装置は、非金属元素を含む雰囲気ガスを真空チャンバ内に導入し、金属元素または半金属元素またはこれらの混合物を含む金属ターゲットを複数有し、金属ターゲットが、ロール状フィルム基板の長尺に沿った直線状の位置に配列され、ロール状フィルム基板内に均一な性質の半導体層を形成できる。   In the invention according to claim 11, the sputtering apparatus introduces an atmospheric gas containing a nonmetallic element into the vacuum chamber, and has a plurality of metal targets containing a metal element, a metalloid element, or a mixture thereof. A semiconductor layer having a uniform property can be formed in the roll film substrate by being arranged at linear positions along the length of the roll film substrate.

請求項12に記載の発明では、スパッタ装置は、非金属元素、金属元素、半金属元素それぞれ少なくともひとつを含む複数の元素を混ぜ合わせた混合物を、単一のターゲットとして用い、半導体層の性質をさらに均一にするとともにスパッタプロセスコストを低減できる。   In the invention described in claim 12, the sputtering apparatus uses a mixture obtained by mixing a plurality of elements including at least one of a nonmetallic element, a metallic element, and a semimetallic element as a single target, and the properties of the semiconductor layer are adjusted. Furthermore, the sputtering process cost can be reduced while making it uniform.

請求項13に記載の発明では、請求項8乃至請求項12のいずれか1項に記載の薄膜半導体製造装置を用い、薄膜半導体装置を製造する。   In a thirteenth aspect of the present invention, a thin film semiconductor device is manufactured using the thin film semiconductor manufacturing apparatus according to any one of the eighth to twelfth aspects.

薄膜半導体装置の構成を説明する断面図である。It is sectional drawing explaining the structure of a thin film semiconductor device. ロール状フィルム基板上に形成された薄膜半導体装置を示す図である。It is a figure which shows the thin film semiconductor device formed on the roll-shaped film board | substrate. 薄膜半導体製造装置の概略構成図である。It is a schematic block diagram of a thin film semiconductor manufacturing apparatus. ロール状フィルム基板の平面図である。It is a top view of a roll-shaped film substrate. スパッタ装置の概略構成図である。It is a schematic block diagram of a sputtering device.

以下、この発明の薄膜半導体装置、薄膜半導体製造装置及び薄膜半導体製造方法の実施の形態について説明する。この実施の形態は好ましい形態を示すものであるが、この発明はこれに限定されない。   Hereinafter, embodiments of the thin film semiconductor device, the thin film semiconductor manufacturing apparatus, and the thin film semiconductor manufacturing method of the present invention will be described. Although this embodiment shows a preferred embodiment, the present invention is not limited to this.

[薄膜半導体装置]
まず、この発明の薄膜半導体装置について説明する。図1は薄膜半導体装置の構成を説明する断面図である。
[Thin film semiconductor device]
First, the thin film semiconductor device of the present invention will be described. FIG. 1 is a cross-sectional view illustrating the structure of a thin film semiconductor device.

この実施の形態の薄膜半導体装置1は、プラスチック基板2を有し、このプラスチック基板2の両面にバリア層3,4が形成されている。プラスチック基板2上に形成されたバリア層3の上面には、接着層5を介してガラス基板6が設けられ、このガラス基板6の上面に半導体層7が形成されている。ガラス基板6は、半導体層7を形成するための土台として、ある程度の厚さ(0.5mm程度)を持っていた元状態から、半導体層7形成後にエッチングなどの処理で削って薄型化(0.1mm以下)したものであり、接着層5を介してプラスチック基板2と半導体層7が接合された後は不要となる。このため、場合によりガラス基板6を完全にエッチング除去しても良い。   The thin film semiconductor device 1 of this embodiment has a plastic substrate 2, and barrier layers 3 and 4 are formed on both surfaces of the plastic substrate 2. A glass substrate 6 is provided on the upper surface of the barrier layer 3 formed on the plastic substrate 2 via an adhesive layer 5, and a semiconductor layer 7 is formed on the upper surface of the glass substrate 6. The glass substrate 6 is thinned from the original state having a certain thickness (about 0.5 mm) as a base for forming the semiconductor layer 7 by a process such as etching after the formation of the semiconductor layer 7 (0 .1 mm or less) and becomes unnecessary after the plastic substrate 2 and the semiconductor layer 7 are bonded via the adhesive layer 5. Therefore, in some cases, the glass substrate 6 may be completely removed by etching.

このようにして半導体層7がバリア層3上に形成され、この半導体層7の下面がガラス基板6の上面に形成した絶縁層8aと接して形成され、上面が層間絶縁膜8bと接して形成されている。絶縁層8a下面に接して金属層9cが形成されている。また、半導体層7上面に接して金属層9a、9bが形成されている。半導体層7をチャネル、金属層9aをソース電極、金属層9bをドレイン電極、および金属層9cをゲート電極、絶縁層8aをゲート絶縁膜として用いている。図1では上から、金属層9aおよび9b、半導体層7、絶縁層8a、金属層9cの順となっている(ボトムゲート構造)が、場合により上下を逆にして、上から金属層9c、絶縁層8a、半導体層7、金属層9aおよび9b(トップゲート構造)としても良いことは言うまでもない。   In this way, the semiconductor layer 7 is formed on the barrier layer 3, the lower surface of the semiconductor layer 7 is formed in contact with the insulating layer 8a formed on the upper surface of the glass substrate 6, and the upper surface is formed in contact with the interlayer insulating film 8b. Has been. A metal layer 9c is formed in contact with the lower surface of the insulating layer 8a. Metal layers 9 a and 9 b are formed in contact with the upper surface of the semiconductor layer 7. The semiconductor layer 7 is used as a channel, the metal layer 9a as a source electrode, the metal layer 9b as a drain electrode, the metal layer 9c as a gate electrode, and the insulating layer 8a as a gate insulating film. In FIG. 1, the metal layers 9a and 9b, the semiconductor layer 7, the insulating layer 8a, and the metal layer 9c are arranged in this order from the top (bottom gate structure). Needless to say, the insulating layer 8a, the semiconductor layer 7, and the metal layers 9a and 9b (top gate structure) may be used.

半導体層7は、非金属元素の窒素(N)、酸素(O)のうち少なくともひとつ、半金属元素のホウ素(B)、シリコン(Si)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)、テルル(Te)、ポロニウム(Po)のうち少なくともひとつ、および金属元素のアルミニウム(Al)、亜鉛(Zn)、ガリウム(Ga)、カドニウム(Cd)、インジウム(In)、錫(Sn)、水銀(Hg)、タリウム(Tl)、テルビウム(Pb)、ビスマス(Bi)のうち少なくともひとつを含み、非金属元素が、少なくとも酸素(O)と窒素(N)の混合物で酸素(O)に対する窒素(N)の比(N数密度/O数密度)が0乃至2である。   The semiconductor layer 7 includes at least one of non-metallic elements nitrogen (N) and oxygen (O), semi-metallic elements boron (B), silicon (Si), germanium (Ge), arsenic (As), and antimony (Sb). ), Tellurium (Te), at least one of polonium (Po), and the metal elements aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), It contains at least one of mercury (Hg), thallium (Tl), terbium (Pb), and bismuth (Bi), and the nonmetallic element is a mixture of at least oxygen (O) and nitrogen (N) and nitrogen relative to oxygen (O) The ratio of (N) (N number density / O number density) is 0 to 2.

半導体層7は、金属原料(In, SnO)と絶縁体原料(Si)の組み合わせから作製する。金属原料は窒化物を用いようとしてもそれ自体が初めから絶縁体なので、他の絶縁体原料といくら混ぜても半導体は形成できない。このため、金属原料はそれ自体が金属である酸化物を用いる。これに対し、絶縁体原料に窒化物を用いると、両者を混ぜて作製される半導体は酸素(O)と窒素(N)の両方を含む酸窒化物の混合物となる。混合の様子を次の式で表す。正負の価数が釣り合う条件で混合比x、yを決めることができる。
The semiconductor layer 7 is produced from a combination of a metal raw material (In 2 O 3 , SnO 2 ) and an insulator raw material (Si 3 N 4 ). Even if nitride is used as the metal raw material, it is an insulator itself from the beginning, so that no semiconductor can be formed no matter how much it mixes with other insulator raw materials. For this reason, the metal raw material uses the oxide which is a metal itself. On the other hand, when nitride is used as the insulator raw material, a semiconductor produced by mixing both becomes an oxynitride mixture containing both oxygen (O) and nitrogen (N). The state of mixing is expressed by the following formula. The mixing ratios x and y can be determined under conditions where the positive and negative valences are balanced.

主たる金属原料Inの混合比x、絶縁体材料Siの混合比yとすると、価数釣り合いから、従たる金属原料SnOの混合比は6−xとなる。金属原料と絶縁体原料の比x:yは、原料それぞれのバンドギャップと、混合後に形成される半導体のバンドギャップによって決まり、例えばxの範囲としてはx=0〜6(典型値5)、yの範囲としてはy=0〜6(典型値3)が望ましい。
従って、O:Nの数量比は、
O=12〜18 (典型値17)
N=0〜24(典型値12)となる。
従って、O:N=1:0〜2
酸素1に対する窒素の数密度比、すなわち酸素(O)に対する窒素(N)の比(N数密度/O数密度)は0乃至2である。
If the mixing ratio x of the main metal raw material In 2 O 3 and the mixing ratio y of the insulator material Si 3 N 4 are set, the mixing ratio of the subordinate metal raw material SnO 2 is 6-x from the valence balance. The ratio x: y of the metal raw material to the insulator raw material is determined by the band gap of each raw material and the band gap of the semiconductor formed after mixing. For example, the range of x is x = 0-6 (typical value 5), y Is preferably y = 0 to 6 (typical value 3).
Therefore, the quantity ratio of O: N is
O = 12-18 (typical value 17)
N = 0 to 24 (typical value 12).
Therefore, O: N = 1: 0 to 2
The number density ratio of nitrogen to oxygen 1, that is, the ratio of nitrogen (N) to oxygen (O) (N number density / O number density) is 0 to 2.

また、半金属元素が、少なくともシリコン(Si)とゲルマニウム(Ge)の混合物Si1−xGex(xはSiとGeの混合比でx=0乃至1が成り立つ)で、混合物(Si1−xGex)に対する窒素(N)の比(N数密度/Si1−xGex数密度)が1乃至2である。
Si:Geの組成比は、
Si、Ge間の組成変化は前記バランスに影響しないので、
Siに対するGeの組成比は、Si1−xGexにおいてx=0〜1である。
Further, the metalloid element is at least a mixture Si1-xGex of silicon (Si) and germanium (Ge) (x is a mixture ratio of Si and Ge, where x = 0 to 1), and nitrogen with respect to the mixture (Si1-xGex) The ratio (N) (N number density / Si1-xGex number density) is 1 to 2.
The composition ratio of Si: Ge is
Since the composition change between Si and Ge does not affect the balance,
The composition ratio of Ge to Si is x = 0 to 1 in Si1-xGex.

SiGeに対する窒素の数量比は、
(Si1−xGex)3yに対しN4yより常に1:1.33である。
The quantity ratio of nitrogen to SiGe is
(Si1-xGex) 3y is always 1: 1.33 than N4y.

この実施の形態では、半導体層7は、非金属元素の窒素(N)、酸素(O)のうち少なくともひとつ、半金属元素のホウ素(B)、シリコン(Si)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)、テルル(Te)、ポロニウム(Po)のうち少なくともひとつ、および金属元素のアルミニウム(Al)、亜鉛(Zn)、ガリウム(Ga)、カドニウム(Cd)、インジウム(In)、錫(Sn)、水銀(Hg)、タリウム(Tl)、テルビウム(Pb)、ビスマス(Bi)のうち少なくともひとつを含むことで、安価で容易に得ることができる半金属元素、金属元素を用いている。   In this embodiment, the semiconductor layer 7 includes at least one of non-metallic elements nitrogen (N) and oxygen (O), semi-metallic elements boron (B), silicon (Si), germanium (Ge), arsenic ( As), antimony (Sb), tellurium (Te), polonium (Po), and the metal elements aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In) Including at least one of tin (Sn), mercury (Hg), thallium (Tl), terbium (Pb), and bismuth (Bi), a metalloid element that can be easily obtained at low cost is used. ing.

上述の半金属元素、金属元素は、いずれもそれぞれの単体で半金属、金属として振る舞うものである。元素にはこの他にもアルカリ金属、遷移元素などがあり、それらの混合物まで考えると候補は無数に考えられるが、単体でわかりやすい性質を持つこと、入手しやすさ、原料費、プロセス取り扱いなどに優れている点を考慮すると、候補原料は事実上これらに限定される。   Each of the above-mentioned metalloid elements and metal elements behaves as a metalloid and a metal by themselves. In addition to these elements, there are alkali metals, transition elements, etc., and even a mixture of them can be considered innumerable candidates, but they have easy-to-understand properties, availability, raw material costs, process handling, etc. Considering the superiority, the candidate raw materials are practically limited to these.

また、室温でのスパッタプロセスで形成できる酸化物半導体をベースし、これに酸素(O)のみでなく窒素(N)を組み合わせた酸窒化物半導体とする。   In addition, an oxide semiconductor that can be formed by a sputtering process at room temperature is used as an oxynitride semiconductor in which not only oxygen (O) but also nitrogen (N) is combined.

非金属元素が、少なくとも酸素(O)と窒素(N)の混合物で、酸素(O)に対する窒素(N)の比(N数密度/O数密度)が0乃至2であることで、半導体層7への窒素(N)の導入により比較的高い電界効果移動度を実現できる。また、半導体層7への窒素(N)の導入によりバンドギャップを広げることで、光、熱による特性変動を抑制することができる。また、半導体層7への窒素(N)の導入により弾性定数(ヤング率)を増加させ、プラスチック基板やロール状フィルム基板上での構造的強度を向上させ、低温プロセスで形成可能であり、低プロセスコストを実現できる。   The non-metallic element is a mixture of at least oxygen (O) and nitrogen (N), and the ratio of nitrogen (N) to oxygen (O) (N number density / O number density) is 0 to 2, whereby the semiconductor layer By introducing nitrogen (N) into 7, a relatively high field effect mobility can be realized. Further, by widening the band gap by introducing nitrogen (N) into the semiconductor layer 7, it is possible to suppress fluctuations in characteristics due to light and heat. In addition, the introduction of nitrogen (N) into the semiconductor layer 7 increases the elastic constant (Young's modulus), improves the structural strength on the plastic substrate and the roll film substrate, and can be formed by a low-temperature process. Process costs can be realized.

酸素(O)に対する窒素(N)の比(N数密度/O数密度)が0乃至2の範囲となるのは、上記「酸素(O)に対する窒素(N)の比(N数密度/O数密度)は0乃至2」について述べたように、バンドギャップと価数釣り合いから決まる。仮にこの値が0(窒素が全く存在しない)となった場合、酸素の量によっては、半導体のバンドギャップが小さすぎて金属的となり、薄膜半導体装置1が常時オン状態となってしまう。逆にこの値が2を超える(酸素不足、窒素過剰)場合、半導体のバンドギャップが大きすぎて絶縁体的となり、薄膜半導体装置1が常時オフ状態となってしまう。いずれの場合もTFT特性として問題が起きる。   The ratio of nitrogen (N) to oxygen (O) (N number density / O number density) is in the range of 0 to 2 because the ratio of nitrogen (N) to oxygen (O) (N number density / O The number density is determined from the band gap and the valence balance, as described for “0 to 2”. If this value is 0 (no nitrogen is present), depending on the amount of oxygen, the band gap of the semiconductor is too small and metallic, and the thin film semiconductor device 1 is always on. Conversely, when this value exceeds 2 (oxygen deficiency, nitrogen excess), the band gap of the semiconductor becomes too large and becomes insulating, and the thin film semiconductor device 1 is always turned off. In either case, problems occur as TFT characteristics.

また、半金属元素が、少なくともシリコン(Si)とゲルマニウム(Ge)の混合物Si1−xGex(xはSiとGeの混合比でx=0乃至1が成り立つ)で、混合物(Si1−xGex)に対する窒素(N)の比(N数密度/Si1−xGex数密度)が1乃至2であり、半金属元素のシリコン(Si)にゲルマニウム(Ge)を導入することによりバンドギャップを小さくすることができ、これと窒素(N)の導入によるバンドギャップ増大とを組み合わせて、自在にバンドギャップを制御でき、また電界効果移動度を増大させることができる。   Further, the metalloid element is at least a mixture Si1-xGex of silicon (Si) and germanium (Ge) (x is a mixture ratio of Si and Ge, where x = 0 to 1), and nitrogen with respect to the mixture (Si1-xGex) The ratio of (N) (N number density / Si1-xGex number density) is 1 to 2, and the band gap can be reduced by introducing germanium (Ge) into the metalloid silicon (Si), By combining this with the band gap increase by introducing nitrogen (N), the band gap can be freely controlled and the field effect mobility can be increased.

混合物(Si1−xGex)に対する窒素(N)の比(N数密度/Si1−xGex数密度)が1乃至2であることは、上記「混合の様子を表す式」から導かれる。すなわちSiの混合比が3yの時、Nの混合比は4yであるため、その比は1.33となり1乃至2の範囲に収まる。ところが半導体形成過程ではスパッタ工程中のガス流量、密度などにより窒素の過不足が発生し、1.33を中心としたある範囲のばらつきが起こる。多少のばらつきの範囲であれば薄膜半導体装置として動作に問題が起こらないが、この値が1未満の極端な窒素不足あるいは2以上の極端な窒素過剰の場合には半導体が形成されず、それぞれ金属、絶縁体となってしまうため相応しくない。 The fact that the ratio of nitrogen (N) to the mixture (Si1-xGex) (N number density / Si1-xGex number density) is 1 to 2 is derived from the above-described “expression representing the state of mixing”. That is, when the mixing ratio of Si is 3y, the mixing ratio of N is 4y, so that the ratio is 1.33 and falls within the range of 1 to 2. However, in the semiconductor formation process, nitrogen deficiency occurs due to gas flow rate, density, etc. during the sputtering process, resulting in a certain range of variation centered on 1.33. If it is in the range of some variation, there will be no problem in operation as a thin film semiconductor device. However, if this value is extremely short of nitrogen less than 1 or excessively more than 2 nitrogen, a semiconductor is not formed and each metal Because it becomes an insulator, it is not suitable.

半導体層7のバンドギャップは、半導体層7への窒素(N)の導入により広げることができるが、バンドギャップが、1eV乃至5eVであることで、可視から近紫外領域の外光入射による特性変動を抑制することができる。   The band gap of the semiconductor layer 7 can be widened by introducing nitrogen (N) into the semiconductor layer 7. However, when the band gap is 1 eV to 5 eV, characteristic variation due to external light incidence in the visible to near-ultraviolet region. Can be suppressed.

バンドギャップが1eV以下の場合、価電子帯のキャリアが小さなエネルギーで容易に伝導帯に励起されるため、TFTのオフ電流が増加して消費電力が増し、極端な場合は常時オン状態となりスイッチングすらできなくなってしまう。この小さなエネルギー源には光のみでなく熱もなり得るため、温度に対してもTFT動作が不安定になる。一方、バンドギャップが5eV以上になると、価電子帯のキャリアが大きなエネルギーによっても伝導帯に励起されなくなるため、TFTのオン電流が減少して移動度を確保できなくなり、極端な場合は常時オフ状態となりスイッチングできなくなってしまう。このような場合は、元々特性の良い酸窒化物半導体を使うメリットがなくなる。   When the band gap is 1 eV or less, the carriers in the valence band are easily excited to the conduction band with a small energy, so that the off-current of the TFT increases and the power consumption increases. It becomes impossible. Since this small energy source can be not only light but also heat, the TFT operation becomes unstable with respect to temperature. On the other hand, when the band gap is 5 eV or more, carriers in the valence band are not excited to the conduction band even by large energy, so that the on-current of the TFT is reduced and the mobility cannot be secured. It becomes impossible to switch. In such a case, the merit of using an oxynitride semiconductor with originally good characteristics is lost.

また、半導体層7の主キャリアは、電子で、キャリア濃度は300Kの熱平衡状態において1×10E16乃至1×10E21(m−3)、電界効果移動度は0.1乃至50(cm/Vs)であり、高精細の動画まで対応できる。 The main carrier of the semiconductor layer 7 is an electron, the carrier concentration is 1 × 10E 16 to 1 × 10E 21 (m −3 ) in a thermal equilibrium state of 300 K, and the field effect mobility is 0.1 to 50 (cm 2 / Vs), and can handle high-definition movies.

電界効果移動度が0.1未満の場合、アモルファスシリコン程度以下となってしまうので、この実施の形態の酸窒化物半導体を用いる利点がなくなってしまう。また、電界効果移動度上限50は、この実施の形態の酸窒化物半導体が最適な条件で形成された場合の性能限界に相当する。   When the field effect mobility is less than 0.1, it becomes less than or equal to amorphous silicon, so the advantage of using the oxynitride semiconductor of this embodiment is lost. The field-effect mobility upper limit 50 corresponds to a performance limit when the oxynitride semiconductor of this embodiment is formed under optimum conditions.

この実施の形態の薄膜半導体装置1は、ディスプレイを駆動する回路に用いられ、薄膜半導体装置1の半導体層7が、液晶表示装置を駆動する回路を構成し、アクティブマトリクス型液晶表示装置に対応でき、さらにアクティブマトリックス型有機EL表示装置などに対応できる。   The thin film semiconductor device 1 of this embodiment is used in a circuit for driving a display, and the semiconductor layer 7 of the thin film semiconductor device 1 constitutes a circuit for driving a liquid crystal display device, and can be applied to an active matrix liquid crystal display device. Furthermore, it can correspond to an active matrix type organic EL display device.

図2はロール状フィルム基板上に形成された薄膜半導体装置を示す図である。   FIG. 2 is a view showing a thin film semiconductor device formed on a roll film substrate.

ロール状フィルム基板P上には、所定位置にディスプレイパネルDが複数個形成され、この実施の形態ではディスプレイパネルDが4個ずつ所定間隔で長尺方向に沿って形成されている。このディスプレイパネルDは、拡大して示すように、画素Gと、ゲート線L1と、データ線L2と、薄膜半導体装置1を有している。   A plurality of display panels D are formed at predetermined positions on the roll-shaped film substrate P. In this embodiment, four display panels D are formed at predetermined intervals along the longitudinal direction. The display panel D includes a pixel G, a gate line L1, a data line L2, and a thin film semiconductor device 1 as shown in an enlarged manner.

図1のプラスチック基板2は、少なくともロール状フィルム基板Pとし、ガラス基板6もフィルム基板とすることで、製造時にロール状態から送り出しロール状態に巻き取るロールツーロール法を用いて低プロセスコストを実現し、曲げ環境にも適用できるフレキシブルディスプレイを製造することができる。   The plastic substrate 2 in FIG. 1 is at least a roll-shaped film substrate P, and the glass substrate 6 is also a film substrate, so that a low process cost is realized by using a roll-to-roll method of winding from a roll state to a roll state at the time of manufacture. In addition, a flexible display that can be applied to a bending environment can be manufactured.

また、半導体層7は、アモルファスであり、粒界がないことで、特性の均一性を増加させ、かつプラスチック基板やロール状フィルム基板上に形成された場合の曲げ強度を向上させることができる。   Moreover, since the semiconductor layer 7 is amorphous and has no grain boundary, the uniformity of characteristics can be increased, and the bending strength when formed on a plastic substrate or a roll film substrate can be improved.

[薄膜半導体製造装置及び薄膜半導体製造方法]
次に、薄膜半導体製造装置及び薄膜半導体製造方法について説明する。図3は薄膜半導体製造装置の概略構成図、図4はロール状フィルム基板の平面図、図5はスパッタ装置の概略構成図である。
[Thin Film Semiconductor Manufacturing Apparatus and Thin Film Semiconductor Manufacturing Method]
Next, a thin film semiconductor manufacturing apparatus and a thin film semiconductor manufacturing method will be described. 3 is a schematic configuration diagram of a thin film semiconductor manufacturing apparatus, FIG. 4 is a plan view of a roll-shaped film substrate, and FIG. 5 is a schematic configuration diagram of a sputtering apparatus.

図3において、薄膜半導体製造装置100は、図1の薄膜半導体装置1を製造するから薄膜半導体装置1の説明は同じ符号を付して省略する。ロール状フィルム基板Pは、図1のプラスチック基板2の両面にバリア層3,4が形成されている。   In FIG. 3, since the thin film semiconductor manufacturing apparatus 100 manufactures the thin film semiconductor device 1 in FIG. In the roll film substrate P, barrier layers 3 and 4 are formed on both surfaces of the plastic substrate 2 of FIG.

この薄膜半導体製造装置100は、ロール巻機構110a,110bと、送出機構111と、巻取機構112と、位置合わせ機構113とを有し、ロール巻機構110aからロール状フィルム基板Pを送出機構111によって送り出し、位置合わせ機構113によって位置決めして送り出されたロール状フィルム基板P上に薄膜半導体装置1を製造して巻取機構112に巻き取り、ロール巻機構110bに装着する。   The thin film semiconductor manufacturing apparatus 100 includes roll winding mechanisms 110a and 110b, a sending mechanism 111, a winding mechanism 112, and an alignment mechanism 113, and the roll-shaped film substrate P is sent from the roll winding mechanism 110a. The thin film semiconductor device 1 is manufactured on the roll-shaped film substrate P sent out by the positioning mechanism 113 and sent out by the positioning mechanism 113, wound up by the winding mechanism 112, and mounted on the roll winding mechanism 110b.

このロール状フィルム基板Pの送り出しは、位置合わせ機構113によって、図4に示すように、ロール状フィルム基板Pに形成された位置合わせパターンAを検出し、送出機構111を制御して所定位置で停止するように位置合わせを行う。   As shown in FIG. 4, the roll-shaped film substrate P is sent out by detecting the alignment pattern A formed on the roll-shaped film substrate P and controlling the feed mechanism 111 at a predetermined position as shown in FIG. Align so that it stops.

このロール状フィルム基板Pが搬送される直線状の位置に沿って、シート状基板貼合装置120と、ゲート電極形成装置130と、絶縁層形成装置140と、半導体層形成装置150と、ソース・ドレイン電極形成装置160と、層間接縁膜形成装置170が順に配置されている。   Along the linear position where the roll-shaped film substrate P is conveyed, the sheet-like substrate bonding apparatus 120, the gate electrode forming apparatus 130, the insulating layer forming apparatus 140, the semiconductor layer forming apparatus 150, A drain electrode forming device 160 and a layer indirect edge film forming device 170 are arranged in this order.

シート状基板貼合装置120では、プラスチック基板2上に形成されたバリア層3の上面には、接着層5を介してガラス基板に代えてシート状プラスチック基板60を貼り付ける。   In the sheet-like substrate bonding apparatus 120, a sheet-like plastic substrate 60 is attached to the upper surface of the barrier layer 3 formed on the plastic substrate 2 in place of the glass substrate via the adhesive layer 5.

ゲート電極形成装置130では、プラスチック基板60の上に金属層9cのゲート電極をメッキやスパッタリングなどで形成し、絶縁層形成装置140では、絶縁層8aを転写などで形成し、半導体層形成装置150では、スパッタ装置により絶縁層8aの上に半導体層7を形成し、ソース・ドレイン電極形成装置160では、金属層9aのソース電極と、金属層9bのドレイン電極をメッキやスパッタリングなどによって形成し、さらに層間接縁膜形成装置170では、層間接縁膜8bを転写などによって形成し、図1の薄膜半導体装置1を製造する。   In the gate electrode forming apparatus 130, the gate electrode of the metal layer 9c is formed on the plastic substrate 60 by plating or sputtering, and in the insulating layer forming apparatus 140, the insulating layer 8a is formed by transfer or the like, and the semiconductor layer forming apparatus 150 is formed. Then, the semiconductor layer 7 is formed on the insulating layer 8a by a sputtering apparatus, and the source / drain electrode forming apparatus 160 forms the source electrode of the metal layer 9a and the drain electrode of the metal layer 9b by plating or sputtering, Furthermore, in the layer indirect edge film forming apparatus 170, the layer indirect edge film 8b is formed by transfer or the like, and the thin film semiconductor device 1 in FIG. 1 is manufactured.

この薄膜半導体製造装置100によって薄膜半導体製造方法が実施され、半導体層形成装置150では、スパッタ装置150aが真空チャンバ150a1の内部に金属ターゲット150a2を保持し、非金属元素を含む雰囲気ガスを真空チャンバ150a1内に導入する用に構成され、金属ターゲット150a2に高電圧をかけるとその表面の原子がはじき飛ばされ、真空チャンバ150a1内に導入された非金属元素を含む雰囲気ガスと、はじき飛ばされた金属と反応させることによって、ロール状フィルム基板Pに半導体層7を製膜する。   A thin film semiconductor manufacturing method is implemented by the thin film semiconductor manufacturing apparatus 100. In the semiconductor layer forming apparatus 150, the sputtering apparatus 150a holds the metal target 150a2 inside the vacuum chamber 150a1, and the atmosphere gas containing a nonmetallic element is supplied to the vacuum chamber 150a1. When a high voltage is applied to the metal target 150a2, atoms on its surface are repelled, and an atmosphere gas containing a nonmetallic element introduced into the vacuum chamber 150a1 is reacted with the repelled metal. Thus, the semiconductor layer 7 is formed on the roll film substrate P.

この実施の形態のスパッタ装置は、図5に示すように構成することができ、このスパッタ装置21は、ロール巻機構22a,22bと、送出機構23と、巻取機構24と、位置合わせ機構25と、金属ターゲット26a,26bと、を有し、これらの全ての機構を内部に保持する真空チャンバ27を備えている。この真空チャンバ27は、ロール巻機構22a,22b側に開閉扉27a,27bを有し、開閉扉27aを開閉してロール状フィルム基板Pをセットし、開閉扉27bを開閉して半導体層7が設けられたロール状フィルム基板Pを取り出す。   The sputtering apparatus of this embodiment can be configured as shown in FIG. 5, and this sputtering apparatus 21 includes roll winding mechanisms 22 a and 22 b, a feeding mechanism 23, a winding mechanism 24, and an alignment mechanism 25. And a metal target 26a, 26b, and a vacuum chamber 27 that holds all these mechanisms inside. This vacuum chamber 27 has opening / closing doors 27a, 27b on the roll winding mechanisms 22a, 22b side, opens / closes the opening / closing door 27a, sets the roll-shaped film substrate P, opens / closes the opening / closing door 27b, and the semiconductor layer 7 is opened. The provided roll-shaped film substrate P is taken out.

ロール状フィルム基板Pは、図1のプラスチック基板2の両面にバリア層3,4が形成され、プラスチック基板2上に形成されたバリア層3の上面には、接着層5を介してガラス基板に代えてシート状プラスチック基板60を設けてロール状にした構成であり、図4に示すように、位置合わせパターンAを有する。   The roll-shaped film substrate P has barrier layers 3 and 4 formed on both surfaces of the plastic substrate 2 in FIG. 1, and the upper surface of the barrier layer 3 formed on the plastic substrate 2 is attached to the glass substrate via the adhesive layer 5. Instead, a sheet-like plastic substrate 60 is provided to form a roll, and has an alignment pattern A as shown in FIG.

ロール巻機構22aは、回転軸22a1にロール状フィルム基板Pを装着し、回転軸22a1はロール状フィルム基板Pの送り出しによって回転し、ロール巻機構22bは、回転軸22b1にロール状フィルム基板Pを装着し、回転軸22b1はロール状フィルム基板Pの巻き取りによって回転する。   The roll winding mechanism 22a mounts the roll-shaped film substrate P on the rotation shaft 22a1, the rotation shaft 22a1 rotates by feeding the roll-shaped film substrate P, and the roll winding mechanism 22b causes the roll-shaped film substrate P to rotate on the rotation shaft 22b1. The rotating shaft 22b1 is rotated by winding the roll-shaped film substrate P.

送出機構23は、一対の送出ローラ23aを有し、この一対の送出ローラ23aの回転によってロール状フィルム基板Pを長尺方向に沿って一方の端部から送り出す。   The delivery mechanism 23 has a pair of delivery rollers 23a, and feeds the roll-shaped film substrate P from one end along the longitudinal direction by the rotation of the pair of delivery rollers 23a.

巻取機構24は、一対の巻取ローラ24bを有し、この一対の巻取ローラ24bの回転によってロール状フィルム基板Pを長尺方向に沿って一方の端部から巻き取る。   The winding mechanism 24 has a pair of winding rollers 24b, and winds the roll-shaped film substrate P from one end along the longitudinal direction by the rotation of the pair of winding rollers 24b.

位置合わせ機構25は、検出センサ25a、制御装置25b、ローラ駆動装置25cを有し、検出センサ25aによってロール状フィルム基板Pの位置合わせパターンAを検出し、この検出情報を制御装置25bに送り、制御装置25bはローラ駆動装置25cを介して送出機構23及び巻取機構24を制御し、ロール状フィルム基板Pの平面位置合わせを行う。   The alignment mechanism 25 includes a detection sensor 25a, a control device 25b, and a roller drive device 25c. The detection sensor 25a detects the alignment pattern A of the roll film substrate P, and sends this detection information to the control device 25b. The control device 25b controls the feeding mechanism 23 and the winding mechanism 24 through the roller driving device 25c, and performs planar alignment of the roll-shaped film substrate P.

真空チャンバ27内は、真空ポンプ28に駆動によって真空状態であり、この真空チャンバ27には、ガス導入機構29が設けられ、このガス導入機構29は非金属元素を含む雰囲気ガスを真空チャンバ27内に導入する。   The inside of the vacuum chamber 27 is in a vacuum state by being driven by a vacuum pump 28, and a gas introduction mechanism 29 is provided in the vacuum chamber 27, and the gas introduction mechanism 29 supplies an atmospheric gas containing a non-metallic element in the vacuum chamber 27. To introduce.

金属ターゲット26a,26bは、ロール状フィルム基板Pの半導体形成面に対面し、ロール状フィルム基板Pの長尺に沿った直線状の位置に配列されている。   The metal targets 26 a and 26 b face the semiconductor formation surface of the roll film substrate P and are arranged at linear positions along the length of the roll film substrate P.

金属ターゲット26aは、金属元素のターゲットであり、金属ターゲット26baは、半金属元素のターゲットである。   The metal target 26a is a metal element target, and the metal target 26ba is a metalloid element target.

スパッタ装置21は、金属ターゲット26a,26bとし、非金属元素、金属元素、半金属元素それぞれ少なくともひとつを含む複数の元素を混ぜ合わせた混合物を、単一のターゲットとして用いているが、金属ターゲット26a,26bを一体のターゲットとてもよい。   The sputtering apparatus 21 uses metal mixtures 26a and 26b as a single target, which is a mixture of a plurality of elements including at least one of a nonmetallic element, a metallic element, and a semimetallic element, but the metallic target 26a. , 26b is a very good target.

このように、スパッタ装置21は、ガス導入機構29により、真空チャンバ27内に非金属元素を含む雰囲気ガスを導入し、真空チャンバ27内に金属ターゲット26a,26bの金属元素または半金属元素またはこれらの混合物を含む金属ターゲットを複数配置し、電極を介して金属ターゲット26a,26bに高電圧をかけると金属ターゲット表面の原子がはじき飛ばされ、真空チャンバ27内に導入された非金属元素を含む雰囲気ガスと、はじき飛ばされた金属と反応させることによって、ロール状フィルム基板Pに半導体層7を製膜することができる。   As described above, the sputtering apparatus 21 introduces the atmospheric gas containing the nonmetallic element into the vacuum chamber 27 by the gas introduction mechanism 29, and the metal element or metalloid element of the metal targets 26 a and 26 b or these elements into the vacuum chamber 27. When a high voltage is applied to the metal targets 26 a and 26 b through the electrodes by arranging a plurality of metal targets containing a mixture of the above, atoms on the surface of the metal target are repelled and an atmospheric gas containing a nonmetallic element introduced into the vacuum chamber 27 Then, the semiconductor layer 7 can be formed on the roll-shaped film substrate P by reacting with the repelled metal.

半導体層7を成膜する場合、ロール状フィルム基板Pは特に加熱や冷却されることはなく室温に置かれる(ただし、金属ターゲット26a、26bへの高電圧印加やはじき飛んでくる原子との反応により、数十℃程度の自然昇温はあると考えられる)。また、成膜時の真空チャンバ27内の圧力は約0.5Pa、ガス導入機構29から供給される雰囲気ガスの分圧は約0.005Paである。金属ターゲットへの高電圧印加の成膜パワーは約2W/cmである。 When the semiconductor layer 7 is formed, the roll-shaped film substrate P is not heated or cooled, and is placed at room temperature (however, a high voltage is applied to the metal targets 26a and 26b and reaction with flying atoms is performed. Therefore, it is considered that there is a natural temperature rise of several tens of degrees Celsius). The pressure in the vacuum chamber 27 during film formation is about 0.5 Pa, and the partial pressure of the atmospheric gas supplied from the gas introduction mechanism 29 is about 0.005 Pa. The film forming power when a high voltage is applied to the metal target is about 2 W / cm 2 .

この薄膜半導体製造装置100では、スパッタ装置150aまたは図5のスパッタ装置21を用い、低温プロセスで半導体層7を形成可能であり、低プロセスコストを実現することができる。また、半導体層7は、比較的高い電界効果移動度を実現でき、かつ光、熱に対して安定な特性を有する薄膜半導体装置1を製造することができる。   In this thin film semiconductor manufacturing apparatus 100, the semiconductor layer 7 can be formed by a low temperature process using the sputtering apparatus 150a or the sputtering apparatus 21 of FIG. 5, and a low process cost can be realized. Moreover, the semiconductor layer 7 can manufacture the thin film semiconductor device 1 that can realize a relatively high field effect mobility and has stable characteristics with respect to light and heat.

また、半導体層7は自在にバンドギャップを制御でき、また電界効果移動度を増大させることができる薄膜半導体製造装置1を製造することができる。   Moreover, the semiconductor layer 7 can manufacture the thin film semiconductor manufacturing apparatus 1 which can control a band gap freely and can increase a field effect mobility.

また、図5のスパッタ装置21は、全ての機構を内部に保持する真空チャンバ27を備え、製造時にロール状態から送り出しロール状態に巻き取り、低プロセスコストを実現することができる。   Further, the sputtering apparatus 21 of FIG. 5 includes a vacuum chamber 27 that holds all the mechanisms therein, and can be wound from a roll state to a feed roll state at the time of manufacturing, thereby realizing a low process cost.

また、スパッタ装置21は、非金属元素を含む雰囲気ガスを真空チャンバ27内に導入し、金属元素または半金属元素またはこれらの混合物を含む金属ターゲット26a,26bを複数有し、金属ターゲット26a,26bが、ロール状フィルム基板Pの長尺に沿った直線状の位置に配列され、ロール状フィルム基板P内に均一な性質の半導体層7を形成できる。   Further, the sputtering apparatus 21 introduces an atmospheric gas containing a non-metallic element into the vacuum chamber 27, has a plurality of metal targets 26a and 26b containing a metal element, a semi-metal element, or a mixture thereof, and the metal targets 26a and 26b. However, the semiconductor layer 7 having a uniform property can be formed in the roll-shaped film substrate P by being arranged at linear positions along the length of the roll-shaped film substrate P.

また、スパッタ装置21は、非金属元素、金属元素、半金属元素それぞれ少なくともひとつを含む複数の元素を混ぜ合わせた混合物を、単一のターゲットとして用い、半導体層7の性質をさらに均一にするとともにスパッタプロセスコストを低減できる。   Further, the sputtering apparatus 21 uses a mixture obtained by mixing a plurality of elements including at least one of a non-metallic element, a metallic element, and a semi-metallic element as a single target, and makes the properties of the semiconductor layer 7 more uniform. Sputtering process costs can be reduced.

この発明は、特にプラスチック基板を用いたフレキシブルディスプレイである薄膜半導体装置、薄膜半導体製造装置及び薄膜半導体製造方法に適用可能で、低温プロセスで形成可能であり、低プロセスコストを実現し、また比較的高い電界効果移動度を実現でき、かつ光、熱に対して安定な特性を有し、曲げ環境にも適用できる。   The present invention is particularly applicable to a thin film semiconductor device, a thin film semiconductor manufacturing apparatus and a thin film semiconductor manufacturing method, which are flexible displays using a plastic substrate, can be formed by a low temperature process, realizes a low process cost, and is relatively High field effect mobility can be realized, and it has stable characteristics against light and heat, and can be applied to a bending environment.

1 薄膜半導体装置
2 プラスチック基板
3,4 バリア層
5 接着層
6 ガラス基板
7 半導体層
8a 絶縁層
9a,9b,9c 金属層
21,150a スパッタ装置
22a,22b ロール巻機構
23 送出機構
24 巻取機構
25 位置合わせ機構
26a,26b 金属ターゲット
27 真空チャンバ
29 ガス導入機構
P ロール状フィルム基板
DESCRIPTION OF SYMBOLS 1 Thin film semiconductor device 2 Plastic substrate 3, 4 Barrier layer 5 Adhesion layer 6 Glass substrate 7 Semiconductor layer 8a Insulating layers 9a, 9b, 9c Metal layers 21, 150a Sputtering devices 22a, 22b Roll winding mechanism 23 Sending mechanism 24 Winding mechanism 25 Positioning mechanism 26a, 26b Metal target 27 Vacuum chamber 29 Gas introduction mechanism P Rolled film substrate

Claims (13)

プラスチック基板と、
前記プラスチック基板上に形成されたバリア層と、
前記バリア層上に形成された半導体層と、
前記半導体層の上下いずれかの面に接して形成された絶縁層と、
前記絶縁層に接して形成された金属層と、
を有し、
前記半導体層をチャネル、前記金属層をソース電極、ドレイン電極、およびゲート電極、前記絶縁層をゲート絶縁膜として用い、
前記半導体層は、非金属元素の窒素(N)、酸素(O)のうち少なくともひとつ、半金属元素のホウ素(B)、シリコン(Si)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)、テルル(Te)、ポロニウム(Po)のうち少なくともひとつ、および金属元素のアルミニウム(Al)、亜鉛(Zn)、ガリウム(Ga)、カドニウム(Cd)、インジウム(In)、錫(Sn)、水銀(Hg)、タリウム(Tl)、テルビウム(Pb)、ビスマス(Bi)のうち少なくともひとつを含み、
前記非金属元素が、少なくとも酸素(O)と窒素(N)の混合物で、酸素(O)に対する窒素(N)の比(N数密度/O数密度)が0乃至2であることを特徴とする薄膜半導体装置。
A plastic substrate,
A barrier layer formed on the plastic substrate;
A semiconductor layer formed on the barrier layer;
An insulating layer formed in contact with either upper or lower surface of the semiconductor layer;
A metal layer formed in contact with the insulating layer;
Have
Using the semiconductor layer as a channel, the metal layer as a source electrode, a drain electrode, and a gate electrode, and the insulating layer as a gate insulating film,
The semiconductor layer includes at least one of nonmetallic elements nitrogen (N) and oxygen (O), semimetallic elements boron (B), silicon (Si), germanium (Ge), arsenic (As), and antimony (Sb). ), Tellurium (Te), at least one of polonium (Po), and the metal elements aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), Including at least one of mercury (Hg), thallium (Tl), terbium (Pb), bismuth (Bi),
The nonmetallic element is at least a mixture of oxygen (O) and nitrogen (N), and the ratio of nitrogen (N) to oxygen (O) (N number density / O number density) is 0 to 2. Thin film semiconductor device.
前記半金属元素が、少なくともシリコン(Si)とゲルマニウム(Ge)の混合物Si1−xGex(xはSiとGeの混合比でx=0乃至1が成り立つ)で、前記混合物(Si1−xGex)に対する窒素(N)の比(N数密度/Si1−xGex数密度)が1乃至2であることを特徴とする請求項1に記載の薄膜半導体装置。   The metalloid element is at least a mixture Si1-xGex of silicon (Si) and germanium (Ge) (where x is a mixture ratio of Si and Ge, x = 0 to 1), and nitrogen with respect to the mixture (Si1-xGex) 2. The thin film semiconductor device according to claim 1, wherein a ratio (N number density / Si1-xGex number density) of (N) is 1 to 2. 前記プラスチック基板が、少なくともロール状フィルム基板であることを特徴とする請求項1または請求項2に記載の薄膜半導体装置。   The thin film semiconductor device according to claim 1, wherein the plastic substrate is at least a roll-shaped film substrate. 前記半導体層は、アモルファスであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の薄膜半導体装置。   The thin film semiconductor device according to claim 1, wherein the semiconductor layer is amorphous. 前記半導体層のバンドギャップは、1eV乃至5eVであることを特徴とする請求項1乃至請求項4のいずれか1項に記載の薄膜半導体装置。   The thin film semiconductor device according to claim 1, wherein a band gap of the semiconductor layer is 1 eV to 5 eV. 前記半導体層の主キャリアは、電子で、キャリア濃度は300Kの熱平衡状態において1×10E16乃至1×10E21(m−3)、電界効果移動度は0.1乃至50(cm/Vs)であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の薄膜半導体装置。 The main carrier of the semiconductor layer is an electron, the carrier concentration is 1 × 10E 16 to 1 × 10E 21 (m −3 ) in a thermal equilibrium state of 300K, and the field effect mobility is 0.1 to 50 (cm 2 / Vs). The thin film semiconductor device according to claim 1, wherein the thin film semiconductor device is a thin film semiconductor device. 前記半導体層が、液晶表示装置を駆動する回路を構成することを特徴とする請求項1乃至請求項6のいずれか1項に記載の薄膜半導体装置。   The thin film semiconductor device according to claim 1, wherein the semiconductor layer constitutes a circuit for driving a liquid crystal display device. 前記ロール状フィルム基板と、
前記ロール状フィルム基板上に形成されたバリア層と、
前記バリア層上に形成された半導体層と、
前記半導体層の上下いずれかの面に接して形成された絶縁層と、
前記絶縁層に接して形成された金属層と、
を有し、
前記半導体層をチャネル、前記金属層をソース電極、ドレイン電極、およびゲート電極、前記絶縁層をゲート絶縁膜として用い、前記半導体層は、非金属元素の窒素(N)、酸素(O)のうち少なくともひとつ、半金属元素のホウ素(B)、シリコン(Si)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)、テルル(Te)、ポロニウム(Po)のうち少なくともひとつ、および金属元素のアルミニウム(Al)、亜鉛(Zn)、ガリウム(Ga)、カドニウム(Cd)、インジウム(In)、錫(Sn)、水銀(Hg)、タリウム(Tl)、テルビウム(Pb)、ビスマス(Bi)のうち少なくともひとつを含み、
前記非金属元素が、少なくとも酸素(O)と窒素(N)の混合物で酸素(O)に対する窒素(N)の比(N数密度/O数密度)が0乃至2である前記半導体層をスパッタ装置により形成する薄膜半導体製造装置。
The roll film substrate;
A barrier layer formed on the roll film substrate;
A semiconductor layer formed on the barrier layer;
An insulating layer formed in contact with either upper or lower surface of the semiconductor layer;
A metal layer formed in contact with the insulating layer;
Have
The semiconductor layer is used as a channel, the metal layer is used as a source electrode, a drain electrode, and a gate electrode, the insulating layer is used as a gate insulating film, and the semiconductor layer is made of nitrogen (N) or oxygen (O) of a nonmetallic element At least one of the metalloid elements boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te), polonium (Po), and metal elements Aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), mercury (Hg), thallium (Tl), terbium (Pb), bismuth (Bi) Including at least one of them,
The non-metallic element is a mixture of at least oxygen (O) and nitrogen (N), and the ratio of nitrogen (N) to oxygen (O) (N number density / O number density) is 0 to 2 is sputtered. Thin film semiconductor manufacturing equipment formed by equipment.
前記半金属元素が、少なくともシリコン(Si)とゲルマニウム(Ge)の混合物Si1−xGex(xはSiとGeの混合比でx=0乃至1が成り立つ)で、前記混合物(Si1−xGex)に対する窒素(N)の比(N数密度/Si1−xGex数密度)が1乃至2であることを特徴とする請求項8に記載の薄膜半導体製造装置。   The metalloid element is at least a mixture Si1-xGex of silicon (Si) and germanium (Ge) (where x is a mixture ratio of Si and Ge, x = 0 to 1), and nitrogen with respect to the mixture (Si1-xGex) 9. The apparatus for manufacturing a thin film semiconductor according to claim 8, wherein a ratio (N number density / Si1-xGex number density) of (N) is 1 to 2. 前記スパッタ装置は、
前記ロール状フィルム基板を装着するロール巻機構と、
前記ロール状フィルム基板を長尺方向に沿って一方の端部から送り出す送出機構と、
送り出された前記ロール状フィルム基板を巻き取る巻取機構と、
位置合わせパターンを有する前記ロール状フィルム基板に対し、前記ロール状フィルム基板の平面位置合わせを行う位置合わせ機構と、
前記ロール状フィルム基板の半導体形成面に対面する金属ターゲットと、
を有し、
前記全ての機構を内部に保持する真空チャンバを備えたことを特徴とする請求項8また請求項9に記載の薄膜半導体製造装置。
The sputtering apparatus is
A roll winding mechanism for mounting the roll film substrate;
A delivery mechanism for delivering the roll-shaped film substrate from one end along the longitudinal direction;
A winding mechanism for winding up the rolled film substrate that has been sent out;
An alignment mechanism that performs planar alignment of the roll-shaped film substrate with respect to the roll-shaped film substrate having the alignment pattern,
A metal target facing the semiconductor forming surface of the roll film substrate;
Have
10. The thin film semiconductor manufacturing apparatus according to claim 8, further comprising a vacuum chamber for holding all the mechanisms therein.
前記スパッタ装置は、
前記非金属元素を含む雰囲気ガスを真空チャンバ内に導入するガス導入機構と、
前記金属元素または前記半金属元素またはこれらの混合物を含む金属ターゲットと、を複数有し、
前記金属ターゲットが、前記ロール状フィルム基板の長尺に沿った直線状の位置に配列されていることを特徴とする請求項8または請求項9に記載の薄膜半導体製造装置。
The sputtering apparatus is
A gas introduction mechanism for introducing an atmospheric gas containing the nonmetallic element into a vacuum chamber;
A plurality of metal targets including the metal element or the metalloid element or a mixture thereof,
The thin film semiconductor manufacturing apparatus according to claim 8, wherein the metal target is arranged at a linear position along the length of the roll-shaped film substrate.
前記スパッタ装置は、
前記非金属元素、前記金属元素、前記半金属元素それぞれ少なくともひとつを含む複数の元素を混ぜ合わせた混合物を、単一のターゲットとして用いたことを特徴とする請求項8乃至請求項11のいずれか1項に記載の薄膜半導体製造装置。
The sputtering apparatus is
The mixture of a plurality of elements each including at least one of the non-metallic element, the metallic element, and the metalloid element is used as a single target. 2. The thin film semiconductor manufacturing apparatus according to item 1.
請求項8乃至請求項12のいずれか1項に記載の薄膜半導体製造装置を用い、
薄膜半導体装置を製造することを特徴とする薄膜半導体製造方法。
A thin film semiconductor manufacturing apparatus according to any one of claims 8 to 12,
A method of manufacturing a thin film semiconductor device, comprising manufacturing a thin film semiconductor device.
JP2010042399A 2010-02-26 2010-02-26 Thin film semiconductor device, apparatus for manufacturing thin film semiconductor device, and method for manufacturing thin film semiconductor device Pending JP2011181591A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010042399A JP2011181591A (en) 2010-02-26 2010-02-26 Thin film semiconductor device, apparatus for manufacturing thin film semiconductor device, and method for manufacturing thin film semiconductor device
KR1020127025280A KR101459202B1 (en) 2010-02-26 2010-03-04 Thin film semiconductor device, apparatus for manufacturing thin film semiconductor device, and method for manufacturing thin film semiconductor device
PCT/JP2010/053511 WO2011104894A1 (en) 2010-02-26 2010-03-04 Thin film semiconductor device, apparatus for manufacturing thin film semiconductor device, and method for manufacturing thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010042399A JP2011181591A (en) 2010-02-26 2010-02-26 Thin film semiconductor device, apparatus for manufacturing thin film semiconductor device, and method for manufacturing thin film semiconductor device

Publications (1)

Publication Number Publication Date
JP2011181591A true JP2011181591A (en) 2011-09-15

Family

ID=44506336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010042399A Pending JP2011181591A (en) 2010-02-26 2010-02-26 Thin film semiconductor device, apparatus for manufacturing thin film semiconductor device, and method for manufacturing thin film semiconductor device

Country Status (3)

Country Link
JP (1) JP2011181591A (en)
KR (1) KR101459202B1 (en)
WO (1) WO2011104894A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176222A1 (en) * 2012-05-24 2013-11-28 株式会社ニコン Substrate processing apparatus and device manufacturing method
CN105355661A (en) * 2015-10-10 2016-02-24 无锡盈芯半导体科技有限公司 Thin film transistor and preparation method for semiconductor channel layer of thin film transistor
JP6036984B2 (en) * 2013-03-08 2016-11-30 住友金属鉱山株式会社 Oxynitride semiconductor thin film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214588A (en) * 2001-01-15 2002-07-31 Seiko Epson Corp Electro-optic device and method for producing the same
JP2003100450A (en) * 2001-06-20 2003-04-04 Semiconductor Energy Lab Co Ltd Light emitting equipment and its producing method
JP2006066906A (en) * 2004-07-30 2006-03-09 Semiconductor Energy Lab Co Ltd Peeling method for thin film ic, and formation method for semiconductor device
JP2006093209A (en) * 2004-09-21 2006-04-06 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2007150155A (en) * 2005-11-30 2007-06-14 Toppan Printing Co Ltd Thin-film transistor and its manufacturing method, and film forming apparatus
JP2009076877A (en) * 2007-08-30 2009-04-09 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2009275236A (en) * 2007-04-25 2009-11-26 Canon Inc Semiconductor of oxynitride

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031742A (en) * 2007-04-10 2009-02-12 Fujifilm Corp Organic electroluminescence display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214588A (en) * 2001-01-15 2002-07-31 Seiko Epson Corp Electro-optic device and method for producing the same
JP2003100450A (en) * 2001-06-20 2003-04-04 Semiconductor Energy Lab Co Ltd Light emitting equipment and its producing method
JP2006066906A (en) * 2004-07-30 2006-03-09 Semiconductor Energy Lab Co Ltd Peeling method for thin film ic, and formation method for semiconductor device
JP2006093209A (en) * 2004-09-21 2006-04-06 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2007150155A (en) * 2005-11-30 2007-06-14 Toppan Printing Co Ltd Thin-film transistor and its manufacturing method, and film forming apparatus
JP2009275236A (en) * 2007-04-25 2009-11-26 Canon Inc Semiconductor of oxynitride
JP2009076877A (en) * 2007-08-30 2009-04-09 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176222A1 (en) * 2012-05-24 2013-11-28 株式会社ニコン Substrate processing apparatus and device manufacturing method
JPWO2013176222A1 (en) * 2012-05-24 2016-01-14 株式会社ニコン Substrate processing apparatus and device manufacturing method
JP6036984B2 (en) * 2013-03-08 2016-11-30 住友金属鉱山株式会社 Oxynitride semiconductor thin film
JPWO2014136916A1 (en) * 2013-03-08 2017-02-16 住友金属鉱山株式会社 Oxynitride semiconductor thin film
CN105355661A (en) * 2015-10-10 2016-02-24 无锡盈芯半导体科技有限公司 Thin film transistor and preparation method for semiconductor channel layer of thin film transistor

Also Published As

Publication number Publication date
KR101459202B1 (en) 2014-11-07
KR20120137491A (en) 2012-12-21
WO2011104894A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP7154348B2 (en) Display device
JP7340645B2 (en) display device
KR101468591B1 (en) Oxide semiconductor and thin film transistor comprising the same
US9299571B2 (en) Compositional graded IGZO thin film transistor
Cho et al. 21.2: Al and Sn‐Doped Zinc Indium Oxide Thin Film Transistors for AMOLED Back‐Plane
EP2622632B1 (en) Method of making oxide thin film transistor array
KR101468594B1 (en) Oxide Semiconductor and Thin Film Transistor comprising the same
KR101552975B1 (en) Oxide semiconductor and thin film transistor comprising the same
US8378342B2 (en) Oxide semiconductor and thin film transistor including the same
US20150279674A1 (en) CAAC IGZO Deposited at Room Temperature
KR101459203B1 (en) Active matrix display device and method for manufacturing active matrix display device
WO2011104894A1 (en) Thin film semiconductor device, apparatus for manufacturing thin film semiconductor device, and method for manufacturing thin film semiconductor device
Arai et al. 56.1: Invited Paper: Manufacturing Issues for Oxide TFT Technologies for Large‐Sized AMOLED Displays
Fukui et al. 18.4 L: Late‐News Paper: Full Color Flexible Top‐emission AMOLED Display on Polyethylene Naphthalate (PEN) Foil with Metal Oxide TFTs Backplane
Cho et al. Transparent oxide thin-film transistors composed of Al and Sn-doped zinc indium oxide
KR101600051B1 (en) Oxide Semiconductor and Thin Film Transistor comprising the same
Kamiya et al. Amorphous Oxide Semiconductor Thin-Film Transistors
CN103304220B (en) Target material and preparation method thereof as well as display device
He et al. P‐18: Development of Oxide UHD Panel LCD with High Mobility for Notebook PC
Cho et al. Al-Zn-Sn-O thin film transistors with top and bottom gate structure for AMOLED
KR20140050993A (en) Zn compound semiconductor and thin film transistor comprising the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150309