JP2011176106A - Substrate for mounting light-emitting element, and light-emitting device using the substrate - Google Patents
Substrate for mounting light-emitting element, and light-emitting device using the substrate Download PDFInfo
- Publication number
- JP2011176106A JP2011176106A JP2010038848A JP2010038848A JP2011176106A JP 2011176106 A JP2011176106 A JP 2011176106A JP 2010038848 A JP2010038848 A JP 2010038848A JP 2010038848 A JP2010038848 A JP 2010038848A JP 2011176106 A JP2011176106 A JP 2011176106A
- Authority
- JP
- Japan
- Prior art keywords
- emitting element
- light
- glass
- substrate
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
- H01L2224/48228—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad being disposed in a recess of the surface of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Led Device Packages (AREA)
Abstract
Description
本発明は発光素子搭載用基板およびこれを用いた発光装置に係り、特に反射率の低下を防止できる発光素子搭載用基板およびこれを用いた発光装置に関する。 The present invention relates to a light-emitting element mounting substrate and a light-emitting device using the same, and more particularly to a light-emitting element mounting substrate capable of preventing a decrease in reflectance and a light-emitting device using the same.
近年、発光ダイオード素子(発光素子)の高輝度、白色化に伴い、照明、各種ディスプレイ、大型液晶テレビのバックライト等として発光素子を用いた発光装置が使用されている。発光素子を搭載する発光素子搭載用基板には、一般に素子から発せられる光を効率よく反射する高反射性が求められる。 2. Description of the Related Art In recent years, light emitting devices using light emitting elements have been used as lighting, various displays, backlights for large liquid crystal televisions, and the like with the increase in brightness and whiteness of light emitting diode elements (light emitting elements). In general, a light emitting element mounting substrate on which a light emitting element is mounted is required to have high reflectivity for efficiently reflecting light emitted from the element.
このため、従来より、発光素子から発光する光を可能な限り前方に反射させることを目的として、基板表面に反射層を施す試みがされている。このような反射層としては、高い反射率を有する銀反射層がある。 For this reason, conventionally, an attempt has been made to apply a reflective layer to the substrate surface for the purpose of reflecting light emitted from the light emitting element as far forward as possible. As such a reflective layer, there is a silver reflective layer having a high reflectance.
しかし、銀は腐食しやすく、放置すると表面にAg2Sなどの化合物が生成して光反射率が低下しやすい。その対策として、銀の表面をシリコーン樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂などの樹脂でコートする方法が提案されている(特許文献1参照)。しかし、この方法では樹脂中、あるいは銀導体層と樹脂の界面から水分や腐食性の気体が入り、経時的に銀導体層を腐食させてしまうため、長期信頼性を求められる製品への適用が難しかった。 However, silver is easily corroded, and if left as it is, a compound such as Ag 2 S is generated on the surface and the light reflectance is likely to be lowered. As a countermeasure, a method has been proposed in which the surface of silver is coated with a resin such as a silicone resin, an acrylic resin, an epoxy resin, or a urethane resin (see Patent Document 1). However, in this method, moisture or corrosive gas enters the resin or from the interface between the silver conductor layer and the resin, and the silver conductor layer is corroded over time. Therefore, it can be applied to products that require long-term reliability. was difficult.
また、銀導体層の腐食を防止するため、銀の表面をガラス層でコートする方法も提案されている(特許文献2参照)。特許文献2には、焼成して製造されたセラミックス(アルミナ)基板上に銀導体ペーストを塗布して銀の配線導体を形成し、さらにこの配線導体上にガラスペーストを塗布して焼成することによって銀の表面をガラス層でコートする方法が記載されている。しかし、この特許文献2に開示の方法では、銀導体層とガラス層の形成で焼成工程を繰り返す必要があった。
Moreover, in order to prevent corrosion of a silver conductor layer, the method of coat | covering the surface of silver with a glass layer is also proposed (refer patent document 2). In
銀導体層つきのパッケージを効率的に製造するには、銀導体層と同時に焼結できる低温同時焼成セラミックス(Low Temperature Co−fired Ceramic)(以下、LTCCという。)技術を用いたLTCC基板を使用することが有用である。従来、LTCC基板は、800〜900℃で焼成されるものが一般的であった。しかし、近年、従来品より低温で焼成できる銀導体材料も開発されている。 In order to efficiently manufacture a package with a silver conductor layer, an LTCC substrate using a low temperature co-fired ceramic (hereinafter referred to as LTCC) technology that can be sintered simultaneously with the silver conductor layer is used. It is useful. Conventionally, the LTCC substrate is generally fired at 800 to 900 ° C. However, in recent years, silver conductor materials that can be fired at a lower temperature than conventional products have also been developed.
しかし、特許文献2に記載されているガラスペースト(旭硝子製、商品名:AP5700)に含まれているガラスのガラス転移点Tgは660℃程度、軟化点Tsは805℃程度である。このため、500〜700℃程度の低温LTCC基板に、このガラスペーストを用いても、焼成温度がガラスのTsよりも低温であることから、ガラスが十分に軟化流動せず緻密なガラス層を形成することはできない。また、800〜900℃で焼成する通常のLTCC基板に用いて同時焼成すると基板に反りが生じ、製品に適用することが困難であった。このガラスペーストは結晶化温度Tcが880℃程度であり、800〜900℃で焼成するとガラス層が結晶化する。このため、焼成時の基板の収縮とガラス層の収縮が大きく異なるのが反りの原因と考えられる。 However, the glass transition point Tg of the glass contained in the glass paste described in Patent Document 2 (product name: AP5700, manufactured by Asahi Glass Co.) is about 660 ° C., and the softening point Ts is about 805 ° C. For this reason, even if this glass paste is used on a low temperature LTCC substrate of about 500 to 700 ° C., since the firing temperature is lower than Ts of glass, the glass does not sufficiently soften and flow and a dense glass layer is formed. I can't do it. Moreover, when it used for the normal LTCC board | substrate baked at 800-900 degreeC, and it co-fired, the board | substrate warped and it was difficult to apply to a product. This glass paste has a crystallization temperature Tc of about 880 ° C., and when baked at 800 to 900 ° C., the glass layer is crystallized. For this reason, it is thought that the cause of the warp is that the shrinkage of the substrate during firing and the shrinkage of the glass layer differ greatly.
本発明は、反射層の腐食を防止し、500〜700℃程度の温度で焼成可能な発光素子搭載用基板の提供を目的とする。また、この発光素子搭載用基板を用いた発光装置の提供を目的とする。 An object of the present invention is to provide a light-emitting element mounting substrate that prevents corrosion of a reflective layer and can be fired at a temperature of about 500 to 700 ° C. It is another object of the present invention to provide a light emitting device using this light emitting element mounting substrate.
本発明は、発光素子搭載用基板において、発光素子が搭載される搭載面を有する基板本体と、この基板本体の搭載面の一部に形成される銀を含む反射層と、この反射層上に形成されるガラス質絶縁層とを有し、前記ガラス質絶縁層は、酸化物基準のモル%表示で、B2O3を30〜60%、SiO2を0〜50%、ZnOを2〜40%、Li2O+Na2O+K2Oを5〜15%含有する低融点ガラスで形成されている。また、前記ガラス質絶縁層には、前記ガラス以外にセラミックスフィラーも含有できる。
The present invention relates to a substrate for mounting a light emitting element, a substrate body having a mounting surface on which the light emitting element is mounted, a reflective layer containing silver formed on a part of the mounting surface of the substrate body, and on the reflective layer and a vitreous insulating layer formed, the
さらに、発光装置としては、上記発光素子搭載用基板と前記基板本体の搭載面に搭載される発光素子とこの発光素子を被覆する蛍光体層を備える。 Further, the light emitting device includes the light emitting element mounting substrate, a light emitting element mounted on the mounting surface of the substrate body, and a phosphor layer covering the light emitting element.
本発明の発光素子搭載用基板では、ガラス質絶縁層で銀を含む反射層を被覆することによって、反射層の酸化や硫化等の腐食を防止できるので、反射層の反射率の低下も防止できる。また、ガラス質絶縁層に含まれるガラスが低温での流動性に優れているので、500〜700℃の焼成温度でも良好な反射特性を有する。
また、本発明の発光装置によれば、反射層の腐食を長期間防止できるので、長期間反射率の高い状態を維持できる。
In the light-emitting element mounting substrate of the present invention, the reflective layer containing silver is covered with the vitreous insulating layer, so that the reflective layer can be prevented from corrosion such as oxidation and sulfidation. . Moreover, since the glass contained in the vitreous insulating layer is excellent in fluidity at low temperatures, it has good reflection characteristics even at a baking temperature of 500 to 700 ° C.
Further, according to the light emitting device of the present invention, the reflection layer can be prevented from corroding for a long period of time, so that the state of high reflectance can be maintained for a long period.
本発明の発光素子搭載用基板は、発光素子が搭載される搭載面を有する基板本体と、この基板本体の搭載面の一部に形成される銀を含む反射層と、この反射層上に形成されるガラス質絶縁層とを有し、前記ガラス質絶縁層は、酸化物基準のモル%表示で、B2O3を30〜60%、SiO2を0〜50%、ZnOを2〜40%、Li2O+Na2O+K2Oを5〜15%含有する低融点ガラスで形成されている。
The light emitting element mounting substrate of the present invention is formed on a substrate body having a mounting surface on which the light emitting element is mounted, a reflective layer containing silver formed on a part of the mounting surface of the substrate body, and the reflective layer. It is and a vitreous insulating layer, the vitreous insulating layer is to, by mol% based on oxides,
基板本体は図1に示すように全体が平板状の部材や、図2に示すように発光素子搭載面が一段下の位置となるように凹部が形成された部材である。基板を構成する材質は、反射層と絶縁層とを焼き付けるため無機材料(アルミナセラミックス、窒化アルミニウムおよびLTCC等)が好ましい。特に、LTCCの場合には、基板本体、反射層および絶縁層を同時焼成によって形成でき、発光素子搭載用基板を製造するときの工程の負荷を少なくできる。さらに、LTCCで複数層積層するものを用いた場合には、給電のための内部配線層をも同時に焼成できる。 The substrate body is a flat plate member as shown in FIG. 1 or a member formed with a recess so that the light emitting element mounting surface is positioned one step lower as shown in FIG. The material constituting the substrate is preferably an inorganic material (alumina ceramics, aluminum nitride, LTCC, etc.) for baking the reflective layer and the insulating layer. In particular, in the case of LTCC, the substrate body, the reflective layer, and the insulating layer can be formed by simultaneous firing, and the load on the process when manufacturing the light emitting element mounting substrate can be reduced. Furthermore, in the case of using an LTCC in which a plurality of layers are laminated, an internal wiring layer for feeding can be fired at the same time.
反射層には反射率の高さから銀が用いられる。この銀は基板本体上に塗布しやすくするために、ペースト状に加工される。ここで、従来から用いられている銀ペーストは、800〜900℃程度の温度で焼成しなければ反射率の高い膜を形成することが困難であったが、近年融点(962℃)よりも低温(600℃付近)で焼結できるナノサイズの銀粉等を使用した低温焼成用の銀ペーストが開発されている。また、銀粒子を球状の微粒とし、塗布時の充填性を向上することによって、低温(600℃付近)で焼結できる銀ペーストが開発されている。本発明では、この低温焼結可能な銀ペーストを用いることができる。また、通常は800〜900℃程度の温度で焼成しなければ十分に焼結できないような銀ペーストでも使用できる場合がある。ガラス質絶縁層に含まれる低融点ガラスが反射層の焼結を促進するためである。 Silver is used for the reflective layer because of its high reflectance. This silver is processed into a paste to facilitate application on the substrate body. Here, conventionally used silver paste has been difficult to form a film having high reflectivity unless it is baked at a temperature of about 800 to 900 ° C., but in recent years, it has a temperature lower than the melting point (962 ° C.). A silver paste for low-temperature firing using nano-sized silver powder or the like that can be sintered at (around 600 ° C.) has been developed. Further, a silver paste that can be sintered at a low temperature (around 600 ° C.) by making silver particles into spherical fine particles and improving the filling property at the time of coating has been developed. In the present invention, this low-temperature sinterable silver paste can be used. Further, there may be a case where a silver paste that cannot be sufficiently sintered unless it is usually fired at a temperature of about 800 to 900 ° C. may be used. This is because the low melting point glass contained in the vitreous insulating layer promotes the sintering of the reflective layer.
ガラス質絶縁層は下層の反射層を腐食(特に、銀の酸化や硫化など)などから保護するための層であり、低融点ガラス単体の層または低融点ガラスとセラミックスフィラーとの混合層(ガラス−セラミックス層)で構成されることが好ましい。この低融点ガラスはガラス質絶縁層の反射率を低下させないように無色であることが好ましい。 The glassy insulating layer is a layer for protecting the lower reflective layer from corrosion (especially, oxidation or sulfidation of silver) and the like, and is a layer of low melting point glass or a mixed layer of low melting point glass and ceramic filler (glass -It is preferable to be comprised by a ceramic layer. The low melting point glass is preferably colorless so as not to reduce the reflectance of the vitreous insulating layer.
前記低融点ガラスは、反射層を形成する銀を含む導体と同時に焼成できることが好ましい。そして、銀導体と同時に焼成したときに銀と反応せず、オープンポアなど、欠陥を生じないものが好ましい。さらに、ガラス質絶縁層は焼成温度が500〜700℃の範囲で焼結し、緻密化できるものであることが好ましい。 It is preferable that the low melting point glass can be fired simultaneously with the conductor containing silver forming the reflective layer. And what does not produce defects, such as an open pore, does not react with silver when fired simultaneously with a silver conductor. Furthermore, it is preferable that the vitreous insulating layer can be sintered and densified at a firing temperature of 500 to 700 ° C.
一般に銀とガラスの焼成時の反応は、ガラスの軟化点が低いほど多くなる傾向があるため、従来は銀と同時焼成可能なガラスであっても軟化点の高めの材料を使用するしかなかった。 In general, the reaction during firing of silver and glass tends to increase as the softening point of the glass is lower. Conventionally, even glass that can be fired simultaneously with silver has to use a material with a higher softening point. .
また、ガラス質絶縁層に含まれる低融点ガラスが焼成時に結晶化すると、基板に反りが生じ、発光素子搭載用基板として十分な性能を発揮できなかった。したがって、ガラス質絶縁層に用いられる低融点ガラスは、焼成時に結晶化しにくいことが望ましく、転移点Tgが380〜620℃、軟化点Tsが500〜700℃、結晶化点Tcが700℃以上の熱特性をもつガラスが好適であると考えた。 Further, when the low melting point glass contained in the vitreous insulating layer is crystallized during firing, the substrate is warped, and sufficient performance as a light emitting element mounting substrate cannot be exhibited. Therefore, it is desirable that the low-melting glass used for the vitreous insulating layer is difficult to crystallize during firing, and has a transition point Tg of 380-620 ° C., a softening point Ts of 500-700 ° C., and a crystallization point Tc of 700 ° C. or higher. A glass with thermal properties was considered suitable.
しかし、上記したように、一般的に銀とガラスとの焼成時の反応は、ガラスの軟化点が低いほど大きな傾向があるため、単に低温で軟化流動するガラスを用いただけでは、ガラス中に銀イオンが拡散しコロイド化して黄色や赤色に発色するおそれがあった。 However, as described above, the reaction during firing of silver and glass generally tends to increase as the softening point of the glass decreases. Therefore, simply using a glass that softens and flows at a low temperature makes silver in the glass. There was a risk that the ions would diffuse and colloid to develop a yellow or red color.
本発明では従来よりも低温の500〜700℃で使用できるガラスを鋭意研究したところ、焼成時にガラスがよく流動して緻密化することと、銀との反応を抑制することを両立できる範囲があることを見いだした。 In the present invention, when a glass that can be used at 500 to 700 ° C., which is lower than the prior art, has been intensively studied, there is a range in which the glass can flow and become dense at the time of firing and the reaction with silver can be suppressed. I found out.
本発明の発光装置において、発光素子としてはLED素子があげられる。より具体的には、放射した光で蛍光体を励起して可視光を発光させるものがあり、青色発光タイプのLED素子や紫外発光タイプのLED素子が例示される。ただし、これらに限定されるものではなく、蛍光体を励起して可視光を発光させることが可能な発光素子であれば、発光装置の用途や目的とする発光色等に応じて種々の発光素子を使用できる。 In the light emitting device of the present invention, examples of the light emitting element include an LED element. More specifically, there is one that excites a phosphor with emitted light to emit visible light, and examples include a blue light emitting type LED element and an ultraviolet light emitting type LED element. However, the light-emitting element is not limited thereto, and various light-emitting elements can be used depending on the use of the light-emitting device, the target light emission color, or the like as long as the light-emitting element can excite the phosphor and emit visible light. Can be used.
本発明の発光装置には、蛍光体層が設けられることが好ましい。蛍光体は、発光素子から放射された光により励起されて可視光を発光し、この可視光と発光素子から放射される光との混色によって、あるいは蛍光体から発光される可視光または可視光自体の混色によって、発光装置として所望の発光色を得るものである。蛍光体の種類は特に限定されるものではなく、目的とする発光色や発光素子から放射される光等に応じて適宜選択される。 The light emitting device of the present invention is preferably provided with a phosphor layer. The phosphor is excited by the light emitted from the light emitting element to emit visible light, and the visible light or the visible light itself emitted from the phosphor by color mixture of the visible light and the light emitted from the light emitting element. As a light emitting device, a desired light emission color is obtained by mixing the colors. The type of the phosphor is not particularly limited, and is appropriately selected according to the target emission color, light emitted from the light emitting element, and the like.
本発明の発光装置には、発光素子を被覆する蛍光体層(図3参照)が設けられることが好ましい。この蛍光体層は、シリコーン樹脂やエポキシ樹脂のような透明樹脂中に蛍光体を、混合・分散させたものである。蛍光体は、発光素子から放射された光により励起されて可視光を発光し、この可視光と発光素子から放射される光との混色によって、あるいは蛍光体から発光される可視光または可視光自体の混色によって、発光装置として所望の発光色を得るものである。蛍光体の種類は特に限定されるものではなく、目的とする発光色や発光素子から放射される光等に応じて適宜選択される。 The light emitting device of the present invention is preferably provided with a phosphor layer (see FIG. 3) covering the light emitting element. This phosphor layer is obtained by mixing and dispersing phosphors in a transparent resin such as a silicone resin or an epoxy resin. The phosphor is excited by the light emitted from the light emitting element to emit visible light, and the visible light or the visible light itself emitted from the phosphor by color mixture of the visible light and the light emitted from the light emitting element. As a light emitting device, a desired light emission color is obtained by mixing the colors. The type of the phosphor is not particularly limited, and is appropriately selected according to the target emission color, light emitted from the light emitting element, and the like.
また、蛍光体層は、直接発光素子を覆うように形成された被覆層の上に、別に蛍光体層を設けることも可能である。すなわち、蛍光体層は発光装置の発光素子が形成された側の最上層に形成されることが好ましい。 In addition, the phosphor layer can be separately provided on a coating layer formed so as to directly cover the light emitting element. That is, the phosphor layer is preferably formed on the uppermost layer on the side where the light emitting element of the light emitting device is formed.
本発明の発光装置は典型的には基板の表面にLED素子を電気的に接続する端子部を有し、当該端子部を除く領域がオーバーコート層で覆われているものである。この場合、発光素子の実装は、たとえば、LEDチップを基板上にエポキシ樹脂やシリコーン樹脂で接着(ダイボンド)するとともに、チップ上面の電極を金線等のボンディングワイヤを介して基板のパッド部に接続する方法、あるいは、LEDチップの裏面に設けられた半田バンプ、Auバンプ、Au−Sn共晶バンプ等のバンプ電極を、基板のリード端子やパッド部にフリップチップ接続する方法などにより行われる。 The light emitting device of the present invention typically has a terminal portion for electrically connecting the LED element on the surface of the substrate, and a region excluding the terminal portion is covered with an overcoat layer. In this case, for example, the LED element is mounted on the substrate with an epoxy resin or silicone resin (die bond), and the electrode on the upper surface of the chip is connected to the pad portion of the substrate through a bonding wire such as a gold wire. Or a bump electrode such as a solder bump, an Au bump, or an Au—Sn eutectic bump provided on the back surface of the LED chip is flip-chip connected to a lead terminal or a pad portion of the substrate.
前記基板本体は、反射層とそれを保護するガラス質絶縁層を設けることができれば、特に限定されないが、以下では基板本体がLTCC基板である場合について説明する。 The substrate body is not particularly limited as long as it can be provided with a reflective layer and a glassy insulating layer that protects the reflective layer. Hereinafter, a case where the substrate body is an LTCC substrate will be described.
LTCC基板はガラス粉末とアルミナ粉末等のセラミックスフィラーとの混合物を焼成して製造される基板であり、銀導体と同時に焼成して製造することが可能な基板である。 The LTCC substrate is a substrate manufactured by baking a mixture of glass powder and ceramic filler such as alumina powder, and can be manufactured by baking simultaneously with a silver conductor.
LTCC基板に使用するガラス粉末とアルミナ粉末等のセラミックスフィラーは通常グリーンシート化して使用される。たとえば、まずガラス粉末とアルミナ粉末等をポリビニルブチラールやアクリル樹脂等の樹脂と、必要に応じてフタル酸ジブチル、フタル酸ジオクチル、フタル酸ブチルベンジル等の可塑剤等も添加して混合する。次に、トルエン、キシレン、ブタノール等の溶剤を添加してスラリーとし、ポリエチレンテレフタレート等のフィルム上にドクターブレード法等によってこのスラリーをシート状に成形する。最後に、このシート状に成形されたものを乾燥して溶剤を除去しグリーンシートとする。これらグリーンシートには必要に応じて、銀ペーストを用いてスクリーン印刷等によって配線パターンやビアなどが形成される。 Ceramic fillers such as glass powder and alumina powder used for the LTCC substrate are usually used as green sheets. For example, first, glass powder and alumina powder are mixed with a resin such as polyvinyl butyral or acrylic resin and, if necessary, a plasticizer such as dibutyl phthalate, dioctyl phthalate, or butyl benzyl phthalate. Next, a solvent such as toluene, xylene, or butanol is added to form a slurry, and this slurry is formed into a sheet on a film of polyethylene terephthalate or the like by a doctor blade method or the like. Finally, the sheet formed into a sheet is dried to remove the solvent to obtain a green sheet. On these green sheets, wiring patterns, vias, and the like are formed by screen printing using a silver paste as necessary.
前記グリーンシートは、焼成後必要に応じて所望の形状に加工されて基板とされる。この場合、被焼成体は1枚または複数枚のグリーンシートを重ねたものである。前記焼成は典型的には500〜700℃に20〜60分間保持して行われる。より典型的な焼成温度は550〜600℃である。 The green sheet is processed into a desired shape after firing to form a substrate. In this case, the body to be fired is a laminate of one or more green sheets. The firing is typically performed by holding at 500 to 700 ° C. for 20 to 60 minutes. A more typical firing temperature is 550 to 600 ° C.
なお、基板表面に形成する銀を含む反射層は、反射率の観点から他の無機成分を含有しないことが好ましい。この反射層は主として、基板本体に搭載される発光素子から発せられる光を反射する。 In addition, it is preferable that the reflective layer containing silver formed on the substrate surface does not contain other inorganic components from the viewpoint of reflectance. The reflective layer mainly reflects light emitted from the light emitting element mounted on the substrate body.
次に、ガラス質絶縁層について説明する。
ガラス質絶縁層は低融点ガラス単体の層または低融点ガラスとセラミックスフィラーとを含む層であると好ましい。
Next, the vitreous insulating layer will be described.
The glassy insulating layer is preferably a single layer of low-melting glass or a layer containing low-melting glass and a ceramic filler.
ガラス質絶縁層の厚みは典型的には5〜30μmである。5μm未満であると、被覆性が不充分になるおそれがあるため5μm以上であることが好ましい。30μm超では発光素子の放熱性を阻害し発光効率が低下してしまうおそれがある。 The thickness of the glassy insulating layer is typically 5 to 30 μm. If it is less than 5 μm, the covering property may be insufficient, so that it is preferably 5 μm or more. If it exceeds 30 μm, the heat dissipation of the light emitting element may be hindered and the light emission efficiency may be reduced.
ガラス質絶縁層を形成する方法は5〜30μmの厚みの層を平坦に形成できる方法であれば特に限定されないが、典型的には、低融点ガラス単体または低融点ガラスとセラミックスフィラーとの混合物をペースト化してスクリーン印刷し、焼成して形成される。 The method for forming the glassy insulating layer is not particularly limited as long as a layer having a thickness of 5 to 30 μm can be formed flat. Typically, a low melting point glass alone or a mixture of a low melting point glass and a ceramic filler is used. It is formed by pasting, screen printing, and baking.
本発明においてガラス質絶縁層中、体積%表示で低融点ガラスを50%以上含有することが好ましい。含有量が50%未満であると、焼成時の焼結が不充分となり、被覆性を損ねるおそれがある。焼結性を向上するために70%以上含有することがより好ましい。また、セラミックスフィラーを50%以下含有する。セラミックスフィラーの含有量は典型的には5%以上である。セラミックスフィラーを含有することにより、ガラス質絶縁層の強度を高くできる場合がある。また、ガラス質絶縁層の放熱性を高くできる場合がある。 In the present invention, the glassy insulating layer preferably contains 50% or more of low melting point glass in volume%. If the content is less than 50%, the sintering at the time of firing becomes insufficient, and the covering property may be impaired. In order to improve sinterability, it is more preferable to contain 70% or more. Further, it contains 50% or less of ceramic filler. The ceramic filler content is typically 5% or more. By containing a ceramic filler, the strength of the vitreous insulating layer may be increased. Moreover, the heat dissipation of a glassy insulating layer may be able to be made high.
前記セラミックスフィラーはアルミナ、シリカであることが例示されるが、反射率を損ねるような吸収をもたらさないもの(白色や透明)であれば、限定されるものではない。 The ceramic filler is exemplified by alumina and silica, but is not limited as long as it does not cause absorption that impairs the reflectance (white or transparent).
ガラス質絶縁層のガラスはTgが380〜620℃であることが好ましい。Tgはたとえば昇温速度10℃/分の条件で示差熱分析測定を行ったときに第1屈曲部のショルダーの温度として観測できる。 The glass of the vitreous insulating layer preferably has a Tg of 380 to 620 ° C. For example, Tg can be observed as the temperature of the shoulder of the first bent portion when differential thermal analysis measurement is performed at a temperature rising rate of 10 ° C./min.
ガラス質絶縁層のガラスは、Tsが500〜700℃であることが好ましい。ここでTsは昇温速度10℃/分の条件で1000℃まで示差熱分析測定を行ったときに第4屈曲部の温度として観測できる。 The glass of the vitreous insulating layer preferably has a Ts of 500 to 700 ° C. Here, Ts can be observed as the temperature of the fourth bent portion when differential thermal analysis measurement is performed up to 1000 ° C. under a temperature rising rate of 10 ° C./min.
ガラス質絶縁層のガラスは、焼成工程において結晶化しないものが好ましい。Tcが700℃以上のもの、またはTcが観測できないものが好ましい。Tcが700℃未満のものであると、焼成工程においてガラス質絶縁層が結晶化しやすくなり、それによって基板に反りが生じるおそれがある。ここでTcは昇温速度10℃/分の条件で1000℃まで示差熱分析測定を行ったときにTgより高温で観測される発熱ピークの温度をいうものとする。 The glass of the vitreous insulating layer is preferably one that does not crystallize in the firing step. Those having Tc of 700 ° C. or higher or those in which Tc cannot be observed are preferred. If the Tc is less than 700 ° C., the vitreous insulating layer is easily crystallized in the firing step, which may cause the substrate to warp. Here, Tc refers to the temperature of an exothermic peak observed at a temperature higher than Tg when differential thermal analysis measurement is performed up to 1000 ° C. under a temperature rising rate of 10 ° C./min.
次に本発明で使用できるガラスの組成について説明する。 Next, the composition of the glass that can be used in the present invention will be described.
酸化物基準のモル%表示で、B2O3を30〜60%、SiO2を0〜50%、ZnOを2〜40%、Li2O+Na2O+K2Oを5〜15%含有する低融点ガラスである。 Low melting point containing 30 to 60% B 2 O 3 , 0 to 50% SiO 2 , 2 to 40% ZnO, and 5 to 15% Li 2 O + Na 2 O + K 2 O in terms of mol% based on oxide. It is glass.
B2O3はガラスの網目形成酸化物であり、Tgを下げる必須成分であり、30%以上含有する。30%未満ではガラスが不安定になる。またはTgまたはTsが高くなりすぎるおそれがある。60%超であるとガラスの耐水性や化学的耐久性が低下し、銀導体の保護膜としての機能が不十分になるおそれがある。好ましくは50%以下である。 B 2 O 3 is a glass network-forming oxide, an essential component that lowers Tg, and is contained in an amount of 30% or more. If it is less than 30%, the glass becomes unstable. Or Tg or Ts may be too high. If it exceeds 60%, the water resistance and chemical durability of the glass are lowered, and the function as a protective film for the silver conductor may be insufficient. Preferably it is 50% or less.
SiO2は必須成分ではないがガラスの安定性を高くする成分であり5%以上含有することが好ましい。5%未満であると耐水性が不足したり、ガラスが結晶化しやすくなったりする等のおそれがある。銀発色を抑制するためには、10%以上含有することが好ましく、20%以上含有することがより好ましい。SiO2の含有量が50%超であるとTsが高くなりすぎるおそれがある。 Although SiO 2 is not an essential component, it is a component that increases the stability of the glass and is preferably contained in an amount of 5% or more. If it is less than 5%, the water resistance may be insufficient, or the glass may be easily crystallized. In order to suppress silver coloring, the content is preferably 10% or more, and more preferably 20% or more. If the SiO 2 content exceeds 50%, Ts may be too high.
ZnOは必須成分でガラスの流動性を高め、TgおよびTsを下げる効果があり、2%以上含有することが好ましい。ZnOの含有量が40%超であると銀導体と同時に焼成したとき発色しやすくなる。好ましくは20%以下である。 ZnO is an essential component and has the effect of increasing the fluidity of the glass and lowering Tg and Ts, and is preferably contained in an amount of 2% or more. When the ZnO content is more than 40%, color tends to develop when fired simultaneously with the silver conductor. Preferably it is 20% or less.
Li2O、Na2OおよびK2Oの各成分および混合物は、Tsを下げる効果があり、合計量で5%以上含有することが好ましい。一方、混合物の含有量が15%超であると、ガラス中に銀イオンが拡散しコロイドを形成するおそれが生じる。好ましくは、10%以下である。 Each component and mixture of Li 2 O, Na 2 O and K 2 O has an effect of lowering Ts, and is preferably contained in a total amount of 5% or more. On the other hand, if the content of the mixture exceeds 15%, silver ions may diffuse into the glass and colloids may be formed. Preferably, it is 10% or less.
Al2O3は必須成分ではないがガラスの安定性を高くする等のために少量含有できる。しかし、Al2O3が過剰な場合には、銀導体と同時に焼成したとき発色しやすくなる。Al2O3の含有量は2%以下であることが好ましい。 Al 2 O 3 is not an essential component but can be contained in a small amount to increase the stability of the glass. However, when Al 2 O 3 is excessive, color tends to develop when fired simultaneously with the silver conductor. The content of Al 2 O 3 is preferably 2% or less.
上記成分を主成分とするガラスにおいて、結晶化温度が900℃以上のものであれば、一般的な800〜900℃で焼成するLTCCにも適用することができる。 If the glass containing the above components as a main component has a crystallization temperature of 900 ° C. or higher, it can also be applied to a general LTCC that is fired at 800 to 900 ° C.
本発明で使用できるガラスは本質的に上記成分を主成分として含有するが、本発明の目的を損なわない範囲でその他の成分を含有してもよい。そのような成分を含有する場合、それら成分の含有量の合計は10%以下であることが好ましい。ただし、鉛酸化物は含有しない。 The glass that can be used in the present invention essentially contains the above-mentioned components as main components, but may contain other components as long as the object of the present invention is not impaired. When such components are contained, the total content of these components is preferably 10% or less. However, lead oxide is not contained.
本発明のガラス質絶縁層を形成した発光素子搭載用基板の反射率としては、80%以上が好ましく、85%以上がより好ましく、88%以上がさらに好ましい。 The reflectance of the light emitting element mounting substrate on which the vitreous insulating layer of the present invention is formed is preferably 80% or more, more preferably 85% or more, and further preferably 88% or more.
表1に示す例1〜4についてモル%で示す組成となるようにガラス原料を調合、混合し、この混合された原料を白金ルツボに入れて1200〜1500℃で60分間溶融後、溶融ガラスを流し出し冷却した。得られたガラスをアルミナ製ボールミルで水を助剤として10〜60時間粉砕、分級してガラス粉末を得た。例1〜3が実施例のガラスであり、例4が比較例のガラスである。例3は例1のガラス粉末にアルミナフィラー(住友化学製AA−2)を加えた実施例である。ガラスとアルミナの体積比を表中のガラス欄およびアルミナ欄に示している。 A glass raw material was prepared and mixed so as to have a composition shown in mol% for Examples 1 to 4 shown in Table 1, and the mixed raw material was put in a platinum crucible and melted at 1200 to 1500 ° C. for 60 minutes, and then the molten glass was mixed. Sink out and cool. The obtained glass was pulverized and classified for 10 to 60 hours with water as an auxiliary in an alumina ball mill to obtain glass powder. Examples 1-3 are the glass of an Example, Example 4 is the glass of a comparative example. Example 3 is an example in which an alumina filler (AA-2 manufactured by Sumitomo Chemical) was added to the glass powder of Example 1. The volume ratio of glass to alumina is shown in the glass column and alumina column in the table.
各ガラス粉末の平均粒径D50(単位:μm)を、レーザー回折/散乱式粒度分布測定装置である島津製作所社製SALD2100を用いて測定した。いずれもD50=1〜3μmの範囲内であった。軟化点Ts(単位:℃)をブルカーAXS社製熱分析装置TG−DTA2000を用いて昇温速度10℃/分の条件で1000℃まで、それぞれ測定した。また、例1〜4のいずれについてもTs測定時に結晶ピークは認められなかった。 The average particle diameter D 50 (unit: μm) of each glass powder was measured using a SALD2100 manufactured by Shimadzu Corporation, which is a laser diffraction / scattering particle size distribution measuring apparatus. Were each in the range of D 50 = 1 to 3 [mu] m. The softening point Ts (unit: ° C.) was measured up to 1000 ° C. at a temperature rising rate of 10 ° C./min using a thermal analyzer TG-DTA2000 manufactured by Bruker AXS. In any of Examples 1 to 4, no crystal peak was observed during Ts measurement.
例1、2、4については各ガラス粉末のみ、例3ついてはガラス粉末にアルミナフィラーを加えた混合粉末を質量%表示で70%、樹脂を溶剤に溶融したビヒクル成分を30%としたものについて、磁器乳鉢中で1時間混練を行い、さらに三本ロールにて3回分散を行ってガラスペーストを作製した。 For Examples 1, 2 and 4, only for each glass powder, for Example 3, a mixed powder obtained by adding an alumina filler to a glass powder is 70% by mass%, and a vehicle component obtained by melting a resin in a solvent is 30%. The mixture was kneaded for 1 hour in a porcelain mortar, and further dispersed three times with three rolls to prepare a glass paste.
銀ペーストは、平均粒子径が2.5μm程度で粒度分布が少なく球状の形状を有する導電性粉末(大研化学工業社製)およびエチルセルロースを質量比85:15の割合で調合し、固形分の質量%表示濃度を85%として溶剤(αテレピネオール)に分散した後、磁器乳鉢中で1時間混練を行い、さらに三本ロールにて3回分散を行って作製した。 The silver paste is prepared by blending conductive powder (manufactured by Daiken Chemical Industry Co., Ltd.) having an average particle size of about 2.5 μm, a small particle size distribution and a spherical shape, and ethyl cellulose at a mass ratio of 85:15. After being dispersed in a solvent (α terpineol) at a mass% display concentration of 85%, the mixture was kneaded in a porcelain mortar for 1 hour and further dispersed three times with a three roll.
アルミナ基板に銀ペーストを印刷し、乾燥後、ガラスペーストを銀ペースト上に印刷し、これを600、700℃に30分保持して焼成を行った。得られた基板の表面の反射率を測定した。反射率の測定にはオーシャンオプティクス社の分光器USB2000と小型積分球ISP−RFを用いて測定し、可視光域の400〜800nmの平均値を反射率(単位:%)として算出した。結果を表1に示す。 A silver paste was printed on an alumina substrate, and after drying, a glass paste was printed on the silver paste, and this was held at 600 and 700 ° C. for 30 minutes for firing. The reflectance of the surface of the obtained substrate was measured. The reflectance was measured using a spectroscope USB2000 and a small integrating sphere ISP-RF manufactured by Ocean Optics, and the average value of 400 to 800 nm in the visible light region was calculated as the reflectance (unit:%). The results are shown in Table 1.
反射率は、実パッケージに発光素子を搭載し、光量測定した結果と、本手法による測定の反射率との相関から考慮して、反射率80%未満では効率的に発光素子からの光を反射できないので絶縁層としては好ましくないと考えた。表1の結果から分かるように、焼成温度を高くすることにより、反射率は向上する傾向がみられる。 Reflectance is based on the correlation between the result of measuring the amount of light and mounting the light emitting element on the actual package and the reflectance measured by this method. If the reflectance is less than 80%, the light from the light emitting element is reflected efficiently. Since it was not possible, it was considered unpreferable as an insulating layer. As can be seen from the results in Table 1, there is a tendency that the reflectance is improved by increasing the firing temperature.
携帯電話や大型液晶TV等のバックライトに利用できる。 It can be used for backlights of mobile phones and large LCD TVs.
1:LTCC基板
2:導体層(反射層)
3:オーバーコート層
4:ビア導体
5:封止樹脂(蛍光体層)
6:発光素子
7:ボンディングワイヤ
8:金メッキ層
1: LTCC substrate 2: Conductor layer (reflection layer)
3: Overcoat layer 4: Via conductor 5: Sealing resin (phosphor layer)
6: Light emitting element 7: Bonding wire 8: Gold plating layer
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010038848A JP2011176106A (en) | 2010-02-24 | 2010-02-24 | Substrate for mounting light-emitting element, and light-emitting device using the substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010038848A JP2011176106A (en) | 2010-02-24 | 2010-02-24 | Substrate for mounting light-emitting element, and light-emitting device using the substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011176106A true JP2011176106A (en) | 2011-09-08 |
Family
ID=44688717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010038848A Withdrawn JP2011176106A (en) | 2010-02-24 | 2010-02-24 | Substrate for mounting light-emitting element, and light-emitting device using the substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011176106A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104505448A (en) * | 2014-12-16 | 2015-04-08 | 何忠亮 | Manufacture method of reflective ceramic-based PCB (Printed Circuit Board) |
CN106549091A (en) * | 2016-07-31 | 2017-03-29 | 深圳市微纳科学技术有限公司 | Reflection layer, the ceramic printed-circuit board encapsulated for LED and method are set inside |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000313635A (en) * | 1999-04-26 | 2000-11-14 | Nippon Electric Glass Co Ltd | Material for plasma display panel |
JP2010034487A (en) * | 2008-06-24 | 2010-02-12 | Sharp Corp | Light-emitting apparatus, surface light source, and method for manufacturing package for light-emitting apparatus |
-
2010
- 2010-02-24 JP JP2010038848A patent/JP2011176106A/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000313635A (en) * | 1999-04-26 | 2000-11-14 | Nippon Electric Glass Co Ltd | Material for plasma display panel |
JP2010034487A (en) * | 2008-06-24 | 2010-02-12 | Sharp Corp | Light-emitting apparatus, surface light source, and method for manufacturing package for light-emitting apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104505448A (en) * | 2014-12-16 | 2015-04-08 | 何忠亮 | Manufacture method of reflective ceramic-based PCB (Printed Circuit Board) |
CN106549091A (en) * | 2016-07-31 | 2017-03-29 | 深圳市微纳科学技术有限公司 | Reflection layer, the ceramic printed-circuit board encapsulated for LED and method are set inside |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5071555B2 (en) | Light emitting device | |
JP5206770B2 (en) | Light emitting element mounting substrate and light emitting device | |
JP5429038B2 (en) | Light emitting element mounting substrate and light emitting device | |
JP2011228672A (en) | Light-emitting element mounting substrate and light-emitting device using the same | |
WO2010150830A1 (en) | Light-emitting device | |
US9054287B2 (en) | Substrate for mounting light-emitting element, production process thereof and light-emitting device | |
JP2007129191A (en) | Low-temperature co-fired ceramic (ltcc) tape composition, light emitting diode (led) module, illuminating devices and forming method thereof | |
US8618724B2 (en) | Reflective frame for light-emitting element, substrate for light-emitting element and light-emitting device | |
JP5720454B2 (en) | Light-emitting element mounting substrate, method for manufacturing the same, and light-emitting device | |
JP5381800B2 (en) | Light-emitting element mounting substrate and light-emitting device using the substrate | |
JP2011176106A (en) | Substrate for mounting light-emitting element, and light-emitting device using the substrate | |
JP5381799B2 (en) | Light-emitting element mounting substrate and light-emitting device using the substrate | |
JP2011176107A (en) | Substrate for mounting light-emitting element, and light-emitting device using the substrate | |
JP2011258866A (en) | Substrate for mounting light emitting element and light emitting device | |
JP2011176083A (en) | Light emitting device | |
JP2011192980A (en) | Substrate for mounting light-emitting element and light-emitting device | |
JP2009164309A (en) | Light-emitting element mounting board, its production process, and light-emitting device using the same | |
JP2011192981A (en) | Substrate mounting light-emitting element and light-emitting device using the substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130521 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20130530 |