JP2011177815A - Rotary tool bit and method for manufacturing rotary tool bit - Google Patents

Rotary tool bit and method for manufacturing rotary tool bit Download PDF

Info

Publication number
JP2011177815A
JP2011177815A JP2010042847A JP2010042847A JP2011177815A JP 2011177815 A JP2011177815 A JP 2011177815A JP 2010042847 A JP2010042847 A JP 2010042847A JP 2010042847 A JP2010042847 A JP 2010042847A JP 2011177815 A JP2011177815 A JP 2011177815A
Authority
JP
Japan
Prior art keywords
bit
hardened layer
rotary tool
soft
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010042847A
Other languages
Japanese (ja)
Inventor
Yasuaki Taguchi
康明 田口
Jiro Taguchi
二郎 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vessel Industrial Co Inc
Original Assignee
Vessel Industrial Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vessel Industrial Co Inc filed Critical Vessel Industrial Co Inc
Priority to JP2010042847A priority Critical patent/JP2011177815A/en
Priority to PCT/JP2011/054322 priority patent/WO2011105558A1/en
Publication of JP2011177815A publication Critical patent/JP2011177815A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B15/00Screwdrivers
    • B25B15/001Screwdrivers characterised by material or shape of the tool bit
    • B25B15/002Screwdrivers characterised by material or shape of the tool bit characterised by material used or surface finishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B15/00Screwdrivers
    • B25B15/001Screwdrivers characterised by material or shape of the tool bit
    • B25B15/004Screwdrivers characterised by material or shape of the tool bit characterised by cross-section
    • B25B15/005Screwdrivers characterised by material or shape of the tool bit characterised by cross-section with cross- or star-shaped cross-section

Abstract

<P>PROBLEM TO BE SOLVED: To enhance entire surface hardness and abrasion resistance by providing a soft core body having the hardness lower than that of a hardened layer on the inner side of the hardened layer formed on an entire bit surface by executing a plasma carburization treatment, to prevent any local stress concentration by covering the bit with the hardened layer of a closed structure and forming the inner soft core body to be a cushion, and to form the hardened layer at an adequate depth so as to leave the soft core body therein through the plasma carburization treatment. <P>SOLUTION: A rotary tool bit 1 subjected to the carburization treatment includes a hardened layer 2 formed by executing the plasma carburization treatment on the entire bit surface S, and a soft core body 3 located inside the hardened layer 2 and having the hardness lower than that of the hardened layer 2. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、電動工具やエアー工具等の回転工具に着脱自在に取り付けられるドライバビットやドリルビットなど等の回転工具用ビット、及び回転工具用ビットの製造方法に関するものである。   The present invention relates to a rotating tool bit such as a driver bit or a drill bit that is detachably attached to a rotating tool such as an electric tool or an air tool, and a method of manufacturing the rotating tool bit.

従来、電動工具やエアー工具の駆動軸に連結されているアンビル部に装着可能な長尺状の工具片である回転工具用ビットが知られている。
この回転工具用ビットは、その一端側に工具刃先(刃先部)を有すると共に、その中途部には回転工具のアンビル部に嵌め込んで回転工具からの回転力を受けるシャンクを有し、このシャンクには前記アンビル部の係止部材が嵌まり込む係合部が設けられている。
2. Description of the Related Art Conventionally, there is known a rotary tool bit that is a long tool piece that can be attached to an anvil portion connected to a drive shaft of an electric tool or an air tool.
The rotary tool bit has a tool cutting edge (cutting edge portion) on one end side thereof, and a shank that is fitted in the anvil portion of the rotating tool and receives a rotational force from the rotating tool at the middle portion thereof. Is provided with an engaging portion into which the locking member of the anvil portion is fitted.

また、従来の回転工具用ビットは、前記シャンクの周方向に断面積小とするねじれ可能な帯域、つまりシャンク中途部にくびれた係止周溝を設け、この係止周溝が、回転工具からの回転トルクが加わった時にねじれ、ビットにかかる過剰な負荷を吸収し、衝撃を緩和することで、回転工具用ビットの高寿命化を図っている。
回転トルクの吸収及び衝撃の緩和という課題に対応している従来技術としては以下の特許文献1に記載されたものがある。
Further, the conventional rotary tool bit has a twistable band with a small cross-sectional area in the circumferential direction of the shank, that is, a locking circumferential groove constricted in the middle of the shank. When the rotational torque is applied, the bit is twisted, the excessive load applied to the bit is absorbed, and the impact is alleviated, thereby extending the life of the bit for the rotary tool.
As a conventional technique that corresponds to the problem of rotational torque absorption and shock relaxation, there is one described in Patent Document 1 below.

特許文献1に記載されたドライバインサートは、後の焼戻し、液体による冷却をすることや、軟らかい材料と他の硬い材料とを個化することで、ねじれ可能な帯域を構成することで、ビットの寿命を延ばしている。
一方、ビットの高寿命化を図るために、ビット表面にチタンなどの合金を蒸着やイオンプレーティングする技術的手段がある。
The driver insert described in Patent Document 1 can be tempered later, cooled by liquid, or individualized with a soft material and another hard material to form a twistable band. Extends life.
On the other hand, in order to extend the life of the bit, there is a technical means for depositing or ion plating an alloy such as titanium on the surface of the bit.

特表平8−504685号公報Japanese National Patent Publication No. 8-504585

しかしながら、上述した2つ技術的手段では、以下のような問題がある。
特許文献1に記載されたように、焼戻しや液体冷却による部分的な硬度調整の場合には、ドライバ先端の羽根などの薄肉状部分において、硬化層の深さを適切に調整をすることがほぼできない。また、硬度の異なる2つの材料を個化した場合でも、回転時の過剰な負荷や衝撃によって、材料が脱落する虞がある。
However, the two technical means described above have the following problems.
As described in Patent Document 1, in the case of partial hardness adjustment by tempering or liquid cooling, it is almost possible to appropriately adjust the depth of the hardened layer in a thin portion such as a blade at the tip of the driver. Can not. Further, even when two materials having different hardnesses are individualized, there is a possibility that the material may fall off due to excessive load or impact during rotation.

また、蒸着やイオンプレーティングした場合、チタンなどの合金とビットの金属材料とは粒子間のつながりが異なるために密着性が悪く、特に衝撃のかかる回転締付け時には、ビット表面から合金の層が脱落してしまう問題がある。
さらに、ネジ穴等の対象物と接触するビット表面部分に摩耗変形が発生し、いったん変形が生じるとその部分に応力が繰返し集中するので、加速度的にビットの寿命を短くする原因となる。
In addition, when vapor deposition or ion plating is performed, the alloy between titanium and the metal material of the bit has poor adhesion due to the different connection between the particles, and the alloy layer falls off the bit surface, especially during impactful rotary tightening. There is a problem.
Furthermore, wear deformation occurs in the bit surface portion that comes into contact with an object such as a screw hole, and once the deformation occurs, stress is repeatedly concentrated on that portion, which causes the bit life to be shortened in an accelerated manner.

本発明は、このような点に鑑みて、ビット全表面にプラズマ浸炭処理を施して形成された硬化層の内側に、硬化層より硬度が低い軟芯体を有することで、ビットの表面硬度を上げて耐摩耗性の向上を図りながら、全体的に覆った硬化層内の軟芯体をクッションとして、局所的な応力集中を防ぐと共に、プラズマ浸炭処理によって硬化層の適切な深さに調整が可能な回転工具用ビットを提供することを目的とする。   In view of these points, the present invention has a soft core having a hardness lower than that of the hardened layer on the inner side of the hardened layer formed by subjecting the entire surface of the bit to plasma carburization, thereby reducing the surface hardness of the bit. While improving the wear resistance, the soft core in the hardened layer that is entirely covered is used as a cushion to prevent local stress concentration, and it can be adjusted to the appropriate depth of the hardened layer by plasma carburizing treatment. The object is to provide a possible bit for a rotating tool.

また、本発明は、回転工具用ビットの全表面にプラズマ浸炭処理を施して形成した硬化層の内側に、硬化層より硬度が低い軟芯体を残すことで、ビットを硬化層で全体的に覆うことが可能となり、表面硬度と耐摩耗性との向上、局所的な応力集中の防止と同時に、硬化層を適度な深さに調整する回転工具用ビットの製造方法を提供することを目的とする。   In addition, the present invention provides a soft core having a lower hardness than the hardened layer inside the hardened layer formed by subjecting the entire surface of the rotary tool bit to plasma carburizing treatment, so that the bit is entirely formed of the hardened layer. An object of the present invention is to provide a method for manufacturing a bit for a rotary tool that can be covered, improves surface hardness and wear resistance, prevents local stress concentration, and adjusts a hardened layer to an appropriate depth. To do.

前記課題を達成するために、本発明に係る回転工具用ビットは、以下の技術的手段を採用した。
第1に、浸炭処理を施した回転工具用ビットであって、
ビット全表面にプラズマ浸炭処理を施して形成された硬化層と、この硬化層の内側に位置し且つ硬化層より硬度が低い軟芯体とを有していることを特徴とする。
In order to achieve the above object, the bit for a rotary tool according to the present invention employs the following technical means.
The first is a bit for a rotating tool that has been subjected to carburizing treatment,
It has a hardened layer formed by subjecting the entire surface of the bit to plasma carburization, and a soft core that is located inside the hardened layer and has a hardness lower than that of the hardened layer.

第2に、ビット刃先部に、前記硬化層の内側で軟芯体と連続し且つ硬化層より硬度が低い軟刃体を残していることを特徴とする。
第3に、浸炭処理を施した回転工具用ビットであって、
少なくともビット刃先部に、プラズマ浸炭処理を表面に施して形成された硬化層を有し、
この硬化層の内側に位置し且つ硬化層より硬度が低い軟刃体を、ビット刃先部に残していることを特徴とする。
Second, the bit blade edge portion is characterized in that a soft blade body that is continuous with the soft core body inside the hardened layer and has a hardness lower than that of the hardened layer remains.
Thirdly, it is a bit for a rotating tool that has been subjected to carburizing treatment,
At least the bit blade edge portion has a hardened layer formed by subjecting the surface to plasma carburizing treatment,
A soft blade body that is located inside the hardened layer and has a hardness lower than that of the hardened layer is left in the bit cutting edge.

第4に、前記硬化層の表面からの深さを10μm以上100μm以下に形成していることを特徴とする。
これらの特徴により、全表面にプラズマ浸炭処理を施して形成した硬化層の内側に、硬化層より硬度が低い軟芯体を設けることで、ビット材料と炭素とがしっかりとつながって表面硬度及び耐摩耗性の向上を図りながら、回転工具用ビット全体を硬化層で包み込むことができる。よって、ビット刃先部等に加わった衝撃を硬化層全体で受け、且つ内部の軟芯体をクッションとした衝撃の緩和を実現して、局所的な応力の発生を抑えることが可能となると同時に、プラズマ浸炭処理によって、内部に軟芯体を残すような適切な表面からの深さ(厚み)に硬化層を形成可能となる。
Fourth, the depth from the surface of the hardened layer is 10 μm or more and 100 μm or less.
Due to these features, by providing a soft core with a lower hardness than the hardened layer inside the hardened layer formed by plasma carburizing treatment on the entire surface, the bit material and carbon are firmly connected, and the surface hardness and resistance The entire rotary tool bit can be wrapped with a hardened layer while improving wear. Therefore, the impact applied to the bit blade edge part etc. is received by the entire hardened layer, and the impact relaxation using the internal soft core as a cushion can be realized, and at the same time, the generation of local stress can be suppressed, By the plasma carburizing treatment, the hardened layer can be formed at a depth (thickness) from an appropriate surface that leaves a soft core inside.

また、硬化層の内側で軟芯体と連続し且つ硬化層より硬度が低い軟刃体をビット刃先部に残すことで、ドライバ先端の羽根やドリル刃先の先端エッジ付近などの薄肉部分において硬化層の適切な深さ調整が可能となって、薄肉状のビット刃先部の内部でも軟刃体を残し、軟刃体をクッションとしてビット刃先部に加わった衝撃を緩和可能となる。つまり、刃先の破損を防止して、ビット刃先の耐久性を上げると共に、回転工具用ビット全体の寿命を延ばすことができる。   In addition, by leaving a soft blade body that is continuous with the soft core inside the hardened layer and has a lower hardness than the hardened layer at the bit edge, the hardened layer can be applied to thin parts such as blades at the tip of the driver and the tip edge of the drill edge. Therefore, the soft blade body can be left inside the thin bit cutting edge portion, and the impact applied to the bit cutting edge portion can be mitigated by using the soft blade body as a cushion. That is, it is possible to prevent breakage of the cutting edge, increase the durability of the bit cutting edge, and extend the life of the entire rotary tool bit.

さらに、ビット刃先部に、表面にプラズマ浸炭処理を施して形成した硬化層の内側に位置し且つ硬化層より硬度が低い軟刃体を残すことで、ビット刃先部でビット材料と炭素とのつながりをしっかり確保して、刃先部表面の硬度及び耐摩耗性の向上を実現しながら、回転工具用ビットの薄肉部分においてプラズマ浸炭処理による硬化層の適度な深さ調整が可能となり、ビット刃先部自体でクッションとなる軟刃体を有することとなる。したがって、ビット刃先部独自の衝撃緩和ができ、ビット刃先の耐久性の向上が、回転工具用ビット全体の高寿命化につながる。   Furthermore, the bit blade edge part is connected to the bit material and carbon at the bit blade edge part by leaving a soft blade body located inside the hardened layer formed by plasma carburizing treatment on the surface and having a lower hardness than the hardened layer. It is possible to adjust the depth of the hardened layer by plasma carburizing treatment in the thin part of the bit for the rotary tool while ensuring the hardness of the blade edge and improving the wear resistance. It will have a soft blade which becomes a cushion. Therefore, impact unique to the bit cutting edge can be mitigated, and the improvement in the durability of the bit cutting edge leads to a long life of the entire rotary tool bit.

そして、硬化層の深さを10μm以上100μm以下に形成することで、ビット刃先部を薄肉化又は小型化しても、刃先表面だけを硬化することが可能となって、回転工具用ビットの大きさ、形状等のバリエーションを増やし、汎用性を上げることができる。
本発明に係る回転工具用ビットの製造方法は、回転工具用ビットの全表面にプラズマ浸炭処理を施して硬化層を形成し、この硬化層の内側に硬化層より硬度が低い軟芯体を残すことを特徴とする。
And by forming the depth of the hardened layer to 10 μm or more and 100 μm or less, it becomes possible to harden only the surface of the blade edge even if the bit blade edge portion is thinned or downsized, and the size of the bit for the rotary tool , Variations in shape and the like can be increased to increase versatility.
In the method for manufacturing a rotary tool bit according to the present invention, the entire surface of the rotary tool bit is subjected to plasma carburization to form a hardened layer, and a soft core having a lower hardness than the hardened layer is left inside the hardened layer. It is characterized by that.

これにより、ビット表面にプラズマ浸炭処理を施して形成した硬化層の内側に、硬化層より硬度が低い軟芯体を残すことで、炭素とビット材料とのくいつきをよくして表面硬度を上げて耐摩耗性の向上させ、加わった衝撃を硬化層全体で受けると同時に、軟芯体による衝撃緩和を可能とし、局所的な応力発生の抑制と、プラズマ浸炭処理による硬化層を適切な深さ調整の実現を図る。   As a result, by leaving a soft core having a lower hardness than the hardened layer inside the hardened layer formed by subjecting the bit surface to plasma carburizing treatment, the adhesion between carbon and the bit material is improved and the surface hardness is increased. Improves wear resistance and receives the applied impact on the entire hardened layer, and at the same time enables the impact relaxation by the soft core, suppresses local stress generation, and adjusts the depth of the hardened layer by plasma carburizing treatment. Achieving

さらに、シャンク中途部にねじれ可能な帯域を形成する工程や、2つ以上の材料の個化工程などの工程増加に伴うコストアップ、材料管理の煩雑化を防ぐことができる。   Furthermore, it is possible to prevent cost increase and complicated material management due to an increase in processes such as a process of forming a twistable band in the middle of the shank and a process of individualizing two or more materials.

本発明に係る回転工具用ビットによると、ビット全表面にプラズマ浸炭処理を施して形成した硬化層の内側に、硬化層より硬度が低い軟芯体を設け、表面硬度及び耐摩耗性の向上と、硬化層全体で衝撃を受け止め且つ軟芯体をクッションとすることで、局所的な応力集中を防ぐと共に、プラズマ浸炭処理による硬化層の適度な深さ調整が実現できる。
本発明に係る回転工具用ビットの製造方法によると、回転工具用ビットの全表面にプラズマ浸炭処理を施して形成した硬化層の内側に、硬化層より硬度が低い軟芯体を残すことで、硬化層でビットを全体的に覆うことが可能となり、表面硬度と耐摩耗性との向上、局所的な応力集中の防止が図れると同時に、硬化層の深さを適切に調整できる。
According to the bit for a rotary tool according to the present invention, a soft core having a lower hardness than the hardened layer is provided inside the hardened layer formed by subjecting the entire surface of the bit to plasma carburizing treatment, and the surface hardness and wear resistance are improved. The entire hardened layer receives impact and uses the soft core as a cushion, so that local stress concentration can be prevented and an appropriate depth adjustment of the hardened layer can be realized by plasma carburizing treatment.
According to the method for manufacturing a bit for a rotary tool according to the present invention, by leaving a soft core having a lower hardness than the hardened layer inside the hardened layer formed by subjecting the entire surface of the bit for a rotary tool to plasma carburization, The bit can be entirely covered with the hardened layer, so that the surface hardness and wear resistance can be improved, and local stress concentration can be prevented, and the depth of the hardened layer can be adjusted appropriately.

(a)は本発明の第1実施形態に係る回転工具用ビットの側面断面図である。(b)は回転工具用ビットの正面図である。(c)はビット刃先部のA−A線断面図である。(d)は連結部のB−B線断面図である。(e)は装着部のC−C線断面図である。(A) is side surface sectional drawing of the bit for rotary tools which concerns on 1st Embodiment of this invention. (B) is a front view of the bit for rotary tools. (C) is the sectional view on the AA line of a bit blade edge part. (D) is the BB sectional drawing of a connection part. (E) is CC sectional view taken on the line of a mounting part. (a)はビット刃先部を拡大した側面断面図である。(b)はビット刃先部のX−X線断面図である。(A) is side surface sectional drawing to which the bit blade edge part was expanded. (B) is a sectional view taken along line XX of the bit cutting edge. 回転工具用ビットの製造装置の側面図である。It is a side view of the manufacturing apparatus of the bit for rotary tools. 第2実施形態に係る回転工具用ビットの側面断面図である。It is side surface sectional drawing of the bit for rotary tools which concerns on 2nd Embodiment. 第3実施形態に係る回転工具用ビットの側面断面図である。It is side surface sectional drawing of the bit for rotary tools which concerns on 3rd Embodiment.

以下、本発明の実施の形態を図面を参照して説明する。
図1、2には、本発明の第1実施形態に係る回転工具用ビット1(ドライバビット)が示されている。
この回転工具用ビット1は、低炭素鋼(約HV300)で形成され、両端に先細り形状のビット端部11を有した両ドライバビットであり、両ビット端部11は、断面丸形で径小な連結部12(図1(d)参照)を介して、装着部13の各端に一体的に連結されている。この装着部13が、電動インパクトドライバ等の回転工具(図示省略)のホルダの挿入孔(アンビル部)に挿入して装着される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show a rotating tool bit 1 (driver bit) according to a first embodiment of the present invention.
This rotary tool bit 1 is a both driver bit formed of low carbon steel (about HV300) and having tapered bit end portions 11 at both ends. Both bit end portions 11 have a round cross section and a small diameter. It is integrally connected to each end of the mounting portion 13 through the connecting portion 12 (see FIG. 1D). The mounting portion 13 is inserted and mounted in an insertion hole (anvil portion) of a holder of a rotary tool (not shown) such as an electric impact driver.

装着部13は、断面略正六角形状(図1(e)参照)に形成され、同じく断面略正六角形状のアンビル部に係合し、回転工具のホルダと一体回転して駆動力をドライバビット1に伝える。
なお、ドライバビット1は、高炭素鋼(約HV700)によって形成されていてもよく、装着部13の断面形状は、略正六角形以外に四角形等の多角形であってもよい。
The mounting portion 13 is formed in a substantially regular hexagonal cross section (see FIG. 1 (e)), engages with an anvil portion having a substantially regular hexagonal cross section, and rotates integrally with the holder of the rotary tool to drive force. Tell 1
The driver bit 1 may be made of high carbon steel (about HV700), and the cross-sectional shape of the mounting portion 13 may be a polygon such as a rectangle other than a substantially regular hexagon.

ドライバビット1は、両ビット端部11、連結部12及び装着部13が長手方向(回転軸心L方向)に一体成形されたものであり、各ビット端部11は、連結部12側から先端側へ先細りのストレート杆(又はテーパ杆)になっている。
ビット端部11は、その先端部にプラス形状(図1(b)参照)又はマイナス形状であって(図1、2では、プラス形状の2番)、ビット端部11の回転軸心Lに沿って所定長さ(1.5mmから2.0mm)を有している。
The driver bit 1 is formed by integrally forming both bit end portions 11, a connecting portion 12, and a mounting portion 13 in the longitudinal direction (rotation axis L direction), and each bit end portion 11 has a leading end from the connecting portion 12 side. It is a straight ridge (or taper ridge) that tapers to the side.
The bit end portion 11 has a plus shape (see FIG. 1B) or a minus shape (No. 2 in the plus shape in FIGS. A predetermined length (1.5 mm to 2.0 mm) is provided.

ビット端部11の先端には、4枚羽根形状(マイナス形状の場合は、平板状)のビット刃先部4が形成されており、このビット刃先部4の回転軸心Lに沿った長さは、ビット端部11の長さの略半分(約1.0mm)となっている。
装着部13は、アンビル部と一体回転できるように断面角形状、実施形態では正六角形に形成されている。
A bit blade tip portion 4 having a four-blade shape (a flat plate shape in the case of a minus shape) is formed at the tip of the bit end portion 11, and the length of the bit blade tip portion 4 along the rotational axis L is The length of the bit end 11 is substantially half (about 1.0 mm).
The mounting portion 13 is formed in a square cross section, in the embodiment, a regular hexagon so that it can rotate integrally with the anvil portion.

図1に示す如く、ドライバビット1は、全表面S(表面S全体)にプラズマ浸炭処理が施されており、ビット表面Sに硬化層2が形成されている。
この硬化層2における表面Sからの深さD(厚み)は、ごく浅い深さ(もしくは、ごく薄い厚み)に調整が可能なプラズマ浸炭処理によって、10μm以上100μm以下に形成されている。また、硬化層2の深さDは、好ましくは15μm以上50μm以下に形成してもよく、さらに好ましくは、18μm以上30μm以下に形成すればよい。
As shown in FIG. 1, the driver bit 1 is plasma carburized on the entire surface S (the entire surface S), and a hardened layer 2 is formed on the bit surface S.
The depth D (thickness) from the surface S in the hardened layer 2 is formed to 10 μm or more and 100 μm or less by plasma carburizing treatment that can be adjusted to a very shallow depth (or very thin thickness). Moreover, the depth D of the hardened layer 2 may be preferably 15 μm or more and 50 μm or less, and more preferably 18 μm or more and 30 μm or less.

ドライバビット1の硬度は、本来はこれを構成する素材の硬度(低炭素鋼で形成している場合には、ビッカース硬さ約HV300、高炭素鋼ではビッカース硬さ約HV300)であるが、ビット表面Sの硬化層2は、本来の素材硬度よりも硬く(ビッカース硬さで約HV900)となっている。
つまり、ドライバビット1は、全表面S(又は表面Sのほぼ全体)に硬化層2を有しており、この硬化層2の内側には、硬化層2よりも軟らかい、すなわち硬度が低い軟芯体3(軟質体6の一部)が残っていることとなる。
The hardness of the driver bit 1 is originally the hardness of the material constituting it (when made of low carbon steel, the Vickers hardness is about HV300, and for high carbon steel, the Vickers hardness is about HV300). The hardened layer 2 on the surface S is harder than the original material hardness (Vickers hardness is about HV900).
That is, the driver bit 1 has a hardened layer 2 on the entire surface S (or almost the entire surface S), and a soft core that is softer than the hardened layer 2, that is, has a lower hardness, inside the hardened layer 2. The body 3 (a part of the soft body 6) remains.

特に図2(a)、(b)の如く、ドライバビット1のビット刃先部4においても、羽根形状部分の厚みよりも硬化層2の厚み(深さD)が圧倒的に薄いため、硬化層2の内側に軟質状の軟刃体5を残すことが可能となっている。
この軟刃体5は、前記軟芯体3と繋がって連続的に形成され、この軟刃体5と前記軟芯体3とで軟質体6を構成している。つまり、ドライバビット1は、前記軟質体6を覆うように硬化層2が形成されていることとなる。
In particular, as shown in FIGS. 2 (a) and 2 (b), also in the bit cutting edge portion 4 of the driver bit 1, the thickness (depth D) of the cured layer 2 is overwhelmingly smaller than the thickness of the blade-shaped portion. It is possible to leave a soft soft blade body 5 inside 2.
The soft blade body 5 is formed continuously with the soft core body 3, and the soft blade body 5 and the soft core body 3 constitute a soft body 6. That is, the hardened layer 2 is formed on the driver bit 1 so as to cover the soft body 6.

なお、ドライバビット1の全表面Sに硬化層2を形成した場合には、前記軟質体6を隙間や孔なく覆う完全に閉じた構造である硬化層2が、全表面Sにわたって設けられていることとなる。
上述したように、硬化層2を全体的に軟質体6を包み込むことで、ビット刃先部4や装着部13等に衝撃が加わっても、その衝撃を硬化層2全体で受けることができ、さらに硬化層2内部の軟芯体3がクッションとなって衝撃が緩和される。
In addition, when the hardened layer 2 is formed on the entire surface S of the driver bit 1, the hardened layer 2 having a completely closed structure covering the soft body 6 without gaps or holes is provided over the entire surface S. It will be.
As described above, the entire hardened layer 2 wraps the soft body 6 so that even if an impact is applied to the bit cutting edge 4 or the mounting portion 13, the impact can be received by the entire hardened layer 2. The soft core body 3 inside the hardened layer 2 acts as a cushion to alleviate the impact.

これによって、ドライバビット1に局所的な応力が発生することを抑制することができる。
さらに、ビット刃先部4の薄肉部分においても、十分に薄い硬化層2を形成しているため、ビット刃先部4の内部でも軟らかい軟刃体5を独自に残し、ビット刃先部4自体で衝撃緩和が可能となり、刃先の耐久性が向上、しいてはドライバビット1全体の高寿命化を図ることができる。
As a result, local stress can be prevented from occurring in the driver bit 1.
Furthermore, since the sufficiently thin hardened layer 2 is formed even in the thin portion of the bit cutting edge portion 4, the soft cutting blade 5 that remains soft inside the bit cutting edge portion 4 is left uniquely, and the bit cutting edge portion 4 itself reduces the impact. As a result, the durability of the cutting edge can be improved, and the life of the entire driver bit 1 can be increased.

なお、硬化層2は、必ずしも回転工具用ビット1の全表面Sに形成せずともよく、ビット刃先部4や装着部13など、他の部材(ネジ頭や回転工具のアンビル部等)と接触して回転トルクのかかる部分のみに形成されていてもよい。
また、硬化層2は、表面Sを一様に浸炭可能なプラズマ浸炭処理が施されているため、ドライバビット1の回転軸心Lに関して対称位置となるように層厚略一定で、硬度も略均一に形成されている。したがって、ドライバビット1が回転しても、硬化層2に偏りが生じず、偏心による局所的な応力がかからないため、さらなる高寿命化が実現される。
The hardened layer 2 does not necessarily have to be formed on the entire surface S of the rotary tool bit 1 and is in contact with other members (screw head, anvil portion of the rotary tool, etc.) such as the bit cutting edge portion 4 and the mounting portion 13. Thus, it may be formed only in the portion where the rotational torque is applied.
Further, since the hardened layer 2 is subjected to a plasma carburizing process capable of uniformly carburizing the surface S, the layer thickness is substantially constant and the hardness is substantially constant so as to be symmetrical with respect to the rotational axis L of the driver bit 1. It is formed uniformly. Therefore, even if the driver bit 1 rotates, the hardened layer 2 is not biased, and a local stress due to the eccentricity is not applied, so that a longer life can be realized.

なお、プラズマ浸炭処理とは、炭化水素系プロセスガスのグロー放電プラズマ中で発生した炭素イオンやラジカルを炭素源として、被処理物(ドライバビット1)の材料表面Sから炭素を浸入拡散させる表面硬化法である。
このプラズマ浸炭処理は、従来のガス浸炭処理や真空浸炭処理と比較して、より薄い硬化層2を形成可能であり、寸法変化や表面粗さの変化も少ない等の利点のほか、難浸炭材へも浸炭可能であって、粒界酸化が生じず疲労強度が向上し、硬化層2が剥離しにくい(つまり、ビット材料と炭素とがしっかりとつながって、回転工具用ビット1の表面Sの硬度を上げ、耐摩耗性の向上を図ることができる)。
The plasma carburizing treatment is a surface hardening in which carbon enters and diffuses from the material surface S of the object to be treated (driver bit 1) using carbon ions or radicals generated in a glow discharge plasma of a hydrocarbon-based process gas as a carbon source. Is the law.
This plasma carburizing treatment can form a thinner hardened layer 2 compared to conventional gas carburizing treatment and vacuum carburizing treatment, and has advantages such as less dimensional change and surface roughness change. Can be carburized, grain boundary oxidation does not occur, fatigue strength is improved, and the hardened layer 2 is difficult to peel off (that is, the bit material and carbon are firmly connected, and the surface S of the rotary tool bit 1 is Increases hardness and improves wear resistance).

また、プラズマ浸炭処理は、浸炭ムラの原因となるスーティング(すす)が発生せず、処理時間の短縮化、二酸化炭素を排出しないなど環境に配慮したクリーンな処理である。
さらに、プラズマ浸炭処理では、被処理物に貫通する孔や凹み等の遮蔽する部分があっても、遮蔽部材下への浸炭反応の回り込みが起こり、被処理物全体に硬化層2を形成することが可能となる。
Further, the plasma carburizing process is a clean process in consideration of the environment, such as soot that does not cause carburizing unevenness, so that the processing time is shortened and carbon dioxide is not discharged.
Further, in the plasma carburizing process, even if there are shielding parts such as holes and dents penetrating the workpiece, the carburization reaction wraps around the shielding member, and the hardened layer 2 is formed on the entire workpiece. Is possible.

また、本発明においてプラズマ浸炭処理は、以下で述べる回転工具用ビットの製造装置21によって行われる。
図3に示した回転工具用ビットの製造装置21は、1室型プラズマ熱処理炉であって、内圧調整可能なチャンバ22と、このチャンバ22内部に冷却ガスを送り込む冷却ガス供給部23と、前記チャンバ22内にプロセスガスをプロセスガス供給部24と、チャンバ22内のプロセスガス雰囲気下でドライバビット1を載置するラック25と、このラック25を介してドライバビット1に負電圧を印可する陰極26と、この陰極26との間でドライバビット1周辺にプロセスガスのプラズマを発生させるように正電圧を印可する陽極27(プラズマ源)と、これら両極26、27間で電位差を生じさせるバイアス電源28と、チャンバ22内部で冷却ガスを循環させる冷却ファン29とを備えている。
In the present invention, the plasma carburizing process is performed by the rotating tool bit manufacturing apparatus 21 described below.
The rotary tool bit manufacturing apparatus 21 shown in FIG. 3 is a one-chamber plasma heat treatment furnace, and includes a chamber 22 capable of adjusting the internal pressure, a cooling gas supply unit 23 for feeding a cooling gas into the chamber 22, A process gas is supplied in the chamber 22 to the process gas supply unit 24, a rack 25 on which the driver bit 1 is placed in a process gas atmosphere in the chamber 22, and a cathode that applies a negative voltage to the driver bit 1 through the rack 25. 26 and an anode 27 (plasma source) that applies a positive voltage so as to generate plasma of a process gas around the driver bit 1 between the cathode 26 and a bias power source that generates a potential difference between the two electrodes 26 and 27 28 and a cooling fan 29 for circulating a cooling gas inside the chamber 22.

この回転工具用ビットの製造装置21は、ドライバビット1に負電圧を印加させ、プロセスガスがプラズマ化したときのみ浸炭反応が促進するため、ドライバビット1に印可する電圧をコントロールすることで、硬化層2の深さD(厚み)を確実に管理することができる。
続いて、回転工具用ビット(ドライバビット)の製造装置21の使用態様、つまり、回転工具用ビットの製造方法を説明する。
The rotating tool bit manufacturing apparatus 21 applies a negative voltage to the driver bit 1 and promotes the carburization reaction only when the process gas is turned into plasma, so that the hardening is achieved by controlling the voltage applied to the driver bit 1. The depth D (thickness) of the layer 2 can be reliably managed.
Next, a usage mode of the rotating tool bit (driver bit) manufacturing apparatus 21, that is, a manufacturing method of the rotating tool bit will be described.

まずチャンバ22内のラック25に、所定本数のドライバビット1を立てかけた状態や、直立又は垂下させた状態等で載置する。
チャンバ22内を真空引きした後、ガス供給部(図示省略)からクリーニングガスをチャンバ22内に送り込み、クリーニングガスをプラズマ化し、このプラズマ中のイオンボンバードを利用してドライバビット1の表面Sをクリーニングする。
First, a predetermined number of driver bits 1 are placed on the rack 25 in the chamber 22 in a standing state, in an upright state or in a suspended state.
After evacuating the chamber 22, a cleaning gas is sent from the gas supply unit (not shown) into the chamber 22, the cleaning gas is turned into plasma, and the surface S of the driver bit 1 is cleaned using ion bombardment in the plasma. To do.

クリーニング後、チャンバ22内に導入したプロセスガスを、両極26、27に電圧を印可することでプラズマ化し、プラズマ中に生成した炭素イオンやラジカルを、ドライバビット1中へ浸透拡散させる。
これによって、ドライバビット1の表面Sに硬化層2が形成されるが、印可電圧を制御して、硬化層2の深さDをコントロールする。
After cleaning, the process gas introduced into the chamber 22 is turned into plasma by applying a voltage to the electrodes 26 and 27, and carbon ions and radicals generated in the plasma are permeated and diffused into the driver bit 1.
As a result, the hardened layer 2 is formed on the surface S of the driver bit 1, but the applied voltage is controlled to control the depth D of the hardened layer 2.

このとき上述したように、硬化層2の内側に軟質体6が残るよう、特にビット刃先部4においても、硬化層2の内側に軟刃体5を残存させるように、硬化層2を前記所望の深さDに形成することとなる。
これにより、炭素とビット材料とのくいつきをよくして表面S硬度を上げて耐摩耗性の向上させると同時に、内部の軟質体6によって衝撃緩和を可能とし、局所的な応力発生の抑制(高靭性)が実現される。
At this time, as described above, the hardened layer 2 is the desired layer so that the soft body 6 remains inside the hardened layer 2, particularly in the bit blade edge portion 4 so that the soft blade body 5 remains inside the hardened layer 2. The depth D is formed.
As a result, the adhesion between the carbon and the bit material is improved and the surface S hardness is increased to improve the wear resistance. At the same time, the internal soft body 6 can reduce the impact and suppress the generation of local stress (high Toughness) is realized.

また、耐摩耗性と高靭性を1つの工程で行うため、ねじれ可能な帯域を形成する工程や、2材料の個化工程などと比べて工程が減り、経済性の向上、作業管理の簡素化が図れる。
図4、5は、本発明の第2、3実施形態に係るドライバビット1が示されている。
第2、3実施形態に係るドライバビット1は、片端のみにビット端部11を有した片ドライバビットである。
In addition, since wear resistance and high toughness are performed in one process, the number of processes is reduced compared to the process of forming a twistable zone and the process of individualizing two materials, improving economy and simplifying work management. Can be planned.
4 and 5 show a driver bit 1 according to second and third embodiments of the present invention.
The driver bit 1 according to the second and third embodiments is a single driver bit having a bit end portion 11 only at one end.

第2実施形態に係るドライバビット1の大きな特徴は、装着部13の基端側から回転軸心L方向に穿設された穴13aを有している点である。
この穴13aを形成することによって、ドライバビット1の重量を軽減することができる。このビット質量の軽量化によって、ビット回転時にネジ溝と当接した際に、ビット刃先部4が受ける反力(質量に比例する力)を軽減することができる。
A major feature of the driver bit 1 according to the second embodiment is that it has a hole 13a drilled in the direction of the rotation axis L from the base end side of the mounting portion 13.
By forming the hole 13a, the weight of the driver bit 1 can be reduced. By reducing the weight of the bit, it is possible to reduce a reaction force (a force proportional to the mass) that the bit blade edge portion 4 receives when it abuts on the screw groove when the bit rotates.

つまり、ドライバビット1にかかる回転トルクや衝撃を抑えることで、高寿命化を図っている。
また、第2実施形態のドライバビット1では、全体を覆う硬化層2を有しているため、ねじれ可能な帯域としての連結部12を設けずとも、十分な衝撃吸収性を発揮できる。
第3実施形態に係るドライバビット1は、ネジ径が1mmから4mmといった小径ネジ締付け用のビット(直径が約4mm)である。つまり、ビット端部11もより細く、且つビット刃先部4の羽根部分がより小さく形成されている。
That is, the life of the driver bit 1 is increased by suppressing the rotational torque and impact applied to the driver bit 1.
Moreover, since the driver bit 1 of the second embodiment has the hardened layer 2 covering the whole, it is possible to exhibit sufficient shock absorption without providing the connecting portion 12 as a twistable band.
The driver bit 1 according to the third embodiment is a bit (diameter is about 4 mm) for tightening a small diameter screw having a screw diameter of 1 mm to 4 mm. That is, the bit end portion 11 is also thinner, and the blade portion of the bit blade edge portion 4 is formed smaller.

このようにビット刃先部4が小型化されていたり、薄肉形成された部位を有している場合であっても、上述したプラズマ浸炭処理を施すことによって、硬化層2を所定深さ(上述の10μm以上100μm以下)に制御可能であるため、ビット刃先部4内に軟刃体5を残存させることができる。
したがって、ビット刃先部4独自で衝撃緩和ができ、ビット刃先部4の耐久性の向上し、しいては回転工具用ビット1全体の高寿命化につながる。
Thus, even if the bit cutting edge portion 4 is downsized or has a thin-walled portion, the hardened layer 2 is made to have a predetermined depth (as described above) by performing the above-described plasma carburizing treatment. 10 μm or more and 100 μm or less), the soft blade 5 can be left in the bit cutting edge 4.
Therefore, the impact can be alleviated by the bit cutting edge part 4 alone, the durability of the bit cutting edge part 4 is improved, and the life of the entire rotary tool bit 1 is extended.

また、プラズマ浸炭処理によって硬化層2を所定深さにコントロールすることで、回転工具用ビット1の形状変化に対応でき、硬化層2形成可能な大きさ、形状等が増え(バリエーション増加)、高い汎用性が実現する。
なお、本発明は、前述した実施形態に限定されるものではない。回転工具用ビット1等の各構成又は全体の構造、形状、寸法などは、本発明の趣旨に沿って適宜変更することができる。
In addition, by controlling the hardened layer 2 to a predetermined depth by plasma carburizing treatment, it is possible to cope with the shape change of the rotary tool bit 1 and the size, shape, etc. that can be formed of the hardened layer 2 increase (increase in variations) and are high. Versatility is realized.
In addition, this invention is not limited to embodiment mentioned above. Each configuration of the rotating tool bit 1 or the like, or the overall structure, shape, dimensions, and the like can be appropriately changed in accordance with the spirit of the present invention.

回転工具用ビット1は、ドライバビットに限らず、回転工具に装着可能であれば、ドリルビットや、チャックビット等の先細り状の刃先を有したものであればよい。
また、回転工具用ビット1は、低炭素鋼や高炭素鋼でなくともよく、チタンやSUS等の難浸炭材であってもよい。
硬化層2は、上述したように、回転工具用ビット1の全表面Sに形成されていなくともよく、ビット刃先部4や装着部13など、少なくとも回転トルクのかかる部分の表面Sにのみ設けていてもよい。例えば、硬化層2をビット刃先部4の表面Sにのみ設ける場合、この設けた硬化層2と、硬化されていない部分との境界縁を、回転軸心Lに対して直交状に(回転軸心Lに関して対称となるように)円く形成してもよい。
The rotary tool bit 1 is not limited to the driver bit, and may be any one having a tapered cutting edge such as a drill bit or a chuck bit as long as it can be attached to the rotary tool.
Moreover, the bit 1 for rotary tools does not need to be low carbon steel or high carbon steel, and may be a hardly carburized material such as titanium or SUS.
As described above, the hardened layer 2 does not have to be formed on the entire surface S of the rotating tool bit 1, and is provided only on the surface S of at least a portion where rotational torque is applied, such as the bit cutting edge portion 4 and the mounting portion 13. May be. For example, when the hardened layer 2 is provided only on the surface S of the bit cutting edge portion 4, the boundary edge between the hardened layer 2 provided and the uncured portion is perpendicular to the rotational axis L (the rotational axis). You may form circularly so that it may become symmetrical with respect to the center L).

1 回転工具用ビット(ドライバビット)
2 硬化層
3 軟芯体
4 ビット刃先部
5 軟刃体
S 回転工具用ビットの表面
1 Bit for rotating tool (driver bit)
2 Hardened layer 3 Soft core body 4 Bit cutting edge 5 Soft blade body S Surface of bit for rotary tool

Claims (5)

浸炭処理を施した回転工具用ビットであって、
ビット全表面にプラズマ浸炭処理を施して形成された硬化層と、この硬化層の内側に位置し且つ硬化層より硬度が低い軟芯体とを有していることを特徴とする回転工具用ビット。
It is a bit for a rotating tool that has been subjected to carburizing treatment,
A rotating tool bit comprising: a hardened layer formed by subjecting the entire surface of the bit to plasma carburization; and a soft core positioned inside the hardened layer and having a hardness lower than that of the hardened layer. .
ビット刃先部に、前記硬化層の内側で軟芯体と連続し且つ硬化層より硬度が低い軟刃体を残していることを特徴とする請求項1に記載の回転工具用ビット。   2. The bit for a rotary tool according to claim 1, wherein a soft blade body that is continuous with the soft core body inside the hardened layer and has a hardness lower than that of the hardened layer is left in the bit blade edge portion. 浸炭処理を施した回転工具用ビットであって、
少なくともビット刃先部に、プラズマ浸炭処理を表面に施して形成された硬化層を有し、
この硬化層の内側に位置し且つ硬化層より硬度が低い軟刃体を、ビット刃先部に残していることを特徴とする回転工具用ビット。
It is a bit for a rotating tool that has been subjected to carburizing treatment,
At least the bit blade edge portion has a hardened layer formed by subjecting the surface to plasma carburizing treatment,
A bit for a rotary tool, characterized in that a soft blade that is located inside the hardened layer and has a hardness lower than that of the hardened layer is left in the bit cutting edge.
前記硬化層の表面からの深さを10μm以上100μm以下に形成していることを特徴とする請求項1〜3のいずれか1に記載の回転工具用ビット。   The bit for a rotary tool according to any one of claims 1 to 3, wherein a depth from the surface of the hardened layer is 10 µm or more and 100 µm or less. 回転工具用ビットの全表面にプラズマ浸炭処理を施して硬化層を形成し、この硬化層の内側に硬化層より硬度が低い軟芯体を残すことを特徴とする回転工具用ビットの製造方法。   A method of manufacturing a rotary tool bit, comprising: forming a hardened layer by performing plasma carburizing treatment on the entire surface of the rotary tool bit, and leaving a soft core having a lower hardness than the hardened layer inside the hardened layer.
JP2010042847A 2010-02-26 2010-02-26 Rotary tool bit and method for manufacturing rotary tool bit Pending JP2011177815A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010042847A JP2011177815A (en) 2010-02-26 2010-02-26 Rotary tool bit and method for manufacturing rotary tool bit
PCT/JP2011/054322 WO2011105558A1 (en) 2010-02-26 2011-02-25 Rotary tool bit and rotary tool bit manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010042847A JP2011177815A (en) 2010-02-26 2010-02-26 Rotary tool bit and method for manufacturing rotary tool bit

Publications (1)

Publication Number Publication Date
JP2011177815A true JP2011177815A (en) 2011-09-15

Family

ID=44506955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010042847A Pending JP2011177815A (en) 2010-02-26 2010-02-26 Rotary tool bit and method for manufacturing rotary tool bit

Country Status (2)

Country Link
JP (1) JP2011177815A (en)
WO (1) WO2011105558A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11541516B2 (en) 2019-09-25 2023-01-03 Snap-On Incorporated Fastener retention and anti-camout tool bit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036135A (en) * 2000-05-17 2002-02-05 Mazda Motor Corp Tightening tool, and tightening device using the tightening tool
JP2002294396A (en) * 2001-04-03 2002-10-09 Kobe Steel Ltd Case hardening steel having little heat treatment strain
JP2004010979A (en) * 2002-06-07 2004-01-15 Sdc:Kk Method and apparatus of plasma carburization treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036135A (en) * 2000-05-17 2002-02-05 Mazda Motor Corp Tightening tool, and tightening device using the tightening tool
JP2002294396A (en) * 2001-04-03 2002-10-09 Kobe Steel Ltd Case hardening steel having little heat treatment strain
JP2004010979A (en) * 2002-06-07 2004-01-15 Sdc:Kk Method and apparatus of plasma carburization treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11541516B2 (en) 2019-09-25 2023-01-03 Snap-On Incorporated Fastener retention and anti-camout tool bit
US11904438B2 (en) 2019-09-25 2024-02-20 Snap-On Incorporated Fastener retention and anti-camout tool bit

Also Published As

Publication number Publication date
WO2011105558A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
US11413729B2 (en) Tool bit
JP2008275095A (en) Ball screw and manufacturing method thereof
GB0602742D0 (en) Machining method
US11904438B2 (en) Fastener retention and anti-camout tool bit
JP2011177815A (en) Rotary tool bit and method for manufacturing rotary tool bit
WO2004101846A1 (en) Cutting tool for metalworking as well as method in the production of cutting tools
TW201801832A (en) Screw, and production method
JP2010510894A (en) Surface treatment method for coated cutting insert
WO2006109540A1 (en) Surface modifying jig of engine valve and surface modifying method employing it
JP2007210070A (en) Turning tool and method of machining metal member using the tool
US20240017384A1 (en) Tool bit
Cao et al. Effect of different machining processes on the tool surface integrity and fatigue life
JP5584080B2 (en) Hardened layer forming method and hardened layer forming apparatus
RU2241782C1 (en) Method for ionic-plasma treatment of cutting tool steel surface
WO2010082403A1 (en) Titanium alloy screw formed by rolling
WO2019123755A1 (en) Shot peening method
CN106687245B (en) The method for handling nitridation/nitrocarburizing workpiece
JP6209902B2 (en) Surface treatment drill
JP2004130484A (en) Assembled broach
JP2008008343A (en) Ball screw nut and manufacturing method thereof
JP2005082877A (en) Nitrided coated tool
JP2006218612A (en) Nut runner device
JP2005007537A (en) Broach tool
JP2006132638A (en) Ball screw and electric cylinder using it
JP2004351609A (en) Broaching tool and broaching method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111025

A131 Notification of reasons for refusal

Effective date: 20130507

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130910

Free format text: JAPANESE INTERMEDIATE CODE: A02