JP2011176905A - Non-contact unit cooling device by radiation of flywheel for power storage - Google Patents

Non-contact unit cooling device by radiation of flywheel for power storage Download PDF

Info

Publication number
JP2011176905A
JP2011176905A JP2010037110A JP2010037110A JP2011176905A JP 2011176905 A JP2011176905 A JP 2011176905A JP 2010037110 A JP2010037110 A JP 2010037110A JP 2010037110 A JP2010037110 A JP 2010037110A JP 2011176905 A JP2011176905 A JP 2011176905A
Authority
JP
Japan
Prior art keywords
heat transfer
radiation
power storage
flywheel
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010037110A
Other languages
Japanese (ja)
Inventor
Yuki Arai
有気 荒井
Masaru Nagashima
賢 長嶋
Hitoshi Hasegawa
均 長谷川
Katsutoshi Mizuno
克俊 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2010037110A priority Critical patent/JP2011176905A/en
Publication of JP2011176905A publication Critical patent/JP2011176905A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact unit cooling device by radiation of a flywheel for power storage which reduces an energy loss by a windage loss caused by conduction cooling of a lean gas, improves efficiency of a flywheel system, and reduces labor for pressure adjustment at introduction of the lean gas through heat transfer by radiation. <P>SOLUTION: The non-contact unit cooling device by radiation of a flywheel for power storage includes a rotation-side heat exchanger plate 22 mounted to a rotating shaft 24 of the flywheel for power storage and a fixed-side heat exchanger plate 28 opposing the rotation-side heat exchanger plate 22, thus increasing a heat transfer area by radiation between the rotation-side heat exchanger plate 22 and the fixed-side heat exchanger plate 28. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非接触部冷却装置に係り、特に電力貯蔵用フライホイールの輻射による非接触部冷却装置に関するものである。   The present invention relates to a non-contact part cooling device, and more particularly to a non-contact part cooling device by radiation of a power storage flywheel.

従来、余剰電力を運動エネルギーに変換して蓄積し、必要時に電気エネルギーとして取り出す電力貯蔵用フライホイールの軸受として、超電導体を用いるシステムの開発が行われている。この時、非接触で浮上するフライホイールの超電導体を冷却する必要がある。
図6は従来の超電導電力貯蔵用フライホイールの模式図である。
図6に示す超電導電力貯蔵用フライホイールでは、発電・電動機113に電磁クラッチ114を介して駆動伝導力が接離される電力貯蔵用フライホイール105を、真空ポンプ110による低温・真空容器101内に設け、その回転軸106を、冷凍機111及び冷却板102により冷却され低温・希薄ガス雰囲気中に置かれた回転体である浮上用バルク体107及び案内用バルク体108,109と、浮上用超電導コイル103及び案内用超電導コイル104,104′により、非接触状態に維持した超電導磁気軸受の冷却装置において、輻射による伝熱が支配的である圧力の領域から気体分子伝導による伝熱が支配的となる圧力の近傍に圧力を設定し、磁気軸受の冷却を行うようにしている。
Conventionally, a system using a superconductor has been developed as a bearing for a power storage flywheel that converts surplus power into kinetic energy, accumulates it, and takes it out as electrical energy when necessary. At this time, it is necessary to cool the superconductor of the flywheel that floats without contact.
FIG. 6 is a schematic diagram of a conventional superconducting power storage flywheel.
In the superconducting power storage flywheel shown in FIG. 6, a power storage flywheel 105 whose drive power is connected to and separated from the generator / motor 113 via an electromagnetic clutch 114 is provided in the low-temperature / vacuum vessel 101 by the vacuum pump 110. The rotating shaft 106 is cooled by the refrigerator 111 and the cooling plate 102 and is placed in a low temperature / lean gas atmosphere. The floating bulk body 107 and the guiding bulk bodies 108 and 109, and the floating superconducting coil In the cooling device for the superconducting magnetic bearing maintained in a non-contact state by the superconducting coil 104 and the guide superconducting coils 104 and 104 ′, heat transfer by gas molecule conduction becomes dominant from the pressure region where heat transfer by radiation is dominant. A pressure is set in the vicinity of the pressure to cool the magnetic bearing.

特開2009−264495号公報JP 2009-264495 A

上記した従来の希薄ガスによる伝導冷却(上記特許文献1参照)では、希薄ガスによる風損がエネルギーロスとなり、フライホイールシステムとしての効率低下を来す恐れがあった。
また、希薄ガス導入にあたっては、伝熱は確保しつつも風損を増大させないようにするため、圧力の繊細な調整が必要であった。
In the above-described conventional conductive cooling with a rare gas (see Patent Document 1), the wind loss due to the rare gas becomes an energy loss, which may reduce the efficiency of the flywheel system.
In addition, when introducing the dilute gas, it is necessary to finely adjust the pressure in order to prevent heat loss while ensuring heat transfer.

本発明は、上記状況に鑑みて、希薄ガスの伝導冷却に起因する風損によるエネルギーロスを低減するとともに、希薄ガス導入時の圧力調整に係る労力を低減することができる、電力貯蔵用フライホイールの輻射による非接触部冷却装置を提供することを目的とする。   In view of the above situation, the present invention reduces an energy loss due to windage loss due to conduction cooling of a rare gas, and can reduce labor related to pressure adjustment at the time of introducing a rare gas. An object of the present invention is to provide a non-contact part cooling device by radiation of the above.

本発明は、上記目的を達成するために、
〔1〕電力貯蔵用フライホイールの輻射による非接触部冷却装置において、電力貯蔵用フライホイールの回転軸に取り付けられる回転側伝熱板と、この回転側伝熱板と対向する固定側伝熱板とを備え、前記回転側伝熱板と前記固定側伝熱板との間の輻射による伝熱面積を増加させるようにしたことを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a non-contact part cooling apparatus by radiation of a power storage flywheel, a rotation side heat transfer plate attached to a rotating shaft of the power storage flywheel, and a fixed side heat transfer plate facing the rotation side heat transfer plate The heat transfer area by radiation between the rotation side heat transfer plate and the fixed side heat transfer plate is increased.

〔2〕上記〔1〕記載の電力貯蔵用フライホイールの輻射による非接触部冷却装置において、前記回転側伝熱板が回転蓋に固定される複数の回転側円筒状伝熱板であり、前記固定側伝熱板が前記複数の回転側円筒状伝熱板に対向して配置される複数の固定側円筒状伝熱板であることを特徴とする。
〔3〕上記〔2〕記載の電力貯蔵用フライホイールの輻射による非接触部冷却装置において、前記複数の回転側円筒状伝熱板と前記複数の固定側円筒状伝熱板とをつや消し黒色に塗装することを特徴とする。
[2] In the non-contact part cooling apparatus by radiation of the power storage flywheel according to [1], the rotation side heat transfer plate is a plurality of rotation side cylindrical heat transfer plates fixed to a rotation lid, The fixed-side heat transfer plate is a plurality of fixed-side cylindrical heat transfer plates arranged to face the plurality of rotation-side cylindrical heat transfer plates.
[3] In the non-contact part cooling apparatus by radiation of the power storage flywheel as described in [2] above, the plurality of rotating side cylindrical heat transfer plates and the plurality of fixed side cylindrical heat transfer plates are matted black It is characterized by painting.

〔4〕上記〔1〕記載の電力貯蔵用フライホイールの輻射による非接触部冷却装置において、前記回転側伝熱板が回転軸に多段に配置される複数の回転側円板状伝熱板であり、前記固定側伝熱板が前記複数の回転側円板状伝熱板に対向する複数の固定側伝熱板であることを特徴とする。
〔5〕上記〔4〕記載の電力貯蔵用フライホイールの輻射による非接触部冷却装置において、前記複数の回転側円板状伝熱板と前記複数の固定側伝熱板の表面及び固定側伝熱チャンバーの内側表面をつや消し黒色に塗装することを特徴とする。
[4] In the non-contact part cooling apparatus by radiation of the power storage flywheel as described in [1] above, the rotation side heat transfer plates are a plurality of rotation side disk-shaped heat transfer plates arranged in multiple stages on a rotation shaft. And the fixed-side heat transfer plate is a plurality of fixed-side heat transfer plates facing the plurality of rotation-side disc-shaped heat transfer plates.
[5] In the non-contact part cooling apparatus by radiation of the power storage flywheel as described in [4] above, the surfaces of the plurality of rotating side disk-shaped heat transfer plates, the plurality of fixed side heat transfer plates, and the fixed side heat transfer It is characterized in that the inner surface of the thermal chamber is matte and painted black.

本発明によれば、電力貯蔵用フライホイールにおいて、風損によるエネルギーロスを増やすことなく、伝熱エネルギーを確保し、超電導体を冷却することができるとともに、輻射伝熱を用いることで、希薄ガス導入時における圧力調整に係る労力を低減することができる。   According to the present invention, in a flywheel for power storage, heat transfer energy can be secured and the superconductor can be cooled without increasing energy loss due to windage, and by using radiant heat transfer, a lean gas can be obtained. It is possible to reduce labor related to pressure adjustment at the time of introduction.

本発明に係る電力貯蔵用フライホイールの全体構成図である。1 is an overall configuration diagram of a power storage flywheel according to the present invention. 本発明に係る電力貯蔵用フライホイールのクライオスタットの構成図である。It is a block diagram of the cryostat of the flywheel for electric power storage which concerns on this invention. 本発明の第1実施例を示す電力貯蔵用フライホイールの輻射による非接触部冷却装置を示す図である。It is a figure which shows the non-contact part cooling device by radiation of the flywheel for electric power storage which shows 1st Example of this invention. 本発明の第2実施例を示す電力貯蔵用フライホイールの輻射による非接触部冷却装置を示す図である。It is a figure which shows the non-contact part cooling device by radiation of the flywheel for electric power storage which shows 2nd Example of this invention. 本発明の第2実施例を示す電力貯蔵用フライホイールの輻射による非接触部冷却装置の固定側伝熱チャンバー及び固定側伝熱板を開いた状態を示す平面図である。It is a top view which shows the state which opened the stationary-side heat-transfer chamber and stationary-side heat-transfer plate of the non-contact part cooling device by radiation of the electric power storage flywheel which shows 2nd Example of this invention. 従来の超電導電力貯蔵用フライホイールの模式図である。It is a schematic diagram of the conventional flywheel for superconducting power storage.

本発明の電力貯蔵用フライホイールの輻射による非接触部冷却装置は、電力貯蔵用フライホイールの回転軸に取り付けられる回転側伝熱板と、この回転側伝熱板と対向する固定側伝熱板とを備え、前記回転側伝熱板と前記固定側伝熱板との間の輻射による伝熱面積を増加させるようにした。   The non-contact part cooling device by radiation of the power storage flywheel according to the present invention includes a rotation side heat transfer plate attached to a rotation shaft of the power storage flywheel, and a fixed side heat transfer plate facing the rotation side heat transfer plate. And the heat transfer area by radiation between the rotation side heat transfer plate and the fixed side heat transfer plate is increased.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明に係る電力貯蔵用フライホイールの全体構成図、図2はその電力貯蔵用フライホイールのクライオスタットの構成図である。
これらの図において、1は電動/発電機、2は非接触磁気力トルク伝達部品、2Aは非接触磁気力トルク伝達部品の表面板、3は真空容器、4は真空槽(断熱槽)、5はシールド容器、5Aは輻射シールド槽の蓋部、5Bは温度定点用アンカ、6は輻射シールド槽(中間温度槽)、7は内槽容器、8は内槽(極低温槽)、8Aは内槽中央部、8Bは内槽室温部、8Cは温度勾配導管部、9は上部磁気支持装置(高温超電導磁気軸受)、10はフライホイール、11は回転軸、12は下部磁気支持装置(高温超電導磁気軸受)、13は高温超電導パワーリード、14は極低温用冷凍機、16は内槽真空換気/ガス置換装置、17はバッフル板、21,41は本発明に係る輻射による非接触部冷却装置である。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is an overall configuration diagram of a power storage flywheel according to the present invention, and FIG. 2 is a configuration diagram of a cryostat of the power storage flywheel.
In these drawings, 1 is an electric motor / generator, 2 is a non-contact magnetic force torque transmission component, 2A is a surface plate of the non-contact magnetic force torque transmission component, 3 is a vacuum vessel, 4 is a vacuum chamber (insulation bath), 5 Is a shield container, 5A is a lid of the radiation shield tank, 5B is an anchor for temperature fixing point, 6 is a radiation shield tank (intermediate temperature tank), 7 is an inner tank container, 8 is an inner tank (cryogenic bath), and 8A is an inner The central part of the tank, 8B is the room temperature part of the inner tank, 8C is the temperature gradient conduit part, 9 is the upper magnetic support device (high temperature superconducting magnetic bearing), 10 is the flywheel, 11 is the rotating shaft, 12 is the lower magnetic support device (high temperature superconductivity) (Magnetic bearing), 13 is a high-temperature superconducting power lead, 14 is a cryogenic refrigerator, 16 is an inner tank vacuum ventilation / gas replacement device, 17 is a baffle plate, and 21 and 41 are non-contact part cooling devices by radiation according to the present invention. It is.

図3は本発明の第1実施例を示す電力貯蔵用フライホイールの輻射による非接触部冷却装置を示す図であり、図3(a)はその非接触部冷却装置のセット前を示す斜視図、図3(b)はその非接触部冷却装置のセット後を示す斜視図である。
この非接触部冷却装置21は、図3(a)及び図3(b)に示すように、回転側伝熱板(被冷却側)22とこれに対向する固定側伝熱板(冷却側)28からなる。固定側伝熱板28は、第1の固定側円筒状伝熱板29と、第2の固定側円筒状伝熱板30と、第3の固定側円筒状伝熱板31とが同心円状に配置されており、その外側に内槽32と外槽33が配置される。回転側伝熱板22には、回転蓋23と、この回転蓋23の下方に回転軸24を中心にして形成される第1の回転側円筒状伝熱板25と、第2の回転側円筒状伝熱板26と、第3の回転側円筒状伝熱板27とが同心円状に配置される。
FIG. 3 is a view showing a non-contact part cooling device by radiation of a power storage flywheel according to the first embodiment of the present invention, and FIG. 3 (a) is a perspective view showing the non-contact part cooling device before setting. FIG. 3B is a perspective view showing the non-contact portion cooling device after being set.
As shown in FIGS. 3 (a) and 3 (b), the non-contact part cooling device 21 includes a rotation side heat transfer plate (cooled side) 22 and a fixed side heat transfer plate (cooling side) facing the rotation side heat transfer plate (cooled side). 28. The fixed-side heat transfer plate 28 includes a first fixed-side cylindrical heat transfer plate 29, a second fixed-side cylindrical heat transfer plate 30, and a third fixed-side cylindrical heat transfer plate 31 that are concentric. The inner tank 32 and the outer tank 33 are arrange | positioned on the outer side. The rotation-side heat transfer plate 22 includes a rotation lid 23, a first rotation-side cylindrical heat transfer plate 25 formed around the rotation shaft 24 below the rotation lid 23, and a second rotation-side cylinder. The heat transfer plate 26 and the third rotation side cylindrical heat transfer plate 27 are arranged concentrically.

輻射による伝熱は伝熱面積に比例することから、図3に示すように、複数の回転側円筒状伝熱板(被冷却側)25〜27に対して複数の固定側円筒状伝熱板(冷却側)29〜31を交互に非接触で積層させておくことで、回転側伝熱板(被冷却側)22から固定側伝熱板(冷却側)28への伝熱面積を拡大することができ、伝熱量を大幅に増加させることができる。さらに、これらの回転側円筒状伝熱板25〜27と固定側円筒状伝熱板29〜31をつや消し黒色に塗装することで、輻射率を向上させ、伝熱量をさらに増加させることができる。   Since heat transfer by radiation is proportional to the heat transfer area, as shown in FIG. 3, a plurality of fixed side cylindrical heat transfer plates with respect to a plurality of rotation side cylindrical heat transfer plates (cooled side) 25-27. (Cooling side) 29 to 31 are alternately laminated in a non-contact manner to expand the heat transfer area from the rotation side heat transfer plate (cooled side) 22 to the fixed side heat transfer plate (cooling side) 28. And the amount of heat transfer can be greatly increased. Further, the rotating side cylindrical heat transfer plates 25 to 27 and the fixed side cylindrical heat transfer plates 29 to 31 are matted and painted black, thereby improving the radiation rate and further increasing the heat transfer amount.

図4は本発明の第2実施例を示す電力貯蔵用フライホイールの輻射による非接触部冷却装置を示す図であり、図4(a)はその非接触部冷却装置のセット前を示す斜視図、図4(b)はその非接触部冷却装置のセット後を示す図、図5はその非接触部冷却装置の固定側伝熱チャンバー及び固定側伝熱板が開いた状態を示す平面図である。
この非接触部冷却装置41は、図4(a)及び図4(b)に示すように、多段状の固定側伝熱板(冷却側)49〜52と、これらによって構成される固定側伝熱チャンバー48からなる。つまり、固定側伝熱チャンバー48は、第1の固定側伝熱板49、第2の固定側伝熱板50、第3の固定側伝熱板51、第4の固定側伝熱板52からなる複数段の固定側伝熱板で構成され、その外側に外槽53が配置される。これらの第1〜第4の固定側伝熱板(冷却側)49〜52からなる固定側伝熱チャンバー48内に複数段の回転側伝熱板(被冷却側)42が収納される。この回転側伝熱板42は、回転軸43と、この回転軸43を中心にして形成される第1の回転側円板状伝熱板44と、第2の回転側円板状伝熱板45と、第3の回転側円板状伝熱板46と、第4の回転側円板状伝熱板47によって構成される。
FIG. 4 is a view showing a non-contact part cooling device by radiation of a power storage flywheel according to a second embodiment of the present invention, and FIG. 4 (a) is a perspective view showing the non-contact part cooling device before setting. 4 (b) is a view showing the non-contact portion cooling device after being set, and FIG. 5 is a plan view showing a state where the fixed-side heat transfer chamber and the fixed-side heat transfer plate of the non-contact portion cooling device are opened. is there.
As shown in FIGS. 4 (a) and 4 (b), the non-contact part cooling device 41 includes a multi-stage fixed-side heat transfer plate (cooling side) 49 to 52, and a fixed-side transfer composed of these. It consists of a thermal chamber 48. That is, the fixed side heat transfer chamber 48 includes the first fixed side heat transfer plate 49, the second fixed side heat transfer plate 50, the third fixed side heat transfer plate 51, and the fourth fixed side heat transfer plate 52. The outer tub 53 is arranged on the outer side. A plurality of rotation-side heat transfer plates (cooled side) 42 are accommodated in a fixed-side heat transfer chamber 48 composed of the first to fourth fixed-side heat transfer plates (cooling side) 49 to 52. The rotation-side heat transfer plate 42 includes a rotation shaft 43, a first rotation-side disc-shaped heat transfer plate 44 formed around the rotation shaft 43, and a second rotation-side disc-shaped heat transfer plate. 45, a third rotating disk-shaped heat transfer plate 46, and a fourth rotating disk-shaped heat transfer plate 47.

この回転側伝熱板42を固定側伝熱チャンバー48内に配置する際、第1〜第4の固定側伝熱板49〜52は、図5に示すように枢着部54を中心として予め開かれている。その状態の第1〜第4の固定側伝熱板49〜52に対して、回転軸43に段状に配置された第1〜第4の回転側円板状伝熱板44〜47を交互に非接触で収納し、留め部材55で第1〜第4の固定側伝熱板49〜52をセットした後、図3(b)に示すように、外槽53内に配置する。   When the rotation-side heat transfer plate 42 is disposed in the fixed-side heat transfer chamber 48, the first to fourth fixed-side heat transfer plates 49 to 52 are preliminarily centered on the pivot portion 54 as shown in FIG. Open With respect to the first to fourth fixed-side heat transfer plates 49 to 52 in this state, the first to fourth rotation-side disk-shaped heat transfer plates 44 to 47 arranged in a step shape on the rotation shaft 43 are alternately arranged. The first to fourth fixed-side heat transfer plates 49 to 52 are set by the retaining member 55 and then placed in the outer tub 53 as shown in FIG.

このように、複数段の固定側伝熱板49〜52の間に複数段の回転側円板状伝熱板44〜47を交互に非接触で積層させることで、回転側伝熱板(被冷却側)42から固定側伝熱チャンバー(冷却側)48への伝熱面積を拡大することができ、伝熱量を大幅に増加させることができる。さらに、これらの回転側円板状伝熱板44〜47及びこれに対応する固定側伝熱板49〜52の表面をつや消し黒色に塗装することで、輻射率を向上させ、伝熱量をさらに増加させることができる。   As described above, the rotation-side heat transfer plates (covers) are formed by alternately stacking the rotation-stage disk-shaped heat transfer plates 44 to 47 between the plurality of stages of the fixed-side heat transfer plates 49 to 52 in a non-contact manner. The heat transfer area from the (cooling side) 42 to the fixed side heat transfer chamber (cooling side) 48 can be expanded, and the amount of heat transfer can be greatly increased. Furthermore, the surface of these rotary side disk-shaped heat transfer plates 44 to 47 and the corresponding fixed side heat transfer plates 49 to 52 is matted and painted black, thereby improving the radiation rate and further increasing the amount of heat transfer. Can be made.

このように、従来の電力貯蔵用フライホイールの中間部のスペース又は電力貯蔵用フライホイールの上下端部に伸長させてできたスペースに、本発明の輻射による非接触部冷却装置を設置することで、超電導バルク体に発生する熱を有効に冷却することができる。
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
Thus, by installing the non-contact part cooling device by radiation of the present invention in the space of the middle part of the conventional power storage flywheel or the space formed by extending the upper and lower ends of the power storage flywheel, The heat generated in the superconducting bulk body can be effectively cooled.
In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の電力貯蔵用フライホイールの輻射による非接触部冷却装置は、フライホイールシステムの効率を向上させることができる非接触部冷却装置として利用可能である。   The non-contact part cooling device by radiation of the power storage flywheel of the present invention can be used as a non-contact part cooling device that can improve the efficiency of the flywheel system.

1 電動/発電機
2 非接触磁気力トルク伝達部品
3 真空容器
4 真空槽(断熱槽)
5 シールド容器
5A 輻射シールド槽の蓋部
5B 温度定点用アンカ
6 輻射シールド槽(中間温度槽)
7 内槽容器
8 内槽(極低温槽)
8A 内槽中央部
8B 内槽(極低温槽)
8C 温度勾配導管部
9 上部磁気支持装置(高温超電導磁気軸受)
10 フライホイール
11 回転軸
12 下部磁気支持装置(高温超電導磁気軸受)
13 高温超電導パワーリード
14 極低温用冷凍機
21,41 輻射による非接触部冷却装置
22 回転側伝熱板(被冷却側)
23 回転蓋
24,43 回転軸
25 第1の回転側円筒状伝熱板
26 第2の回転側円筒状伝熱板
27 第3の回転側円筒状伝熱板
28 固定側伝熱板(冷却側)
29 第1の固定側円筒状伝熱板
30 第2の固定側円筒状伝熱板
31 第3の固定側円筒状伝熱板
32 内槽
33,53 外槽
42 複数段の回転側伝熱板(被冷却側)
44 第1の回転側円板状伝熱板
45 第2の回転側円板状伝熱板
46 第3の回転側円板状伝熱板
47 第4の回転側円板状伝熱板
48 固定側伝熱チャンバー(冷却側)
49 第1の固定側伝熱板
50 第2の固定側伝熱板
51 第3の固定側伝熱板
52 第4の固定側伝熱板
54 枢着部
55 留め部材
DESCRIPTION OF SYMBOLS 1 Electric motor / generator 2 Non-contact magnetic force torque transmission component 3 Vacuum container 4 Vacuum tank (heat insulation tank)
5 Shield container 5A Radiation shield tank cover 5B Anchor for temperature fixed point 6 Radiation shield tank (intermediate temperature tank)
7 Inner tank container 8 Inner tank (cryogenic bath)
8A Inner tank center 8B Inner tank (Cryogenic tank)
8C Temperature gradient conduit 9 Upper magnetic support device (high temperature superconducting magnetic bearing)
10 Flywheel 11 Rotating shaft 12 Lower magnetic support device (high temperature superconducting magnetic bearing)
13 High temperature superconducting power lead 14 Cryogenic refrigerator 21, 41 Non-contact part cooling device by radiation 22 Rotating side heat transfer plate (cooled side)
23 Rotating lid 24, 43 Rotating shaft 25 First rotating side cylindrical heat transfer plate 26 Second rotating side cylindrical heat transfer plate 27 Third rotating side cylindrical heat transfer plate 28 Fixed side heat transfer plate (cooling side) )
29 1st fixed side cylindrical heat transfer plate 30 2nd fixed side cylindrical heat transfer plate 31 3rd fixed side cylindrical heat transfer plate 32 Inner tank 33, 53 Outer tank 42 Multiple stages of rotation side heat transfer plates (Cooled side)
44 1st rotation side disk-shaped heat transfer plate 45 2nd rotation side disk-shaped heat transfer plate 46 3rd rotation side disk-shaped heat transfer plate 47 4th rotation side disk-shaped heat transfer plate 48 fixed Side heat transfer chamber (cooling side)
49 1st fixed side heat transfer plate 50 2nd fixed side heat transfer plate 51 3rd fixed side heat transfer plate 52 4th fixed side heat transfer plate 54 Pivoting part 55 Fastening member

Claims (5)

(a)電力貯蔵用フライホイールの回転軸に取り付けられる回転側伝熱板と、
(b)該回転側伝熱板と対向する固定側伝熱板とを備え、
(c)前記回転側伝熱板と前記固定側伝熱板との間の輻射による伝熱面積を増加させるようにしたことを特徴とする電力貯蔵用フライホイールの輻射による非接触部冷却装置。
(A) a rotating side heat transfer plate attached to the rotating shaft of the power storage flywheel;
(B) comprising a stationary heat transfer plate facing the rotating heat transfer plate,
(C) A non-contact part cooling device by radiation of a power storage flywheel, wherein a heat transfer area by radiation between the rotating side heat transfer plate and the fixed side heat transfer plate is increased.
請求項1記載の電力貯蔵用フライホイールの輻射による非接触部冷却装置において、前記回転側伝熱板が回転蓋に固定される複数の回転側円筒状伝熱板であり、前記固定側伝熱板が前記複数の回転側円筒状伝熱板に対向して配置される複数の固定側円筒状伝熱板であることを特徴とする電力貯蔵用フライホイールの輻射による非接触部冷却装置。   The non-contact part cooling apparatus by radiation of the flywheel for power storage according to claim 1, wherein the rotation side heat transfer plate is a plurality of rotation side cylindrical heat transfer plates fixed to a rotation lid, and the fixed side heat transfer A non-contact part cooling device by radiation of a power storage flywheel, wherein the plate is a plurality of fixed-side cylindrical heat transfer plates arranged opposite to the plurality of rotation-side cylindrical heat transfer plates. 請求項2記載の電力貯蔵用フライホイールの輻射による非接触部冷却装置において、前記複数の回転側円筒状伝熱板と前記複数の固定側円筒状伝熱板とをつや消し黒色に塗装することを特徴とする電力貯蔵用フライホイールの輻射による非接触部冷却装置。   The non-contact part cooling apparatus by radiation of the flywheel for power storage according to claim 2, wherein the plurality of rotating side cylindrical heat transfer plates and the plurality of fixed side cylindrical heat transfer plates are matted and painted black. The non-contact part cooling device by the radiation of the flywheel for power storage characterized. 請求項1記載の電力貯蔵用フライホイールの輻射による非接触部冷却装置において、前記回転側伝熱板が回転軸に多段に配置される複数の回転側円板状伝熱板であり、前記固定側伝熱板が前記複数の回転側円板状伝熱板に対向する複数の固定側伝熱板であることを特徴とする電力貯蔵用フライホイールの輻射による非接触部冷却装置。   The non-contact part cooling apparatus by radiation of the flywheel for power storage according to claim 1, wherein the rotation side heat transfer plates are a plurality of rotation side disk-shaped heat transfer plates arranged in multiple stages on a rotation shaft, and the fixed The non-contact portion cooling apparatus by radiation of a power storage flywheel, wherein the side heat transfer plate is a plurality of fixed side heat transfer plates facing the plurality of rotating disk-shaped heat transfer plates. 請求項4記載の電力貯蔵用フライホイールの輻射による非接触部冷却装置において、前記複数の回転側円板状伝熱板と前記複数の固定側伝熱板の表面及び固定側伝熱チャンバーの内側表面をつや消し黒色に塗装することを特徴とする電力貯蔵用フライホイールの輻射による非接触部冷却装置。   The non-contact part cooling device by radiation of the flywheel for power storage according to claim 4, wherein the plurality of rotating side disk-shaped heat transfer plates, the surfaces of the plurality of fixed side heat transfer plates, and the inside of the fixed side heat transfer chamber Non-contact part cooling device by radiation of power storage flywheel, characterized in that the surface is matte and painted black.
JP2010037110A 2010-02-23 2010-02-23 Non-contact unit cooling device by radiation of flywheel for power storage Withdrawn JP2011176905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037110A JP2011176905A (en) 2010-02-23 2010-02-23 Non-contact unit cooling device by radiation of flywheel for power storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037110A JP2011176905A (en) 2010-02-23 2010-02-23 Non-contact unit cooling device by radiation of flywheel for power storage

Publications (1)

Publication Number Publication Date
JP2011176905A true JP2011176905A (en) 2011-09-08

Family

ID=44689232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037110A Withdrawn JP2011176905A (en) 2010-02-23 2010-02-23 Non-contact unit cooling device by radiation of flywheel for power storage

Country Status (1)

Country Link
JP (1) JP2011176905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140147157A (en) * 2012-06-12 2014-12-29 지멘스 피엘씨 Superconducting magnet apparatus with cryogen vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140147157A (en) * 2012-06-12 2014-12-29 지멘스 피엘씨 Superconducting magnet apparatus with cryogen vessel
US9165704B2 (en) 2012-06-12 2015-10-20 Siemens Plc Superconducting magnet apparatus with cryogen vessel
KR101596616B1 (en) * 2012-06-12 2016-02-22 지멘스 피엘씨 Superconducting magnet apparatus with cryogen vessel

Similar Documents

Publication Publication Date Title
JP6638015B2 (en) Nested rotor open core flywheel
JP5598501B2 (en) Power generation system
EP2182619B1 (en) Arrangement for cooling of an electrical machine
US9641051B2 (en) Electromechanical flywheel cooling system
JP4937687B2 (en) Superconducting flywheel device for power storage
JPS63113266A (en) Magnetic refrigerator transferring heat by conduction
EP2390884B1 (en) Superconducting magnetizer
JP2010016026A (en) Superconductive device
US10601298B2 (en) Synchronous superconductive rotary machine having a slidable pole assembly and methods thereof
EP3814630B1 (en) Wind turbine having superconducting generator and method of operating the same
JP5275957B2 (en) Flywheel power storage device with superconducting magnetic bearing
JP5420293B2 (en) Superconducting flywheel power storage device
JP2011176905A (en) Non-contact unit cooling device by radiation of flywheel for power storage
CN105551779B (en) A kind of superconductive controllable reactor
CN110429796A (en) A kind of high-temperature superconducting motor and its low temperature keep container
EP3384585B1 (en) Synchronous superconductive rotary machine having a consecutive pole arrangement
JP4920629B2 (en) Non-contact part cooling system
CN209133571U (en) It is capable of the spinning fan blades of rapid cooling on a kind of light weight high capacity battery case
CN218725549U (en) Novel pure steam sampling device and equipment
JP2000240650A (en) Superconductive magnetic bearing
CN109494328A (en) It is capable of the spinning fan blades of rapid cooling on a kind of light weight high capacity battery case
JPH02218102A (en) Superconducting magnet for nuclear magnetic resonance imaging sensor
CN113539629A (en) Semi-open type high-power equipment cooling system and cooling method
JP2012195490A (en) Method for manufacturing superconducting coil device, and superconducting coil device obtained thereby
WO2023156177A1 (en) Electric power generator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507