JP2011179966A - Sound sensitivity measuring apparatus - Google Patents

Sound sensitivity measuring apparatus Download PDF

Info

Publication number
JP2011179966A
JP2011179966A JP2010044430A JP2010044430A JP2011179966A JP 2011179966 A JP2011179966 A JP 2011179966A JP 2010044430 A JP2010044430 A JP 2010044430A JP 2010044430 A JP2010044430 A JP 2010044430A JP 2011179966 A JP2011179966 A JP 2011179966A
Authority
JP
Japan
Prior art keywords
sound
sound source
acoustic sensitivity
acceleration
sound pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010044430A
Other languages
Japanese (ja)
Other versions
JP5439226B2 (en
Inventor
Kei Ichikawa
佳 市川
Yasuhiko Kagiyama
恭彦 鍵山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010044430A priority Critical patent/JP5439226B2/en
Publication of JP2011179966A publication Critical patent/JP2011179966A/en
Application granted granted Critical
Publication of JP5439226B2 publication Critical patent/JP5439226B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sound sensitivity measuring apparatus for preventing the accuracy from being degraded by the directivity of a sound source, and correctly measuring the sound sensitivity in an intermediate frequency band. <P>SOLUTION: The sound sensitivity measuring apparatus includes the sound source attached to a rotatable fixing member disposed within a cab, and rotated along with the rotated fixing member; a sound pressure sensor for detecting sound pressure by a sound emitted from the sound source; an acceleration sensor provided on the surface of the cab and detecting an acceleration by the sound; and a sound sensitivity calculation means for calculating the sound sensitivity from the sound pressure and the acceleration. The sound sensitivity calculation means calculates the sound sensitivity from the sound pressure and the acceleration obtained by the sound emitted from the sound source at each rotation position. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、音響感度測定装置に関し、より具体的には、車室等の比較的狭い閉空間における音響感度を測定する音響感度測定装置に関する。   The present invention relates to an acoustic sensitivity measuring apparatus, and more specifically to an acoustic sensitivity measuring apparatus that measures acoustic sensitivity in a relatively narrow closed space such as a passenger compartment.

従来から、多点入力からの感度を測定する場合、相反定理を用いて、入力側ではなく応答側を加振させることにより、測定回数を削減する方法が知られている。例えば、音響感度を相反定理を用いて測定する場合、応答側に置かれたスピーカ等の音源から室内に音響を入力し、実際には入力側となる各点での振動を計測する。   Conventionally, when measuring the sensitivity from multi-point input, a method of reducing the number of measurements by using the reciprocity theorem and vibrating the response side instead of the input side is known. For example, when measuring acoustic sensitivity using the reciprocity theorem, sound is input into a room from a sound source such as a speaker placed on the response side, and vibrations at each point on the input side are actually measured.

特許文献1の音響感度測定装置では、キャブ(車室ユニット)内の座席に配置した音源と、音源に設置した1つの1方向の音源側の加速度検出手段と、キャブマウント点の4箇所分の3方向のキャブマウント側の加速度検出手段とを用いて音響感度測定を行う。   In the acoustic sensitivity measuring device of Patent Document 1, a sound source arranged in a seat in a cab (cabinet unit), one unidirectional sound source side acceleration detection means installed in the sound source, and four cab mount points. The acoustic sensitivity is measured using acceleration detection means on the cab mount side in three directions.

特開2007−327908号公報JP 2007-327908 A

しかし、特許文献1の音響感度測定装置では、音源は座席に固定された一方向に向いているため、200Hz〜500Hz程度の中周波数帯では、音源の指向性やその音源として用いるスピーカ等の大きさが問題となり、精度良く計測ができないという問題がある。   However, in the acoustic sensitivity measuring apparatus of Patent Document 1, since the sound source is directed in one direction fixed to the seat, in the medium frequency band of about 200 Hz to 500 Hz, the directivity of the sound source and the size of the speaker used as the sound source are large. There is a problem that measurement cannot be performed with high accuracy.

本発明は、この音源の指向性による精度低下の問題を解決し、特に中周波数帯での音響感度を精度良く測定することを目的とする。   An object of the present invention is to solve the problem of accuracy degradation due to the directivity of the sound source, and particularly to accurately measure the acoustic sensitivity in the middle frequency band.

本発明は、音響感度測定装置を提供する。その音響感度測定装置は、キャブ内に配置される回転可能な固定部材に取付けられ、固定部材の回転と共に回転する音源と、音源が発する音響による音圧を検出する音圧センサと、キャブの表面に設けられ、音響による加速度を検出する加速度センサと、音圧と加速度から音響感度を算出する音響感度算出手段とを備え、音響感度算出手段は、音源が各回転位置において発する音響下で得られる音圧および加速度から音響感度を算出する。   The present invention provides an acoustic sensitivity measuring apparatus. The acoustic sensitivity measuring device is attached to a rotatable fixing member disposed in a cab, and a sound source that rotates as the fixing member rotates, a sound pressure sensor that detects sound pressure due to sound emitted from the sound source, and a surface of the cab Provided with an acceleration sensor for detecting acceleration due to sound and acoustic sensitivity calculation means for calculating acoustic sensitivity from the sound pressure and acceleration, the acoustic sensitivity calculation means being obtained under the sound emitted by the sound source at each rotational position. The acoustic sensitivity is calculated from the sound pressure and acceleration.

本発明によれば、音源の向きを変えながら音響感度を求めることができるので、複数の音源を用意することなく、指向性による音響感度測定の精度低下を改善することができる。   According to the present invention, since the acoustic sensitivity can be obtained while changing the direction of the sound source, it is possible to improve the decrease in accuracy of the acoustic sensitivity measurement due to directivity without preparing a plurality of sound sources.

本発明の一形態によると、音圧センサは、固定部材に取付けられ、音源と共に回転し、音源の前方の所定距離における音圧を検出する。   According to one aspect of the present invention, the sound pressure sensor is attached to the fixed member, rotates with the sound source, and detects the sound pressure at a predetermined distance in front of the sound source.

本発明の一形態によれば、絶えず音源前の所定位置における音圧を測定できるので、音源の回転角度に関わらず音響感度を安定して精度良く求めることができる。   According to one aspect of the present invention, since the sound pressure at a predetermined position before the sound source can be measured continuously, the acoustic sensitivity can be obtained stably and accurately regardless of the rotation angle of the sound source.

本発明の一形態によると、音源の回転角度を検出する角度センサと、音源の入力電圧を制御する制御装置とをさらに備え、制御装置は、音源の回転角度および音圧の少なくともいずれか一方に応じて音源の入力電圧を変える。   According to one aspect of the present invention, it further includes an angle sensor that detects the rotation angle of the sound source and a control device that controls the input voltage of the sound source, and the control device applies at least one of the rotation angle and the sound pressure of the sound source. Change the input voltage of the sound source accordingly.

本発明の一形態によれば、音源の回転角度および音圧の少なくともいずれか一方に応じて音源の入力電圧を調整できるので、音源の向きが変わっても、音響が受ける体積加速度が音源の向きにより変化したり、加速度検出点の振動レベルが大幅に変化したりして、信号のS/N比を一定に保つことが困難となる状況を抑制することができる。   According to one aspect of the present invention, since the input voltage of the sound source can be adjusted according to at least one of the rotation angle and sound pressure of the sound source, the volume acceleration that the sound receives even if the direction of the sound source is changed It is possible to suppress a situation in which it is difficult to keep the S / N ratio of the signal constant due to a change due to or a vibration level at the acceleration detection point significantly changing.

本発明の一形態によると、音源の入力信号となるノイズ信号を制御装置に送るノイズ発生器をさらに備え、音響感度算出手段は、音源がノイズ信号に基づく音響を発する場合、入力される音圧および加速度の変化率が所定値以下となるまで音響感度を算出する。   According to an aspect of the present invention, the sound generator further includes a noise generator that sends a noise signal that is an input signal of the sound source to the control device, and the acoustic sensitivity calculation unit is configured to input sound pressure when the sound source emits sound based on the noise signal. Then, the acoustic sensitivity is calculated until the rate of change of acceleration is equal to or less than a predetermined value.

本発明の一形態によれば、ホワイトノイズのようなノイズ信号を用いた場合においても、音響の回転に伴うモーターノイズや音響加速度のドップラー効果の修正等が不要となり、音響感度を精度良く求めることが可能となる。   According to one aspect of the present invention, even when a noise signal such as white noise is used, it is not necessary to correct motor noise accompanying acoustic rotation, Doppler effect of acoustic acceleration, etc., and to obtain acoustic sensitivity with high accuracy. Is possible.

本発明の一形態によると、音源は、スピーカと、水平方向に延びてスピーカの略水平な回転軸を支持するハウジングと、ハウジングを略垂直な回転軸の回りで回転させる第1のモータと、スピーカを略水平な回転軸の回りで回転させる第2のモータとを備え、スピーカは、略水平な回転軸の軸方向の端部に設けられた平面部を有し、該平面部とハウジングとの間に、第2のモータにより駆動される駆動部がスピーカの略水平な回転軸と同軸に支持される。   According to an aspect of the present invention, the sound source includes a speaker, a housing that extends in a horizontal direction and supports a substantially horizontal rotation shaft of the speaker, a first motor that rotates the housing around a substantially vertical rotation shaft, And a second motor for rotating the speaker around a substantially horizontal rotation axis, the speaker having a flat portion provided at an axial end portion of the substantially horizontal rotation shaft, the flat portion and the housing, In the meantime, the drive unit driven by the second motor is supported coaxially with the substantially horizontal rotation axis of the speaker.

本発明の一形態によれば、音源であるスピーカが略水平な回転軸および略垂直な回転軸の回りで回転できるので、測定環境に応じて音源の向きを自在に変えることができ、より精度よく音響感度を測定することが可能となる。   According to one aspect of the present invention, the speaker as the sound source can rotate about the substantially horizontal rotation axis and the substantially vertical rotation axis, so that the direction of the sound source can be freely changed according to the measurement environment, and more accurate. It becomes possible to measure the acoustic sensitivity well.

本発明の測定原理(方法)を説明するための図である。It is a figure for demonstrating the measurement principle (method) of this invention. 本発明の一実施形態の音響感度測定装置の構成を示す図である。It is a figure which shows the structure of the acoustic sensitivity measuring apparatus of one Embodiment of this invention. 本発明の一実施形態の音源の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the sound source of one Embodiment of this invention. 本発明の一実施形態の音源の回転の様子を示す図である。It is a figure which shows the mode of rotation of the sound source of one Embodiment of this invention. 計測データの平均をとる回数とデータ誤差の関係を示す図である。It is a figure which shows the relationship between the frequency | count which takes the average of measurement data, and a data error. 本発明の一実施形態の音響感度測定フローを示す図である。It is a figure which shows the acoustic sensitivity measurement flow of one Embodiment of this invention. 本発明の一実施形態の音源の構成を示す図である。It is a figure which shows the structure of the sound source of one Embodiment of this invention.

図面を参照しながら本発明の実施の形態を説明する。最初に図1を参照しながら本発明の測定原理(方法)について説明する。   Embodiments of the present invention will be described with reference to the drawings. First, the measurement principle (method) of the present invention will be described with reference to FIG.

図1は、本発明の測定原理を説明するための図である。図1(a)に示すように、音響感度は、ある入力点に入力(N)を与えた際の応答点で音圧センサ1が検出する音圧(Pa)から算出され、その単位は(Pa/N)となる。音響感度においても相反定理が成り立つので、音圧の応答点に入力を与えた際の入力点の応答を測定すれば、音響感度が求まる。   FIG. 1 is a diagram for explaining the measurement principle of the present invention. As shown in FIG. 1A, the acoustic sensitivity is calculated from the sound pressure (Pa) detected by the sound pressure sensor 1 at a response point when an input (N) is given to an input point, and the unit is ( Pa / N). Since the reciprocity theorem holds in acoustic sensitivity, the acoustic sensitivity can be obtained by measuring the response of the input point when an input is given to the sound pressure response point.

例えば、図1(b)に示すように、応答点に音源2を置いて、音響への入力として体積加速度Av(m/s)を与え、入力点の応答として加速度センサ3が検出する加速度a(m/s)を得る。それらの比(Av/a)から音響感度Rs((m/s)/(m/s)=(1/m)=(Pa/N)))を求めることができる。すなわち、次式により音響感度Rsを求めることができる。

Figure 2011179966
For example, as shown in FIG. 1B, a sound source 2 is placed at a response point, volume acceleration Av (m 3 / s 2 ) is given as an input to sound, and the acceleration sensor 3 detects a response at the input point. An acceleration a (m / s 2 ) is obtained. The acoustic sensitivity Rs ((m 3 / s 2 ) / (m / s 2 ) = (1 / m 2 ) = (Pa / N))) can be obtained from the ratio (Av / a). That is, the acoustic sensitivity Rs can be obtained from the following equation.
Figure 2011179966

一般的に音響へ入力するために、スピーカなどの音源を利用するが、この際音響へ入力した体積加速度Av(m/s)を正確に知る必要がある。体積加速度Av(m/s)を推定する方法として、例えば、音源の振動板から推定する方法と、音源の振動板の前方直近の音圧から推定する方法がある。前者は特許文献1で採用されており、体積加速度Av(m/s)は、振動板の振動の大きさPf(m/s)と振動板の面積S(m)の積から求める(Av=Pf×S(m/s))。 In general, a sound source such as a speaker is used to input to sound. At this time, it is necessary to accurately know the volume acceleration Av (m 3 / s 2 ) input to the sound. As a method of estimating the volume acceleration Av (m 3 / s 2 ), for example, there are a method of estimating from the diaphragm of the sound source and a method of estimating from the sound pressure immediately before the diaphragm of the sound source. The former is adopted in Patent Document 1, and the volume acceleration Av (m 3 / s 2 ) is calculated from the product of the vibration magnitude Pf (m / s 2 ) of the diaphragm and the area S (m 2 ) of the diaphragm. Obtained (Av = Pf × S (m 3 / s 2 )).

本発明の一実施形態では、後者の音源の振動板の前方直近の音圧から推定する方法を利用して体積加速度Av(m/s)を求める。その概要を以下に説明する。 In one embodiment of the present invention, the volume acceleration Av (m 3 / s 2 ) is obtained using a method of estimating from the sound pressure immediately before the diaphragm of the latter sound source. The outline will be described below.

ダランベールの波動方程式から、ある音場の速度ポテンシャルΦ、音圧p、粒子速度v、および加速度aには次の関係がある。ただし、ρは密度である。

Figure 2011179966
From D'Alembert's wave equation, the velocity potential Φ, sound pressure p, particle velocity v, and acceleration a of a certain sound field have the following relationship. Where ρ is density.
Figure 2011179966

ここで、音圧pと粒子速度vとの比zを音響インピーダンス密度という。

Figure 2011179966
Here, the ratio z between the sound pressure p and the particle velocity v is referred to as acoustic impedance density.
Figure 2011179966

特に、進行する平面波の場合は媒質に対して固有の値となり、固有音響インピーダンスと呼ぶ。キャブ(車室ユニット)内においた音源に、正規乱数信号を入力したことにより出力される音源の振動板直前の音圧は、ほぼ音場の影響を受けない進行波であることが知られている。したがって、この知見および(3)式の関係を用いて、次式により振動板直前の音圧pから振動板直前の粒子速度vを推定することが出来る。

Figure 2011179966
In particular, in the case of a traveling plane wave, it has a value specific to the medium, and is called a specific acoustic impedance. It is known that the sound pressure immediately before the diaphragm of the sound source that is output when a normal random number signal is input to the sound source placed in the cab (cabin unit) is a traveling wave that is almost unaffected by the sound field. Yes. Therefore, the particle velocity v immediately before the diaphragm can be estimated from the sound pressure p immediately before the diaphragm using the following expression using this knowledge and the relationship of the expression (3).
Figure 2011179966

粒子速度vを時間微分したものが粒子加速度aなので、粒子加速度aは(4)式を用いて次式から求められる。

Figure 2011179966
Since the particle velocity a obtained by differentiating the particle velocity v is the particle acceleration a, the particle acceleration a can be obtained from the following equation using equation (4).
Figure 2011179966

振動板によって加振された媒質が通過する面積をSとし、未知数αを導入すると体積加速度Avは、(5)式の加速度aを用いて次式から求められる。

Figure 2011179966
If the area through which the medium vibrated by the diaphragm passes is S and the unknown α is introduced, the volume acceleration Av can be obtained from the following equation using the acceleration a in equation (5).
Figure 2011179966

音源には正規乱数が入力として与えられているので、音圧pはランダム信号として得られる。ランダム信号を微分したものはランダム信号なので、周波数特性FFT(変数)は、同様(絶対値は異なるが)となり、未知数βを用いて次式のように表すことができる。

Figure 2011179966
Since a normal random number is given as an input to the sound source, the sound pressure p is obtained as a random signal. Since the signal obtained by differentiating the random signal is a random signal, the frequency characteristic FFT (variable) is the same (although the absolute value is different), and can be expressed as follows using the unknown β.
Figure 2011179966

したがって、体積加速度Avの周波数特性FFT(Av)はそれぞれの未知数をγとして1つにまとめると、次式のように表すことができる。

Figure 2011179966
Therefore, the frequency characteristic FFT (Av) of the volume acceleration Av can be expressed as the following equation when the unknowns are combined into one as γ.
Figure 2011179966

この未知数γは進行波の仮定が成り立ち、振動板と音圧測定位置との関係が一定である限り、特有の値となるので、事前に測定して求めておくことができる。(8)式の関係から、振動板直前の音圧pを用いて媒質に与えられた体積加速度Avを推定することが可能となる。本発明では、このようにして得られる体積加速度Avを用いて、上述した(1)式から音響感度Rsを算出する。   This unknown γ is a unique value as long as the traveling wave assumption is satisfied and the relationship between the diaphragm and the sound pressure measurement position is constant, and can be obtained by measurement in advance. From the relationship of equation (8), it is possible to estimate the volume acceleration Av given to the medium using the sound pressure p immediately before the diaphragm. In the present invention, the acoustic sensitivity Rs is calculated from the above-described equation (1) using the volume acceleration Av thus obtained.

図2は、本発明の一実施形態の音響感度測定装置の構成を示す図である。この実施形態では、車両のキャブ(車室ユニット)内での音響感度測定を想定している。   FIG. 2 is a diagram showing a configuration of an acoustic sensitivity measuring apparatus according to an embodiment of the present invention. In this embodiment, it is assumed that acoustic sensitivity is measured in a cab (vehicle compartment unit) of a vehicle.

図2に示す音響感度測定装置は、キャブ10内に配置される回転可能な固定部材11に取付けられ、固定部材11の回転と共に回転する音源12と、音源12が発する音響による音圧を検出する音圧センサ13と、キャブ10の表面に設けられ、音響による加速度を検出する加速度センサ14と、音圧と加速度から音響感度を算出する音響感度算出手段15とを備える。   The acoustic sensitivity measuring apparatus shown in FIG. 2 is attached to a rotatable fixing member 11 disposed in the cab 10, and detects a sound source 12 that rotates with the rotation of the fixing member 11 and a sound pressure due to sound generated by the sound source 12. A sound pressure sensor 13, an acceleration sensor 14 provided on the surface of the cab 10 for detecting acceleration due to sound, and an acoustic sensitivity calculation means 15 for calculating acoustic sensitivity from the sound pressure and acceleration are provided.

音源12は、モータ16によって固定部材11と共に回転軸24の回りを回転する。モータ16は例えばステッピングモータからなり、回転制御器17の制御下で所定のステップ(角度)毎に音源12を回転させる。その回転角度は、角度検出器18により検出される。音源12は、例えばコーン型スピーカや平面スピーカのような任意の音響スピーカからなる。音源12の出力はパワーアンプ19によって可変され、アンプ19の出力はアンプ制御器20によって制御される。アンプ19には、ノイズ発生器21が接続される。ノイズ発生器21は、乱数信号(ホワイトノイズ)等の任意のノイズ信号を発生することができる。ノイズ発生器21は、例えば乱数発生器からなる。   The sound source 12 is rotated around the rotation shaft 24 together with the fixing member 11 by the motor 16. The motor 16 is formed of a stepping motor, for example, and rotates the sound source 12 at every predetermined step (angle) under the control of the rotation controller 17. The rotation angle is detected by the angle detector 18. The sound source 12 includes an arbitrary acoustic speaker such as a cone type speaker or a flat speaker. The output of the sound source 12 is varied by the power amplifier 19, and the output of the amplifier 19 is controlled by the amplifier controller 20. A noise generator 21 is connected to the amplifier 19. The noise generator 21 can generate an arbitrary noise signal such as a random number signal (white noise). The noise generator 21 is a random number generator, for example.

音圧センサ13は、音源12と共に回転するように、固定具22により固定部材11に固定される。その際、音圧センサ13は、音源12の表面から所定の距離に位置するように、固定部材11に固定される。上述した(8)式のγ値を一定の値として得るためである。音圧センサ13は、例えばマイクロホンからなる。   The sound pressure sensor 13 is fixed to the fixing member 11 by a fixing tool 22 so as to rotate together with the sound source 12. At that time, the sound pressure sensor 13 is fixed to the fixing member 11 so as to be located at a predetermined distance from the surface of the sound source 12. This is because the γ value of the above-described equation (8) is obtained as a constant value. The sound pressure sensor 13 is composed of a microphone, for example.

加速度センサ14は、例えば1軸の加速度センサからなり、キャブマウント点における上下方向の加速度を検出する。なお、2軸あるいは3軸の加速度センサを用いて、キャブマウント点における上下方向、前後方向、あるいは左右方向の2方向あるいは3方向の加速度を同時に検出するようにしてもよい。   The acceleration sensor 14 is composed of, for example, a uniaxial acceleration sensor, and detects vertical acceleration at the cab mount point. In addition, you may make it detect simultaneously the acceleration of 2 directions or 3 directions of the up-down direction, the front-back direction, or the left-right direction in a cab mount point using a 2-axis or 3-axis acceleration sensor.

音圧センサ13の検出信号と加速度センサ14の検出信号は、データ収集器23を介して音響感度算出手段15に入力される。データ収集器23は、それぞれの信号を増幅したり波形整形するためのチャージアンプやシグナルコンディショナ等を含む。なお、データ収集器23は、音響感度算出手段15の一部として一体的に構成してもよい。   The detection signal of the sound pressure sensor 13 and the detection signal of the acceleration sensor 14 are input to the acoustic sensitivity calculation means 15 via the data collector 23. The data collector 23 includes a charge amplifier, a signal conditioner, etc. for amplifying and shaping the respective signals. The data collector 23 may be integrally configured as a part of the acoustic sensitivity calculation unit 15.

音響感度算出手段15は、例えばFFTなどの周波数解析回路を含む。音響感度算出手段15は、音源12が各回転位置(角度)において発する音響下で得られる音圧および加速度から音響感度を算出する。具体的には、音源12を所定の角度単位で回転させながら、各角度において、受け取った音圧pを用いて上述した(8)式の関係を用いて体積加速度Avを求める。求めた体積加速度Av(m/s)と受け取った振動加速度a(m/s)とから(1)式を用いて音響感度Rs((1/m)=(Pa/N))を算出する。その際、音源の各回転角度(各向き)での音響感度Rsの平均値をその測定時の音響感度とする。 The acoustic sensitivity calculation means 15 includes a frequency analysis circuit such as FFT, for example. The acoustic sensitivity calculation means 15 calculates the acoustic sensitivity from the sound pressure and acceleration obtained under the sound emitted by the sound source 12 at each rotational position (angle). Specifically, while the sound source 12 is rotated by a predetermined angle unit, the volume acceleration Av is obtained at each angle using the received sound pressure p and the relationship of the above-described equation (8). Based on the obtained volume acceleration Av (m 3 / s 2 ) and the received vibration acceleration a (m / s 2 ), the acoustic sensitivity Rs ((1 / m 2 ) = (Pa / N)) using the equation (1) Is calculated. At that time, the average value of the acoustic sensitivity Rs at each rotation angle (each direction) of the sound source is set as the acoustic sensitivity at the time of the measurement.

音圧センサ13の出力と角度検出器18の出力はアンプ制御器20に入力されて、アンプ19の出力制御に利用される。その理由は次の通りである。音源12を回転させながら各回転位置(角度)で連続して計測を実施するため、音源12の向きによっては、リファレンス点(音圧測定点)や応答点(加速度測定点)での測定レベルが異なってしまう。これにより測定のレンジ域が変化してしまう可能性があり、オーバーロードやアンダーロードが発生してしまうことが予測される。   The output of the sound pressure sensor 13 and the output of the angle detector 18 are input to the amplifier controller 20 and used for output control of the amplifier 19. The reason is as follows. Since the measurement is continuously performed at each rotational position (angle) while rotating the sound source 12, the measurement level at the reference point (sound pressure measurement point) or response point (acceleration measurement point) depends on the direction of the sound source 12. It will be different. As a result, the range of measurement may change, and it is predicted that overload or underload will occur.

音源12の向きを変化させるたびに音圧レベルのレンジあわせを行うほうが精度は向上するが、測定工数(時間)が多くかかってしまう。そのため、リファレンス点(音圧測定点)や応答点(加速度測定点)でのレベルが適切なレンジになるように、音圧センサ13の出力をアンプ制御器20に入れて、音源12から出力される音圧レベルのフィードバック制御を行う。あるいは、音圧レベルと回転角度の関係を事前に求めてアンプ制御器20のメモリに保管しておき、その関係を参照することで、角度検出器18の出力(角度)から、フィードバック制御を介さずに上記の音圧レベル調整を実現してもよい。   The accuracy is improved by adjusting the sound pressure level range each time the direction of the sound source 12 is changed, but the measurement man-hour (time) is increased. Therefore, the output of the sound pressure sensor 13 is input to the amplifier controller 20 and output from the sound source 12 so that the level at the reference point (sound pressure measurement point) and response point (acceleration measurement point) is in an appropriate range. Feedback control of sound pressure level. Alternatively, the relationship between the sound pressure level and the rotation angle is obtained in advance and stored in the memory of the amplifier controller 20, and the relationship is referred to so that feedback control is performed from the output (angle) of the angle detector 18. Instead, the above sound pressure level adjustment may be realized.

図3は、本発明の一実施形態の音源の配置例を示す上面図である。車両30は、トランクルーム31と、前部座席33、34と後部座席35を有する車室32を含む。音源35は、ハンドル36前の前部座席33に設置される。この場合、相反定理により、運転者の位置、より正確には運転者の耳の位置付近での音響感度を求めることになる。音源35は、測定したい任意の位置に置くことができ、例えば前部座席34に設置すればその席に座る同乗者が受聴するであろう音響感度を求めることができる。   FIG. 3 is a top view showing an example of arrangement of sound sources according to an embodiment of the present invention. The vehicle 30 includes a trunk room 31 and a passenger compartment 32 having front seats 33 and 34 and a rear seat 35. The sound source 35 is installed in the front seat 33 in front of the handle 36. In this case, according to the reciprocity theorem, the acoustic sensitivity near the position of the driver, more precisely near the position of the driver's ear, is obtained. The sound source 35 can be placed at an arbitrary position to be measured. For example, if the sound source 35 is installed in the front seat 34, it is possible to obtain the acoustic sensitivity that a passenger sitting in the seat will hear.

図4は、本発明の一実施形態の音源の回転の様子を示す図である。図4は、図3の前部座席33、34の周辺のみを描いてある。(a)は音源35としてコーン型スピーカを用いた場合の例である。(b)は音源35として平面スピーカを用いた場合の例である。   FIG. 4 is a diagram illustrating a state of rotation of the sound source according to the embodiment of the present invention. FIG. 4 shows only the periphery of the front seats 33 and 34 of FIG. (A) is an example when a cone-type speaker is used as the sound source 35. (B) is an example when a flat speaker is used as the sound source 35.

図4(a)では、音源35のコーン型スピーカは1つの点音源38とみなすことができ、距離とともに音が広がり、距離による音圧の減衰が大きくなる。音源35を回転させることにより、音源35より出力される平面波から球面波(呼吸球)を模擬することができる。その際、1ステップの回転角度(回転ステップ)はより細かいほうが球面波に近づくが、測定回数が増え、測定工数の増大につながってしまう。逆に、回転ステップが小さすぎると球面波として捉えることが出来なくなり、精度低下につながる。中周波(〜500Hz)までの精度を確保するために、回転のステップθは、図のように約15度以下(正12角形相当以上)にて実施するのが望ましい。   In FIG. 4A, the cone type speaker of the sound source 35 can be regarded as one point sound source 38, and the sound spreads with the distance, and the attenuation of the sound pressure with the distance increases. By rotating the sound source 35, a spherical wave (respiratory sphere) can be simulated from the plane wave output from the sound source 35. At that time, a finer rotation angle (rotation step) of one step is closer to a spherical wave, but the number of measurements increases, leading to an increase in the number of measurement steps. Conversely, if the rotation step is too small, it cannot be captured as a spherical wave, leading to a decrease in accuracy. In order to ensure accuracy up to a medium frequency (up to 500 Hz), it is desirable that the rotation step θ is performed at about 15 degrees or less (equivalent to a regular dodecagon) or more as shown in the figure.

図4(b)では、音源35の平面スピーカは、面全体が同一方向に振動する面音源であり、発生する音は平面波となる。距離による音の広がりが少なく、距離による音圧の減衰も少ない。この場合、図のようにスピーカ35から出る平面波の幅(≒スピーカの幅)をdとし、スピーカ35の前面から車室32の壁面までの距離をrとすると、回転ステップθは、壁面までの距離rに応じて変化させる必要があり、例えば次式のように求めることができる。

Figure 2011179966
In FIG. 4B, the plane speaker of the sound source 35 is a plane sound source whose entire surface vibrates in the same direction, and the generated sound is a plane wave. There is little spread of sound due to distance, and there is little attenuation of sound pressure due to distance. In this case, if the width of the plane wave coming out of the speaker 35 (≈the width of the speaker) is d and the distance from the front surface of the speaker 35 to the wall surface of the passenger compartment 32 is r, as shown in the figure, the rotation step θ is For example, the following equation can be obtained.
Figure 2011179966

本発明の一実施形態では、ノイズ発生器21の出力、すなわちアンプ19の入力として正規乱数信号を用いる。その理由は以下の通りである。測定した周波数帯域全域に対しての周波数応答を計測する場合、インパルス信号を入力する手法やSin波をスイープした信号を入力する手法もあるが、計測時間を短く簡便にする方法として、ホワイトノイズによる音源への加振(入力)をおこなうことが一般的におこなわれている。   In one embodiment of the present invention, a normal random signal is used as the output of the noise generator 21, that is, the input of the amplifier 19. The reason is as follows. When measuring the frequency response over the entire measured frequency band, there are a method of inputting an impulse signal and a method of inputting a signal obtained by sweeping a sine wave. Generally, excitation (input) to a sound source is performed.

ホワイトノイズは周波数に対して一定振幅となるランダム波であり、工学的には正規乱数が用いられる。正規乱数の特徴としては、ある一定時間の平均をもってホワイトノイズと見なすことが出来るので、計測結果が安定(収束)するまで待つ必要がある。   White noise is a random wave having a constant amplitude with respect to frequency, and a normal random number is used in engineering. As a feature of normal random numbers, an average over a certain period of time can be regarded as white noise, so it is necessary to wait until the measurement result is stabilized (converged).

図5は、データの平均をとる回数とデータ誤差(dB)の関係を示す図である。図5のグラフに示されるように、誤差が小さくなるまでには、ある程度の平均回数(図5の例では20回程度)が必要となってくる。なお、ランダム信号なので、常に図5のようなグラフになるわけでは無い。そこで、音源の各回転ステップでの計測は、平均の変化がある誤差範囲内に指定回連続で入ったか、もしくは、指定回数以上の平均処理を行った後に、次の回転ステップに進むように制御を行う。言い換えれば、音圧および加速度の変化率が所定値以下になるまで音響感度等を算出することが望まれる。   FIG. 5 is a diagram showing the relationship between the number of times of averaging data and the data error (dB). As shown in the graph of FIG. 5, a certain average number of times (about 20 in the example of FIG. 5) is required until the error is reduced. In addition, since it is a random signal, it does not always become a graph like FIG. Therefore, the measurement at each rotation step of the sound source is controlled to proceed to the next rotation step after entering the specified number of consecutive times within an error range with an average change or after performing the averaging process more than the specified number of times. I do. In other words, it is desirable to calculate the acoustic sensitivity or the like until the rate of change of the sound pressure and the acceleration becomes a predetermined value or less.

本発明の一実施形態では、測定条件によっては回転が過剰となってしまう場合もある。その際は、1周分(360度)の音響感度平均となるように、過剰となってしまった分だけ重みをつけて平均化を行う。i回目に測定した音響感度をRsi、重みをAiとすると、平均音響感度Rsは次式で求めることができる。

Figure 2011179966
In one embodiment of the present invention, rotation may become excessive depending on measurement conditions. In that case, weighting is performed by averaging the excess amount so that the average of the acoustic sensitivity for one round (360 degrees) is obtained. If the acoustic sensitivity measured at the i-th time is Rsi and the weight is Ai, the average acoustic sensitivity Rs can be obtained by the following equation.
Figure 2011179966

図6は、本発明の一実施形態の音響感度測定フローを示す図である。図2の構成例に基づき説明すると以下のようになる。ステップS1では、音源12の回転角度を設定する。初期値θと、最終の所定角度θと、1回転ステップの角度Δθを設定する。音源12の回転角度は、初期値θから所定角度θまでΔθ毎にステップしていく。ステップS2では、音源の回転角度を検出する。この検出信号は、既に述べたように、モータ16の回転制御17と音源のアンプ19の制御に利用される。 FIG. 6 is a diagram showing an acoustic sensitivity measurement flow according to an embodiment of the present invention. The following description is based on the configuration example of FIG. In step S1, the rotation angle of the sound source 12 is set. An initial value θ 0 , a final predetermined angle θ n and an angle Δθ of one rotation step are set. The rotation angle of the sound source 12 is stepped every Δθ from the initial value θ 0 to the predetermined angle θ n . In step S2, the rotation angle of the sound source is detected. As described above, this detection signal is used for the rotation control 17 of the motor 16 and the control of the amplifier 19 of the sound source.

ステップS3では、ノイズ発生器21から正規乱数のようなノイズ信号が音源12のアンプ19へ出力される。ステップS4では、アンプ19の出力電圧が設定される。音源12は、アンプ19から入力される所定の大きさ(振幅)のノイズ信号に応じた音(音響)を出力する。   In step S <b> 3, a noise signal such as a normal random number is output from the noise generator 21 to the amplifier 19 of the sound source 12. In step S4, the output voltage of the amplifier 19 is set. The sound source 12 outputs a sound (sound) corresponding to a noise signal having a predetermined magnitude (amplitude) input from the amplifier 19.

ステップS5では、音圧センサ13が検出した音圧が所定の信号レベルであるか否かを判別する。その理由は、既に説明したように、検出される音圧や加速度の信号レベル(レンジ)を適切な範囲に入れるためである。この判別がNoの場合には、ステップS4に戻り、アンプ19の出力電圧を再設定する。この判別がYesの場合には、ステップS6に移り、音圧センサ13が検出した音圧信号(データ)と加速度センサ14が検出した加速度信号(データ)をデータ収集器23により収集する。   In step S5, it is determined whether or not the sound pressure detected by the sound pressure sensor 13 is a predetermined signal level. The reason is that, as already explained, the signal level (range) of the detected sound pressure and acceleration is within an appropriate range. If this determination is No, the process returns to step S4, and the output voltage of the amplifier 19 is reset. When this determination is Yes, the process proceeds to step S6, where the sound pressure signal (data) detected by the sound pressure sensor 13 and the acceleration signal (data) detected by the acceleration sensor 14 are collected by the data collector 23.

ステップS7では、収集したデータに基づき音響感度算出手段15が体積加速度Av(m/s)と音響感度Rs(Pa/N)を算出する。その算出に際しては、既に図5を参照して述べたように、計測結果が安定した状態、すなわちデータ誤差(dB)が所定の誤差範囲になってから最終的な算出結果を得るようにする。 In step S7, the acoustic sensitivity calculation means 15 calculates the volume acceleration Av (m 3 / s 2 ) and the acoustic sensitivity Rs (Pa / N) based on the collected data. In the calculation, as described with reference to FIG. 5, the final calculation result is obtained after the measurement result is stable, that is, the data error (dB) is within a predetermined error range.

ステップS8では、音源の回転角度が最終の所定角度θであるか否かを判別する。この判別がNoの場合には、ステップS1に戻り、音源の回転角度を1つステップさせて次の回転角度を設定し、ステップS2以降を繰り返す。この判別がYesの場合には、測定を終了する。 In step S8, the rotation angle of the sound source it is determined whether or not the last of a predetermined angle theta n. If this determination is No, the process returns to step S1, the rotation angle of the sound source is stepped one step, the next rotation angle is set, and step S2 and subsequent steps are repeated. If this determination is Yes, the measurement is terminated.

以上説明した実施形態では、音源は略垂直な回転軸(例えば図2の11)の回りを回転させながら音響測定をおこなう場合について説明した。しかしながら、本発明の音源の形態としては、例えば図7に示すように、略垂直な回転軸のみならず略水平な回転軸の回りで回転できる音源を用いてもよい。その場合、音源であるスピーカが略水平な回転軸および略垂直な回転軸の回りで回転できるので、測定環境に応じて音源の向きを自在に変えることができ、より精度よく音響感度を測定することが可能となる。   In the embodiment described above, the case where sound measurement is performed while rotating the sound source around a substantially vertical rotation axis (for example, 11 in FIG. 2) has been described. However, as a form of the sound source of the present invention, for example, as shown in FIG. 7, a sound source that can rotate around a substantially horizontal rotation axis as well as a substantially vertical rotation axis may be used. In that case, the sound source speaker can rotate around a substantially horizontal rotation axis and a substantially vertical rotation axis, so the direction of the sound source can be freely changed according to the measurement environment, and the acoustic sensitivity can be measured more accurately. It becomes possible.

図7は、本発明の一実施形態の音源の構成を示す図である。図7の(a)は音源を斜め前方から見た図であり、(b)は斜め後方から見た図である。図7において、スピーカ40はハウジング41に設置される。ハウジング41は、水平方向に延びてスピーカ40の略水平な回転軸42を支持する。スピーカ40は、その略水平な回転軸の軸方向の2つの端部に平面部43を有する。その平面部43とハウジング41との間に、第2のモータ44により駆動される駆動部45がスピーカ40の略水平な回転軸42と同軸に支持される。駆動部45は、ベルト46により第2のモータ44の回転力をスピーカ40の略水平な回転軸42に伝達する。第2のモータ44の回転力により、スピーカ40は略水平な回転軸42の回りで回転する。   FIG. 7 is a diagram showing a configuration of a sound source according to an embodiment of the present invention. (A) of FIG. 7 is the figure which looked at the sound source from diagonally forward, (b) is the figure seen from diagonally backward. In FIG. 7, the speaker 40 is installed in a housing 41. The housing 41 extends in the horizontal direction and supports a substantially horizontal rotating shaft 42 of the speaker 40. The speaker 40 has flat portions 43 at two end portions in the axial direction of the substantially horizontal rotation axis. A driving unit 45 driven by the second motor 44 is supported coaxially with the substantially horizontal rotating shaft 42 of the speaker 40 between the flat portion 43 and the housing 41. The drive unit 45 transmits the rotational force of the second motor 44 to the substantially horizontal rotation shaft 42 of the speaker 40 by the belt 46. Due to the rotational force of the second motor 44, the speaker 40 rotates around a substantially horizontal rotation shaft 42.

さらに、ハウジング41の下側には、ハウジング41を略垂直な回転軸47の回りで回転させる第1のモータ48が設けられ、その第1のモータ48の回転力により、スピーカ40はハウジング41と共に略垂直な回転軸47の回りで回転するようになっている。スピーカ40は、既に説明した図2の音源12の場合と同様に、略水平な回転軸42および略垂直な回転軸47の回りで所定の回転ステップ(角度Δθ)毎に回転しながら、各回転位置(角度)でコーン49を振動させて音響を出力する。   Further, a first motor 48 that rotates the housing 41 around a substantially vertical rotation shaft 47 is provided on the lower side of the housing 41, and the speaker 40 together with the housing 41 is provided by the rotational force of the first motor 48. It rotates around a substantially vertical rotating shaft 47. As in the case of the sound source 12 shown in FIG. 2 described above, the speaker 40 rotates while rotating about a predetermined rotation step (angle Δθ) around a substantially horizontal rotation shaft 42 and a substantially vertical rotation shaft 47. The cone 49 is vibrated at a position (angle) to output sound.

このように、図7の音源の実施態様によれば、音源であるスピーカが略水平な回転軸および略垂直な回転軸の回りで回転できるので、測定環境に応じて音源の向きを自在に変えることができ、より精度よく音響感度を測定することが可能となる。   As described above, according to the embodiment of the sound source of FIG. 7, since the speaker as the sound source can rotate around the substantially horizontal rotation axis and the substantially vertical rotation axis, the direction of the sound source can be freely changed according to the measurement environment. Therefore, it is possible to measure the acoustic sensitivity with higher accuracy.

最後に、本発明の実施形態による作用効果を以下に列記する。
(1)音源の向きの変更が容易で、複数の音源(コーン)を必要とすることがないので、測定のためのコストを安くできる。
(2)音響感度算出手段は、音響が受けた体積加速度と応答点の加速度を測定し、それらの商から音響感度を求める場合、振動板を剛体とみなし、ある一点での加速度を代表させ、体積加速度を算出する。しかしながら、中周波以上の測定では、振動版を剛体と仮定できない場合があり、従来のように、音源の加速度から音響が受けた体積加速度を求めることは困難である。そこで、本発明では、音源直前に設置した音圧センサにより音圧を測定して体積加速度を随時算出し、それらとの商を求めることにより音響感度を求めることで、その困難性を克服する。
(3)音源を設置する場所は、各乗員の耳の位置になるため、車室内の中心点から大きくずれており、音源正面から壁面までの距離が一定とならない。そのため音響が受ける体積加速度が音源の向きにより変化し、加速度検出点の振動レベルが大幅に変化し、信号のS/N比を一定に保つことが困難となる。そこで、体積加速度を算出するために用いた音圧センサの出力レベルに応じてフィードバック制御をおこない、音源に入力する信号を制御することにより、信号のS/N比やレンジが変化することを抑制することができる。また、音源の向きが変更になるたびにセンサの出力レンジあわせ等を行う必要なく、連続的に測定が実施できる。
(4)音源には全周波数域に均等な体積加速度を入力するために正規乱数信号(ホワイトノイズ)を入力している。ホワイトノイズは収束するまでにある程度の時間が必要となるため、音源の回転はステッピングモータにて実施し、測定データが収束した後に、向きの変更を行う。これにより、回転に伴うモーターノイズや音響加速度のドップラー効果の修正などが不要となる。
Finally, the effects according to the embodiment of the present invention are listed below.
(1) Since the direction of the sound source can be easily changed and a plurality of sound sources (cones) are not required, the cost for measurement can be reduced.
(2) The acoustic sensitivity calculation means measures the volume acceleration received by the sound and the acceleration of the response point, and when obtaining the acoustic sensitivity from the quotient thereof, the diaphragm is regarded as a rigid body and represents the acceleration at a certain point, Volume acceleration is calculated. However, in the measurement at a medium frequency or higher, the vibration plate may not be assumed to be a rigid body, and it is difficult to obtain the volume acceleration received by the sound from the acceleration of the sound source as in the conventional case. Therefore, in the present invention, the difficulty is overcome by measuring the sound pressure by a sound pressure sensor installed immediately before the sound source, calculating the volume acceleration as needed, and obtaining the acoustic sensitivity by obtaining the quotient with them.
(3) Since the place where the sound source is installed is the position of each passenger's ear, it is greatly deviated from the center point in the passenger compartment, and the distance from the front of the sound source to the wall surface is not constant. Therefore, the volume acceleration received by the sound changes depending on the direction of the sound source, the vibration level at the acceleration detection point changes significantly, and it becomes difficult to keep the signal S / N ratio constant. Therefore, feedback control is performed according to the output level of the sound pressure sensor used to calculate the volume acceleration, and the signal input to the sound source is controlled to suppress changes in the S / N ratio and range of the signal. can do. Further, it is possible to continuously perform measurement without having to adjust the output range of the sensor every time the direction of the sound source is changed.
(4) A normal random number signal (white noise) is input to the sound source in order to input a uniform volume acceleration in the entire frequency range. Since white noise requires a certain amount of time to converge, the sound source is rotated by a stepping motor, and the direction is changed after the measurement data converges. This eliminates the need for correction of the motor noise accompanying rotation and the Doppler effect of acoustic acceleration.

上述した実施形態は一例でありこれに限定されるものではない。本発明は、車両の室内に限らず基本的に任意の閉空間での音響感度測定に適用可能である。   The above-described embodiment is an example, and the present invention is not limited to this. The present invention is applicable not only to the interior of a vehicle but basically to acoustic sensitivity measurement in an arbitrary closed space.

Claims (5)

キャブ内に配置される回転可能な固定部材に取付けられ、当該固定部材の回転と共に回転する音源と、
前記音源が発する音響による音圧を検出する音圧センサと、
前記キャブの表面に設けられ、前記音響による加速度を検出する加速度センサと、
前記音圧と前記加速度から音響感度を算出する音響感度算出手段とを備え、
前記音響感度算出手段は、前記音源が各回転位置において発する音響下で得られる前記音圧および前記加速度から音響感度を算出する、
音響感度測定装置。
A sound source that is attached to a rotatable fixing member disposed in the cab and rotates with the rotation of the fixing member;
A sound pressure sensor for detecting sound pressure due to sound emitted from the sound source;
An acceleration sensor provided on the surface of the cab and detecting acceleration due to the sound;
Acoustic sensitivity calculating means for calculating acoustic sensitivity from the sound pressure and the acceleration,
The acoustic sensitivity calculation means calculates acoustic sensitivity from the sound pressure and acceleration obtained under the sound emitted by the sound source at each rotational position.
Acoustic sensitivity measuring device.
前記音圧センサは、前記固定部材に取付けられ、前記音源と共に回転し、当該音源の前方の所定距離における音圧を検出する、請求項1に記載の音響感度測定装置。   The acoustic sensitivity measuring apparatus according to claim 1, wherein the sound pressure sensor is attached to the fixing member, rotates with the sound source, and detects a sound pressure at a predetermined distance in front of the sound source. 前記音源の回転角度を検出する角度センサと、
前記音源の入力電圧を制御する制御装置と、をさらに備え、
前記制御装置は、前記音源の回転角度および前記音圧の少なくともいずれか一方に応じて前記入力電圧を変える、請求項1または2に記載の音響感度測定装置。
An angle sensor for detecting a rotation angle of the sound source;
A control device for controlling the input voltage of the sound source,
The acoustic sensitivity measuring device according to claim 1, wherein the control device changes the input voltage according to at least one of a rotation angle of the sound source and the sound pressure.
前記音源の入力信号となるノイズ信号を前記制御装置に送るノイズ発生器をさらに備え、
前記音響感度算出手段は、前記音源が前記ノイズ信号に基づく音響を発する場合、入力される前記音圧および加速度の変化率が所定値以下となるまで音響感度を算出する、請求項1〜3のいずれかに記載の音響感度測定装置。
A noise generator for sending a noise signal to be input to the sound source to the control device;
The acoustic sensitivity calculation means calculates the acoustic sensitivity until the change rate of the input sound pressure and acceleration is equal to or lower than a predetermined value when the sound source emits sound based on the noise signal. The acoustic sensitivity measuring apparatus in any one.
前記音源は、
スピーカと、
水平方向に延びて前記スピーカの略水平な回転軸を支持するハウジングと、
前記ハウジングを略垂直な回転軸の回りで回転させる第1のモータと、
前記スピーカを前記略水平な回転軸の回りで回転させる第2のモータとを備え、
前記スピーカは、前記略水平な回転軸の軸方向の端部に設けられた平面部を有し、該平面部と前記ハウジングとの間に、前記第2のモータにより駆動される駆動部が前記スピーカの略水平な回転軸と同軸に支持される、請求項1〜4のいずれかに記載の音響感度測定装置。
The sound source is
Speakers,
A housing extending in a horizontal direction and supporting a substantially horizontal rotation shaft of the speaker;
A first motor that rotates the housing about a substantially vertical axis of rotation;
A second motor for rotating the speaker around the substantially horizontal rotation axis;
The speaker has a flat portion provided at an axial end portion of the substantially horizontal rotation shaft, and a drive unit driven by the second motor is provided between the flat portion and the housing. The acoustic sensitivity measuring apparatus according to claim 1, wherein the acoustic sensitivity measuring apparatus is supported coaxially with a substantially horizontal rotation axis of the speaker.
JP2010044430A 2010-03-01 2010-03-01 Acoustic sensitivity measuring device Expired - Fee Related JP5439226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010044430A JP5439226B2 (en) 2010-03-01 2010-03-01 Acoustic sensitivity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044430A JP5439226B2 (en) 2010-03-01 2010-03-01 Acoustic sensitivity measuring device

Publications (2)

Publication Number Publication Date
JP2011179966A true JP2011179966A (en) 2011-09-15
JP5439226B2 JP5439226B2 (en) 2014-03-12

Family

ID=44691618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010044430A Expired - Fee Related JP5439226B2 (en) 2010-03-01 2010-03-01 Acoustic sensitivity measuring device

Country Status (1)

Country Link
JP (1) JP5439226B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205048A (en) * 2012-03-27 2013-10-07 Tokyo Metropolitan Sewerage Service Corp Method for diagnosing soundness of rotary machine
CN112525330A (en) * 2020-11-17 2021-03-19 北京航天计量测试技术研究所 Device and method for testing vibration sensitivity of microphone

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107885A (en) * 1976-03-08 1977-09-09 Hitachi Ltd Sound measurement
JPS5471675A (en) * 1977-11-17 1979-06-08 Matsushita Electric Ind Co Ltd Measuring method of acoustic transmission characteristics in room such as of vehicle room or other
JPS57182129A (en) * 1981-05-01 1982-11-09 Sharp Corp Rotating apparatus for speaker means
JPS6263822A (en) * 1985-09-13 1987-03-20 Fuji Electric Co Ltd Acoustic power level measuring instrument
JPH08159864A (en) * 1994-12-07 1996-06-21 Nissan Motor Co Ltd Acoustic characteristics measuring apparatus
JPH1123362A (en) * 1997-07-04 1999-01-29 Nissan Motor Co Ltd Measuring apparatus for acoustic characteristic
JP2001100765A (en) * 1999-09-29 2001-04-13 Matsushita Electric Ind Co Ltd Instrument for measuring impulse response and method for acoustic field simulation
JP2001165815A (en) * 1999-12-08 2001-06-22 Mitsubishi Motors Corp Vehicle body noise absorbing and insulating performance measuring unit
JP2007327908A (en) * 2006-06-09 2007-12-20 Isuzu Motors Ltd Acoustic sensitivity measuring device
JP2008164492A (en) * 2006-12-28 2008-07-17 Toa Corp Method and device for measuring speaker characteristics

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107885A (en) * 1976-03-08 1977-09-09 Hitachi Ltd Sound measurement
JPS5471675A (en) * 1977-11-17 1979-06-08 Matsushita Electric Ind Co Ltd Measuring method of acoustic transmission characteristics in room such as of vehicle room or other
JPS57182129A (en) * 1981-05-01 1982-11-09 Sharp Corp Rotating apparatus for speaker means
JPS6263822A (en) * 1985-09-13 1987-03-20 Fuji Electric Co Ltd Acoustic power level measuring instrument
JPH08159864A (en) * 1994-12-07 1996-06-21 Nissan Motor Co Ltd Acoustic characteristics measuring apparatus
JPH1123362A (en) * 1997-07-04 1999-01-29 Nissan Motor Co Ltd Measuring apparatus for acoustic characteristic
JP2001100765A (en) * 1999-09-29 2001-04-13 Matsushita Electric Ind Co Ltd Instrument for measuring impulse response and method for acoustic field simulation
JP2001165815A (en) * 1999-12-08 2001-06-22 Mitsubishi Motors Corp Vehicle body noise absorbing and insulating performance measuring unit
JP2007327908A (en) * 2006-06-09 2007-12-20 Isuzu Motors Ltd Acoustic sensitivity measuring device
JP2008164492A (en) * 2006-12-28 2008-07-17 Toa Corp Method and device for measuring speaker characteristics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205048A (en) * 2012-03-27 2013-10-07 Tokyo Metropolitan Sewerage Service Corp Method for diagnosing soundness of rotary machine
CN112525330A (en) * 2020-11-17 2021-03-19 北京航天计量测试技术研究所 Device and method for testing vibration sensitivity of microphone

Also Published As

Publication number Publication date
JP5439226B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP2748626B2 (en) Active noise control device
US10625670B2 (en) Notification device and notification method
JP5439226B2 (en) Acoustic sensitivity measuring device
JP2019035628A (en) Space sound analysis method and system thereof
JP6584609B2 (en) Notification device and notification method
US10403261B1 (en) Noise reduction apparatus
Hoffmann et al. Volumetric characterization of ultrasonic transducers for gas flow metering
EP4148725A1 (en) Adaptive active noise cancellation based on head movement
JP2020038159A (en) Vibration characteristic evaluation method and vibration characteristic evaluation device
AU2012252135B2 (en) Calibrating rotational accelerometers
JP4882526B2 (en) Acoustic sensitivity measuring device
CN111198282B (en) Method and system for calibrating an integrated volumetric acceleration sensor of a loudspeaker
JPH08159864A (en) Acoustic characteristics measuring apparatus
JP6937259B2 (en) Notification device and notification method
JP7338103B2 (en) Evaluation method of tire radiation sound
Horne et al. Effects of resistive windscreens and foam inserts on the acoustic response of an in-flow phased microphone array
EP3623212B1 (en) Vibration-generating device and vibration-generating method
JP6592057B2 (en) Notification device and notification method
JPH1172397A (en) Apparatus and method for measurement of excitation force of vibration-generating body
JP2004314915A (en) Hearing point position measuring device
Schuhmacher Investigation of volume velocity source based on two-microphone method for measuring vibro-acoustic transfer functions
CN112740720A (en) Method for operating a loudspeaker device simultaneously in a loudspeaker function and in a microphone function, and loudspeaker device
JPH04344416A (en) Angular velocity detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5439226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees