JP2011179884A - Method and system for measuring tire skid speed - Google Patents

Method and system for measuring tire skid speed Download PDF

Info

Publication number
JP2011179884A
JP2011179884A JP2010042544A JP2010042544A JP2011179884A JP 2011179884 A JP2011179884 A JP 2011179884A JP 2010042544 A JP2010042544 A JP 2010042544A JP 2010042544 A JP2010042544 A JP 2010042544A JP 2011179884 A JP2011179884 A JP 2011179884A
Authority
JP
Japan
Prior art keywords
tire
block
road surface
wheel
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010042544A
Other languages
Japanese (ja)
Inventor
Takashi Saito
隆司 斉藤
Katsuhiro Kobayashi
克宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010042544A priority Critical patent/JP2011179884A/en
Publication of JP2011179884A publication Critical patent/JP2011179884A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure a skid speed generated on a tire tread surface when a tire rolls since it is difficult to accurately grasp a phenomenon occurring in the tire in a rolling state on an actual road surface from a measurement result because measurement is performed by artificially creating a state that a wheel is rolled on a road surface in a laboratory or the like including a measuring device. <P>SOLUTION: A tread surface of the tire 11 of a wheel W rolling on a road surface R is formed and an outer peripheral surface 16a and a road surface R of a block 16 positioned at the outermost periphery of the tread surface are photographed as identical screens, a relative distance between respective feature points set to the outer peripheral surface 16a and the road surface R of the block 16 on one screen is calculated from the photographed image, and then a skid speed of the block 16 is calculated based on a change in the relative distance by the comparison of the two screens. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、タイヤ滑り速度測定方法及びシステムに関し、特に、車輪転動時のタイヤ踏面と接地面を撮影して得られた画像データに基づき、タイヤの滑り速度を測定するタイヤ滑り速度測定方法及びシステムに関する。   The present invention relates to a tire slip speed measuring method and system, and in particular, a tire slip speed measuring method for measuring a tire slip speed based on image data obtained by photographing a tire tread surface and a contact surface during wheel rolling, and About the system.

従来、路面を車輪が転動することにより走行する車両において車輪のタイヤの滑り速度を調べるために、タイヤの滑り量を測定する装置として、例えば、「タイヤ踏面の接地部測定装置」(特許文献1参照)が知られている。
「タイヤ踏面の接地部測定装置」は、水平フレームにローラを並べて載置した、透明板が埋め込まれた路面を移動用モータで移動させると共に、水平フレームの下側に供試タイヤを支持したタイヤ支持台を配設し、透明板の上側に路面に対し固定したテレビカメラを配することで、微小領域(例えば、1つのブロック)を略画面一杯となるように撮影して、滑り量を高精度で測定している。
2. Description of the Related Art Conventionally, as a device for measuring the slip amount of a tire in order to examine the slip speed of the tire of a wheel in a vehicle traveling by rolling the wheel on a road surface, for example, “a tire tread contact portion measuring device” (Patent Document) 1) is known.
"Tire tread grounding surface measuring device" is a tire in which rollers are placed side by side on a horizontal frame, the road surface with a transparent plate embedded is moved by a motor for movement, and the test tire is supported below the horizontal frame. By placing a support base and placing a TV camera fixed to the road surface above the transparent plate, a small area (for example, one block) can be photographed to fill the entire screen, and the amount of slip can be increased. Measure with accuracy.

特開平7−63658号公報Japanese Patent Laid-Open No. 7-63658

しかしながら、従来の「タイヤ踏面の接地部測定装置」においては、測定装置を備えた実験室等で車輪が路面を転動する状態を擬似的に作り出すことにより測定が行われているため、測定結果から、実際に路面上で転動状態にあるタイヤに生じている現象を正確に把握することは困難であり、タイヤが転動状態にあるときのタイヤ踏面に発生する滑り速度を正確に測定することができなかった。
この発明の目的は、実際に路面上で転動状態にあるタイヤに生じている現象を正確に把握することにより、タイヤが転動状態にあるときのタイヤ踏面に発生する滑り速度を正確に測定することができるタイヤ滑り速度測定方法及びシステムを提供することである。
However, in the conventional “treading surface measurement device for tire treads”, measurement is performed by creating a state in which the wheel rolls on the road surface in a laboratory equipped with the measurement device. Therefore, it is difficult to accurately grasp the phenomenon that occurs in the tire that is actually rolling on the road surface, and the slip speed generated on the tire tread when the tire is in the rolling state is accurately measured. I couldn't.
The object of the present invention is to accurately measure the slip speed generated on the tire tread when the tire is in a rolling state by accurately grasping the phenomenon that occurs in the tire that is actually in a rolling state on the road surface. It is to provide a tire slip speed measuring method and system that can be used.

上記目的を達成するため、この発明に係るタイヤ滑り速度測定方法は、路面を転動する車輪のタイヤの踏面を形成し踏面最外周に位置するブロックの側面及び前記路面を、同一画面として撮影する処理、撮影画像から、一つの画面における前記ブロックの側面及び前記路面に設定したそれぞれの特徴点の相対距離を算出する処理、二つの画面の比較による前記相対距離の変化に基づき前記ブロックの滑り速度を算出する処理の各処理を有している。
また、この発明の他の態様に係るタイヤ滑り速度測定方法は、前記ブロックの滑り速度を、前記二つの画面の比較により前記相対距離の変化を算出して得られた算出結果を前記二つの画面の時間差で除算し算出している。
In order to achieve the above object, a tire slip speed measuring method according to the present invention forms a tread surface of a wheel tire that rolls on a road surface, and photographs the side surface of the block located on the outermost periphery of the tread surface and the road surface as the same screen. Processing, processing for calculating the relative distance of each feature point set on the side surface of the block and the road surface on one screen from the captured image, sliding speed of the block based on the change of the relative distance by comparing two screens Each process of the process which calculates is included.
Further, in the tire slip speed measuring method according to another aspect of the present invention, the calculation result obtained by calculating the change of the relative distance by comparing the slip speed of the block with the comparison of the two screens is displayed on the two screens. It is calculated by dividing by the time difference.

上記目的を達成するため、この発明に係るタイヤ滑り速度測定システムは、路面を転動する車輪のタイヤの踏面を形成し踏面最外周に位置するブロックの側面に設けられたマーカと、前記車輪の転動時、前記ブロックの側面及び前記路面を同一画面で撮影するカメラと、前記カメラが撮影した画像から、一つの画面における前記ブロックの側面及び前記路面に設定したそれぞれの特徴点の相対距離を算出し、二つの画面の比較による前記相対距離の変化に基づき前記ブロックの滑り速度を算出する算出部とを有している。
また、この発明の他の態様に係るタイヤ滑り速度測定システムは、前記車輪が装着された車体に取り付けられ、撮影方向を前記ブロックの側面に向けた前記カメラを前記車輪の側方に配置保持する保持部材を有している。
In order to achieve the above object, a tire slip speed measuring system according to the present invention includes a marker provided on a side surface of a block that forms a tire tread surface of a wheel that rolls on a road surface and is positioned on the outermost periphery of the tread surface, When rolling, the camera captures the side surface of the block and the road surface on the same screen, and the relative distance between the feature points set on the side surface of the block and the road surface on one screen from the image captured by the camera. A calculation unit that calculates and calculates a sliding speed of the block based on a change in the relative distance by comparing two screens.
Further, a tire slip speed measuring system according to another aspect of the present invention is attached to a vehicle body to which the wheel is mounted, and the camera having a photographing direction directed to a side surface of the block is arranged and held on a side of the wheel. It has a holding member.

この発明に係るタイヤ滑り速度測定方法によれば、路面を転動する車輪のタイヤの踏面を形成し踏面最外周に位置するブロックの側面及び路面を、同一画面として撮影し、撮影画像から、一つの画面におけるブロックの側面及び路面に設定したそれぞれの特徴点の相対距離を算出し、その後、二つの画面の比較による相対距離の変化に基づきブロックの滑り速度を算出するので、実際に路面上で転動状態にあるタイヤに生じている現象を正確に把握することにより、タイヤが転動状態にあるときのタイヤ踏面に発生する滑り速度を正確に測定することができる。
また、この発明に係るタイヤ滑り速度測定システムにより、上記タイヤ滑り速度測定方法を実現することができる。
According to the tire slip speed measuring method according to the present invention, the side surface and road surface of the block that forms the tire tread surface of the wheel rolling on the road surface and is located on the outermost periphery of the tread surface are photographed as the same screen. Calculate the relative distance between each feature point set on the side of the block and the road surface on one screen, and then calculate the sliding speed of the block based on the change of the relative distance by comparing the two screens. By accurately grasping the phenomenon occurring in the tire in the rolling state, the slip speed generated on the tire tread when the tire is in the rolling state can be accurately measured.
Moreover, the tire slip speed measuring system according to the present invention can realize the tire slip speed measuring method.

この発明の一実施の形態に係るタイヤ滑り速度測定システムの構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the structure of the tire slip speed measuring system which concerns on one embodiment of this invention. 図1のタイヤ滑り速度測定システムの具体例を示す説明図である。It is explanatory drawing which shows the specific example of the tire slip speed measuring system of FIG. 図1のタイヤ滑り速度測定システムによるタイヤ滑り速度測定方法を概念的に示し、(a)はタイヤ転動状態の説明図、(b)は撮影画像の説明図である。FIG. 1 conceptually shows a tire slip speed measuring method by the tire slip speed measuring system of FIG. タイヤ滑り速度の算出方法を概念的に示し、(a)は滑り前の説明図、(b)は滑り後の説明図である。The calculation method of a tire slip speed is shown notionally, (a) is explanatory drawing before a slip, (b) is explanatory drawing after a slip. 図4のタイヤ滑り速度の算出方法を具体的に示し、(a)は測定点の説明図、(b)は間隔測定開始時の説明図、(c)は間隔測定終了時の説明図である。FIG. 4 specifically shows a method of calculating the tire slip speed in FIG. 4, (a) is an explanatory diagram of measurement points, (b) is an explanatory diagram at the start of interval measurement, and (c) is an explanatory diagram at the end of interval measurement. .

以下、この発明を実施するための形態について図面を参照して説明する。
図1は、この発明の一実施の形態に係るタイヤ滑り速度測定システムの構成を概略的に示す説明図である。図2は、図1のタイヤ滑り速度測定システムの具体例を示す説明図である。図3は、図1のタイヤ滑り速度測定システムによるタイヤ滑り速度測定方法を概念的に示し、(a)はタイヤ転動状態の説明図、(b)は撮影画像の説明図である。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram schematically showing a configuration of a tire slip speed measuring system according to an embodiment of the present invention. FIG. 2 is an explanatory diagram showing a specific example of the tire slip speed measuring system of FIG. FIG. 3 conceptually shows a tire slip speed measuring method by the tire slip speed measuring system of FIG. 1, (a) is an explanatory view of a tire rolling state, and (b) is an explanatory view of a photographed image.

図1及び図2に示すように、タイヤ滑り速度測定システム10は、路面Rを車輪Wが転動することにより走行する車両Cにおいて車輪Wを構成するタイヤ11の滑り速度を測定するものであり、タイヤ11の側面に設けられたマーカ12、タイヤ11の側面と共に路面Rを撮影する高速度カメラ13、高速度カメラ13をタイヤ11の側方に位置させる保持部材14、及び高速度カメラ13から入力した撮影画像の画像データに基づきタイヤ滑り速度を測定する測定部15を有している。   As shown in FIG. 1 and FIG. 2, the tire slip speed measuring system 10 measures the slip speed of the tire 11 constituting the wheel W in a vehicle C that travels by rolling the wheel W on the road surface R. From the marker 12 provided on the side surface of the tire 11, the high-speed camera 13 that photographs the road surface R together with the side surface of the tire 11, the holding member 14 that positions the high-speed camera 13 on the side of the tire 11, and the high-speed camera 13 A measurement unit 15 that measures tire slip speed based on the image data of the input captured image is provided.

マーカ12は、車輪Wの路面R転動時にタイヤ11が路面Rに接触するタイヤ踏面(トレッド)を形成する、タイヤショルダー部、即ち、トレッド最外周に位置する少なくとも一つのブロック16の外側面16aに設けられている。このマーカ12は、ブロック16の外側面16aの一箇所以上に、複数の微細なドット(点状の印)を規則正しく或いはランダムに印すことにより形成される(図2参照)。なお、ドットを印す外側面16aは、ブロック16をタイヤ周方向断面に沿って切断した切断面により形成しても良い。マーカ12の形成に際しては、例えば、ドットを白色に塗り或いはドットを除く外側面16aを白色に塗って、ドットを、背景となる外側面16aから明確に区別することができるようにしている。   The marker 12 forms a tire tread surface (tread) in which the tire 11 comes into contact with the road surface R when the wheel W rolls on the road surface R. Is provided. The marker 12 is formed by regularly or randomly marking a plurality of fine dots (dot marks) at one or more locations on the outer surface 16a of the block 16 (see FIG. 2). In addition, you may form the outer surface 16a which marks a dot by the cut surface which cut | disconnected the block 16 along the tire circumferential direction cross section. When forming the marker 12, for example, the dots are painted white or the outer surface 16a excluding the dots is painted white so that the dots can be clearly distinguished from the outer surface 16a as the background.

高速度カメラ13は、例えば、1秒間に数百枚〜数万枚の高速撮影ができるカメラであり、車両C走行時である車輪Wの路面R転動時に、路面Rに接するブロック16の外側面16aを路面Rと共に同一画面として撮影することができるように、車輪Wの外表面側方に離間し、且つ、路面Rに接近して配置され、カメラレンズを外側面16a及び路面Rに向けている。この高速度カメラ13は、カメラ配置条件の下、算出部15に出力する画像データを得るために必要な撮影条件を確保するため、必要とする被写界深度を計算して使用するレンズを選定する。   The high-speed camera 13 is, for example, a camera that can shoot several hundred to several tens of thousands of high-speed images per second, and the outside of the block 16 in contact with the road surface R when the wheel W rolls on the road surface R while the vehicle C is traveling. The side surface 16a and the road surface R can be photographed as the same screen, are spaced apart from the outer surface side of the wheel W and are arranged close to the road surface R, and the camera lens faces the outer surface 16a and the road surface R. ing. The high-speed camera 13 selects the lens to be used by calculating the required depth of field in order to ensure the shooting conditions necessary for obtaining the image data to be output to the calculation unit 15 under the camera placement conditions. To do.

また、高速度カメラ13の近傍には、カメラレンズが向けられたブロック16の外側面16a及び路面Rを照明して撮影に必要な明るさを確保するための照明機材(図示しない)が設置されている。
なお、必要な撮影条件を確保することができれば、撮影は一台の高速度カメラ13で行うが、高速度カメラ13は一台に限るものではなく、例えば、二台のカメラを用いたパノラマ撮影により、二倍の解像度が得られる高解像度撮影を行っても良い。
In addition, lighting equipment (not shown) is installed in the vicinity of the high-speed camera 13 to illuminate the outer surface 16a of the block 16 to which the camera lens is directed and the road surface R to ensure brightness necessary for photographing. ing.
If the necessary shooting conditions can be ensured, shooting is performed with one high-speed camera 13. However, the high-speed camera 13 is not limited to one, for example, panoramic shooting using two cameras. Thus, high-resolution imaging that can obtain twice the resolution may be performed.

保持部材14は、車輪Wを懸架するサスペンション(図示しない)を介して、車輪Wが装着された車体に取り付けられており、サスペンションと高速度カメラ13を連結する第1保持部14a、及び第1保持部14aと車輪Wを連結する第2保持部14bを有している(図2参照)。   The holding member 14 is attached to a vehicle body to which the wheel W is mounted via a suspension (not shown) that suspends the wheel W, and includes a first holding portion 14a that connects the suspension and the high-speed camera 13, and a first holding member 14a. It has the 2nd holding | maintenance part 14b which connects the holding | maintenance part 14a and the wheel W (refer FIG. 2).

第1保持部14aは、高速度カメラ13と路面Rとの距離を測定する測定手段(図示しない)を備えており、測定手段により得られたカメラ−路面間距離の測定データに基づき、車両C走行時、高速度カメラ13を路面Rから一定距離を有して最適な高さに保持する。この第1保持部14aに一端が取り付けられた第2保持部14bは、他端を、クロスローラリングを備えた連結手段17を介して車輪WのホイールWwに取り付けており(図2参照)、高速度カメラ13を、車輪W操舵時の車輪Wの旋回変位に対応して最適な向きに位置させることができる。   The first holding unit 14a includes measurement means (not shown) that measures the distance between the high-speed camera 13 and the road surface R, and the vehicle C is based on the measurement data of the camera-road distance obtained by the measurement means. When traveling, the high-speed camera 13 is held at an optimum height with a certain distance from the road surface R. The second holding portion 14b having one end attached to the first holding portion 14a has the other end attached to the wheel Ww of the wheel W via a connecting means 17 having a cross roller ring (see FIG. 2). The high-speed camera 13 can be positioned in an optimum direction corresponding to the turning displacement of the wheel W when the wheel W is steered.

従って、車輪Wとサスペンションの二箇所に取り付けられた保持部材14を介して、撮影方向をブロック16の外側面16aに向けて車輪Wの側方に配置・保持された高速度カメラ13により、車両C走行中の車輪W転動時、図3に示すように、路面Rと接触するタイヤ11のブロック16の路面接触状態((a)参照)を常時撮影することにより、例えば、タイヤ11が変形してもピンボケすること無く画像解析が可能である高精度な測定画像((b)参照)で、実際のタイヤ転動状態を定点観測することができる。
算出部15は、高速度カメラ13から入力した高速度カメラ13による撮影画像の画像データに基づき、タイヤ11が路面R上を転動する際のタイヤ滑り速度を算出する。
Accordingly, the vehicle is moved by the high-speed camera 13 disposed and held on the side of the wheel W with the shooting direction directed toward the outer surface 16a of the block 16 via the holding member 14 attached to the wheel W and the suspension at two locations. When the wheels W are rolling during C traveling, as shown in FIG. 3, for example, the tire 11 is deformed by constantly photographing the road surface contact state (see (a)) of the block 16 of the tire 11 that is in contact with the road surface R. Even in such a case, the actual tire rolling state can be observed at a fixed point with a highly accurate measurement image (see (b)) that allows image analysis without blurring.
The calculation unit 15 calculates a tire slip speed when the tire 11 rolls on the road surface R based on image data of an image captured by the high speed camera 13 input from the high speed camera 13.

タイヤ滑り速度の算出方法を以下に説明する。
タイヤ滑り速度の算出に際し、先ず、タイヤ滑り速度を算出する対象となるタイヤ11(例えば、左前輪)のブロック16の外側面16aに、複数のドットからなるマーカ12を形成し、マーカ12を撮影する高速度カメラ13を、撮影方向をブロック16の外側面16aに向けて、対象となるタイヤ11が装着された車輪Wの側方に、保持部材14を介して配置・保持する(図2参照)。また、物差し等の長さ測定具を撮影して、撮影画像の1ピクセル辺りの長さを測定する。
A method for calculating the tire slip speed will be described below.
When calculating the tire slip speed, first, a marker 12 composed of a plurality of dots is formed on the outer surface 16a of the block 16 of the tire 11 (for example, the left front wheel) for which the tire slip speed is to be calculated, and the marker 12 is photographed. The high-speed camera 13 is placed and held via the holding member 14 on the side of the wheel W on which the target tire 11 is mounted with the shooting direction facing the outer surface 16a of the block 16 (see FIG. 2). ). Also, a length measuring tool such as a ruler is photographed, and the length of one pixel of the photographed image is measured.

次に、車両C走行中、転動する車輪Wのタイヤ11のブロック16の外側面16aを、車輪W側面から高速度カメラ13で撮影する。このとき、撮影画像のマーカ12を判別し易くするため、撮影画像のガンマ調整、コントラスト調整、明るさ調整を画像処理ソフトウェアで行う。
次に、高速度カメラ13で撮影した撮影画像データを算出部15へ送り、算出部15において、撮影画像データに基づく撮影画面におけるタイヤ11のブロック16の外側面16aと路面R上の特徴点の座標を、画像解析ソフトウェアで算出する。
Next, during traveling of the vehicle C, the outer surface 16a of the block 16 of the tire 11 of the rolling wheel W is photographed by the high-speed camera 13 from the wheel W side surface. At this time, gamma adjustment, contrast adjustment, and brightness adjustment of the photographed image are performed by the image processing software in order to easily identify the marker 12 of the photographed image.
Next, the captured image data captured by the high-speed camera 13 is sent to the calculation unit 15, and the calculation unit 15 determines the feature points on the outer surface 16 a of the block 16 of the tire 11 and the road surface R on the captured image based on the captured image data. Coordinates are calculated with image analysis software.

図4は、タイヤ滑り速度の算出方法を概念的に示し、(a)は滑り前の説明図、(b)は滑り後の説明図である。図5は、図4のタイヤ滑り速度の算出方法を具体的に示し、(a)は測定点の説明図、(b)は間隔測定開始時の説明図、(c)は間隔測定終了時の説明図である。
図4に示すように、撮影画面のタイヤ滑り前((a)参照)とタイヤ滑り後((b)参照)における、ブロック16の外側面16aと路面Rの二つの特徴点間の距離(ドット数)の変化と移動時間(撮影コマ数)から、タイヤ滑り速度(X方向)を算出する。
FIG. 4 conceptually shows a tire slip speed calculation method, where (a) is an explanatory diagram before slipping, and (b) is an explanatory diagram after slipping. FIG. 5 specifically shows a method for calculating the tire slip speed of FIG. 4, (a) is an explanatory diagram of measurement points, (b) is an explanatory diagram at the start of interval measurement, and (c) is an end of interval measurement. It is explanatory drawing.
As shown in FIG. 4, the distance (dot) between the two feature points on the outer surface 16a of the block 16 and the road surface R before the tire slip (see (a)) and after the tire slip (see (b)) on the shooting screen. The tire slip speed (X direction) is calculated from the change in the number) and the travel time (number of shot frames).

タイヤ滑り速度の算出に際しては、例えば、図5に示すように、ブロック16の外側面16aを撮影した撮影画面上において、トレッドのタイヤ周方向中心付近、且つ、付け根付近に5点の測定点(特徴点に対応して設定した測定のための基準点)P、及び路面Rに1点の測定点Qを設定し((a)参照)、測定を開始する滑り前の画像、即ち、トレッド側の測定点Pが撮影画面左端に位置する画像から、測定を終了した滑り後の画像、即ち、路面R側の測定点Qが画像の中に入っていてブロック16の右端部が撮影画面右端に位置する画像までを、測定間隔とする。   In calculating the tire slip speed, for example, as shown in FIG. 5, on the photographing screen obtained by photographing the outer surface 16a of the block 16, five measurement points (near the center in the tire circumferential direction of the tread and near the base) A reference point (P) for measurement set corresponding to the feature point and one measurement point Q on the road surface R are set (see (a)), and the image before the slip to start measurement, that is, the tread side From the image in which the measurement point P is located at the left end of the shooting screen, the image after the slip is completed, that is, the measurement point Q on the road surface R side is in the image, and the right end of the block 16 is at the right end of the shooting screen. The measurement interval is taken up to the positioned image.

つまり、撮影画面において、ブロック16の外側面16aのマーカ12からブロック付け根の特徴点を抽出すると共に、ブロック16が接触する路面Rに特徴点を設け、前後方向車体加速度Gを0〜0.7Gの範囲でふって、撮影画像の各コマ(フレーム)毎に、ブロック16の外側面16aと路面Rの特徴点間の相対距離を算出する。路面Rの特徴点は、任意に設定する。
そして、二つの撮影画面(撮影画像)間における相対距離の変化量を算出し、その相対距離の変化量を二つの撮影画面(撮影画像)の時間差で割ることで、滑り速度を算出する。撮影画面(撮影画像)における時間差は、高速度カメラ13のフレームレートと二つの撮影画面(撮影画像)の撮影コマ数(n番目の画像)の差で決定する。
撮影コマ数の差/フレームレート=撮影画像の時間差
That is, on the shooting screen, the feature point of the block root is extracted from the marker 12 on the outer surface 16a of the block 16, and the feature point is provided on the road surface R that the block 16 contacts, and the longitudinal vehicle body acceleration G is set to 0 to 0.7G. The relative distance between the feature points of the outer surface 16a of the block 16 and the road surface R is calculated for each frame (frame) of the captured image. The feature point of the road surface R is set arbitrarily.
Then, the amount of change in the relative distance between the two shooting screens (shooted images) is calculated, and the sliding speed is calculated by dividing the amount of change in the relative distance by the time difference between the two shooting screens (shot images). The time difference in the shooting screen (captured image) is determined by the difference between the frame rate of the high-speed camera 13 and the number of shot frames (n-th image) of the two shooting screens (captured images).
Difference in number of shots / frame rate = time difference between shot images

このように、算出部15は、高速度カメラ13が撮影した画像から、一つの画面におけるブロック16の外側面16a及び路面Rに設定したそれぞれの特徴点の相対距離を算出し、二つの画面の比較による相対距離の変化に基づいて、ブロック16の滑り速度を算出する。
上述したタイヤ滑り速度の算出方法により得られた、実際のタイヤ転動状態におけるブロックの滑り速度測定結果を、表1及び表2に示す。
In this way, the calculation unit 15 calculates the relative distance between the feature points set on the outer surface 16a and the road surface R of the block 16 on one screen from the image taken by the high-speed camera 13, and the two screens. Based on the change of the relative distance by comparison, the slip speed of the block 16 is calculated.
Tables 1 and 2 show the results of measuring the slipping speed of the block in the actual tire rolling state obtained by the above-described tire slipping speed calculation method.

タイヤ1においては、ブロック16の外側面16aの5個の測定点P1〜P5、路面Rの測定点Qを設定し、各測定点P1〜P5について、前後方向車体加速度Gが0.1G(21km/h),0.3G(21km/h),0.7G(11km/h)でのブロック16の滑り速度を算出し、平均滑り速度を求めた。
タイヤ1におけるブロック16の平均滑り速度は、車体加速度0.1Gでは−307mm/s、0.3G(21km/h)では−252mm/s、0.7G(11km/h)では−230mm/sであった。つまり、タイヤ1の滑り速度は、車体加速度0.1Gのとき最も速くなる。
In the tire 1, five measurement points P1 to P5 of the outer surface 16a of the block 16 and a measurement point Q of the road surface R are set, and the longitudinal vehicle body acceleration G is 0.1 G (21 km) for each measurement point P1 to P5. / H), 0.3 G (21 km / h), and 0.7 G (11 km / h), the sliding speed of the block 16 was calculated, and the average sliding speed was obtained.
The average slip speed of the block 16 in the tire 1 is −307 mm / s at a vehicle body acceleration of 0.1 G, −252 mm / s at 0.3 G (21 km / h), and −230 mm / s at 0.7 G (11 km / h). there were. That is, the sliding speed of the tire 1 is fastest when the vehicle body acceleration is 0.1 G.

Figure 2011179884
Figure 2011179884

タイヤ2においては、ブロック16の外側面16aの5個の測定点P1〜P5、路面Rの測定点Qを設定し、各測定点P1〜P5について、前後方向車体加速度Gが0G(23km/h),0.6G(22km/h),0.7G(12km/h)でのブロック16の滑り速度を演算し、平均滑り速度を求めた。
タイヤ2におけるブロック16の平均滑り速度は、0G(23km/h)では−110mm/s、0.6G(22km/h)では−204mm/s、0.7G(12km/h)では−112mm/sであった。つまり、タイヤ2の滑り速度は、車体加速度0.6Gのとき最も速くなる。
In the tire 2, five measurement points P1 to P5 of the outer surface 16a of the block 16 and a measurement point Q of the road surface R are set, and the longitudinal vehicle body acceleration G is 0 G (23 km / h) for each measurement point P1 to P5. ), 0.6 G (22 km / h), 0.7 G (12 km / h), the slip speed of the block 16 was calculated, and the average slip speed was obtained.
The average slip speed of the block 16 in the tire 2 is −110 mm / s at 0 G (23 km / h), −204 mm / s at 0.6 G (22 km / h), and −112 mm / s at 0.7 G (12 km / h). Met. That is, the slip speed of the tire 2 is fastest when the vehicle body acceleration is 0.6G.

Figure 2011179884
Figure 2011179884

このように、タイヤ11のブロック16の外側面16aに複数のドットを印して、ブロック16とブロック16が接触する路面Rとの相対速度を高速度カメラ13の撮影画像で算出し、算出結果に基づいて、実際のタイヤ転動状態におけるブロック16の滑り速度を算出する。つまり、タイヤ11をそのまま撮影してもブロック16の挙動を追うことができないため、ブロック16の外側面16aに微細なドットからなるマーキングを施し、車輪W転動時のタイヤ11のブロック16の挙動を追えるようにする。   In this way, a plurality of dots are marked on the outer surface 16a of the block 16 of the tire 11, and the relative speed between the block 16 and the road surface R in contact with the block 16 is calculated from the captured image of the high-speed camera 13, and the calculation result Based on the above, the slip speed of the block 16 in the actual tire rolling state is calculated. That is, even if the tire 11 is photographed as it is, the behavior of the block 16 cannot be followed, so the outer surface 16a of the block 16 is marked with fine dots, and the behavior of the block 16 of the tire 11 when the wheel W rolls. To follow.

この結果、実際に転動しているタイヤ11の挙動を、直接、タイヤ11のブロック16の外側面16aと路面Rを撮影して撮影画像として見ることができるので、荷重、縦バネ、温度等のタイヤ11に関する測定条件を、実際に転動するタイヤ11に合わせることができ、これまで以上の精度でより正確なタイヤ滑り速度を求めることができる。また、タイヤ11のブロック16単位で撮影を行うので、任意の地点の滑り速度も算出することができる。   As a result, since the behavior of the tire 11 that is actually rolling can be directly photographed by photographing the outer surface 16a and the road surface R of the block 16 of the tire 11, the load, vertical spring, temperature, etc. The measurement conditions relating to the tire 11 can be matched with the tire 11 that actually rolls, and a more accurate tire slip speed can be obtained with higher accuracy than before. In addition, since photographing is performed in units of the blocks 16 of the tire 11, the sliding speed at an arbitrary point can also be calculated.

この発明は、路面を転動する車輪のタイヤの踏面を形成し踏面最外周に位置するブロックの側面及び路面を、同一画面として撮影し、撮影画像から、一つの画面におけるブロックの側面及び路面に設定したそれぞれの特徴点の相対距離を算出し、その後、二つの画面の比較による相対距離の変化に基づきブロックの滑り速度を算出するので、実際に路面上で転動状態にあるタイヤに生じている現象を正確に把握することにより、タイヤが転動状態にあるときのタイヤ踏面に発生する滑り速度を正確に測定することができるため、車輪転動時のタイヤの滑り速度を測定するタイヤ滑り速度測定方法、及びタイヤ滑り速度測定方法を実現するタイヤ滑り速度測定システムに最適である。   This invention forms a tread surface of a wheel tire that rolls on a road surface and shoots the side surface and road surface of the block located on the outermost periphery of the tread surface as the same screen, and from the captured image, the side surface and road surface of the block on one screen Since the relative distance between each set feature point is calculated, and then the block slip speed is calculated based on the change in the relative distance by comparing the two screens, it occurs in the tire that is actually rolling on the road surface. Since it is possible to accurately measure the slipping speed generated on the tire tread when the tire is in a rolling state, it is possible to measure the slipping speed of the tire during wheel rolling. It is most suitable for a tire slip speed measuring system that realizes a speed measuring method and a tire slip speed measuring method.

10 タイヤ滑り速度測定システム
11 タイヤ
12 マーカ
13 高速度カメラ
14 保持部材
14a 第1保持部
14b 第2保持部
15 算出部
16 ブロック
16a 外側面
17 連結手段
C 車両
P,P1〜P5,Q 測定点
R 路面
W 車輪
Ww ホイール
DESCRIPTION OF SYMBOLS 10 Tire slip speed measuring system 11 Tire 12 Marker 13 High speed camera 14 Holding member 14a 1st holding part 14b 2nd holding part 15 Calculation part 16 Block 16a Outer side surface 17 Connection means C Vehicle P, P1-P5, Q Measurement point R Road surface W wheel Ww wheel

Claims (4)

路面を転動する車輪のタイヤの踏面を形成し踏面最外周に位置するブロックの側面及び前記路面を、同一画面として撮影する処理と、
撮影画像から、一つの画面における前記ブロックの側面及び前記路面に設定したそれぞれの特徴点の相対距離を算出する処理と、
二つの画面の比較による前記相対距離の変化に基づき前記ブロックの滑り速度を算出する処理と
を有するタイヤの滑り速度測定方法。
Processing to form a tread surface of a wheel tire that rolls on the road surface and photograph the side surface of the block located on the outermost periphery of the tread surface and the road surface as the same screen;
A process of calculating a relative distance between each feature point set on the side surface of the block and the road surface on one screen from a captured image;
A tire slip speed measuring method comprising: calculating a slip speed of the block based on a change in the relative distance by comparing two screens.
前記ブロックの滑り速度を、前記二つの画面の比較により前記相対距離の変化を算出して得られた算出結果を前記二つの画面の時間差で除算し算出する請求項1に記載のタイヤの滑り速度測定方法。   The tire sliding speed according to claim 1, wherein the sliding speed of the block is calculated by dividing a calculation result obtained by calculating a change in the relative distance by comparing the two screens by a time difference between the two screens. Measuring method. 路面を転動する車輪のタイヤの踏面を形成し踏面最外周に位置するブロックの側面に設けられたマーカと、
前記車輪の転動時、前記ブロックの側面及び前記路面を同一画面で撮影するカメラと、
前記カメラが撮影した画像から、一つの画面における前記ブロックの側面及び前記路面に設定したそれぞれの特徴点の相対距離を算出し、二つの画面の比較による前記相対距離の変化に基づき前記ブロックの滑り速度を算出する算出部と
を有するタイヤの滑り速度測定システム。
A marker provided on a side surface of a block that forms a tread surface of a wheel tire that rolls on a road surface and is located on the outermost periphery of the tread surface;
When rolling the wheel, a camera that photographs the side surface of the block and the road surface on the same screen;
The relative distance of each feature point set on the side surface of the block and the road surface on one screen is calculated from the image taken by the camera, and the slip of the block is based on the change of the relative distance by comparing two screens. A tire slip speed measurement system comprising: a calculation unit that calculates speed.
前記車輪が装着された車体に取り付けられ、撮影方向を前記ブロックの側面に向けた前記カメラを前記車輪の側方に配置保持する保持部材を有する請求項3に記載のタイヤの滑り速度測定システム。   The tire slip speed measuring system according to claim 3, further comprising a holding member that is attached to a vehicle body to which the wheel is mounted and that holds the camera with a shooting direction directed to a side surface of the block at a side of the wheel.
JP2010042544A 2010-02-26 2010-02-26 Method and system for measuring tire skid speed Withdrawn JP2011179884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010042544A JP2011179884A (en) 2010-02-26 2010-02-26 Method and system for measuring tire skid speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010042544A JP2011179884A (en) 2010-02-26 2010-02-26 Method and system for measuring tire skid speed

Publications (1)

Publication Number Publication Date
JP2011179884A true JP2011179884A (en) 2011-09-15

Family

ID=44691554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010042544A Withdrawn JP2011179884A (en) 2010-02-26 2010-02-26 Method and system for measuring tire skid speed

Country Status (1)

Country Link
JP (1) JP2011179884A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203314A (en) * 2015-10-10 2015-12-30 东北农业大学 Device for measuring slip rate of walking ground wheels of combined seed and fertilizer drill
JP2019066182A (en) * 2017-09-28 2019-04-25 トヨタテクニカルディベロップメント株式会社 Tire displacement amount acquisition method and tire displacement amount acquisition device
JP7419031B2 (en) 2019-11-18 2024-01-22 Toyo Tire株式会社 Evaluation method of tire slipping behavior

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203314A (en) * 2015-10-10 2015-12-30 东北农业大学 Device for measuring slip rate of walking ground wheels of combined seed and fertilizer drill
JP2019066182A (en) * 2017-09-28 2019-04-25 トヨタテクニカルディベロップメント株式会社 Tire displacement amount acquisition method and tire displacement amount acquisition device
JP7419031B2 (en) 2019-11-18 2024-01-22 Toyo Tire株式会社 Evaluation method of tire slipping behavior

Similar Documents

Publication Publication Date Title
CN110312910B (en) Device and method for calibrating a vehicle assistance system
CN104575003B (en) A kind of vehicle speed detection method based on traffic surveillance videos
CN102564319B (en) Method for detecting slip during linear delivery of wafer by using image processing technology
CN110763697B (en) Method for detecting engineering structure surface crack by using aircraft
JP5387202B2 (en) Tire analysis system and tire analysis method
JP6514620B2 (en) Tire contact surface measurement method
CN105993042A (en) Local location computation device and local location computation method
JP2012203795A (en) Vehicle speed measurement method and vehicle overall image detection method using the same and vehicle number plate information erroneous recognition prevention method
JP2011179884A (en) Method and system for measuring tire skid speed
CN109421589A (en) Tripod self-propelled vehicle and moving distance calculation method thereof
JP4102119B2 (en) Stride measuring device and stride measuring method
CN111131801A (en) Projector correction system and method and projector
JP6196896B2 (en) Train speed measuring method, train position specifying method, and apparatus thereof
JP2004187220A (en) Camera angle-of-view adjustment method for crack inspection apparatus
CN105571506B (en) The method that bridge amount of deflection is surveyed in measurement
CN117309903A (en) Method and device for positioning defects in tunnel
CN111316322B (en) Road surface area detection device
CN114913131A (en) Vertical absolute and relative vertical deformation detection method for ballastless track structure
RU2597328C1 (en) Method of remote measurement and fixing the speed of vehicles
JP6482248B2 (en) Narrow gap inspection device
JP7127607B2 (en) Rail curvature estimator
KR102039509B1 (en) An apparatus for inspecting wall state of a construction for safety diagnosis
TW202046702A (en) Moving body stress analysis device
JP2009103720A (en) Measuring method of minute crack width
KR20060130026A (en) A method for measuring dimensions by means of a digital camera

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507