JP2011181541A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2011181541A
JP2011181541A JP2010041426A JP2010041426A JP2011181541A JP 2011181541 A JP2011181541 A JP 2011181541A JP 2010041426 A JP2010041426 A JP 2010041426A JP 2010041426 A JP2010041426 A JP 2010041426A JP 2011181541 A JP2011181541 A JP 2011181541A
Authority
JP
Japan
Prior art keywords
layer
emitter
contact
crosspiece
emitter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010041426A
Other languages
Japanese (ja)
Other versions
JP5546903B2 (en
Inventor
Shinichi Tanitaka
真一 谷高
Mitsuhiro Takeda
光弘 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010041426A priority Critical patent/JP5546903B2/en
Publication of JP2011181541A publication Critical patent/JP2011181541A/en
Application granted granted Critical
Publication of JP5546903B2 publication Critical patent/JP5546903B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device wherein a contact part between an emitter electrode and an emitter layer is made very small. <P>SOLUTION: An IGBT 1 has a P collector layer 12 provided on one surface of an N- semiconductor layer 10 as a semiconductor layer, a P<SP>-</SP>base layer 14 formed on the other surface, an N<SP>+</SP>emitter layer 16 selectively formed in the P<SP>-</SP>base layer 14, a gate electrode 20 formed on the N<SP>+</SP>emitter layer 16 with an insulating layer 18 interposed and an emitter electrode 22 coming into contact with the N<SP>+</SP>emitter layer 16, wherein the N<SP>+</SP>emitter layer 16 is formed in a ladder shape having two beams 16A and a crosspiece 16B prepared between the two beams 16A, and the beams 16A are covered with the insulating layer 18 and brought into contact with the emitter electrode 22 only at the crosspiece 16B, and the ratio of the area of the contact between the crosspiece 16B and emitter electrode 22 to the area of the emitter electrode 22 extending in a direction crossing each of the crosspieces 16B is 40 to 75%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電力用スイッチング素子等に用いて好適な絶縁ゲートを有する半導体装置に関する。   The present invention relates to a semiconductor device having an insulated gate suitable for use in a power switching element or the like.

従来、絶縁ゲート型の半導体装置として、ゲート絶縁型バイポーラトランジスタ(以下、IGBTと称する)が知られており、インバータ等の電力変換装置のスイッチング素子として広く用いられている。
図6は、従来のIGBT100の構成を模式的に示す一部切断斜視図であり、図7は、IGBT100の上面を模式的に示す図である。
IGBT100は、第1導電型の半導体基板としてのN-半導体層101の主表面に、第2導電型のベース領域としてのP-ベース層103を選択的にストライプ状に形成し、このP-ベース層103の領域内にN-エミッタ層105を選択的に同じくストライプ状に形成して構成されている。またN-半導体層101の表面上には、絶縁層109で覆ったゲート電極107と、絶縁層109に設けたコンタクト用の開口111を通じてN-エミッタ層105にコンタクトする例えばAl−Si電極層で形成したエミッタ電極110とが設けられている。なお、図6及び図7では、エミッタ電極110の一部を省略してコンタクト用の開口111を露出させた状態を示している。また、図6において、N-半導体層101の他表面(図6中下側の面)には第2導電型のコレクタ層が設けられているが図示を省略している。
Conventionally, a gate-insulated bipolar transistor (hereinafter referred to as IGBT) is known as an insulated gate semiconductor device, and is widely used as a switching element of a power converter such as an inverter.
FIG. 6 is a partially cut perspective view schematically showing the configuration of the conventional IGBT 100, and FIG. 7 is a view schematically showing the upper surface of the IGBT 100. As shown in FIG.
IGBT100 is, N as a semiconductor substrate of a first conductivity type - in the main surface of the semiconductor layer 101, P as the base region of the second conductivity type - is selectively formed in a stripe shape of the base layer 103, the P - base An N emitter layer 105 is selectively formed in a stripe shape in the region of the layer 103. Further, on the surface of the N semiconductor layer 101, for example, an Al—Si electrode layer that contacts the N emitter layer 105 through a contact opening 111 provided in the insulating layer 109 and a gate electrode 107 covered with the insulating layer 109. A formed emitter electrode 110 is provided. 6 and 7 show a state in which a part of the emitter electrode 110 is omitted and the contact opening 111 is exposed. Further, in FIG. 6, a second conductivity type collector layer is provided on the other surface (the lower surface in FIG. 6) of the N semiconductor layer 101, but the illustration is omitted.

また近年では、開口111に臨むN-エミッタ層105を、いわゆる梯子型に構成し、N-エミッタ層105とエミッタ電極110のコンタクト面積を増やす事でオン抵抗を低減したものも知られている(例えば、特許文献1参照)。 In recent years, it has also been known that the N emitter layer 105 facing the opening 111 is configured as a so-called ladder type, and the on-resistance is reduced by increasing the contact area between the N emitter layer 105 and the emitter electrode 110 ( For example, see Patent Document 1).

特許第4348888号公報Japanese Patent No. 4348888

しかしながら、従来のように、コンタクト面積を積極的に確保する構造とすると、コンタクト部分の微細化が困難になるため、微細化によるオン電圧の低減(低電圧駆動)を図ることができない、という問題がある。   However, when the contact area is positively secured as in the prior art, it is difficult to miniaturize the contact portion, and thus it is not possible to reduce the on-voltage (low voltage driving) by miniaturization. There is.

本発明は、上述した事情に鑑みてなされたものであり、エミッタ電極とエミッタ層とのコンタクト部分の微細化を可能とする半導体装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a semiconductor device capable of miniaturizing a contact portion between an emitter electrode and an emitter layer.

上記目的を達成するために、本発明は、第1導電型の半導体層の一方の表面に第2導電型のコレクタ層を設け、他方の表面に第2導電型のベース層を形成し、当該ベース層に第1導電型のエミッタ層を選択的に形成し、当該エミッタ層の上に絶縁層を介してゲート電極、及び、前記エミッタ層にコンタクトするエミッタ電極を形成した半導体装置において、前記エミッタ層を2つの桁部と前記桁部間に設けられた桟部とを有する梯子状に形成し、前記桁部を前記絶縁層で覆い前記桟部のみで前記エミッタ電極とコンタクトせるとともに、前記桟部のそれぞれを横断する方向に延びるエミッタ電極の面積に対し、前記桟部と前記エミッタ電極とがコンタクトするコンタクト面積が占める割合を40%〜75%としたことを特徴とする。   In order to achieve the above object, the present invention provides a collector layer of a second conductivity type on one surface of a semiconductor layer of a first conductivity type, forms a base layer of a second conductivity type on the other surface, and In the semiconductor device, a first conductivity type emitter layer is selectively formed on a base layer, and a gate electrode and an emitter electrode in contact with the emitter layer are formed on the emitter layer via an insulating layer. The layer is formed in a ladder shape having two beam portions and a beam portion provided between the beam portions, the beam portion is covered with the insulating layer, and only the beam portion is in contact with the emitter electrode. The ratio of the contact area where the crosspiece and the emitter electrode are in contact to the area of the emitter electrode extending in the direction crossing each of the sections is 40% to 75%.

本発明によれば、エミッタ電極とエミッタ層とのコンタクトを桟部のみとすることで、両側の桁部を絶縁層から露出させる必要がないため、コンタクト部分の微細化が可能となりオン電圧の低減を図ることができる。また、ゲート抵抗を大きくせずともターンオフ時での電子電流の減少が緩やかになり、ターンオフ時のエネルギー損失を抑えることができる。
これに加え、前記桟部と前記エミッタ電極とがコンタクトするコンタクト面積が占める割合が40%〜75%であるから、飽和電圧を低めつつ十分な負荷短絡耐量を確保することができる。
According to the present invention, since the contact between the emitter electrode and the emitter layer is only the crosspiece, it is not necessary to expose the girder on both sides from the insulating layer, so that the contact portion can be miniaturized and the on-voltage can be reduced. Can be achieved. In addition, the decrease in the electron current at the turn-off time is moderated without increasing the gate resistance, and the energy loss at the turn-off time can be suppressed.
In addition, since the ratio of the contact area between the crosspiece and the emitter electrode is 40% to 75%, sufficient load short-circuit withstand capability can be ensured while lowering the saturation voltage.

また本発明は、上記半導体装置において、前記桁部には、少なくとも1以上の前記桟部を含むごとに、前記エミッタ層を設けない所定長の間引き部を設けたことを特徴とする。
本発明によれば、更なる微細化が可能となりオン電圧を下げることができる。
According to the present invention, in the semiconductor device described above, a thinning portion having a predetermined length that does not include the emitter layer is provided in the beam portion every time at least one of the crosspieces is included.
According to the present invention, further miniaturization is possible and the on-voltage can be lowered.

本発明によれば、エミッタ電極とエミッタ層とのコンタクトを桟部のみとしたため、両側の桁部を絶縁層から露出させる必要がなく、コンタクト部分の微細化が可能となりオン電圧の低減を図ることができる。また、ゲート抵抗を大きくせずともターンオフ時での電子電流の減少が緩やかになり、ターンオフ時のエネルギー損失を抑えることができる。
これに加え、前記桟部のそれぞれを横断する方向に延びるエミッタ電極の面積に対し、前記桟部と前記エミッタ電極とがコンタクトするコンタクト面積が占める割合を40%〜75%としたため、飽和電圧を低めつつ十分な負荷短絡耐量を確保することができる。
また前記桁部に、少なくとも1以上の前記桟部を含むごとに、前記エミッタ層を設けない所定長の間引き部を設けることで、更なる微細化が可能となりオン電圧を下げることができる。
According to the present invention, since the contact between the emitter electrode and the emitter layer is only the crosspiece, it is not necessary to expose the girder on both sides from the insulating layer, and the contact portion can be miniaturized and the on-voltage can be reduced. Can do. In addition, the decrease in the electron current at the turn-off time is moderated without increasing the gate resistance, and the energy loss at the turn-off time can be suppressed.
In addition, the ratio of the contact area where the crosspiece and the emitter electrode are in contact to the area of the emitter electrode extending in the direction crossing each crosspiece is 40% to 75%, so the saturation voltage is Sufficient load short-circuit withstand capability can be ensured while lowering.
In addition, by providing a thinning portion having a predetermined length without the emitter layer every time the girder portion includes at least one or more crosspieces, further miniaturization is possible and the on-voltage can be lowered.

本発明の実施形態に係るIGBTの構成を模式的に示す一部切断斜視図である。1 is a partially cut perspective view schematically showing a configuration of an IGBT according to an embodiment of the present invention. IGBTの上面を模式的に示す図である。It is a figure which shows typically the upper surface of IGBT. コンタクト開口付近の構成を拡大して示す図である。It is a figure which expands and shows the structure of contact opening vicinity. コンタクト占有率と飽和電圧及び短絡時間との関係を示した図である。It is the figure which showed the relationship between a contact occupation rate, a saturation voltage, and a short circuit time. ターンオフ時のエミッタ電流特性を示す図であり、(A)は本発明の実施形態に係るIGBTのエミッタ電流特性、(B)は従来のIGBTのエミッタ電流特性であってゲート抵抗が小さい場合、(C)は従来のIGBTのエミッタ電流特性であってゲート抵抗が十分大きな場合を示す。It is a figure which shows the emitter current characteristic at the time of turn-off, (A) is the emitter current characteristic of IGBT which concerns on embodiment of this invention, (B) is the emitter current characteristic of conventional IGBT, and gate resistance is small, C) shows the emitter current characteristics of a conventional IGBT, and the gate resistance is sufficiently large. 従来のIGBTの構成を模式的に示す一部切断斜視図である。It is a partially cut perspective view which shows typically the structure of the conventional IGBT. IGBTの上面を模式的に示す図である。It is a figure which shows typically the upper surface of IGBT.

以下、図面を参照して本発明の実施形態として、プレーナ型のIGBTについて説明する。
図1は本実施形態に係るIGBT1の構成を模式的に示す一部切断斜視図であり、図2は図1のIGBT1の上面を模式的に示す図である。
IGBT1は、図1に示すように、第1導電型の半導体層としてのn型のN-半導体層10の一方の表面(裏面)に第2導電型のコレクタ層としてのp型のPコレクタ層12を設け、他方の表面(上側の面)に、第2導電型のベース領域としてのp型のP-ベース層14を選択的にストライプ状に形成し、このP-ベース層14の領域内に第1導電型であるn型のN+エミッタ層16をP-ベース層14のストライプ方向と同一方向に延ばして選択的に形成し、このN+エミッタ層16の上に絶縁層18を介してゲート電極20及びエミッタ電極22をそれぞれ形成して構成されている。
Hereinafter, a planar IGBT will be described as an embodiment of the present invention with reference to the drawings.
FIG. 1 is a partially cut perspective view schematically showing the configuration of the IGBT 1 according to the present embodiment, and FIG. 2 is a view schematically showing the upper surface of the IGBT 1 in FIG.
IGBT1, as shown in FIG. 1, n-type N of the semiconductor layer of the first conductivity type - p-type P collector layer as the collector layer of the second conductivity type on one surface of the semiconductor layer 10 (the back surface) 12 is provided, on the other surface (upper surface), p-type P as the base region of the second conductivity type - is formed in the base layer 14 selectively striped, the P - base layer 14 in the region An n type N + emitter layer 16 of the first conductivity type is selectively formed extending in the same direction as the stripe direction of the P base layer 14 and an insulating layer 18 is interposed on the N + emitter layer 16. The gate electrode 20 and the emitter electrode 22 are formed respectively.

絶縁層18には、N+エミッタ層16と平行してストライプ状に延びてN+エミッタ層16を露出させるためのコンタクト開口24が設けられ、当該コンタクト開口24を通じてエミッタ電極22がN+エミッタ層16とコンタクトする。かかる構成により、コンタクト開口24を挟んだ両側のそれぞれに、1個のIGBTセル25が構成される。なお、図1及び図2では、エミッタ電極22で覆われたコンタクト開口24が露出するように切断した状態を示している。 The insulating layer 18, contact openings 24 for exposing the N + emitter layer 16 extends in stripes in parallel with N + emitter layer 16 is provided, the emitter electrode 22 is N + emitter layer through the contact opening 24 16 is contacted. With this configuration, one IGBT cell 25 is formed on each of both sides of the contact opening 24. 1 and 2 show a state where the contact opening 24 covered with the emitter electrode 22 is exposed so as to be exposed.

上記N+エミッタ層16は、図2に示すように、コンタクト開口24において、上面視略梯子状のパターンに形成されており、梯子の桁に相当する2つの桁部16Aと、桁部16Aの間に設けられた桟に相当する桟部16Bとを有している。さらに桁部16Aには、図2に示すように、延在方向(ストライプ方向)に沿って少なくとも1個の桟部16Bを含むごとに所定長Kb(図3)の間引き部16Cが設けられている。そして、2つの間引き部16Cと、エミッタ電極22とで囲まれた部分が上記1個のIGBTセル25として構成される。 As shown in FIG. 2, the N + emitter layer 16 is formed in a substantially ladder-like pattern when viewed from above at the contact opening 24, and includes two girder parts 16A corresponding to the girder of the ladder, and the girder part 16A. And a crosspiece 16B corresponding to a crosspiece provided between them. Further, as shown in FIG. 2, the beam portion 16A is provided with a thinning portion 16C of a predetermined length Kb (FIG. 3) every time it includes at least one crosspiece 16B along the extending direction (stripe direction). Yes. A portion surrounded by the two thinning portions 16 </ b> C and the emitter electrode 22 is configured as the one IGBT cell 25.

図1に示すように、本実施形態のIGBT1では、絶縁層18が桁部16Aの上まで延び出ることで上記コンタクト開口24に桁部16Aが露出しておらず、エミッタ電極22とN+エミッタ層16とのコンタクトは、専ら桟部16Bによってのみ確保される。
このようにエミッタ電極22とN+エミッタ層16とのコンタクトを桟部16Bのみとすることで、両側の桁部16Aをコンタクト開口24内に露出させる必要がないため、当該コンタクト開口24の幅L(IGBTセル25のセル間ピッチ)を狭くして微細化が可能となる。この微細化に伴い、オン電圧の低減(低電圧駆動)が図られることとなる。
As shown in FIG. 1, in the IGBT 1 of this embodiment, the insulating layer 18 extends above the beam portion 16A so that the beam portion 16A is not exposed in the contact opening 24, and the emitter electrode 22 and the N + emitter are exposed. Contact with the layer 16 is ensured exclusively by the crosspiece 16B.
Thus, since the contact between the emitter electrode 22 and the N + emitter layer 16 is only the crosspiece 16B, there is no need to expose the beam portions 16A on both sides in the contact opening 24, and therefore the width L of the contact opening 24 is reduced. The (cell pitch of the IGBT cell 25) can be narrowed and miniaturized. With this miniaturization, the ON voltage is reduced (low voltage driving).

また、本実施形態では、N+エミッタ層16のn型の不純物濃度は、桟部16Bのみのコンタクトでもエミッタ電極22とN+エミッタ層16との間に所定の負荷短絡耐量(負荷短絡時(短絡電流発生時)から素子破壊までの時間)を確保可能な接触抵抗が得られる濃度まで高められており、上述の微細化と負荷短絡耐量の確保が同時に実現されている。本実施形態では、150℃〜175℃の高温動作領域でも15μ秒〜20μ秒の負荷短絡耐量が確保でき、また25℃の常温では28μ秒の負荷短絡耐量が確保されるように、N+エミッタ層16の濃度が高められている。 Further, in the present embodiments, n-type impurity concentration of the N + emitter layer 16, predetermined load short-circuit tolerance between the emitter electrode 22 and the N + emitter layer 16 in contact with the crosspiece 16B only (when the load is short-circuited ( The contact resistance that can ensure the time from when the short-circuit current is generated) to the destruction of the element is increased to a concentration at which the contact resistance can be obtained. In this embodiment, an N + emitter is provided so that a load short-circuit resistance of 15 μs to 20 μs can be ensured even in a high-temperature operation region of 150 ° C. to 175 ° C. The concentration of layer 16 is increased.

図3は、コンタクト開口24付近の構成を拡大して示す図である。
この図に示すように、桁部16Aの延在方向に沿った桟部16Bの長さを高さ幅Hとすると、各桟部16Bでのコンタクト面積は、コンタクト開口24の幅L×桟部16Bの高さ幅Hとなる。コンタクト面積を増やすほどオン抵抗が低減されることから、桟部16Bの高さ幅Hを大きくすることでもオン電圧を低減できる。しかしながら、コンタクト面積を増やしてオン抵抗を小さくするほど負荷短絡耐量が低くなることが知られている。
FIG. 3 is an enlarged view showing a configuration near the contact opening 24.
As shown in this figure, assuming that the length of the crosspiece 16B along the extending direction of the beam portion 16A is the height width H, the contact area in each crosspiece 16B is the width L of the contact opening 24 × the crosspiece The height width is 16B. Since the on-resistance is reduced as the contact area is increased, the on-voltage can be reduced by increasing the height width H of the crosspiece 16B. However, it is known that the load short-circuit withstand capability decreases as the contact area increases and the on-resistance decreases.

図4は、コンタクト占有率と飽和電圧Vce及び短絡時間tscとの関係を示した図である。なお、コンタクト占有率は、1個のIGBTセル25に面したコンタクト開口24の開口面積(すなわちエミッタ電極22の面積)に対して、エミッタ電極22と各桟部16Bのコンタクト面積の合算値が占める割合である。また飽和電圧VceはIGBT1がオン時のコレクタ−エミッタ間の飽和電圧であり、短絡時間は負荷短絡時から素子破壊までの時間である。
この図に示すように、コンタクト占有率を高めるほどオン抵抗が減って飽和電圧Vceが下がり有利となるものの、一方では短絡時間tscが短くなって負荷短絡耐量が低くなる、というトレードオフの関係がある。そこで、本実施形態では、コンタクト占有率の下限を、従来のIGBTの飽和電圧の一般値V1よりも小さな飽和電圧Vceが実現可能な40%としている。一方で、コンタクト占有率の上限を、短絡時間tscの低下が急激に顕著となり始める75%としている。
FIG. 4 is a diagram showing the relationship between the contact occupation ratio, the saturation voltage Vce, and the short circuit time tsc. Note that the contact occupancy rate is the sum of the contact areas of the emitter electrode 22 and the crosspieces 16B with respect to the opening area of the contact opening 24 facing one IGBT cell 25 (that is, the area of the emitter electrode 22). It is a ratio. The saturation voltage Vce is the saturation voltage between the collector and the emitter when the IGBT 1 is on, and the short circuit time is the time from when the load is short circuited until the element is destroyed.
As shown in this figure, as the contact occupancy increases, the on-resistance decreases and the saturation voltage Vce decreases, which is advantageous. On the other hand, the short-circuit time tsc is shortened and the load short-circuit resistance is reduced. is there. Therefore, in this embodiment, the lower limit of the contact occupation ratio is set to 40% at which a saturation voltage Vce smaller than the general value V1 of the saturation voltage of the conventional IGBT can be realized. On the other hand, the upper limit of the contact occupancy rate is set to 75% where the decrease in the short circuit time tsc starts to become noticeable.

このように、コンタクト占有率を40%〜75%とすることで、飽和電圧Vceを低めつつ十分な負荷短絡耐量を確保することができる。さらに本実施形態では、上述の通り、エミッタ電極22とN+エミッタ層16とのコンタクトを桟部16Bのみで確保して微細化する構成としたため、当該微細化によりオン抵抗が低められて更に飽和電圧Vceが低いIGBT1が実現されている。 Thus, by setting the contact occupation ratio to 40% to 75%, it is possible to ensure a sufficient load short-circuit withstand capability while lowering the saturation voltage Vce. Furthermore, in the present embodiment, as described above, since the contact between the emitter electrode 22 and the N + emitter layer 16 is ensured only by the crosspiece 16B and is miniaturized, the on-resistance is lowered by the miniaturization and further saturated. An IGBT 1 with a low voltage Vce is realized.

また、本実施形態のIGBT1にあっては、図2及び図3に示すように、N+エミッタ層16の桁部16Aに、当該N+エミッタ層16を設けない間引き部16Cを設ける構成としている。これにより、オン電圧を上げることなく、負荷短絡耐量を上げることができる。ただし、間引き部16Cの間の桁部16Aの長さKaが、桟部16Bの高さ幅Hよりも小さくなると、桟部16Bから桁部16Aに電流が流れ難くなるためオン抵抗が増大する。この結果、オン電圧が増加し損失が大きくなる。そこで本実施形態では、間引き部16Cで区切られた各桁部16Aに少なくとも1個の桟部16Bを含むように各間引き部16Cを設けるとともに、各桁部16Aの長さKaを、桟部16Bの高さ幅Hよりも長くする構成としている。これにより、オン電圧の増加を抑え、低い電圧で安定して動作させることができる。
また、本実施形態では、各桁部16Aの長さKaを、間引き部16Cの長さKb以上として、桁部16Aの間引き部16Cによる間引き率を50%程度に抑えられている。すなわち、発明者らは、実験により、間引き率が50%を超えると飽和電圧Vceが増加するとの知見を得ており、間引き率を約50%に抑えることで、飽和電圧Vceを増加させることなく飽和電流を抑制でき、150℃〜175℃の高温動作領域で15μ秒〜20μ秒、25℃の常温で28μ秒の負荷短絡耐量を達成できる。
Further, in the IGBT 1 of the present embodiment, as shown in FIGS. 2 and 3, a thinning portion 16 </ b > C in which the N + emitter layer 16 is not provided is provided in the beam portion 16 </ b > A of the N + emitter layer 16. . As a result, the load short-circuit withstand capability can be increased without increasing the on-voltage. However, if the length Ka of the beam part 16A between the thinning parts 16C is smaller than the height width H of the beam part 16B, it becomes difficult for current to flow from the beam part 16B to the beam part 16A, and the on-resistance increases. As a result, the on-voltage increases and the loss increases. Therefore, in the present embodiment, each thinning portion 16C is provided so that each digit portion 16A partitioned by the thinning portion 16C includes at least one crosspiece portion 16B, and the length Ka of each girder portion 16A is set to the crosspiece portion 16B. The height is set to be longer than the width H. As a result, an increase in the on-voltage can be suppressed and the operation can be stably performed at a low voltage.
In the present embodiment, the length Ka of each digit portion 16A is set to be equal to or longer than the length Kb of the thinning portion 16C, and the thinning rate by the thinning portion 16C of the digit portion 16A is suppressed to about 50%. That is, the inventors have obtained through experiments that the saturation voltage Vce increases when the thinning rate exceeds 50%, and by suppressing the thinning rate to about 50%, the saturation voltage Vce is not increased. Saturation current can be suppressed, and a load short-circuit tolerance of 15 μs to 20 μs in a high temperature operation region of 150 ° C. to 175 ° C. and 28 μs at a normal temperature of 25 ° C. can be achieved.

図5はターンオフ時のエミッタ電流特性を示す図であり、図5(A)は本実施形態のIGBT1のエミッタ電流特性、図5(B)は従来のIGBTのエミッタ電流特性であってゲート抵抗が小さい場合、図5(C)は従来のIGBTのエミッタ電流特性であってゲート抵抗が十分大きな場合を示している。
図5(B)に示すように、一般に、IGBTのゲート電極のゲート抵抗が小さい場合、電子電流が急激に変化する等してサージ電圧が発生する。そこで、ゲート抵抗を十分に大きくすれば、図5(C)に示すように、電子電流の急激な変化を抑えることができる。しかしながら、ゲート抵抗を大きくすると、ターンオフ時間が長くなり、スイッチング時の損失が増加する、という問題がある。
5A and 5B are diagrams showing emitter current characteristics at the time of turn-off. FIG. 5A shows the emitter current characteristics of the IGBT 1 of the present embodiment, and FIG. 5B shows the emitter current characteristics of the conventional IGBT. In the case where the gate resistance is small, FIG. 5C shows the emitter current characteristic of the conventional IGBT and the case where the gate resistance is sufficiently large.
As shown in FIG. 5B, generally, when the gate resistance of the gate electrode of the IGBT is small, a surge voltage is generated due to a sudden change in the electron current. Therefore, if the gate resistance is sufficiently increased, a rapid change in the electron current can be suppressed as shown in FIG. However, when the gate resistance is increased, there is a problem that the turn-off time becomes longer and the loss during switching increases.

これに対して、本実施形態のIGBT1においては、エミッタ電極22とN+エミッタ層16とのコンタクトを桟部16Bのみで確保しているため、P-ベース層14にできるチャネルまでのN+エミッタ層16の抵抗が増大する。これにより、図5(A)に示すように、ターンオフ時の電子電流の減少傾きdi/dtが、図5(C)の場合と同様に小さくなり、正孔電流の増加がなくなる。したがって、本実施形態のIGBT1においては、ゲート抵抗を大きくする必要がないため、ターンオフ時のエネルギー損失を抑えることができる。 On the other hand, in the IGBT 1 of the present embodiment, the contact between the emitter electrode 22 and the N + emitter layer 16 is ensured only by the crosspieces 16B, so that the N + emitter up to the channel formed in the P base layer 14 can be obtained. The resistance of layer 16 increases. As a result, as shown in FIG. 5A, the decreasing slope di / dt of the electron current at turn-off becomes small as in the case of FIG. 5C, and the hole current does not increase. Therefore, in the IGBT 1 of the present embodiment, it is not necessary to increase the gate resistance, so that energy loss during turn-off can be suppressed.

以上説明したように、本実施形態によれば、N+エミッタ層16を桁部16Aと桟部16Bとを有する梯子状に形成し、エミッタ電極22とN+エミッタ層16とのコンタクトを桟部16Bのみとしたため、両側の桁部16Aを絶縁層18から露出させるようにコンタクト開口24を設ける必要がない。これにより、コンタクト部分の微細化が可能となりオン電圧の低減を図ることができる。
これに加えて、P-ベース層14にできるチャネルまでのN+エミッタ層16の抵抗が増大することから、ゲート抵抗を大きくせずともターンオフ時の電子電流の減少傾きdi/dtを小さくでき、ターンオフ時のエネルギー損失を抑えることができる。
As described above, according to the present embodiment, the N + emitter layer 16 is formed in a ladder shape having the beam portion 16A and the beam portion 16B, and the contact between the emitter electrode 22 and the N + emitter layer 16 is set as the beam portion. Since only 16B is provided, there is no need to provide the contact opening 24 so that the spar 16A on both sides is exposed from the insulating layer 18. As a result, the contact portion can be miniaturized and the on-voltage can be reduced.
In addition, since the resistance of the N + emitter layer 16 up to the channel formed in the P base layer 14 increases, the decrease slope di / dt of the electron current at turn-off can be reduced without increasing the gate resistance. Energy loss at turn-off can be suppressed.

また本実施形態によれば、コンタクト占有率を40%〜75%としたため、飽和電圧を低めつつ十分な負荷短絡耐量を確保することができる。
さらに本実施形態によれば、桁部16Aに、少なくとも1以上の桟部16Bを含むごとに、N+エミッタ層16を設けない所定長さKbの間引き部16Cを設ける構成としたため、更なる微細化が可能となりオン電圧を下げることができる。
In addition, according to the present embodiment, since the contact occupancy ratio is set to 40% to 75%, a sufficient load short-circuit withstand capability can be ensured while lowering the saturation voltage.
Furthermore, according to the present embodiment, every time the beam portion 16A includes at least one crosspiece 16B, the thinned portion 16C having a predetermined length Kb in which the N + emitter layer 16 is not provided is provided. The on-voltage can be lowered.

なお、上述した実施形態は、あくまでも本発明の一態様を示すものであり、本発明の趣旨を逸脱しない範囲で任意に変形及び応用が可能である。
例えば上述した実施形態では、半導体層の導電型をn型としてnチャネル型のIGBTを説明したが、当該半導体層の導電型をp型としてpチャネル型のIGBTとしても良い。
The above-described embodiment is merely an aspect of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.
For example, in the above-described embodiment, the n-channel type IGBT has been described in which the conductivity type of the semiconductor layer is n-type. However, a p-channel type IGBT may be used by setting the conductivity type of the semiconductor layer to be p-type.

1 IGBT(半導体装置)
10 半導体層
12 コレクタ層
14 ベース層
16 エミッタ層
16A 桁部
16B 桟部
16C 間引き部
18 絶縁層
20 ゲート電極
22 エミッタ電極
24 コンタクト開口
25 IGBTセル
Vce 飽和電圧
tsc 短絡時間
1 IGBT (semiconductor device)
DESCRIPTION OF SYMBOLS 10 Semiconductor layer 12 Collector layer 14 Base layer 16 Emitter layer 16A Girder part 16B Crosspiece part 16C Thinning part 18 Insulating layer 20 Gate electrode 22 Emitter electrode 24 Contact opening 25 IGBT cell Vce Saturation voltage tsc Short circuit time

Claims (2)

第1導電型の半導体層の一方の表面に第2導電型のコレクタ層を設け、他方の表面に第2導電型のベース層を形成し、当該ベース層に第1導電型のエミッタ層を選択的に形成し、当該エミッタ層の上に絶縁層を介してゲート電極、及び、前記エミッタ層にコンタクトするエミッタ電極を形成した半導体装置において、
前記エミッタ層を2つの桁部と前記桁部間に設けられた桟部とを有する梯子状に形成し、前記桁部を前記絶縁層で覆い前記桟部のみで前記エミッタ電極とコンタクトさせるとともに、
前記桟部のそれぞれを横断する方向に延びるエミッタ電極の面積に対し、前記桟部と前記エミッタ電極とがコンタクトするコンタクト面積が占める割合を40%〜75%としたことを特徴とする半導体装置。
A collector layer of the second conductivity type is provided on one surface of the semiconductor layer of the first conductivity type, a base layer of the second conductivity type is formed on the other surface, and an emitter layer of the first conductivity type is selected as the base layer In a semiconductor device in which a gate electrode and an emitter electrode in contact with the emitter layer are formed on the emitter layer via an insulating layer,
The emitter layer is formed in a ladder shape having two beam portions and a beam portion provided between the beam portions, the beam portion is covered with the insulating layer, and the emitter electrode is contacted only with the beam portion,
The semiconductor device according to claim 1, wherein a ratio of a contact area where the crosspiece and the emitter electrode are in contact to an area of the emitter electrode extending in a direction crossing each of the crosspieces is 40% to 75%.
前記桁部には、少なくとも1以上の前記桟部を含むごとに、前記エミッタ層を設けない所定長の間引き部を設けたことを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein a thinning portion having a predetermined length in which the emitter layer is not provided is provided in the beam portion every time at least one of the crosspieces is included.
JP2010041426A 2010-02-26 2010-02-26 Semiconductor device Expired - Fee Related JP5546903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010041426A JP5546903B2 (en) 2010-02-26 2010-02-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010041426A JP5546903B2 (en) 2010-02-26 2010-02-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2011181541A true JP2011181541A (en) 2011-09-15
JP5546903B2 JP5546903B2 (en) 2014-07-09

Family

ID=44692794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010041426A Expired - Fee Related JP5546903B2 (en) 2010-02-26 2010-02-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5546903B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140773A (en) * 1987-11-27 1989-06-01 Hitachi Ltd Insulated-gate transistor
JPH05206470A (en) * 1991-11-20 1993-08-13 Nec Corp Insulated gate field effect transistor
JPH10173170A (en) * 1996-12-05 1998-06-26 Toshiba Corp Semiconductor device
JP2000106434A (en) * 1998-09-29 2000-04-11 Toshiba Corp High-breakdown voltage semiconductor device
JP2001352061A (en) * 2000-06-07 2001-12-21 Mitsubishi Electric Corp Semiconductor device
JP2008034794A (en) * 2006-04-27 2008-02-14 Fuji Electric Device Technology Co Ltd Vertical-trench insulated gate mos semiconductor device
JP2008103375A (en) * 2006-10-17 2008-05-01 Fuji Electric Device Technology Co Ltd Semiconductor device, and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140773A (en) * 1987-11-27 1989-06-01 Hitachi Ltd Insulated-gate transistor
JPH05206470A (en) * 1991-11-20 1993-08-13 Nec Corp Insulated gate field effect transistor
JPH10173170A (en) * 1996-12-05 1998-06-26 Toshiba Corp Semiconductor device
JP2000106434A (en) * 1998-09-29 2000-04-11 Toshiba Corp High-breakdown voltage semiconductor device
JP2001352061A (en) * 2000-06-07 2001-12-21 Mitsubishi Electric Corp Semiconductor device
JP2008034794A (en) * 2006-04-27 2008-02-14 Fuji Electric Device Technology Co Ltd Vertical-trench insulated gate mos semiconductor device
JP2008103375A (en) * 2006-10-17 2008-05-01 Fuji Electric Device Technology Co Ltd Semiconductor device, and manufacturing method thereof

Also Published As

Publication number Publication date
JP5546903B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
US10892352B2 (en) Power semiconductor device
CN106206698B (en) Reverse conducting insulated gate bipolar transistor
US9601485B2 (en) Reverse-conducting IGBT with buffer layer and separation layer for reducing snapback
JP6743026B2 (en) Semiconductor element
JP6274318B2 (en) Semiconductor element
JP5634318B2 (en) Semiconductor device
US10186606B2 (en) Semiconductor device
JP2016029710A (en) Semiconductor device
US10608104B2 (en) Trench transistor device
WO2013179648A1 (en) Semiconductor device
JP5412717B2 (en) Trench type insulated gate semiconductor device
JP2013115223A (en) Semiconductor device
WO2015177910A1 (en) Semiconductor device
JPH1074959A (en) Semiconductor device for electric power
JP5017850B2 (en) Power semiconductor device and power conversion device using the same
JP5261893B2 (en) Trench type insulated gate bipolar transistor
JP2015195366A (en) semiconductor device
JP2009081381A (en) Semiconductor device
JP6739659B2 (en) Semiconductor device
JP5546903B2 (en) Semiconductor device
JP2007258617A (en) Semiconductor device and manufacturing method of semiconductor device
CN111326510B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2017157673A (en) Semiconductor device
JPWO2020129186A1 (en) Semiconductor device
JP2008182032A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140514

R150 Certificate of patent or registration of utility model

Ref document number: 5546903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees