WO2019123755A1 - Shot peening method - Google Patents
Shot peening method Download PDFInfo
- Publication number
- WO2019123755A1 WO2019123755A1 PCT/JP2018/035734 JP2018035734W WO2019123755A1 WO 2019123755 A1 WO2019123755 A1 WO 2019123755A1 JP 2018035734 W JP2018035734 W JP 2018035734W WO 2019123755 A1 WO2019123755 A1 WO 2019123755A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stage
- metal product
- shot peening
- projectile
- projection
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C1/00—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
- B24C1/10—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
Definitions
- the surface roughness or peak count value of the metal product is first made larger than the initial surface of the metal product, that is, relatively strong so as to be rougher than the initial state of the surface.
- the first step shot peening is applied, and the second step shot peening is slower than the first step in projection speed, or the particle diameter of the projection material is smaller, or the hardness of the projection material is lowered to make the surface uniformly flat It has been proposed to smoothen (see Japanese Patent Application Laid-Open No. 2002-361559).
- the present disclosure provides a shot peening method which improves the surface roughness of a metal product by increasing the number of stages and prevents the deterioration of the compressive residual stress generated in the metal product.
- the shot peening method according to the invention of claim 1 comprises, as a first stage, a step of projecting a first projectile having a predetermined particle diameter onto the surface of a metal product, and, as a first stage, the first stage. And 1) projecting a second projectile having a particle size equal to or less than half the particle size of the projectile onto the surface of the metal product.
- the second projection before projecting the first projectile having a predetermined particle diameter as the first stage onto the surface of the metal product, the second projection having a particle diameter equal to or less than half the particle diameter of the first projectile as the former stage Project material onto the surface of metal products.
- This projection can harden the surface of the metal product while suppressing the deterioration of the surface roughness of the metal product. Therefore, the surface roughness of the metal product can be improved by suppressing the deterioration of the surface roughness of the metal product due to the projection after the first stage.
- the shot peening method according to the invention of claim 2 is the shot peening method according to the invention of claim 1, wherein the particle diameter of the second projectile is 0.3 mm or less, and the Vickers of the second projectile
- the hardness is a Vickers hardness of -100 or more of the metal product.
- the surface of the metal product can not be sufficiently work hardened even if the second projectile is projected onto the metal product as a former stage. As a result, the surface roughness of the metal product may be deteriorated by projecting the first projectile onto the surface of the metal product as the first stage.
- the Vickers hardness of the second projectile is greater than or equal to the Vickers hardness of the metal product -100, the surface of the metal product is sufficiently work hardened by the front projection, and the surface roughness of the metal product due to the first and subsequent projections Can be sufficiently suppressed.
- the particle diameter of a 2nd projection material is 0.3 mm or less, it is suppressed that the surface roughness of a metal product worsens by the projection of a front
- the shot peening method according to the invention of claim 3 is the shot peening method according to the invention of claim 1 or 2, wherein the coverage of the first stage is 300% or more.
- the coverage of the front stage is 300% or more, the surface of the metal product by the projection of the front stage can be stably work hardened.
- the shot peening method according to the invention as set forth in claim 4 is the shot peening method according to the invention as set forth in any one of claims 1 to 3, wherein the metal product is heat-treated and has a Vickers hardness of 600 or more. It is.
- the surface of a metal product that has not been heat treated has less work hardening by projection. Therefore, this shot peening method is heat treated and applied to the surface of a metal product having a Vickers hardness of 600 or more. Thereby, work hardening of the surface of the metal product by the projection in the former stage is sufficiently achieved.
- the shot peening method according to the invention as set forth in claim 5 is the shot peening method according to the invention according to any one of claims 1 to 4, wherein the second shot after the first step is the first shot material.
- a third projectile having a particle size smaller than the particle size is projected on the surface of the metal product.
- the third projectile having a particle size smaller than the particle size of the first project material is projected on the surface of the metal product.
- the surface roughness of the metal product is further improved and the compressive residual stress is improved, as compared with the case where the processing is finished in the first stage projection.
- the shot peening method according to the invention of claim 1 or 2 is configured as described above, it is possible to improve the surface roughness by increasing the number of steps and to prevent the deterioration of the compressive residual stress imparted to the metal product.
- the surface of the metal product can be sufficiently work-hardened by the projection in the previous stage because of the above configuration.
- the number of steps can be increased to improve the surface roughness and the compressive residual stress imparted to the metal product can be improved.
- (A) and (B) are tables which show the projection conditions of a 1st test. It is a graph which shows arithmetic mean coarseness Ra of each specimen which is the 1st test result. It is a graph which shows maximum height Rz of each specimen which is the 1st test result. It is a graph which shows maximum section height Pt of each specimen which is the 1st test result. It is a graph which shows the ten-point average roughness Rzjis of each test piece which is a 1st test result. No. 1 of the first test. It is a graph which shows the relationship between the depth from the surface and compressive residual stress in test pieces 1 to 3. No.
- a shot peening method according to an embodiment of the present disclosure will be described with reference to FIGS.
- the shot peening apparatus 10 is, as shown in FIG. 1, a projection chamber 12 for projecting the projection material S onto the test piece T, and a pressure chamber provided below the projection chamber 12 for mixing the projection material S and air. 14 and the supply hose 18 which supplies the projection material S and air mixed in the pressure chamber 14 to the projection chamber 12 and projects the test piece T from the nozzle 16 attached to the tip.
- a rotating shaft 20 which is configured to be capable of attaching the test piece T at its tip and which is rotatably provided is provided. Furthermore, below the projection chamber 12, a tapered portion 22 for supplying the projected projection material S to the pressure chamber 14 is provided.
- the projection material S mixed with the air pressurized in the pressure chamber 14 is projected from the tip of the nozzle 16 onto the test piece T supported by the rotating shaft 20.
- the first test and the second test were conducted on comparative examples and examples.
- the test piece in a 1st test and a 2nd test, a projectile, and projection conditions are common.
- the unprocessed state in FIGS. 3 to 6 and 10 to 13 shows the state before the projection of the surface of the test piece T.
- Test piece Test piece T is chromium molybdenum steel SCM420H (JIS standard) (vacuum carburizing and quenching), initial surface roughness Ra is about 0.4 ⁇ m, and surface hardness (Vickers hardness) is about HV700.
- the test piece T is a cylindrical body having a diameter of 25 mm and a length of 100 mm.
- the following three types of projection materials are used as the projection materials S.
- the projectiles of (1) to (3) may be described as “large”, “medium”, and “small” in drawings and the like.
- the air pressure is 0.2 MPa for the projectiles "small” and “medium”, and 0.3 MPa for the projectiles "large”. Further, coverage is 300% or 500% in the former stage described later, and is 300% in each of the first and second stages.
- NO. 1 and NO. Compare 2 and 3.
- NO.7 in which only the projection material "Large” is projected as the first stage onto the test piece T.
- No. 1 to 1. 2 and 3 project the projection material "small” as a front stage before the projection material "large” to obtain the arithmetic average roughness Ra, maximum height Rz, maximum section height Pt, ten-point average roughness of the test piece T It has been confirmed that Rzjis is improved (see FIGS. 3 to 6).
- NO.1 which is a comparative example which projects a projection material "large” in the 1st stage, and projects a projection material "inside” in the 2nd stage. 4 and NO. Compare 5 and 6 Also in this case, NO. No. 4 in comparison with 4. It was confirmed that the arithmetic average roughness Ra, the maximum height Rz, the maximum cross-sectional height Pt, and the ten-point average roughness Rzjis of the test pieces T are improved in the cases 5 and 6 (see FIGS. 3 to 6). . In particular, NO. 2 and NO.
- the arithmetic mean roughness Ra of the test piece T, maximum height Rz, maximum section height Pt, ten-point average roughness are obtained by setting coverage of the projection material “small” in the former stage to 300% to 500%. It was confirmed that the Rzjis is further improved (see FIGS. 3 to 6).
- NO. 7 projects the projection material "small” onto the surface of the metal product as the second stage after the first stage projection material "large”, so the arithmetic average roughness Ra (see Fig. 10), the maximum height Rz (see FIG. 11), maximum cross-sectional height Pt (see FIG. 12), and ten-point average roughness Rzjis (see FIG. 13) are suppressed.
- the arithmetic mean roughness Ra, maximum height Rz, maximum cross-section height Pt, and ten-point average roughness of the test piece T are obtained by setting the coverage of the projectile “small” at the former stage to 300% to 500%. It was confirmed that the Rzjis was further improved (see FIGS. 10 to 13).
- the shot peening method of this embodiment was applied to the air type shot peening apparatus 10, as long as it is a shot peening method of projecting a projectile onto the test piece T, it may be applied to another apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Fuel-Injection Apparatus (AREA)
- Golf Clubs (AREA)
Abstract
The shot peening method according to the present invention is provided with, as a first stage, a step for projecting a first projectile material having a predetermined particle diameter to the surface of a metal product, and, as a foregoing stage preceding the first stage, a step for projecting a second projectile material having a particle diameter that is half or less of the particle diameter of the first projectile material to the surface of the metal product.
Description
本願は2017年12月22日出願の日本出願第2017-246720号の優先権を主張すると共に、その全文を参照により本明細書に援用する。
本開示は、ショットピーニング方法に関する。 This application claims the priority of Japanese Application No. 2017-246720, filed Dec. 22, 2017, which is incorporated herein by reference in its entirety.
The present disclosure relates to a shot peening method.
本開示は、ショットピーニング方法に関する。 This application claims the priority of Japanese Application No. 2017-246720, filed Dec. 22, 2017, which is incorporated herein by reference in its entirety.
The present disclosure relates to a shot peening method.
従来、疲労強度を必要とする金属製品、例えば、歯車やばね等において、表面粗さが大きいと表面粗さに起因するクラックにより金属製品の疲労強度を低下させることがある。
Conventionally, in metal products requiring fatigue strength, such as gears and springs, if the surface roughness is large, cracks resulting from the surface roughness may lower the fatigue strength of the metal product.
これに対して、ショットピーニング加工によって金属製品の表面粗さを低下させる方法が提案されている。しかし、金属製品の表面にうねりがある場合、表面粗さの改善が困難であった。
On the other hand, there has been proposed a method of reducing the surface roughness of a metal product by shot peening. However, when the surface of the metal product is undulated, it has been difficult to improve the surface roughness.
そこで、部品表面にうねりなどの大きな凹凸がある場合、初めに金属製品の表面粗さ又はピークカウント値を金属製品表面初期よりも大きくする、つまり表面の初期状態よりも粗くなるように比較的強い1段目のショットピーニング加工を施し、2段目のショットピーニング加工は1段目よりも投射速度を遅く、又は投射材粒径を小さく、又は投射材硬度を低下させて一様にあれた面を平滑にするものが提案されている(特開2002-361559号公報参照)。
Therefore, when there is a large unevenness such as waviness on the part surface, the surface roughness or peak count value of the metal product is first made larger than the initial surface of the metal product, that is, relatively strong so as to be rougher than the initial state of the surface. The first step shot peening is applied, and the second step shot peening is slower than the first step in projection speed, or the particle diameter of the projection material is smaller, or the hardness of the projection material is lowered to make the surface uniformly flat It has been proposed to smoothen (see Japanese Patent Application Laid-Open No. 2002-361559).
上記従来技術の場合、金属製品の処理面の表面粗さの改善を狙ってさらに段数を増加させると、金属製品の表面粗さが改善されるものの、金属製品の表面の圧縮残留応力が悪化する等の不都合が生ずる場合がある。
In the case of the above prior art, if the number of steps is further increased to improve the surface roughness of the treated surface of the metal product, the surface roughness of the metal product is improved but the compressive residual stress on the surface of the metal product is deteriorated. And other inconveniences may occur.
本開示は上記事実を考慮し、段数を増加させて金属製品の表面粗さを改善すると共に、金属製品に生ずる圧縮残留応力の悪化を防止したショットピーニング方法を提供する。
In view of the above facts, the present disclosure provides a shot peening method which improves the surface roughness of a metal product by increasing the number of stages and prevents the deterioration of the compressive residual stress generated in the metal product.
請求項1記載の発明に係るショットピーニング方法は、1段目として、所定の粒径の第1投射材を金属製品の表面に投射する工程と、前記1段目の前に前段として、前記第1投射材の粒径の半分以下の粒径である第2投射材を前記金属製品の表面に投射する工程と、を備える。
The shot peening method according to the invention of claim 1 comprises, as a first stage, a step of projecting a first projectile having a predetermined particle diameter onto the surface of a metal product, and, as a first stage, the first stage. And 1) projecting a second projectile having a particle size equal to or less than half the particle size of the projectile onto the surface of the metal product.
このショットピーニング方法では、1段目として所定の粒径の第1投射材を金属製品の表面に投射する前に、前段として第1投射材の粒径の半分以下の粒径である第2投射材を金属製品の表面に投射する。この投射により、金属製品の表面粗さを悪化させることを抑制しつつ、金属製品の表面を硬化させることができる。したがって、1段目以降の投射による金属製品の表面粗さの悪化を抑制して、金属製品の表面粗さを改善できる。
In this shot peening method, before projecting the first projectile having a predetermined particle diameter as the first stage onto the surface of the metal product, the second projection having a particle diameter equal to or less than half the particle diameter of the first projectile as the former stage Project material onto the surface of metal products. This projection can harden the surface of the metal product while suppressing the deterioration of the surface roughness of the metal product. Therefore, the surface roughness of the metal product can be improved by suppressing the deterioration of the surface roughness of the metal product due to the projection after the first stage.
一方、最終段(1段目以降が複数段の場合には、最後の段、1段目のみの場合には1段目)の投射材に変更がないため、金属製品に付与される圧縮残留応力が悪化することが防止される。
On the other hand, since there is no change in the projection material of the final stage (the final stage in the case of a plurality of stages after the first stage, and the first stage in the case of only the first stage), the compression residue applied to metal products Deterioration of stress is prevented.
請求項2記載の発明に係るショットピーニング方法は、請求項1記載の発明に係るショットピーニング方法において、前記第2投射材の粒径は、0.3mm以下であり、当該第2投射材のビッカース硬度は、前記金属製品のビッカース硬度-100以上である。
The shot peening method according to the invention of claim 2 is the shot peening method according to the invention of claim 1, wherein the particle diameter of the second projectile is 0.3 mm or less, and the Vickers of the second projectile The hardness is a Vickers hardness of -100 or more of the metal product.
第2投射材のビッカース硬度が金属製品のビッカース硬度から100以上低いと、前段として第2投射材を金属製品に投射しても金属製品の表面を十分に加工硬化させることができない。この結果、1段目として第1投射材を金属製品の表面に投射することによって金属製品の表面粗さが悪化するおそれがあった。
If the Vickers hardness of the second projectile is 100 or more lower than the Vickers hardness of the metal product, the surface of the metal product can not be sufficiently work hardened even if the second projectile is projected onto the metal product as a former stage. As a result, the surface roughness of the metal product may be deteriorated by projecting the first projectile onto the surface of the metal product as the first stage.
しかしながら、第2投射材のビッカース硬度が金属製品のビッカース硬度-100以上であると、前段の投射によって金属製品の表面が十分に加工硬化し、1段目以降の投射による金属製品の表面粗さの悪化を十分に抑制できる。
However, if the Vickers hardness of the second projectile is greater than or equal to the Vickers hardness of the metal product -100, the surface of the metal product is sufficiently work hardened by the front projection, and the surface roughness of the metal product due to the first and subsequent projections Can be sufficiently suppressed.
また、第2投射材の粒径が0.3mm以下であるため、前段の投射によって金属製品の表面粗さが悪化することが抑制される。
Moreover, since the particle diameter of a 2nd projection material is 0.3 mm or less, it is suppressed that the surface roughness of a metal product worsens by the projection of a front | former stage.
請求項3記載の発明に係るショットピーニング方法は、請求項1又は2記載の発明に係るショットピーニング方法において、前記前段のカバレージは、300%以上である。
The shot peening method according to the invention of claim 3 is the shot peening method according to the invention of claim 1 or 2, wherein the coverage of the first stage is 300% or more.
このショットピーニング方法では、前段のカバレージが300%以上であるため、前段の投射による金属製品の表面を安定的に加工硬化させることができる。
In this shot peening method, since the coverage of the front stage is 300% or more, the surface of the metal product by the projection of the front stage can be stably work hardened.
請求項4記載の発明に係るショットピーニング方法は、請求項1~3のいずれか1項記載の発明に係るショットピーニング方法において、前記金属製品は、熱処理されたものであり、ビッカース硬度が600以上である。
The shot peening method according to the invention as set forth in claim 4 is the shot peening method according to the invention as set forth in any one of claims 1 to 3, wherein the metal product is heat-treated and has a Vickers hardness of 600 or more. It is.
熱処理されていない金属製品の表面は投射による加工硬化が小さい。そこで、このショットピーニング方法は、熱処理され、ビッカース硬度が600以上の金属製品の表面に適用される。これにより、前段の投射による金属製品の表面の加工硬化が十分に達成される。
The surface of a metal product that has not been heat treated has less work hardening by projection. Therefore, this shot peening method is heat treated and applied to the surface of a metal product having a Vickers hardness of 600 or more. Thereby, work hardening of the surface of the metal product by the projection in the former stage is sufficiently achieved.
請求項5記載の発明に係るショットピーニング方法は、請求項1~4のいずれか1項記載の発明に係るショットピーニング方法において、前記1段目の後に2段目として、前記第1投射材の粒径よりも小さい粒径を有する第3投射材を前記金属製品の表面に投射する。
The shot peening method according to the invention as set forth in claim 5 is the shot peening method according to the invention according to any one of claims 1 to 4, wherein the second shot after the first step is the first shot material. A third projectile having a particle size smaller than the particle size is projected on the surface of the metal product.
このショットピーニング方法では、1段目として第1投射材を金属製品の表面に投射した後、第1投射材の粒径よりも小さい粒径の第3投射材を金属製品の表面に投射するため、1段目の投射で加工が終了する場合と比較して、金属製品の表面粗さが一層改善されると共に、圧縮残留応力が改善される。
In this shot peening method, after the first projectile is projected on the surface of the metal product as the first stage, the third projectile having a particle size smaller than the particle size of the first project material is projected on the surface of the metal product The surface roughness of the metal product is further improved and the compressive residual stress is improved, as compared with the case where the processing is finished in the first stage projection.
請求項1又は2記載の発明に係るショットピーニング方法は、上記構成としたので、段数を増加させて表面粗さを改善すると共に、金属製品に付与される圧縮残留応力の悪化を防止できる。
Since the shot peening method according to the invention of claim 1 or 2 is configured as described above, it is possible to improve the surface roughness by increasing the number of steps and to prevent the deterioration of the compressive residual stress imparted to the metal product.
請求項3、4記載の発明に係るショットピーニング方法は、上記構成としたので、前段の投射によって金属製品の表面を十分に加工硬化することができる。
In the shot peening method according to the third and fourth aspects of the present invention, the surface of the metal product can be sufficiently work-hardened by the projection in the previous stage because of the above configuration.
請求項5記載の発明に係るショットピーニング方法は、上記構成としたので、段数を増加させて表面粗さを改善すると共に、金属製品に付与される圧縮残留応力を改善することができる。
In the shot peening method according to the fifth aspect of the present invention, the number of steps can be increased to improve the surface roughness and the compressive residual stress imparted to the metal product can be improved.
本開示の一実施形態に係るショットピーニング方法について図1~図14を参照して説明する。
A shot peening method according to an embodiment of the present disclosure will be described with reference to FIGS.
[構成]
先ず、ショットピーニング方法が適用される(エアー式)ショットピーニング装置10について説明する。 [Constitution]
First, an (air type) shotpeening apparatus 10 to which a shot peening method is applied will be described.
先ず、ショットピーニング方法が適用される(エアー式)ショットピーニング装置10について説明する。 [Constitution]
First, an (air type) shot
ショットピーニング装置10は、図1に示すように、投射材Sを試験片Tに対して投射する投射室12と、投射室12の下方に設けられ、投射材Sとエアーを混合させる加圧室14と、加圧室14で混合された投射材Sとエアーを投射室12に供給し、先端に取り付けられたノズル16から試験片Tに投射する供給ホース18と、を有している。
The shot peening apparatus 10 is, as shown in FIG. 1, a projection chamber 12 for projecting the projection material S onto the test piece T, and a pressure chamber provided below the projection chamber 12 for mixing the projection material S and air. 14 and the supply hose 18 which supplies the projection material S and air mixed in the pressure chamber 14 to the projection chamber 12 and projects the test piece T from the nozzle 16 attached to the tip.
また、投射室12には、先端に試験片Tを取付可能に構成され、回転可能に設けられた回転軸20が設けられている。さらに、投射室12の下方には、投射された投射材Sを加圧室14に供給するテーパ部22が設けられている。
Further, in the projection chamber 12, a rotating shaft 20 which is configured to be capable of attaching the test piece T at its tip and which is rotatably provided is provided. Furthermore, below the projection chamber 12, a tapered portion 22 for supplying the projected projection material S to the pressure chamber 14 is provided.
すなわち、加圧室14で加圧されたエアーと混合された投射材Sが、回転軸20に支持された試験片Tにノズル16の先端から投射される構成である。
That is, the projection material S mixed with the air pressurized in the pressure chamber 14 is projected from the tip of the nozzle 16 onto the test piece T supported by the rotating shaft 20.
[作用]
本実施形態に係るショットピーニング方法の作用について説明するために以下、比較例と実施例について第1試験、第2試験を行った。なお、第1試験、第2試験における試験片、投射材、投射条件は共通である。また、図3~図6、図10~図13の未処理とは、試験片Tの表面の投射前の状態を示す。 [Effect]
In order to explain the action of the shot peening method according to the present embodiment, the first test and the second test were conducted on comparative examples and examples. In addition, the test piece in a 1st test and a 2nd test, a projectile, and projection conditions are common. The unprocessed state in FIGS. 3 to 6 and 10 to 13 shows the state before the projection of the surface of the test piece T.
本実施形態に係るショットピーニング方法の作用について説明するために以下、比較例と実施例について第1試験、第2試験を行った。なお、第1試験、第2試験における試験片、投射材、投射条件は共通である。また、図3~図6、図10~図13の未処理とは、試験片Tの表面の投射前の状態を示す。 [Effect]
In order to explain the action of the shot peening method according to the present embodiment, the first test and the second test were conducted on comparative examples and examples. In addition, the test piece in a 1st test and a 2nd test, a projectile, and projection conditions are common. The unprocessed state in FIGS. 3 to 6 and 10 to 13 shows the state before the projection of the surface of the test piece T.
(試験内容)
1.試験片
試験片Tは、クロムモリブデン鋼SCM420H(JIS規格)(真空浸炭焼入れ)であり、初期表面粗さRaが0.4μm前後であり、表面硬さ(ビッカース硬度)がHV700前後である。また、試験片Tは、直径25mmで長さ100mmの円柱体である。 (contents of the test)
1. Test piece Test piece T is chromium molybdenum steel SCM420H (JIS standard) (vacuum carburizing and quenching), initial surface roughness Ra is about 0.4 μm, and surface hardness (Vickers hardness) is about HV700. The test piece T is a cylindrical body having a diameter of 25 mm and a length of 100 mm.
1.試験片
試験片Tは、クロムモリブデン鋼SCM420H(JIS規格)(真空浸炭焼入れ)であり、初期表面粗さRaが0.4μm前後であり、表面硬さ(ビッカース硬度)がHV700前後である。また、試験片Tは、直径25mmで長さ100mmの円柱体である。 (contents of the test)
1. Test piece Test piece T is chromium molybdenum steel SCM420H (JIS standard) (vacuum carburizing and quenching), initial surface roughness Ra is about 0.4 μm, and surface hardness (Vickers hardness) is about HV700. The test piece T is a cylindrical body having a diameter of 25 mm and a length of 100 mm.
2.投射材
投射材Sは、以下の3種類の投射材が用いられている。 2. The following three types of projection materials are used as the projection materials S.
投射材Sは、以下の3種類の投射材が用いられている。 2. The following three types of projection materials are used as the projection materials S.
(1)鉄系の材質からなり、直径0.6mmでビッカース硬度HV650~750
(2)鉄系の材質からなり、直径0.1mmでビッカース硬度HV700~830
(3)鉄系の材質からなり、直径0.05mmでビッカース硬度HV900~950 (1) Made of iron-based material, diameter 0.6 mm and Vickers hardness HV 650 to 750
(2) Made of iron-based material, diameter 0.1 mm and Vickers hardness HV 700 to 830
(3) It is made of an iron-based material and has a diameter of 0.05 mm and a Vickers hardness of HV 900 to 950.
(2)鉄系の材質からなり、直径0.1mmでビッカース硬度HV700~830
(3)鉄系の材質からなり、直径0.05mmでビッカース硬度HV900~950 (1) Made of iron-based material, diameter 0.6 mm and Vickers hardness HV 650 to 750
(2) Made of iron-based material, diameter 0.1 mm and Vickers hardness HV 700 to 830
(3) It is made of an iron-based material and has a diameter of 0.05 mm and a Vickers hardness of HV 900 to 950.
(1)~(3)の投射材を図面等でそれぞれ「大」、「中」、「小」と記載する場合がある。
The projectiles of (1) to (3) may be described as "large", "medium", and "small" in drawings and the like.
3.投射条件
図2(A)及び図9(A)に示すように、エアー圧力は投射材「小」、「中」で0.2MPa、投射材「大」で0.3MPaである。また、カバレージは、後述する前段で300%又は500%であり、1段目と2段目ではそれぞれ300%である。 3. Projection Conditions As shown in FIGS. 2A and 9A, the air pressure is 0.2 MPa for the projectiles "small" and "medium", and 0.3 MPa for the projectiles "large". Further, coverage is 300% or 500% in the former stage described later, and is 300% in each of the first and second stages.
図2(A)及び図9(A)に示すように、エアー圧力は投射材「小」、「中」で0.2MPa、投射材「大」で0.3MPaである。また、カバレージは、後述する前段で300%又は500%であり、1段目と2段目ではそれぞれ300%である。 3. Projection Conditions As shown in FIGS. 2A and 9A, the air pressure is 0.2 MPa for the projectiles "small" and "medium", and 0.3 MPa for the projectiles "large". Further, coverage is 300% or 500% in the former stage described later, and is 300% in each of the first and second stages.
4.第1試験の内容
図2(B)に示すように、NO.1~6について、それぞれの投射の順番で各投射材を試験片Tの表面に投射し、その投射された試験片Tの表面について算術平均粗さRa(図3参照)、最大高さRz(図4参照)、最大断面高さPt(図5参照)、十点平均粗さRzjis(図6参照)について求めると共に、その試験片Tに付与された圧縮残留応力を計測した(図7、図8参照)。なお、NO.1、4は比較例であり、NO.2、3、5、6は実施例である。 4. Contents of the first test As shown in FIG. 2 (B), NO. The projectiles are projected onto the surface of the test piece T in the order of projection for 1 to 6, and the arithmetic average roughness Ra (see FIG. 3) and the maximum height Rz of the surface of the projected test piece T 4), maximum cross-sectional height Pt (see FIG. 5), ten-point average roughness Rzjis (see FIG. 6), and compressive residual stress applied to the test piece T was measured (FIG. 7, figure) 8). In addition, NO. 1 and 4 are comparative examples, and NO. 2, 3, 5, 6 are examples.
図2(B)に示すように、NO.1~6について、それぞれの投射の順番で各投射材を試験片Tの表面に投射し、その投射された試験片Tの表面について算術平均粗さRa(図3参照)、最大高さRz(図4参照)、最大断面高さPt(図5参照)、十点平均粗さRzjis(図6参照)について求めると共に、その試験片Tに付与された圧縮残留応力を計測した(図7、図8参照)。なお、NO.1、4は比較例であり、NO.2、3、5、6は実施例である。 4. Contents of the first test As shown in FIG. 2 (B), NO. The projectiles are projected onto the surface of the test piece T in the order of projection for 1 to 6, and the arithmetic average roughness Ra (see FIG. 3) and the maximum height Rz of the surface of the projected test piece T 4), maximum cross-sectional height Pt (see FIG. 5), ten-point average roughness Rzjis (see FIG. 6), and compressive residual stress applied to the test piece T was measured (FIG. 7, figure) 8). In addition, NO. 1 and 4 are comparative examples, and NO. 2, 3, 5, 6 are examples.
先ず、NO.1とNO.2、3とを比較する。試験片Tに対して投射材「大」のみを1段目として投射するNO.1に対して、NO.2、3は投射材「大」の前に前段として投射材「小」を投射することにより、試験片Tの算術平均粗さRa、最大高さRz、最大断面高さPt、十点平均粗さRzjisが改善されることが確認された(図3~図6参照)。
First, NO. 1 and NO. Compare 2 and 3. In the case of NO.7 in which only the projection material "Large" is projected as the first stage onto the test piece T. No. 1 to 1. 2 and 3 project the projection material "small" as a front stage before the projection material "large" to obtain the arithmetic average roughness Ra, maximum height Rz, maximum section height Pt, ten-point average roughness of the test piece T It has been confirmed that Rzjis is improved (see FIGS. 3 to 6).
これは、1段目の投射材「大」の粒径(0.6mm)の半分(0.3mm)以下の粒径(0.05mm)である投射材「小」を前段として投射しているため、1段目の投射材「大」が投射される前に試験片Tの表面粗さを粗くすることを抑制しつつ、表面を加工硬化させることができるためと考えられる。
This is the projection material "small" with a particle size (0.05 mm) less than half (0.3 mm) of the particle size (0.6 mm) of the particle size (0.6 mm) of the first stage project material as the former stage Therefore, it is considered that the surface can be work-hardened while suppressing roughening of the surface roughness of the test piece T before the first stage projection material "large" is projected.
また、前段で投射される投射材「小」のビッカース硬度はHV900であり、試験片Tのビッカース硬度HV700-HV100=HV600以上とされているため、前段の投射によって試験片Tの表面を十分に加工硬化させることができるためと考えられる。
In addition, since the Vickers hardness of the projectile “small” to be projected in the former stage is HV900 and the Vickers hardness HV700-HV100 = HV600 or more of the test piece T, the surface of the specimen T is sufficiently It is thought that it is because it can be work hardened.
すなわち、1段目の投射材「大」の投射によって試験片Tの算術平均粗さRa、最大高さRz、最大断面高さPt、十点平均粗さRzjisが粗くなることが抑制されたためであると考えられる。
That is, because the arithmetic mean roughness Ra, the maximum height Rz, the maximum cross-section height Pt, and the ten-point average roughness Rzjis of the test piece T are suppressed by the first-stage projection material "large" projection It is believed that there is.
また、NO.1と比較して、NO.2、3は前段を追加したことになるが、図7に示すように、試験片Tに付与された圧縮残留応力の悪化はみられない。
Moreover, NO. NO. Although the former and the latter have added the former stage, as shown in FIG. 7, the deterioration of the compressive residual stress imparted to the test piece T is not observed.
これは、試験片Tに付与された圧縮残留応力は、最終段(NO.1~3では1段目)の投射材「大」の粒径による。ここで、NO.2、3はNO.1に対して前段を追加しているだけなので、最終段(NO.1~3では1段目)は投射材「大」でNO.1と同一である。したがって、NO.2、3の試験片Tに付与された圧縮残留応力は、NO.1と比較して悪化することが防止される。
This is because the compressive residual stress imparted to the test piece T is due to the particle size of the projectile "large" in the final stage (the first stage for NO. 1 to 3). Here, NO. 2 and 3 are NO. As the previous stage is only added to 1, the final stage (the first stage for NO. 1 to 3) is NO. It is identical to 1. Therefore, NO. The compressive residual stress imparted to a few test pieces T is NO. Deterioration compared to 1 is prevented.
さらに、NO.2とNO.3を比較すると、前段の投射材「小」のカバレージを300%から500%にすることにより、試験片Tの算術平均粗さRa、最大高さRz、最大断面高さPt、十点平均粗さRzjisが一層改善されることが確認された(図3~図6参照)。
Furthermore, NO. 2 and NO. When 3 is compared, the arithmetic mean roughness Ra of the test piece T, maximum height Rz, maximum section height Pt, ten-point average roughness are obtained by setting coverage of the projection material “small” in the former stage to 300% to 500%. It was confirmed that the Rzjis is further improved (see FIGS. 3 to 6).
次に、1段目に投射材「大」、2段目に投射材「中」を投射する比較例であるNO.4と、その前に投射材「小」を前段として追加したNO.5、6とを比較する。この場合にも、NO.4と比較してNO.5、6の方が試験片Tの算術平均粗さRa、最大高さRz、最大断面高さPt、十点平均粗さRzjisが改善されることが確認された(図3~図6参照)。特に、NO.2とNO.3を比較すると、前段の投射材「小」のカバレージを300%から500%にすることにより、試験片Tの算術平均粗さRa、最大高さRz、最大断面高さPt、十点平均粗さRzjisが一層改善されることが確認された(図3~図6参照)。
Next, NO.1 which is a comparative example which projects a projection material "large" in the 1st stage, and projects a projection material "inside" in the 2nd stage. 4 and NO. Compare 5 and 6 Also in this case, NO. No. 4 in comparison with 4. It was confirmed that the arithmetic average roughness Ra, the maximum height Rz, the maximum cross-sectional height Pt, and the ten-point average roughness Rzjis of the test pieces T are improved in the cases 5 and 6 (see FIGS. 3 to 6). . In particular, NO. 2 and NO. When 3 is compared, the arithmetic mean roughness Ra of the test piece T, maximum height Rz, maximum section height Pt, ten-point average roughness are obtained by setting coverage of the projection material “small” in the former stage to 300% to 500%. It was confirmed that the Rzjis is further improved (see FIGS. 3 to 6).
また、NO.4と比較して、NO.5、6は前段を追加したことになるが、図8に示すように、試験片Tに付与された圧縮残留応力の悪化はみられない。
Moreover, NO. In comparison with No. 4, NO. Although 5 and 6 added the former stage, as shown in FIG. 8, the deterioration of the compressive residual stress given to the test piece T is not seen.
このNO.4~6の試験結果も、NO.1~3と同様の理由と考えられる。
This NO. Also in the test results of 4 to 6, NO. This is considered to be the same reason as 1 to 3.
5.第2試験内容
第2試験も第1試験と同様に行うが、NO.7~9は、第1試験のNO.4~NO.6における2段目の投射材「中」を投射材「小」に変更したものである。すなわち、前段と2段目の投射材を、投射材「小」で同一としたものである。このNO.7~9について、それぞれの投射の順番で各投射材を試験片Tに投射し、その投射された試験片Tについて算術平均粗さRa(図10参照)、最大高さRz(図11参照)、最大断面高さPt(図12参照)、十点平均粗さRzjis(図13参照)を求めると共に、その試験片Tに付与された圧縮残留応力を計測した(図14参照)。なお、NO.7は比較例であり、NO.8、9は実施例である。 5. Details of the second test The second test is also performed in the same manner as the first test. 7-9 is NO. 4 to NO. It is what changed the projection material "middle" of the 2nd step | stage in 6 into the projection material "small." That is, the projectiles of the front stage and the second stage are the same as the projectile "small". This NO. For each of 7 to 9, each projectile is projected onto the test piece T in the order of projection, and the arithmetic average roughness Ra (refer to FIG. 10) and the maximum height Rz (refer to FIG. 11) for the projected test pieces T The maximum cross-sectional height Pt (see FIG. 12) and the ten-point average roughness Rzjis (see FIG. 13) were determined, and the compressive residual stress imparted to the test piece T was measured (see FIG. 14). In addition, NO. 7 is a comparative example, NO. 8, 9 are examples.
第2試験も第1試験と同様に行うが、NO.7~9は、第1試験のNO.4~NO.6における2段目の投射材「中」を投射材「小」に変更したものである。すなわち、前段と2段目の投射材を、投射材「小」で同一としたものである。このNO.7~9について、それぞれの投射の順番で各投射材を試験片Tに投射し、その投射された試験片Tについて算術平均粗さRa(図10参照)、最大高さRz(図11参照)、最大断面高さPt(図12参照)、十点平均粗さRzjis(図13参照)を求めると共に、その試験片Tに付与された圧縮残留応力を計測した(図14参照)。なお、NO.7は比較例であり、NO.8、9は実施例である。 5. Details of the second test The second test is also performed in the same manner as the first test. 7-9 is NO. 4 to NO. It is what changed the projection material "middle" of the 2nd step | stage in 6 into the projection material "small." That is, the projectiles of the front stage and the second stage are the same as the projectile "small". This NO. For each of 7 to 9, each projectile is projected onto the test piece T in the order of projection, and the arithmetic average roughness Ra (refer to FIG. 10) and the maximum height Rz (refer to FIG. 11) for the projected test pieces T The maximum cross-sectional height Pt (see FIG. 12) and the ten-point average roughness Rzjis (see FIG. 13) were determined, and the compressive residual stress imparted to the test piece T was measured (see FIG. 14). In addition, NO. 7 is a comparative example, NO. 8, 9 are examples.
なお、NO.7は、1段目の投射材「大」の後に、2段目として投射材「小」を金属製品の表面に投射しているので、算術平均粗さRa(図10参照)、最大高さRz(図11参照)、最大断面高さPt(図12参照)、十点平均粗さRzjis(図13参照)が抑制されている。
In addition, NO. 7 projects the projection material "small" onto the surface of the metal product as the second stage after the first stage projection material "large", so the arithmetic average roughness Ra (see Fig. 10), the maximum height Rz (see FIG. 11), maximum cross-sectional height Pt (see FIG. 12), and ten-point average roughness Rzjis (see FIG. 13) are suppressed.
次に、試験片Tに対して1段目として投射材「大」、2段目として投射材「小」を投射するNO.7と投射材「大」の前にさらに前段として投射材「小」を投射するNO.8、9とを比較する。NO.7と比較して、NO.8、9は、試験片Tの算術平均粗さRa、最大高さRz、最大断面高さPt、十点平均粗さRzjisが改善されることが確認された(図10~図13参照)。特に、NO.8とNO.9を比較すると、前段の投射材「小」のカバレージを300%から500%にすることにより、試験片Tの算術平均粗さRa、最大高さRz、最大断面高さPt、十点平均粗さRzjisが一層改善されることが確認された(図10~図13参照)。
Next, with respect to the test piece T, the projection material "large" as the first stage and the projection material "small" as the second stage are projected. No.7 and the projection material "small" to project the projection material "small" as a further front before the projection material "large" Compare 8 and 9 NO. In comparison with No. 7, NO. As for 8 and 9, it was confirmed that the arithmetic average roughness Ra, the maximum height Rz, the maximum cross-sectional height Pt, and the ten-point average roughness Rzjis of the test piece T are improved (see FIGS. 10 to 13). In particular, NO. 8 and NO. In comparison with 9, the arithmetic mean roughness Ra, maximum height Rz, maximum cross-section height Pt, and ten-point average roughness of the test piece T are obtained by setting the coverage of the projectile “small” at the former stage to 300% to 500%. It was confirmed that the Rzjis was further improved (see FIGS. 10 to 13).
また、NO.7と比較して、NO.8、9は前段を追加したことになるが、図14に示すように、試験片Tに付与された圧縮残留応力の悪化はみられない。
Moreover, NO. In comparison with No. 7, NO. 8 and 9 added the former stage, but as shown in FIG. 14, the deterioration of the compressive residual stress imparted to the test piece T is not observed.
このNO.7~9の試験結果も、NO.1~3と同様の理由と考えられる。
This NO. The test results of 7 to 9 are also NO. This is considered to be the same reason as 1 to 3.
(その他)
本実施形態のショットピーニング方法は、エアー式のショットピーニング装置10に適用したが、投射材を試験片Tに投射するショットピーニング方法であれば、他の装置に適用しても良い。 (Others)
Although the shot peening method of this embodiment was applied to the air type shotpeening apparatus 10, as long as it is a shot peening method of projecting a projectile onto the test piece T, it may be applied to another apparatus.
本実施形態のショットピーニング方法は、エアー式のショットピーニング装置10に適用したが、投射材を試験片Tに投射するショットピーニング方法であれば、他の装置に適用しても良い。 (Others)
Although the shot peening method of this embodiment was applied to the air type shot
Claims (5)
- 1段目として、所定の粒径の第1投射材を金属製品の表面に投射する工程と、
前記1段目の前に前段として、前記第1投射材の粒径の半分以下の粒径である第2投射材を前記金属製品の表面に投射する工程と、
を備えるショットピーニング方法。 Projecting a first projectile of a predetermined particle size onto the surface of a metal product as the first stage;
Projecting a second projectile having a particle diameter equal to or less than half of the particle diameter of the first projectile on the surface of the metal product as a former stage before the first stage;
Shot peening method comprising. - 前記第2投射材の粒径は、0.3mm以下であり、当該第2投射材のビッカース硬度は、前記金属製品のビッカース硬度-100以上である請求項1記載のショットピーニング方法。 The shot peening method according to claim 1, wherein the particle diameter of the second projectile is 0.3 mm or less, and the Vickers hardness of the second projectile is -100 or more of the Vickers hardness of the metal product.
- 前記前段のカバレージは、300%以上である請求項1記載のショットピーニング方法。 The shot peening method according to claim 1, wherein the coverage of the former stage is 300% or more.
- 前記金属製品は、熱処理されたものであり、ビッカース硬度が600以上である請求項1記載のショットピーニング方法。 The shot peening method according to claim 1, wherein the metal product is heat-treated and has a Vickers hardness of 600 or more.
- 前記1段目の後に2段目として、前記第1投射材の粒径よりも小さい粒径を有する第3投射材を前記金属製品の表面に投射する請求項1記載のショットピーニング方法。 The shot peening method according to claim 1, wherein a third projectile having a particle diameter smaller than a particle diameter of the first projectile is projected on the surface of the metal product as a second stage after the first stage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880068517.0A CN111278602A (en) | 2017-12-22 | 2018-09-26 | Shot peening method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017246720A JP2019111613A (en) | 2017-12-22 | 2017-12-22 | Shot-peening method |
JP2017-246720 | 2017-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019123755A1 true WO2019123755A1 (en) | 2019-06-27 |
Family
ID=66993233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/035734 WO2019123755A1 (en) | 2017-12-22 | 2018-09-26 | Shot peening method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2019111613A (en) |
CN (1) | CN111278602A (en) |
TW (1) | TW201927478A (en) |
WO (1) | WO2019123755A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001277119A (en) * | 2000-03-29 | 2001-10-09 | Oriental Engineering Co Ltd | Method and device for shot peening |
WO2007023936A1 (en) * | 2005-08-25 | 2007-03-01 | Sintokogio, Ltd. | Method of shot peening |
JP2007332421A (en) * | 2006-06-15 | 2007-12-27 | Sumitomo Metal Ind Ltd | Method of manufacturing soft-nitride part |
WO2010137607A1 (en) * | 2009-05-27 | 2010-12-02 | 住友金属工業株式会社 | Carburized component and manufacturing method therefor |
JP2015086890A (en) * | 2013-10-28 | 2015-05-07 | 中央発條株式会社 | Spring and method for manufacturing spring |
-
2017
- 2017-12-22 JP JP2017246720A patent/JP2019111613A/en active Pending
-
2018
- 2018-09-26 CN CN201880068517.0A patent/CN111278602A/en active Pending
- 2018-09-26 WO PCT/JP2018/035734 patent/WO2019123755A1/en active Application Filing
- 2018-11-07 TW TW107139582A patent/TW201927478A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001277119A (en) * | 2000-03-29 | 2001-10-09 | Oriental Engineering Co Ltd | Method and device for shot peening |
WO2007023936A1 (en) * | 2005-08-25 | 2007-03-01 | Sintokogio, Ltd. | Method of shot peening |
JP2007332421A (en) * | 2006-06-15 | 2007-12-27 | Sumitomo Metal Ind Ltd | Method of manufacturing soft-nitride part |
WO2010137607A1 (en) * | 2009-05-27 | 2010-12-02 | 住友金属工業株式会社 | Carburized component and manufacturing method therefor |
JP2015086890A (en) * | 2013-10-28 | 2015-05-07 | 中央発條株式会社 | Spring and method for manufacturing spring |
Also Published As
Publication number | Publication date |
---|---|
JP2019111613A (en) | 2019-07-11 |
TW201927478A (en) | 2019-07-16 |
CN111278602A (en) | 2020-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9464335B2 (en) | Method for improving fatigue strength of cast iron material | |
JP2011036949A (en) | Method for manufacturing die steel tool, and form rolling die | |
JP2002036115A (en) | Shot peening processing method and processed article thereof | |
JP2008207279A (en) | Surface refining method of metal mold and metal mold | |
US11780052B2 (en) | Shot peening method | |
EP2618028A1 (en) | Gear | |
JPWO2007023936A1 (en) | Shot peening method | |
WO2019123755A1 (en) | Shot peening method | |
JP4392719B2 (en) | Base material surface treatment method and base material and product having a surface treated by this method | |
KR102466364B1 (en) | PISTON RING WITH SHOT-PEENED RUNNING-IN LAYER AND METHOD FOR THE PRODUCTION THEREOF | |
JP3227492B2 (en) | Spring shot peening method and spring product | |
US9102992B2 (en) | Method for improving fatigue strength of cast iron material | |
JP2003253422A (en) | Method for prolonging service life of tool such as mandrel and forming die, and tool of prolonged service life such as mandrel and forming die | |
JP2003191166A (en) | Method for improving metal mold serviceable life and metal mold | |
JP2003329048A (en) | Manufacturing method for bearing raceway member | |
JP5316298B2 (en) | Method for strengthening carburized parts | |
US10563764B2 (en) | Coated steel piston ring | |
RU2766388C1 (en) | Method for surface treatment on steel parts | |
JP2009045632A (en) | Mandrel bar for hot seamless tube and method of treating its surface | |
JPH0413573A (en) | Finishing method for surface of metal product | |
JP2003211357A (en) | Method for improving life of gear and driving force transmission parts, and gear and driving force transmission parts | |
JP2022099521A (en) | Surface hardened steel component and production method thereof | |
JP2017036772A (en) | Continuously variable transmission | |
JP2004122332A (en) | Shot-peening method | |
JP2006132638A (en) | Ball screw and electric cylinder using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18892478 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18892478 Country of ref document: EP Kind code of ref document: A1 |