JP2011179092A - Roasting-reduction method for steel by-product - Google Patents

Roasting-reduction method for steel by-product Download PDF

Info

Publication number
JP2011179092A
JP2011179092A JP2010046322A JP2010046322A JP2011179092A JP 2011179092 A JP2011179092 A JP 2011179092A JP 2010046322 A JP2010046322 A JP 2010046322A JP 2010046322 A JP2010046322 A JP 2010046322A JP 2011179092 A JP2011179092 A JP 2011179092A
Authority
JP
Japan
Prior art keywords
raw material
temperature
roasting
steel
phenomenon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010046322A
Other languages
Japanese (ja)
Other versions
JP4768863B1 (en
Inventor
Hidekazu Todoroki
秀和 轟
Shigeyoshi Horiba
重良 堀場
Masato Sugano
正登 菅野
Akitoshi Katsumata
晃稔 勝間田
Yoshizo Sudo
好造 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
NAS Engineering Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
NAS Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd, NAS Engineering Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2010046322A priority Critical patent/JP4768863B1/en
Application granted granted Critical
Publication of JP4768863B1 publication Critical patent/JP4768863B1/en
Publication of JP2011179092A publication Critical patent/JP2011179092A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a roasting-reduction method for steel by-product, in which occurrence of a blowing-up phenomenon is surely predicted without being accompanied with the time delay and the operational condition of a reducing furnace is changed before the blowing-up happens, to avoid the occurrence of the blowing-up. <P>SOLUTION: This invention relates to the roasting-reduction method for steel by-product, in which the raw material consisting of the steel by-product is supplied into the reducing furnace together with a carbonaceous material, and reduced, wherein in the process where melting of the raw material is started by supplying a prescribed electric power, and the raw material is melted and reduced with the carbonaceous material, to start formation of molten metal and molten slag, the temperature of the raw material charged in the reducing furnace, is measured with a radiation thermometer, and the reduced electric power for preventing the crushing and the blowing-up phenomena, calculated based on the prescribed electric power and the temperature variation, is supplied into the reducing furnace or the supply of electric power is suspended. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有価金属を含む製鋼ダスト、酸洗スラッジ、焼鈍時のスケール材などの鉄鋼副生物を効率よく、安全に還元して、有価金属を回収することを可能にする電気炉操業による還元方法に関する。   The present invention efficiently and safely reduces steel by-products such as steelmaking dust containing valuable metals, pickling sludge, and scale materials during annealing, and enables reduction of valuable metals by recovery. Regarding the method.

製鉄所で発生する製鋼ダスト、スラグ、酸洗スラッジ、焼鈍時のスケールなどの鉄鋼副生物は、鉄、ニッケル、クロム、マンガンなどの有価金属を含有しており、従来から多くの回収方法が提案されてきた。その一つとして、これらの副生物を石炭やコークスなどの炭素源と混合してブリケット状に成型し、アーク式電気炉にて加熱して還元処理する方法が提案されている(例えば、特許文献1および2参照)。   Steel by-products such as steelmaking dust, slag, pickling sludge, and scales during annealing contain valuable metals such as iron, nickel, chromium, and manganese, and many recovery methods have been proposed. It has been. As one of them, a method has been proposed in which these by-products are mixed with a carbon source such as coal or coke, formed into a briquette shape, and heated in an arc electric furnace for reduction treatment (for example, patent document). 1 and 2).

また、副生物を石炭やコークスなどの炭素源と混合してブリケット状に成型し、一旦焙焼して水分などの揮発成分を除去した後に、アーク式電気炉にて加熱して還元処理する方法が提案されている(例えば、特許文献3〜6参照)。   Also, a by-product is mixed with a carbon source such as coal or coke, molded into a briquette shape, roasted once to remove volatile components such as moisture, and then reduced by heating in an arc electric furnace. Has been proposed (see, for example, Patent Documents 3 to 6).

これらの方法では、原料の成分によっては、アーク式電気炉にて、棚吊りやそれに伴うと考えられる吹き上げといった操業上の不具合を発生することがあった。また、スラグの溶融性や流動性が適正でなく、有価金属の回収率が低下してしまうという問題も抱えていた。   In these methods, depending on the components of the raw material, there may be a problem in operation such as hanging on a shelf or blowing up that is considered to be accompanied by an arc electric furnace. Moreover, the meltability and fluidity | liquidity of slag were not appropriate, and there also existed a problem that the recovery rate of valuable metals fell.

上述した、焙焼した後にアーク式電気炉で加熱して還元する方法において、有価金属を効果的に回収するために、アルミ灰を添加する方法が開示されている(例えば、特許文献7参照)。しかしながら、電気炉での反応が激しすぎるため、炉のコントロールが困難であり、爆発等の危険が伴う場合もあった。   In the above-described method of heating and reducing in an arc electric furnace after roasting, a method of adding aluminum ash is disclosed in order to effectively recover valuable metals (for example, see Patent Document 7). . However, since the reaction in the electric furnace is too intense, it is difficult to control the furnace, and there are cases where explosions and the like are involved.

爆発は、図1に示すような機構で発生する。すなわち、サブマージドアーク電気炉1に装入された原料2が棚吊り現象(符号7)を起こし、空洞6が形成される。それが崩落する時に、原料2に含まれる水分が急激に膨張する、いわゆる水蒸気爆発である。棚吊り7は、原料中に粉体が多く存在すると、原料どうしが焼結しやすくなるために、発生する現象である。当然、原料の水分が多いと、爆発規模が大きく、危険をともなう。この爆発現象は、吹き上げと呼ばれている。   The explosion occurs by a mechanism as shown in FIG. That is, the raw material 2 charged into the submerged arc electric furnace 1 causes a shelf hanging phenomenon (symbol 7), and the cavity 6 is formed. This is a so-called steam explosion in which the water contained in the raw material 2 expands rapidly when it collapses. The shelf suspension 7 is a phenomenon that occurs when a large amount of powder is present in the raw material, because the raw materials are easily sintered. Naturally, if the moisture content of the raw material is high, the explosion scale is large and dangerous. This explosion phenomenon is called blowing up.

このような吹き上げ問題に対して、製鋼ダスト、スラグ、酸洗スラッジ、焼鈍時のスケールなどの鉄鋼副生物の各原料配合比率を規定することにより、操業を安定化させる技術が開示されている(例えば、特許文献8参照)。また、原料の粒度分布を好ましい範囲に規定して団鉱の強度を確保する技術が開示されている(例えば、特許文献9参照)。あるいは、電力投入量を規定して、安定して操業する方法(例えば、特許文献10参照)、および、団鉱が崩壊しないように、団鉱を落下させる技術も開示されている(例えば特許文献11参照)。   With respect to such blowing-up problems, a technique for stabilizing the operation is disclosed by defining each raw material mixing ratio of steel by-products such as steelmaking dust, slag, pickling sludge, and annealing scale ( For example, see Patent Document 8). In addition, a technique for ensuring the strength of briquettes by defining the particle size distribution of the raw materials within a preferable range is disclosed (for example, see Patent Document 9). Alternatively, a method of operating stably by defining the amount of power input (see, for example, Patent Document 10) and a technique for dropping the briquette so that the briquette does not collapse are also disclosed (eg, Patent Literature). 11).

上記のような技術開発により、操業は安定化したといえるが、ごく稀には吹き上げが発生していた。そのため、吹き上げを予知して事故を未然に防ぐという、いわゆる吹き上げ予知技術の開発が切望されていた。このような目的のもと、還元に要する電気炉の内面にライニングした耐火物に熱電対を埋設し、その温度変化から、炉内に存在している原料の形状を予測し、その形状の動きから原料の崩落を予測して、吹き上げ現象を未然に防ぐ技術が開示されている(例えば、特許文献12および13参照)。   Although it can be said that the operation has been stabilized by the above technical development, in rare cases, blowing-up has occurred. For this reason, there has been a strong demand for the development of so-called blow-up prediction technology that predicts blow-up and prevents accidents. For this purpose, a thermocouple is embedded in the refractory lined on the inner surface of the electric furnace required for reduction, and the shape of the raw material existing in the furnace is predicted from the temperature change, and the movement of the shape A technique for predicting the collapse of the raw material and preventing the blowing phenomenon is disclosed (for example, see Patent Documents 12 and 13).

特開平8−260014号公報JP-A-8-260014 特開2003−247026号公報JP 2003-247026 A 特開昭61−15929号公報JP-A 61-15929 特開昭61−177331号公報JP-A 61-177331 特開昭61−177332号公報JP 61-177332 A 特開昭61−177337号公報JP-A 61-177337 特開平10−330822号公報Japanese Patent Laid-Open No. 10-330822 特開2008−31548号公報JP 2008-31548 A 特開2008−31549号公報JP 2008-31549 A 特開2008−240138号公報JP 2008-240138 A 特開2009−7632号公報JP 2009-7632 A 特開2008−116066号公報JP 2008-116066 A 特開2008−115408号公報JP 2008-115408 A

Heat transfer behavior of molten iron and nickel during the first 0.2 seconds of solidification, ISIJ international, 49(2009), No.9, p.1347.(Hidekazu Todoroki and Natthapong Phinichka)Heat transfer behavior of molten iron and nickel during the first 0.2 seconds of solidification, ISIJ international, 49 (2009), No.9, p.1347. (Hidekazu Todoroki and Natthapong Phinichka)

上記のごとく、熱電対による測温から、炉内の原料形状を予測することは可能ではあるが、どうしても時間的な遅れが生じてしまう。このことは、例えば非特許文献1などに、詳細な研究結果が公開されている。すなわち、熱電対では、相当線径が細くて応答性に優れたタイプを使用しても、光学的に測温するよりも測温が遅れてしまう。遅れが、1秒よりも短時間になるように設置する場合、鉄皮であれば、その素材と同一の線材を用いて熱電対を作らねばならない。すなわち、オンタイムに測温して、即座に対応することは、非常に困難であった。   As described above, it is possible to predict the shape of the raw material in the furnace from the temperature measurement by the thermocouple, but a time delay is inevitably caused. For example, detailed research results are disclosed in Non-Patent Document 1, for example. In other words, with thermocouples, even if a type with a small equivalent wire diameter and excellent responsiveness is used, temperature measurement is delayed as compared with optical temperature measurement. If the installation is performed so that the delay is shorter than 1 second, if it is an iron skin, a thermocouple must be made using the same wire material. That is, it is very difficult to measure the temperature on time and respond immediately.

本発明は上記状況に鑑みてなされたものであり、本発明は、その吹き上げ現象の発生を時間的遅れが伴うことなく確実に予測し、吹き上げに至る前に還元炉の操業条件を変更して、吹き上げの発生を未然に回避することのできる鉄鋼副生物の還元方法を提供することを目的としている。   The present invention has been made in view of the above situation, and the present invention reliably predicts the occurrence of the blowing-up phenomenon without a time delay, and changes the operating conditions of the reducing furnace before reaching the blowing-up. An object of the present invention is to provide a method for reducing steel by-products that can avoid the occurrence of blow-up.

本発明の鉄鋼副生物の還元方法は、所定の電力を供給して原料の溶解を開始し、原料が溶解されて炭材によって還元され、溶融金属と溶融スラグが形成し始める過程において、還元炉内に存在する原料の温度を放射温度計により測温し、所定の電力および温度変化に基いて演算した、崩落および吹き上げ現象を防止するための低減した電力を還元炉に供給するかまたは電力の供給を停止することをすることを特徴としている。   The method for reducing steel by-product according to the present invention is to supply a predetermined power to start melting of the raw material, and in the process where the raw material is melted and reduced by the carbonaceous material and molten metal and molten slag begin to form, The temperature of the raw material existing in the inside is measured with a radiation thermometer, and the reduced power to prevent the collapse and the blow-up phenomenon calculated based on the predetermined power and temperature change is supplied to the reduction furnace or the power It is characterized by stopping the supply.

本発明においては、崩落および吹き上げ現象を防止するための低減した電力Q(kW)は、放射温度計により測温した時間当たりの原料の温度変化をdT/dt(℃/秒)として、運転中の所定の電力をQ(kW)とした時に、下記の式(1)によって算出されることを好ましい態様としている。
≦(4dT/dt+1.3)×Q dT/dt≦―0.1 …(1)
また、放射温度計により測温した原料の温度変化について1秒ごとに所定の個数の移動平均処理を行い、そのうち第N番目の区間の平均温度をTと定義し、温度差ΔT=T−TN−1を計算し、温度差ΔTをN−1番目とN番目の時間間隔で除した値が−0.1(℃/秒)以下であることが3回連続した場合に、崩落および吹き上げ現象を防止するための低減した電力を還元炉に供給するかまたは電力の供給を停止することを好ましい態様としている。
In the present invention, the reduced electric power Q 2 (kW) for preventing the collapse and the blowing-up phenomenon is operated with the temperature change of the raw material per time measured by the radiation thermometer as dT / dt (° C./second). When the predetermined electric power is Q 1 (kW), it is a preferable aspect that it is calculated by the following equation (1).
Q 2 ≦ (4 dT / dt + 1.3) × Q 1 dT / dt ≦ −0.1 (1)
In addition, a predetermined number of moving average processes are performed every second for the temperature change of the raw material measured by the radiation thermometer, and the average temperature in the Nth section is defined as T N, and the temperature difference ΔT N = T When N− T N−1 is calculated, and the value obtained by dividing the temperature difference ΔT N by the N−1 and Nth time intervals is −0.1 (° C./sec) or less three times continuously In a preferred embodiment, the reduced power for preventing the collapse and the blowing-up phenomenon is supplied to the reduction furnace or the supply of power is stopped.

本発明によれば、放射温度計により原料の温度を測温しているので、熱電対を用いた場合と比較して測温の応答性が向上しており、速やかに原料の温度変化を検知することができ、炉内で発生している異常現象を的確に、遅れることなく把握することが可能である。また、この温度変化によって電力供給を低減するか停止することによって、原料の崩落および吹き上げ現象を防止することができる。   According to the present invention, since the temperature of the raw material is measured by the radiation thermometer, the responsiveness of the temperature measurement is improved as compared with the case where a thermocouple is used, and the temperature change of the raw material is quickly detected. It is possible to accurately grasp the abnormal phenomenon occurring in the furnace without delay. Further, by reducing or stopping the power supply due to this temperature change, it is possible to prevent the material from collapsing and blowing up.

従来の還元炉における吹き上げ現象を模式的に示す図である。It is a figure which shows typically the blowing up phenomenon in the conventional reduction furnace. 本発明の還元炉における吹き上げ現象を模式的に示す図である。It is a figure which shows typically the blowing up phenomenon in the reduction furnace of this invention. 崩落・吹き上げ現象を防止するための電力投入量を求めるグラフである。It is a graph which calculates | requires the electric power input amount for preventing a collapse and a blowing-up phenomenon. 崩落・吹き上げの起こらなかった通常操業での経過時間と温度の関係を示すグラフである。It is a graph which shows the relationship between the elapsed time and temperature in the normal operation where collapse / blow-up did not occur. 崩落・吹き上げが起こった比較例の操業での経過時間と温度の関係を示すグラフである。It is a graph which shows the relationship between the elapsed time and temperature in the operation of the comparative example in which collapse / blowing occurred. 実施例の還元操業における経過時間と温度の関係を示すグラフである。It is a graph which shows the relationship of the elapsed time and temperature in the reduction operation of an Example. 実施例の還元操業における経過時間と温度の関係を示すグラフである。It is a graph which shows the relationship of the elapsed time and temperature in the reduction operation of an Example. 実施例の還元操業における経過時間と温度の関係を示すグラフである。It is a graph which shows the relationship of the elapsed time and temperature in the reduction operation of an Example. 実施例の還元操業における経過時間と温度の関係を示すグラフである。It is a graph which shows the relationship of the elapsed time and temperature in the reduction operation of an Example. 実施例の還元操業における経過時間と温度の関係を示すグラフである。It is a graph which shows the relationship of the elapsed time and temperature in the reduction operation of an Example. 実施例の還元操業における経過時間と温度の関係を示すグラフである。It is a graph which shows the relationship of the elapsed time and temperature in the reduction operation of an Example. 原料の崩落開始時における吹き上げ検出の原理の説明図である。It is explanatory drawing of the principle of blowing-up detection at the time of the start of collapse of a raw material.

以下、本願発明を詳細に説明する。
図1に、本発明が解決すべき吹き上げ現象の発生メカニズムを示す。まず、原料が棚吊(a)を起こし、その結果空洞が形成される(b)。その後、棚吊した焼結体であるドーム状の原料が崩落し、上部に存在していた冷えた原料が高温の原料上に、突然接触することによって、ある種の水蒸気爆発を起こす(c)。
Hereinafter, the present invention will be described in detail.
FIG. 1 shows the generation mechanism of the blow-up phenomenon to be solved by the present invention. First, the raw material raises the shelf (a), and as a result, a cavity is formed (b). After that, the dome-shaped raw material, which is a sintered body suspended from the shelf, collapses, and the cold raw material existing in the upper part suddenly comes into contact with the high-temperature raw material to cause a certain type of steam explosion (c). .

この棚吊から崩落までの現象は、数秒から数分まで、場合によって経過時間は様々に異なるが、即座に起こる場合は、棚吊り状態から秒単位での応答が要求されることも分かった。本発明者らは、この(a)〜(b)に至る現象を事前に検知し、(c)に移行してしまう前に、電極の電力量を低下させたり、あるいは、電源をオフにして、一旦熱供給を低減すれば、吹き上げによるトラブルを回避できると考えた。   The phenomenon from the shelf suspension to the collapse varies from several seconds to several minutes, and the elapsed time varies depending on the case. However, when it occurs immediately, it has been found that a response in seconds from the shelf suspension state is required. The present inventors detect the phenomenon leading to (a) to (b) in advance and reduce the power amount of the electrode before turning to (c) or turn off the power. We thought that once the heat supply was reduced, troubles due to blowing up could be avoided.

まず、熱電対による検知が可能か、電気炉の炉壁に熱電対を設置して試みたが、熱電対で検知される温度変化が速やかではなく、取るべきアクションが遅れてしまう問題が明確になった。さらに、問題であるのは、崩落する場所が、一定ではなく、熱電対で検知しうる場所が、炉内全体を包括していないことにも起因することも分かった。そこで、放射温度計を用いて測温し、50チャージほど監視したところ、上記のような熱電対が持つ問題点がなく、応答性よく監視できることがわかり、本発明に至った。   First of all, I tried to install a thermocouple on the furnace wall to see if it could be detected by a thermocouple, but the temperature change detected by the thermocouple was not rapid, and there was a clear problem that the action to be taken was delayed. became. Furthermore, it was found that the problem is that the place where the collapse occurs is not constant, and the place that can be detected by the thermocouple does not include the entire interior of the furnace. Therefore, when the temperature was measured using a radiation thermometer and monitored for about 50 charges, it was found that there was no problem with the thermocouple as described above, and it was possible to monitor with good responsiveness, leading to the present invention.

本発明の実施の形態による鉄鋼副生物の焙焼還元方法は、所定の電力を供給して原料の溶解を開始し、原料が溶解されて炭材によって還元され、溶融金属と溶融スラグが形成し始める過程において、還元炉内に存在する原料の温度を放射温度計により測温し、所定の電力および温度変化に基いて演算した、崩落および吹き上げ現象を防止するための電力を還元炉に供給するかまたは電力の供給を停止することによって、還元炉の制御をすることができる。   In the method of roasting and reducing steel by-products according to the embodiment of the present invention, a predetermined power is supplied to start melting of the raw material, the raw material is melted and reduced by the carbon material, and molten metal and molten slag are formed. In the process of starting, the temperature of the raw material existing in the reduction furnace is measured with a radiation thermometer, and the electric power for preventing the collapse and the blowing-up phenomenon calculated based on the predetermined electric power and temperature change is supplied to the reduction furnace. Alternatively, the reduction furnace can be controlled by stopping the supply of electric power.

また、崩落・吹き上げ現象を防止するための投入電力量Qの演算方法は、放射温度計により測温した原料温度より温度変化をdT/dt(℃/秒)として、運転中の電力をQ(kW)とした時に、温度変化にしたがい、下記の式(1)を満たすように、電力の制御量を求める。
≦(4dT/dt+1.3)×Q、 dT/dt≦―0.1 …(1)
In addition, the calculation method of the input electric energy Q 2 for preventing the collapse / blowing phenomenon is that the temperature change is dT / dt (° C./second) from the raw material temperature measured by the radiation thermometer, and the electric power during operation is Q When 1 (kW) is set, the control amount of electric power is obtained so as to satisfy the following equation (1) according to the temperature change.
Q 2 ≦ (4 dT / dt + 1.3) × Q 1 , dT / dt ≦ −0.1 (1)

図3は、崩落・吹き上げ現象を防止するために投入電力量を様々に変化させた11チャージの予備実験における測定結果であり、式(1)は、この図3の測定結果における吹き上げ有無の境界線から求めた。   FIG. 3 is a measurement result in a preliminary experiment of 11 charges in which the amount of input electric power is variously changed to prevent a collapse / blow-up phenomenon. Equation (1) is a boundary of presence / absence of blow-up in the measurement result of FIG. Obtained from the line.

上記崩落・吹き上げ現象を防止するための投入電力量Qを算出する計算式は、次に説明するようにして求めた。図2に示すように炉内に装入された原料が見える箇所に、放射温度計を設置し、監視した。このように温度計を設置して、50チャージほど繰り返して監視し続けたところ、殆どは、崩落現象が起こらず、良好な操業が行えた。その時の代表的な温度推移を図4(破線の実測値)に示す。ここで、設置した温度計は一般的な放射温度計である。もちろん二色温度計など、光学的に測温する設備であれば構わない。なお、この測温例は、炉内の原料表面温度が700℃を超えたところから感知するものを使用した例である。操業自体は約4時間で1チャージであり、監視しなければならない崩落、吹き上げ現象を起こすタイミングは、およそ2.5時間以降の、原料が炭材によって還元されて、Fe−Ni−Cr−Mn系の溶融金属とCaO−SiO−Al−MgO−FeO−Cr−F系の溶融スラグが形成され始める頃からである。ちなみに、グラフに示す経過時間は、2.5時間時点を0としてそれ以降の温度変化を取ったものである。 Formula for calculating the input power amount Q 2 to prevent the collapse-blown phenomenon was then determined as will be described. As shown in FIG. 2, a radiation thermometer was installed and monitored where the raw material charged in the furnace could be seen. When the thermometer was installed in this way and repeatedly monitored for about 50 charges, in most cases, the collapse phenomenon did not occur and good operation could be performed. A typical temperature transition at that time is shown in FIG. Here, the installed thermometer is a general radiation thermometer. Of course, any device that optically measures temperature, such as a two-color thermometer, may be used. This temperature measurement example is an example using what is detected when the raw material surface temperature in the furnace exceeds 700 ° C. The operation itself takes 1 charge in about 4 hours, and the timing of the collapse and blow-up phenomenon that must be monitored is about 2.5 hours after the raw material is reduced by the carbonaceous material, Fe-Ni-Cr-Mn. This is because the molten metal of the system and the molten slag of the CaO—SiO 2 —Al 2 O 3 —MgO—FeO—Cr 2 O 3 —F system begin to form. By the way, the elapsed time shown in the graph is obtained by taking the temperature change after that with the time point of 2.5 hours as 0.

この一連の測温テスト中に、崩落および吹き上げ現象が発生したチャージがあった。その時の温度推移を図5に示す。崩落および吹き上げが起こらなかった通常操業での温度推移である図4では、明らかに、温度は細かい上下動を繰り返しつつも、一様に温度上昇していくことが分かるが、吹き上げを起こした図5では、温度が急激に低下し始めて、約10分間に亘りそれが続いた後、急激に昇温に転じていることが分かる。これを、その時の操業状況に照らし合わせて、対応関係を整理すると、図5のグラフ中の注釈に示したとおり、急激に温度低下に転じた点が、崩落開始点であり、その後、急激に昇温に転じた点が吹き上げ発生点である。吹き上げ現象は、炉外に噴煙が上がるので、炉外から、現象を確定することが出来るため、その直前に起きている異常な温度低下が、崩落開始点であり、その時点で電極に流れている電力量を低下させる、あるいは、オフにするなど措置を取ればよい。   During this series of temperature measurement tests, there was a charge that had collapsed and blown up. The temperature transition at that time is shown in FIG. In FIG. 4, which is a temperature transition in a normal operation where neither collapse nor blow-up has occurred, it is apparent that the temperature rises uniformly while repeating the fine vertical movement, but the figure that caused the blow-up has occurred. 5, it can be seen that the temperature starts to drop sharply, continues for about 10 minutes, and then suddenly starts to rise in temperature. When this is compared with the operation status at that time, the correspondence relationship is organized. As shown in the annotation in the graph of FIG. 5, the point at which the temperature suddenly started to fall is the start point of collapse, and then suddenly The point at which the temperature starts to rise is the point at which the blow-up occurs. Since the blow-up phenomenon causes smoke to rise outside the furnace, the phenomenon can be confirmed from outside the furnace, so the abnormal temperature drop that occurs just before that is the start point of the collapse, and flows to the electrode at that point. What is necessary is just to take measures, such as reducing the amount of electric power to be turned off or turning it off.

ここで、異常現象を通常起こりうる温度の上下動と混同させないようにするために、温度推移を平滑化する必要がある。そのために、以下の演算処置を施した。
(1)1秒ごとに、温度に関して例えば10個の移動平均処理を行う。この処理を行った第N番目の区間の平均温度をTと定義する。
(2)上記移動平均線において温度差ΔT=T−TN−1を計算する。
(3)N−1番目とN番目の時間間隔(ここでは1秒)に対して、(2)のΔTを時間間隔で除した値が−0.1(℃/秒)以下であれば、下記(4)に進む。
(4)上記(3)を満たす状態が、3回続いたら、崩落現象発生と判断する。もし、2回以下であれば、再び(1)に戻る。
(5)崩落現象と判断したら、警報機が作動し、それを聞いた作業員が的確な対策を取る。
Here, it is necessary to smooth the temperature transition so as not to confuse the abnormal phenomenon with the normal temperature fluctuation. For this purpose, the following arithmetic treatment was performed.
(1) For example, 10 moving average processes are performed on the temperature every second. The average temperature of the Nth section where this processing is performed is defined as TN .
(2) Calculate the temperature difference ΔT N = T N −T N−1 on the moving average line.
(3) If the value obtained by dividing ΔT in (2) by the time interval is −0.1 (° C./second) or less with respect to the N−1 and Nth time intervals (here 1 second), Proceed to (4) below.
(4) If the state satisfying the above (3) continues three times, it is determined that a collapse phenomenon has occurred. If it is less than 2 times, return to (1) again.
(5) If it is judged that the phenomenon of collapse, the alarm is activated and the worker who heard it will take appropriate measures.

図4のグラフにおいて破線で示す実測値を、上記処理(1)によって平滑化処理した場合のグラフを実線にて図4に併記する。このように平滑化を行うことで、実測値での局所的な微細な温度変化が崩落現象発生と誤判断されずに、還元炉の温度上昇・下降の傾向を示す曲線とすることができる。   The graph when the actual measurement value indicated by the broken line in the graph of FIG. 4 is smoothed by the above process (1) is also shown in FIG. By performing smoothing in this way, it is possible to obtain a curve indicating a tendency of temperature increase / decrease in the reduction furnace without erroneously determining that a local minute temperature change in the actually measured value is a collapse phenomenon.

また、処理(2)〜(5)の模式図を図12に示す。図12は、図11の原料崩落開始部分の温度下降部分Aを拡大した図である。図12に示すように、各区間の温度変化を時間間隔で割った数値、すなわち各区間の温度曲線を直線で近似したときの傾きを連続的に計算し、この傾きが−0.1以下である場合が3回連続したら吹き上げが検出されたと判定される。このような処理を行うことで、的確に、図5に記載した原料崩落部を捉えることが可能となる。   Moreover, the schematic diagram of process (2)-(5) is shown in FIG. FIG. 12 is an enlarged view of the temperature decrease portion A of the material collapse start portion in FIG. As shown in FIG. 12, a numerical value obtained by dividing the temperature change of each section by the time interval, that is, a slope when the temperature curve of each section is approximated by a straight line is continuously calculated, and this slope is −0.1 or less. If a certain case continues three times, it is determined that blowing has been detected. By performing such a process, it is possible to accurately capture the material collapsed portion described in FIG.

なお、上記の処理は一例であり、それぞれ炉によって数値は変えることが出来る。要点は、秒単位(N−1とN番目の時間間隔)で、ある個数のデータの移動平均をとり、その時の温度低下速度が、ある臨界値以上に高くなった場合に、警報が鳴る。もちろん、警報ではなくて、自動的に電力量を低下させる、あるいは、オフにするといった制御が出来る設備にしても構わない。   In addition, said process is an example and a numerical value can be changed with each furnace. The point is that a moving average of a certain number of data is taken in seconds (N-1 and the Nth time interval), and an alarm sounds when the temperature decrease rate at that time becomes higher than a certain critical value. Of course, instead of an alarm, it may be a facility that can automatically control the power amount to be reduced or turned off.

上記移動平均処理における温度のサンプリング速度は0.05〜1秒/1点、すなわち、限定はしないが、1〜20Hzが好ましい。特に限定しないが、移動平均は5〜30個程度のデータを取ればよい。移動平均をとる時間単位も0.1〜10秒毎でよい。   The temperature sampling speed in the moving average process is 0.05 to 1 second / 1 point, that is, although not limited, 1 to 20 Hz is preferable. Although not particularly limited, the moving average may be about 5 to 30 pieces of data. The time unit for taking the moving average may be 0.1 to 10 seconds.

移動平均の1区間の温度差ΔTを時間間隔で除した値が−0.1(℃/秒)以下である状態が繰り返されて崩落発生と判断され警報発信されるための判定条件(上記状態の繰り返し回数)も2〜10回程度で設備に合った数値を設定すればよい。ただし、あまりに移動平均により平滑化してしまうと、変化に対して鈍感になりすぎて、現象を瞬時に捉えられなくなるので、設備ごとに適正化する必要がある。   A determination condition (the above state) for a state where a value obtained by dividing a temperature difference ΔT of one section of the moving average by a time interval is −0.1 (° C./second) or less and a collapse is determined to occur and an alarm is transmitted The number of repetitions of (2) may be set to about 2 to 10 times and a numerical value suitable for the equipment. However, if it is too smooth by moving average, it becomes too insensitive to the change and the phenomenon cannot be captured instantaneously, so it is necessary to optimize each facility.

本発明によれば、還元炉内で発生している異常現象を的確に、遅れることなく把握することが可能であり、その現象に基いて供給電力量を低下させる等の対策を施すことが可能となり、吹き上げ事故を未然に防止することが出来る。   According to the present invention, it is possible to accurately grasp the abnormal phenomenon occurring in the reduction furnace without delay, and it is possible to take measures such as reducing the amount of supplied power based on the phenomenon. Thus, it is possible to prevent a blow-up accident.

次に、実施例および比較例によって、本発明の効果を説明する。
製鋼ダスト、酸洗スラッジ、スケール材、SiC、フェロニッケル製錬で発生したスラグ(MgO―SiO系)、及び、ステンレス鋼精錬のAODにおける仕上げスラグ(CaO―SiO―MgO―F系)を配合し、炭材、水分及び油脂分を表1(単位:mass%)に示す割合で混合し、双ロール式の製団機を用いて、これを表1に示した形状のブリケットに成型した。
Next, the effects of the present invention will be described with reference to examples and comparative examples.
Steelmaking dust, pickling sludge, scale material, SiC, slag generated by smelting of ferronickel (MgO-SiO 2 system), and finishing slag in stainless steel refining AOD (CaO-SiO 2 -MgO-F system) Mixing, mixing carbonaceous materials, moisture and fats and oils in the proportions shown in Table 1 (unit: mass%), and using a twin roll type machine, this was molded into briquettes of the shape shown in Table 1. .

なお、炭材は、還元反応に必要な分と、焙焼工程での熱源として、配合した原料1tに対して100〜200kgの重量で配合した。   In addition, the carbon material was mix | blended with the weight of 100-200 kg with respect to the mix | blended raw material 1t as a part required for a reductive reaction, and a heat source in a roasting process.

次に、上記のようにして成型したブリケットを焙焼ボックスに装入し、その後、焙焼ボックス上部をダクトで密閉し、排風機を用いて吸引しながら、下部をバーナーで20〜30分間加熱して着火し、焙焼処理を120〜180分間行った。これにより、水分を揮発させるとともに、各ブリケット内部の原料粒子を焼結させた。   Next, the briquette molded as described above is charged into a roasting box, and then the upper part of the roasting box is sealed with a duct and the lower part is heated with a burner for 20 to 30 minutes while being sucked using a blower. Then, the mixture was ignited and roasting was performed for 120 to 180 minutes. Thereby, while volatilizing a water | moisture content, the raw material particle | grains inside each briquette were sintered.

その後、スラグ量と塩基度(CaO/SiO)調整のために、表2に示した配合で石灰石及び/又は珪砂を、上記のブリケットに混合し、これらをサブマージドアーク電気炉に装入した。そして、これを加熱して、還元したメタル分とスラグ分に分離し、Fe、Ni、Cr、Mnの有価金属を回収した。回収されたメタルはおよそ5〜6tであり、残部がスラグであった。なお、電気炉のサイズは13tであり、電力原単位はおよそ1800kWh/メタルtであった。 Thereafter, in order to adjust the amount of slag and the basicity (CaO / SiO 2 ), limestone and / or silica sand having the composition shown in Table 2 was mixed into the above briquette, and these were charged into a submerged arc electric furnace. . And this was heated and isolate | separated into the reduced metal part and the slag part, and valuable metals, such as Fe, Ni, Cr, and Mn, were collect | recovered. The recovered metal was approximately 5 to 6 t, and the remainder was slag. The size of the electric furnace was 13 t, and the electric power consumption was about 1800 kWh / metal t.

Figure 2011179092
Figure 2011179092

Figure 2011179092
Figure 2011179092

<実施例1〜4>
還元炉に投入する原料を、上記表1の実施例1〜4の配合で変化させて操業した場合における温度変化を、それぞれ図6〜9のグラフに示す。実施例1〜4とも、特に問題なく操業することが出来た。
<Examples 1-4>
The temperature change when the raw material put into the reduction furnace is operated by changing the composition of Examples 1 to 4 in Table 1 above is shown in the graphs of FIGS. Examples 1 to 4 could be operated without any particular problem.

<実施例5>
表1の実施例5に示す配合で上記処理を行った。図10のグラフにおいて60分の時点で、温度低下速度−0.3℃/秒を示し、警報が鳴ったため操業を停止した。そのため、生産は停止したが、吹き上げを起こすことなく安全な措置をとることができた。
<Example 5>
The above treatment was carried out with the formulation shown in Example 5 of Table 1. In the graph of FIG. 10, at a time point of 60 minutes, the temperature decrease rate was −0.3 ° C./second, and the operation was stopped because an alarm sounded. As a result, production stopped, but it was possible to take safe measures without blowing up.

<実施例6>
表1の実施例3と同じ配合で上記処理を行った。図11のグラフにおいて矢印の時点で、温度低下速度−0.15℃/秒を示し、警報が鳴ったため、一旦2700kWかけていた電力をオフにして、原料を溶融スラグ上に落下させたことを確認して、再度電力2000kWに低下させて継続した。その結果、急激な崩落、吹き上げトラブルを回避して操業することができた。点線が示す意味は警報装置が作動したにもかかわらず回避操作を行わない場合の予想を示すものである。
<Example 6>
The said process was performed by the same mixing | blending as Example 3 of Table 1. In the graph of FIG. 11, at the time of the arrow, the temperature decrease rate was −0.15 ° C./second and an alarm sounded. Therefore, the power that had been applied over 2700 kW was turned off and the raw material was dropped on the molten slag. After confirming, the power was reduced again to 2000 kW and continued. As a result, we were able to operate while avoiding sudden collapses and blowing problems. The meaning indicated by the dotted line indicates the expectation when the avoidance operation is not performed even though the alarm device is activated.

<比較例>
表1の実施例2と同じ配合で上記処理を行った。原料崩落の時点で、温度低下速度−0.2℃/秒を示したが、何もアクションを取らなかったものである。そのため、吹き上げを起こしてしまい、炉外に噴煙が上がり危険な状態となった。吹上後は、そのまま、操業を続け出鋼した。なお、この比較例の温度変化のグラフは、吹き上げの説明として図5に示したものである。
<Comparative example>
The said process was performed by the same mixing | blending as Example 2 of Table 1. At the time of the collapse of the raw material, a temperature decrease rate of −0.2 ° C./second was shown, but no action was taken. As a result, it was blown up, and the fumes rose outside the furnace, making it dangerous. After blowing up, he continued to operate and started steel production. In addition, the graph of the temperature change of this comparative example is shown in FIG.

本発明によれば、危険な吹き上げ事故を防止し、鉄鋼副生物の還元炉の安全な操業に寄与することができる。   ADVANTAGE OF THE INVENTION According to this invention, a dangerous blowing up accident can be prevented and it can contribute to the safe operation of the reduction furnace of a steel byproduct.

1…サブマージドアーク電気炉、2…原料(還元リサイクル用原料ブリケット)、3…電極、4…スラグ分、5…還元メタル分、6…空洞、7…棚吊、8…放射温度計、9…測温部。   DESCRIPTION OF SYMBOLS 1 ... Submerged arc electric furnace, 2 ... Raw material (raw material briquette for reduction | restoration recycling), 3 ... Electrode, 4 ... Slag part, 5 ... Reduction metal part, 6 ... Cavity, 7 ... Shelf hanging, 8 ... Radiation thermometer, 9 ... Temperature measuring section.

Claims (4)

鉄鋼副生物からなる原料を炭材と共に還元炉に供給して還元する鉄鋼副生物の焙焼還元方法であって、
所定の電力を供給して前記原料の溶解を開始し、
前記原料が溶解されて炭材によって還元され、溶融金属と溶融スラグが形成し始める過程において、前記還元炉内に存在する原料の温度を放射温度計により測温し、
前記所定の電力および前記温度変化に基いて演算した、崩落および吹き上げ現象を防止するための低減した電力を前記還元炉に供給するかまたは電力の供給を停止することを特徴とする鉄鋼副生物の焙焼還元方法。
A method for roasting and reducing steel by-products, in which a raw material made of steel by-products is supplied to a reduction furnace together with carbonaceous material and reduced.
Supply predetermined power to start melting the raw material,
In the process where the raw material is melted and reduced by the carbonaceous material and molten metal and molten slag begin to form, the temperature of the raw material present in the reduction furnace is measured with a radiation thermometer,
Supplying reduced power to prevent the collapse and blowing-up phenomenon calculated based on the predetermined power and the temperature change to the reduction furnace or stopping the power supply Roasting reduction method.
前記崩落および吹き上げ現象を防止するための低減した電力Q(kW)は、前記放射温度計により測温した時間当たりの原料の温度変化をdT/dt(℃/秒)として、運転中の前記所定の電力をQ(kW)とした時に、下記の式(1)によって算出されることを特徴とする請求項1に記載の鉄鋼副生物の焙焼還元方法。
≦(4dT/dt+1.3)×Q dT/dt≦―0.1 …(1)
The reduced electric power Q 2 (kW) for preventing the collapse and the blow-up phenomenon is the above-mentioned during operation while the temperature change of the raw material per time measured by the radiation thermometer is dT / dt (° C./second). The method for roasting and reducing steel by-products according to claim 1, wherein the predetermined power is Q 1 (kW) and is calculated by the following formula (1).
Q 2 ≦ (4 dT / dt + 1.3) × Q 1 dT / dt ≦ −0.1 (1)
前記放射温度計により測温した原料の温度変化について1秒ごとに所定の個数の移動平均処理を行い、
そのうち第N番目の区間の平均温度をTと定義し、
温度差ΔT=T−TN−1を計算し、
前記温度差ΔTをN−1番目とN番目の時間間隔で除した値が−0.1(℃/秒)以下であることが3回連続した場合に、前記崩落および吹き上げ現象を防止するための低減した電力を前記還元炉に供給するかまたは電力の供給を停止することを特徴とする請求項1または2に記載の鉄鋼副生物の焙焼還元方法。
A predetermined number of moving average processes are performed every second for the temperature change of the raw material measured by the radiation thermometer,
The average temperature of the Nth section is defined as TN ,
Calculate the temperature difference ΔT N = T N −T N−1 ,
If the value of the temperature difference [Delta] T N divided by N-1 th and N-th time interval is -0.1 (° C. / sec) or less continuous three times, to prevent the collapse and blow phenomenon The method of roasting and reducing steel by-products according to claim 1, wherein the reduced electric power is supplied to the reduction furnace or the supply of electric power is stopped.
前記鉄鋼副生物は、製鋼ダスト、酸洗スラッジ、スケール材、フェロニッケルスラグであることを特徴とする請求項1〜3のいずれかに記載の鉄鋼副生物の焙焼還元方法。   The method for roasting and reducing steel by-products according to any one of claims 1 to 3, wherein the steel by-products are steelmaking dust, pickling sludge, scale material, and ferronickel slag.
JP2010046322A 2010-03-03 2010-03-03 Roasting reduction method of steel by-products Active JP4768863B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010046322A JP4768863B1 (en) 2010-03-03 2010-03-03 Roasting reduction method of steel by-products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010046322A JP4768863B1 (en) 2010-03-03 2010-03-03 Roasting reduction method of steel by-products

Publications (2)

Publication Number Publication Date
JP4768863B1 JP4768863B1 (en) 2011-09-07
JP2011179092A true JP2011179092A (en) 2011-09-15

Family

ID=44690910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010046322A Active JP4768863B1 (en) 2010-03-03 2010-03-03 Roasting reduction method of steel by-products

Country Status (1)

Country Link
JP (1) JP4768863B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108570526A (en) * 2018-03-28 2018-09-25 马鞍山钢铁股份有限公司 A kind of control method of the abnormal smelting of converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251769A (en) * 1997-03-17 1998-09-22 Sumitomo Metal Mining Co Ltd Method for measuring molten metal temperature in flash-smelting furnace for smelting non-ferrous metal and measuring instrument
JP2008031549A (en) * 2006-07-06 2008-02-14 Nippon Yakin Kogyo Co Ltd Roasting reduction method for steel by-product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251769A (en) * 1997-03-17 1998-09-22 Sumitomo Metal Mining Co Ltd Method for measuring molten metal temperature in flash-smelting furnace for smelting non-ferrous metal and measuring instrument
JP2008031549A (en) * 2006-07-06 2008-02-14 Nippon Yakin Kogyo Co Ltd Roasting reduction method for steel by-product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108570526A (en) * 2018-03-28 2018-09-25 马鞍山钢铁股份有限公司 A kind of control method of the abnormal smelting of converter

Also Published As

Publication number Publication date
JP4768863B1 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
KR101560512B1 (en) Steel slag reduction method
JP5620030B2 (en) Method and control system for controlling a melting process
MX2014006370A (en) Method for processing starting materials for recycling.
JP4768863B1 (en) Roasting reduction method of steel by-products
JPWO2013187348A1 (en) Method for producing metallic chromium
Lee et al. Effect of hot metal utilization on the steelmaking process parameters in the electric arc furnace
Abdellatif Review of the development work on the Mintek thermal magnesium process (MTMP)
JP6373783B2 (en) Management method of molten steel pan
JP2020032343A (en) Method for suppressing elution of boron in boron-including material, and method for production of treatment material for boron elution suppression
JP2008116066A (en) Operating method of electric furnace
JP7028365B2 (en) Method for manufacturing chromium-containing molten iron
RU2661322C2 (en) Method for manufacture of bimetallic electrode by electroslag cladding
JP5505801B2 (en) High temperature slag treatment method
JP6947343B1 (en) Fluctuation detection method of solidified layer and blast furnace operation method
EP3280965B1 (en) Method and arrangement for operating a metallurgical furnace and computer program product
JP6553532B2 (en) Electric furnace operation control system, electric furnace and electric furnace operation control method
WO2021220751A1 (en) Method for detecting fluctuation in coagulation layer and blast furnace operation method
JP5857651B2 (en) Method for drying powdery material containing iron, fluorine and moisture and method for operating vertical furnace
RU2673899C1 (en) Method for washing blast furnace
Ho et al. Energy audit of a steel mill
WO2020217890A1 (en) Method of manufacturing molten iron containing chromium
Muller Evaluation of HCFeMn and SiMn slag tapping flow behaviour using physicochemical property modelling and analytical flow modelling
Steinberg Development of a control strategy for the open slag bath furnaces at Highveld Steel and Vanadium Corporation Ltd
JPH0978117A (en) Operation of converter
Louw et al. Technical Focus on DC-arc Furnace Application to Waste Stream Smelting

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4768863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250