JP2011174448A - Skyscraper building including power generation system - Google Patents

Skyscraper building including power generation system Download PDF

Info

Publication number
JP2011174448A
JP2011174448A JP2010040760A JP2010040760A JP2011174448A JP 2011174448 A JP2011174448 A JP 2011174448A JP 2010040760 A JP2010040760 A JP 2010040760A JP 2010040760 A JP2010040760 A JP 2010040760A JP 2011174448 A JP2011174448 A JP 2011174448A
Authority
JP
Japan
Prior art keywords
wind
intermediate floor
power generation
generation system
rise building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010040760A
Other languages
Japanese (ja)
Inventor
Kazuko Aihara
和子 相原
Masaru Yoshikawa
優 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2010040760A priority Critical patent/JP2011174448A/en
Publication of JP2011174448A publication Critical patent/JP2011174448A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a skyscraper building including a power generation system capable of generating electric power by efficiently using wind energy without inhibiting a building plan and landscape. <P>SOLUTION: An intermediate floor 2 opened in four directions is provided in an upper position from an intermediate position of the height of the skyscraper building 1, and wind power generating devices 5, 8 generating electric power by energy of wind made to flow in to the intermediate floor 2 are installed on the intermediate floor 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超高層建物の高層部における強風を利用して、風の自然エネルギーを効果的に発電に利用するための発電システムを備えた超高層建物に関するものである。   The present invention relates to a high-rise building equipped with a power generation system for effectively using wind natural energy for power generation by using strong winds in a high-rise portion of the high-rise building.

近年、環境保全の観点から二酸化炭素の削減を図るために、太陽光、風力、地熱あるいは潮力といった各種の自然エネルギーを利用して発電を行う施策が積極的に推進されている。   In recent years, in order to reduce carbon dioxide from the viewpoint of environmental conservation, measures for generating power using various natural energies such as sunlight, wind power, geothermal power, and tidal power have been actively promoted.

このような自然エネルギー利用の一種である風力発電は、一般的に、安定的な風向や風力を得る目的から、もっぱら周囲に建物等の人工の大型構造物が無い丘陵部、尾根、沿岸部等を立地場とし、ここに大型の風車を設置する方法が採られている。   Wind power generation, which is a kind of natural energy use, is generally used for the purpose of obtaining a stable wind direction and wind power, such as hills, ridges, coastal areas, etc., where there are no artificial large structures such as buildings around. Is used as a location and a large windmill is installed here.

一方、上記自然エネルギーの積極的な利用は、将来的には、建築分野においても強く要請される可能性が高い。
このため、例えば、都市型風力発電の一つとして、高層あるいは超高層の建物の近傍に風力発電装置を設置して、上記建物に起因するビル風を利用しようとする発案もなされているが、敷地計画や安全性、景観配慮の観点から実現が難しい。
On the other hand, there is a high possibility that active use of the natural energy will be strongly demanded in the building field in the future.
For this reason, for example, as one of the urban wind power generation, a proposal has been made to install a wind power generation device in the vicinity of a high-rise or super-high-rise building and use the building wind caused by the building, Realization is difficult from the viewpoint of site planning, safety, and landscape.

また、都市部は、もともと風力が弱く、しかも風向や風速の乱れが大きいために、風力発電に関して最適環境とは言えない。
ところが、超高層建物では、周囲に高層あるいは超高層建物が少ない場合には、比較的上記乱れが少ない上空の強風を捉えることが可能である。
In urban areas, wind power is weak and the wind direction and wind speed are turbulent.
However, in a high-rise building, when there are few high-rise buildings or super-high-rise buildings in the surrounding area, it is possible to capture strong winds in the sky with relatively little turbulence.

そこで、従来の風力発電システムを備えた建物として、当該建物の屋根上に、風車式等の小型の発電装置を設置するものが提案されている。
ちなみに、建物の屋上面上は、図14および図15に示すように、複雑な気流が発生し、安定した風況を得難いために、上記風車等を外縁部から中心方向に3m以上離し、かつ屋根面上から5m以上高い位置に設置することが望ましいとされている。
Therefore, as a building equipped with a conventional wind power generation system, one in which a small power generator such as a windmill is installed on the roof of the building has been proposed.
By the way, as shown in FIGS. 14 and 15, a complex air current is generated on the roof top of the building, and it is difficult to obtain a stable wind condition. It is considered desirable to be installed at a position higher than 5m from the roof surface.

しかしながら、一般に上記屋根面上には、棟屋、清掃用のゴンドラ、設備機器類、ヘリポート等が存在しているために、これらの影響を受けて屋根面上付近の気流が更に複雑になるとともに、配置上の制約が大きいことから、現実的には発電装置の設置場所に適しているとは言い難い。   However, in general, there are a building, a cleaning gondola, equipment, helipads, etc. on the roof surface. As a result, the airflow around the roof surface becomes more complicated due to these effects. Since the restrictions on the arrangement are large, it is practically not suitable for the installation location of the power generation device.

そこで、下記特許文献1、2においては、いずれも建物の外壁面の上端部であって、屋根面との境目部分(屋上出隅部や外壁面出隅部)に風車を配置し、当該外壁面を上昇する風によって上記風車を回転させるようにした風力発電装置あるいは給電装置が提案されている。   Therefore, in Patent Documents 1 and 2 below, wind turbines are arranged at the upper end portion of the outer wall surface of the building and at the boundary with the roof surface (the roof corner and the outer wall corner). There has been proposed a wind power generator or a power feeding device in which the windmill is rotated by wind rising on the wall surface.

特開2001−193631号公報JP 2001-193631 A 特開平11−336340号公報Japanese Patent Laid-Open No. 11-336340

しなしながら、上記従来の風力発電装置あるいは給電装置にあっては、図15に見られるように、風の剥離が生じて風向や風力が変動し易い外壁面と屋根面との境目部分に風車を配置しているために、安定的かつ効率的な発電を行うことが難しいという問題点がある。
しかも、構造物から突出する上記風車が、景観上好ましくなく、またその保守や点検等のメンテナンスが困難であるという問題点もある。
However, in the conventional wind power generation device or power feeding device, as shown in FIG. 15, the windmill is formed at the boundary between the outer wall surface and the roof surface where the wind direction and wind force tend to fluctuate due to wind separation. Therefore, there is a problem that it is difficult to perform stable and efficient power generation.
In addition, the windmill protruding from the structure is not preferable in view of the scenery, and there is a problem that maintenance such as maintenance and inspection is difficult.

本発明は、上記事情に鑑みてなされたものであり、建物計画や景観の妨げとなることが無く、かつ効率的に風のエネルギーを活用して発電を行うことができる発電システムを備えた超高層建物を提供することを課題とするものである。   The present invention has been made in view of the above circumstances, and does not interfere with building plans and landscapes, and is equipped with a power generation system that can efficiently generate power using wind energy. It is an object to provide a high-rise building.

上記課題を解決するため、請求項1に記載の発明に係る発電システムを備えた超高層建物は、超高層建物の高さの中間位置よりも上方位置に、方位四方向に開口した中間階を設けるとともに、この中間階に、当該中間階内に流入する風のエネルギーによって発電する風力発電装置を設置したことを特徴とするものである。   In order to solve the above-mentioned problem, a high-rise building equipped with the power generation system according to the invention described in claim 1 has an intermediate floor opened in four directions at a position higher than an intermediate position of the height of the high-rise building. In addition to the provision of the wind power generation apparatus, a wind power generation apparatus that generates electric power using wind energy flowing into the intermediate floor is installed on the intermediate floor.

また、請求項2に記載の発明は、請求項1に記載の発明において、上記中間階を、地上から上記超高層建物の高さの70〜80%の位置に設けたことを特徴とするものである。   The invention according to claim 2 is the invention according to claim 1, wherein the intermediate floor is provided at a position of 70 to 80% of the height of the super high-rise building from the ground. It is.

さらに、請求項3に記載の発明は、請求項1または2に記載の発明において、上記中間階を、近隣環境も含めた気流シミュレーションまたは実験によって得られた上記超高層建物の上記外壁面において最大正圧が作用する箇所に設けたことを特徴とするものである。   Furthermore, the invention according to claim 3 is the invention according to claim 1 or 2, wherein the intermediate floor is the largest on the outer wall surface of the high-rise building obtained by airflow simulation or experiment including the neighboring environment. It is provided at a location where positive pressure acts.

また、請求項4に記載の発明は、請求項1〜3のいずれかに記載の発明において、上記中間階の外周隅角部に、円柱状コア部を配置したことを特徴とするものであり、請求項5に記載の発明は、請求項1〜4のいずれかに記載の発明において、上記中間階に、複数本の柱を間隔をおいて立設し、これら柱の外周に風力発電装置の発電体となる風車を回転自在に設けたことを特徴とするものである。   The invention according to claim 4 is characterized in that, in the invention according to any one of claims 1 to 3, a cylindrical core portion is arranged at an outer peripheral corner of the intermediate floor. The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein a plurality of pillars are erected at intervals on the intermediate floor, and a wind turbine generator is provided on the outer periphery of the pillars. A wind turbine serving as a power generator is provided rotatably.

なお、建築基準法において、超高層建物の高さに係る直接的な定義はないものの、同法第20条からの類推により、請求項1〜5のいずれかに記載の発明において超高層建物とは、高さが60mを超える建物をいう。   In addition, although there is no direct definition related to the height of the skyscraper in the Building Standard Law, according to the analogy from Article 20 of the law, in the invention according to any one of claims 1 to 5, Means a building with a height of more than 60 m.

一般に、高さが高い位置程、強い風力を得ることができる。そして、超高層建物における風圧力分布は、風上に面した外壁面の停留点において最も高い正圧となり、当該停留点は、超高層建物において、通常その高さの1/2よりも高い位置になる。   Generally, a stronger wind force can be obtained at a higher position. And the wind pressure distribution in the skyscraper has the highest positive pressure at the stopping point of the outer wall facing the windward, and the stopping point is usually higher than 1/2 of the height in the skyscraper building. become.

したがって、請求項1〜5のいずれかに記載の発明によれば、このような強い風力の風を中間階に流入させて、当該中間階に設けた風力発電装置によって、発電することができる。しかも、上記中間階は、方位四方向に開口しているために、季節等によって中間階に流入する風向きが変化した場合においても、常時発電を行うことが可能である。   Therefore, according to the invention described in any one of claims 1 to 5, such a strong wind of wind flows into the intermediate floor, and power can be generated by the wind power generator provided on the intermediate floor. Moreover, since the intermediate floor is open in the four directions, it is possible to always generate power even when the direction of the wind flowing into the intermediate floor changes due to the season or the like.

また、上記風力発電装置を中間階に設けているために、景観上、支障となることがなく、さらに当該風力発電装置が建物内に設けられているために、そのメンテナンス等も容易になる。
このように、本発明によれば、建物計画や景観の妨げとなることが無く、年間を通じて効率的に風のエネルギーを活用して発電を行うことができる。
In addition, since the wind power generator is provided on the intermediate floor, there is no hindrance on the landscape, and further, the maintenance and the like are facilitated because the wind power generator is provided in the building.
Thus, according to the present invention, power generation can be performed efficiently using wind energy throughout the year without obstructing the building plan or landscape.

ここで、本発明者等による100mを超える高さの超高層建物における風圧力分布の解析結果によれば、概ね地上から上記超高層建物の高さの70〜80%の位置であって、かつ風向に面した外壁面の幅方向の中央部に、最も正圧が高くなる停留点が位置することが判明している。   Here, according to the analysis result of the wind pressure distribution in the skyscraper with a height exceeding 100 m by the present inventors, the position is approximately 70 to 80% of the height of the skyscraper from the ground, and It has been found that a stopping point where the positive pressure is highest is located at the center in the width direction of the outer wall surface facing the wind direction.

そこで、請求項2に記載の発明のように、上記中間階を、地上から上記超高層建物の高さの70〜80%の位置に設けるとともに、当該中間階の外周隅角部に、柱、壁、EVシャフト、階段室、PS、DS等からなるコア部を設置すれば、概ね最良の位置から中間階に上記風を流入させることができて好適である。   Therefore, as in the invention described in claim 2, the intermediate floor is provided at a position of 70 to 80% of the height of the super high-rise building from the ground, and a pillar, If the core part which consists of a wall, an EV shaft, a staircase, PS, DS etc. is installed, the said wind can be made to flow in into an intermediate floor from the best position, and is suitable.

これに対して、上記超高層建物の周囲に、同様の超高層建物が林立している場合や、当該超高層建物の高さが、比較的低いような場合には、上述した停留点が必ずしも高さの70〜80%に位置しない場合も想定される。   On the other hand, when a similar high-rise building stands around the skyscraper, or when the height of the skyscraper is relatively low, the stop point described above is not always necessary. A case where it is not located at 70 to 80% of the height is also assumed.

このような場合には、請求項3に記載の発明のように、近隣の建物や地形等の環境も含めた気流シミュレーションの解析や、模型を用いた実験によって上記超高層建物の上記外壁面における停留点(最大正圧)を求め、当該停留点となる位置に上記中間階を設けるようにすれば、最も効率的な発電を行うことが可能になる。   In such a case, as in the invention according to claim 3, the outer wall surface of the above-mentioned high-rise building is analyzed by an analysis of an air flow including an environment such as a neighboring building or topography, or an experiment using a model. If the stop point (maximum positive pressure) is obtained and the intermediate floor is provided at a position that becomes the stop point, the most efficient power generation can be performed.

さらに、上記中間階の外周隅角部にコア部を配置する場合には、後述する本発明者等の解析結果に見られるように、上記コア部を、請求項4に記載の発明のように円柱状とすることにより、風向きが変化した場合においても、上記コア部を角柱状に構成した場合と比較して、より一層効率的な発電を行うことができる。   Furthermore, when arranging a core part in the outer peripheral corner part of the said intermediate floor, as seen in the analysis result of the inventors etc. mentioned later, the said core part is like the invention of Claim 4. By adopting a columnar shape, even when the wind direction changes, it is possible to generate power more efficiently than when the core portion is configured in a prismatic shape.

さらに、中間階においては、そのスパンによって中央部分にも所定の間隔で柱を設ける必要がある。このような場合に、請求項5に記載の発明によれば、上記柱の外周に風力発電装置の発電体となる風車を回転自在に設けているために、これらの柱が、風の流れの妨げになることが無く、かつ風車の支持体として活用することができるために好適である。   Further, in the intermediate floor, it is necessary to provide columns at a predetermined interval in the central portion due to the span. In such a case, according to the invention described in claim 5, since the wind turbine as the power generator of the wind power generator is rotatably provided on the outer periphery of the pillar, It is suitable because it can be used as a support for a windmill without being obstructed.

本発明に係る発電システムを備えた超高層建物の第1の実施形態の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of 1st Embodiment of the high-rise building provided with the electric power generation system which concerns on this invention. 図1の中間階部分を横断面視して示す拡大図である。It is an enlarged view which shows the intermediate floor part of FIG. 図2の発電装置を拡大して示す斜視図である。It is a perspective view which expands and shows the electric power generating apparatus of FIG. 図3の発電装置を取り付ける際の状態を示す平面図である。It is a top view which shows the state at the time of attaching the electric power generating apparatus of FIG. 本発明の第2の実施形態の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the 2nd Embodiment of this invention. 図5の中間階部分を横断面視して示す拡大図である。It is an enlarged view which shows the intermediate floor part of FIG. 第1の実施形態において中間階に外壁面と直交する方向(風向0°)から風が流入した場合の風速ベクトル図である。It is a wind speed vector diagram in case a wind flows in into a middle floor from the direction (wind direction 0 degree) orthogonal to an outer wall surface in 1st Embodiment. 第1の実施形態において中間階に風向22.5°の風が流入した場合の風速ベクトル図である。It is a wind speed vector diagram in case a wind with a wind direction of 22.5 degrees flows into the intermediate floor in the first embodiment. 第1の実施形態において中間階に風向45°の風が流入した場合の風速ベクトル図である。It is a wind speed vector diagram when the wind of the wind direction of 45 degrees flows into the intermediate floor in the first embodiment. 第2の実施形態において中間階に外壁面と直交する方向(風向0°)から風が流入した場合の風速ベクトル図である。It is a wind speed vector figure in case a wind flows in into a middle floor from the direction (wind direction 0 degree) orthogonal to an outer wall surface in 2nd Embodiment. 第2の実施形態において中間層に風向22.5°の風が流入した場合の風速ベクトル図である。It is a wind speed vector diagram when the wind of the wind direction 22.5 degrees flows into the intermediate layer in the second embodiment. 第2の実施形態において中間層に風向45°の風が流入した場合の風速ベクトル図である。It is a wind speed vector figure when the wind of the wind direction of 45 degrees flows into the intermediate | middle layer in 2nd Embodiment. 図10の縦断面視した風速ベクトル図である。It is the wind speed vector figure which looked at the longitudinal cross-section of FIG. 一般的な超高層建物の屋根面上における風の流速分布を示す風速ベクトル図である。It is a wind speed vector diagram which shows the flow velocity distribution of the wind on the roof surface of a general skyscraper. 図14の縦断面視した風速ベクトル図である。FIG. 15 is a wind speed vector diagram viewed from the longitudinal section of FIG. 14.

(第1の実施形態)
図1〜図4は、本発明の第1の実施形態を示すもので、図中符号1が超高層建物であり、本実施形態においては高さが100m以上であるものを想定している。
そして、この超高層建物1は、地上から超高層建物1の高さの70〜80%の位置に、発電システムを設置するための中間階2が設けられている。
(First embodiment)
1 to 4 show a first embodiment of the present invention, in which reference numeral 1 is a super high-rise building, and in the present embodiment, it is assumed that the height is 100 m or more.
And this super high-rise building 1 is provided with the intermediate floor 2 for installing a power generation system in the position of 70 to 80% of the height of the super high-rise building 1 from the ground.

この中間階2は、四隅角部に外法寸法が大きなコア部3が配設されるとともに、これらコア部3間が開放されることにより、方位四方向に開口した構造とされている。また、この中間階2の内部には、所定のスパンで円柱状の柱4が配置されている。そして、各々の柱4に、風力発電装置の一部を構成する風車5が設けられている。ここで、上記所定のスパンは、中間階2において上階の荷重を支持すべき位置であって、かつ隣接する風車5への風の影響の干渉が少ない間隔によって決定されている。   The intermediate floor 2 has a structure in which the core portion 3 having a large outer dimension is disposed at the four corners and the space between the core portions 3 is opened to open in four directions. In addition, a columnar column 4 is disposed in the middle floor 2 with a predetermined span. Each column 4 is provided with a windmill 5 that constitutes a part of the wind turbine generator. Here, the predetermined span is a position where the load on the upper floor is to be supported in the intermediate floor 2 and is determined by an interval with less interference of the influence of the wind on the adjacent wind turbine 5.

この風車5は、図3および図4に示すように、柱4の外周に回転自在に設けられた円筒状の本体6と、この本体6から径方向の突出する4つの翼7から構成されたもので、翼7は本体6の円周方向に等間隔をおいて設けられている。ここで、本体6は、図4に示すように、2分割体6aの一側部同士が蝶番によって回動自在に連結されたもので、互いに開いた状態で柱4の外周を覆って他側部同士が連結されることにより、柱4廻りに回転自在に取り付けられている。   As shown in FIGS. 3 and 4, the wind turbine 5 is composed of a cylindrical main body 6 that is rotatably provided on the outer periphery of the pillar 4, and four blades 7 that project radially from the main body 6. The wings 7 are provided at equal intervals in the circumferential direction of the main body 6. Here, as shown in FIG. 4, the main body 6 is configured such that one side portions of the two-divided body 6 a are rotatably connected to each other by a hinge. The parts are connected to each other so as to be rotatable around the pillar 4.

また、各柱4の下部には、風車5の回転によって発電するコイル等を内蔵した発電ユニット8が取り付けられている。
そして、上記風車5、発電ユニット8によって風力発電装置が構成されるとともに、当該風力発電装置およびこの風力発電装置で発電された電力を給電するための図示されない給電設備等により、この超高層建物1における発電システムが構成されている。
Further, a power generation unit 8 having a built-in coil or the like for generating power by the rotation of the windmill 5 is attached to the lower part of each column 4.
The wind turbine 5 and the power generation unit 8 constitute a wind power generator, and the high-rise building 1 is provided by the wind power generator and a power supply facility (not shown) for supplying power generated by the wind power generator. The power generation system is configured.

(第2の実施形態)
図5および図6は、本発明に係る発電システムを備えた超高層建物の第2の実施形態を示すもので、図1〜図4に示したものと、同一構成部分については、同一符号を付してその説明を簡略化する。
この超高層建物1においても、第1の実施形態に示したものと同じ高さ位置に、同様の風力発電装置を備えた中間階2が設けられている。そして、この実施形態においては、中間階2の四隅角部に、大径の円柱状コア部10が配設されている。また、この中間階2の開口部における上下面も、滑らかな凸曲面に形成されている。
(Second Embodiment)
5 and 6 show a second embodiment of a skyscraper equipped with a power generation system according to the present invention. The same components as those shown in FIGS. 1 to 4 are denoted by the same reference numerals. The explanation will be simplified.
In this super high-rise building 1 as well, an intermediate floor 2 having a similar wind power generator is provided at the same height as that shown in the first embodiment. And in this embodiment, the large-diameter columnar core part 10 is arrange | positioned in the four corner part of the intermediate floor 2. As shown in FIG. In addition, the upper and lower surfaces of the opening of the intermediate floor 2 are also formed as smooth convex curved surfaces.

以上の構成からなる発電システムを備えた超高層建物においては、超高層建物1の風圧が最も高くなる停留点またはその近傍に、方位四方向に開口する中間階2を設け、当該中間階2内に、風車5を備えた風力発電装置を配置しているために、上記中間階2に、風向が安定した強い風力の風を流入させて風車5を回転させることにより、効率的に発電させることができる。   In a high-rise building equipped with a power generation system having the above-described configuration, an intermediate floor 2 that opens in four directions is provided at or near the stopping point at which the wind pressure of the high-rise building 1 is highest. In addition, since the wind turbine generator provided with the wind turbine 5 is arranged, the wind turbine 5 is rotated by flowing a strong wind with a stable wind direction into the intermediate floor 2 to efficiently generate power. Can do.

しかも、中間階2は、方位四方向に開口しているために、季節等によって中間階に流入する風向きが変化した場合においても、年間を通じて効率的に風のエネルギーを活用して発電を行うことができる。   Moreover, since the middle floor 2 is open in four directions, even when the direction of the wind flowing into the middle floor changes due to the season, etc., power is efficiently generated throughout the year using wind energy. Can do.

加えて、上記風力発電装置を中間階2内に設けているために、景観上、支障となることがなく、かつ上記風力発電装置のメンテナンス等も容易になる。
また、上記風力発電装置の発電体となる風車5を、中間階2内に設けた柱4廻りに回転自在に設けているために、これらの柱4が、風の流れの妨げになることが無く、かつ風車5の支持体として活用することもできる。
In addition, since the wind power generator is provided in the intermediate floor 2, there is no hindrance in terms of scenery, and maintenance of the wind power generator is facilitated.
In addition, since the wind turbine 5 serving as the power generator of the wind power generator is rotatably provided around the pillar 4 provided in the intermediate floor 2, these pillars 4 may hinder the flow of wind. It can also be used as a support for the windmill 5.

なお、上記実施形態においては、一般的に風圧が最も高くなる停留点が位置する地上から超高層建物1の高さの70〜80%の位置に、風力発電装置を設置した中間階2を設けた場合についてのみ説明したが、これに限るものではなく、例えば、超高層建物1の周囲に、同様の超高層建物が林立している場合等においては、近隣の建物や地形等の環境も含めた気流シミュレーションの解析等によって停留点(最大正圧)を求め、当該停留点に中間階2を形成するようにすれば、最も効率的な発電を行うことが可能になる。   In the above embodiment, the intermediate floor 2 in which the wind power generator is installed is provided at a position 70 to 80% of the height of the super high-rise building 1 from the ground where the stop point where the wind pressure is highest is generally located. However, the present invention is not limited to this. For example, in the case where a similar high-rise building stands around the high-rise building 1, the environment including neighboring buildings and topography is also included. If the stop point (maximum positive pressure) is obtained by analyzing the airflow simulation and the intermediate floor 2 is formed at the stop point, the most efficient power generation can be performed.

また、中間階2に設ける風力発電装置も、上述した風車5を用いたものに限定されるものではなく、当該中間階2を流れる風のエネルギーを電力に変換し得るものであれば、各種形態の風力発電装置を設置することが可能である。   Further, the wind turbine generator provided on the intermediate floor 2 is not limited to the one using the windmill 5 described above, and various forms can be used as long as the energy of the wind flowing through the intermediate floor 2 can be converted into electric power. It is possible to install a wind power generator.

次いで、本発明者等は、中間階2の四隅角部に、第1の実施形態に示したような角柱状のコア部3を配置した場合と、第2の実施形態に示したような円柱状コア部10を配置した場合とにおける同様の風力発電装置による発電量の相違を解析によって検証した。   Next, the inventors have arranged the prismatic core portion 3 as shown in the first embodiment at the four corners of the intermediate floor 2 and the circle as shown in the second embodiment. The difference in the amount of power generated by the same wind power generator when the columnar core portion 10 is arranged was verified by analysis.

なお、解析に用いたモデルは、幅40m、奥行き40m、高さ160mの超高層建物の118mから122mまでの4mに中間階を設けたものであり、建物の影響の無い高道祖160mの位置において、風速10m/sである風が上記中間層に流入した場合における高さ120mの位置の風速ベクトルを求めた。   The model used for the analysis is a high-rise building with a width of 40m, a depth of 40m, and a height of 160m with an intermediate floor at 4m from 118m to 122m. The wind speed vector at a position of 120 m in height when the wind having a wind speed of 10 m / s flows into the intermediate layer was obtained.

図7〜図9は、第1の実施形態と同様に角柱状のコア部3を配置した場合における解析結果を示す風速ベクトル図であり、図7は風向0°、図8は風向22.5°、図9は風向45°の場合である。また、図10〜図12は、第2の実施形態と同様に円柱状コア部10を配置した場合における解析結果を示す風速ベクトル図であり、図10は風向0°、図11は風向22.5°、図12は風向45°の場合である。なお、いずれの図においても、符号×は、上記風力発電装置を設置した場合の仮想位置の印である。   7 to 9 are wind velocity vector diagrams showing analysis results when the prismatic core portion 3 is arranged as in the first embodiment. FIG. 7 is a wind direction of 0 °, and FIG. 8 is a wind direction of 22.5. FIG. 9 shows the case where the wind direction is 45 °. 10 to 12 are wind velocity vector diagrams showing analysis results when the cylindrical core portion 10 is arranged as in the second embodiment. FIG. 10 is a wind direction of 0 °, and FIG. 5 ° and FIG. 12 shows a case where the wind direction is 45 °. In any of the drawings, the symbol x is a mark of a virtual position when the wind power generator is installed.

先ず、図7においては、図中×印で示す位置における風速(m/s)が、上方、右側、下方、左方の時計回り方向に、順次3.4、9.2、2.6、10.4であった。
また、図8においては、同様に順次9.4、8.7、1.7、9.2であり、図9においては、順次9.8、9.8、8.0、8.1であった。
First, in FIG. 7, the wind speed (m / s) at the position indicated by x in the figure is 3.4, 9.2, 2.6 in the clockwise direction of the upper side, the right side, the lower side, and the left side. 10.4.
Similarly, in FIG. 8, the numbers are sequentially 9.4, 8.7, 1.7, and 9.2. In FIG. 9, the numbers are sequentially 9.8, 9.8, 8.0, and 8.1. there were.

これに対して、図10においては、同様に順次9.0、9.0、9.8、12.3であり、図11においては、順次9.8、9.7、7.2、11.2であった。また、図12においては、順次11.1、11.1、10.6、10.8であった。   On the other hand, in FIG. 10, it is 9.0, 9.0, 9.8, 12.3 sequentially, and in FIG. 11, it is 9.8, 9.7, 7.2, 11 sequentially. .2. Moreover, in FIG. 12, they were 11.1, 11.1, 10.6, 10.8 sequentially.

以上のことから、図7、図8、図9に示した場合の発電量を、それぞれA、B、Cとすると、発電量は風速の3乗に比例することから、図10、図11、図12に示した場合の発電量は、各々2.0A、1.6B、1.7Cになり、よって第2の実施形態のように、中間階2の四隅角部に、円柱状コア部10を配置した場合に、より高い発電量を得られることが判明した。   From the above, assuming that the power generation amounts shown in FIGS. 7, 8, and 9 are A, B, and C, respectively, the power generation amount is proportional to the cube of the wind speed. The power generation amounts in the case shown in FIG. 12 are 2.0 A, 1.6 B, and 1.7 C, respectively. Therefore, as in the second embodiment, the cylindrical core portion 10 is formed at the four corners of the intermediate floor 2. It has been found that a higher power generation amount can be obtained by arranging

また、図13に示す縦断面視した風速ベクトル図に見られるように、本発明によれば、中間階において高さ方向に一様な速度分布が得られ、よって風力発電装置に均整の取れた風を安定的に作用させ得ることが実証された。   Moreover, according to the present invention, a uniform velocity distribution in the height direction can be obtained in the intermediate floor, so that the wind turbine generator is well-balanced, as can be seen in the wind speed vector diagram viewed from the longitudinal section shown in FIG. It has been demonstrated that the wind can act stably.

1 超高層建物
2 中間階
3 コア部
4 柱
5 風車
8 発電ユニット
10 円柱状コア部
DESCRIPTION OF SYMBOLS 1 Super high-rise building 2 Middle floor 3 Core part 4 Pillar 5 Windmill 8 Power generation unit 10 Cylindrical core part

Claims (5)

超高層建物の高さの中間位置よりも上方位置に、方位四方向に開口した中間階を設けるとともに、この中間階に、当該中間階内に流入する風のエネルギーによって発電する風力発電装置を設置したことを特徴とする発電システムを備えた超高層建物。   An intermediate floor that opens in four directions is provided above the intermediate position of the height of the skyscraper, and a wind power generator that generates electricity using the energy of the wind flowing into the intermediate floor is installed on this intermediate floor. A skyscraper equipped with a power generation system characterized by 上記中間階を、地上から上記超高層建物の高さの70〜80%の位置に設けたことを特徴とする請求項1に記載の発電システムを備えた超高層建物。   2. The high-rise building with a power generation system according to claim 1, wherein the intermediate floor is provided at a position of 70 to 80% of the height of the high-rise building from the ground. 上記中間階を、近隣環境も含めた気流シミュレーションまたは実験によって得られた上記超高層建物の上記外壁面において最大正圧が作用する箇所に設けたことを特徴とする請求項1または2に記載の発電システムを備えた超高層建物。   The said intermediate floor was provided in the location where the maximum positive pressure acts in the said outer wall surface of the said high-rise building obtained by the airflow simulation including the surrounding environment, or experiment, The said 1st or 2 features A skyscraper with a power generation system. 上記中間階の外周隅角部に、円柱状コア部を配置したことを特徴とする請求項1ないし3のいずれかに記載の発電システムを備えた超高層建物。   The super high-rise building provided with the power generation system according to any one of claims 1 to 3, wherein a columnar core portion is disposed at an outer peripheral corner portion of the intermediate floor. 上記中間階に、複数本の柱を間隔をおいて立設し、これら柱の外周に風力発電装置の発電体となる風車を回転自在に設けたことを特徴とする請求項1ないし4のいずれかに記載の発電システムを備えた超高層建物。   5. A wind turbine as a power generator of a wind power generator is rotatably provided on the intermediate floor with a plurality of pillars standing at intervals, on the outer periphery of the pillars. A skyscraper equipped with the power generation system described in Crab.
JP2010040760A 2010-02-25 2010-02-25 Skyscraper building including power generation system Pending JP2011174448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010040760A JP2011174448A (en) 2010-02-25 2010-02-25 Skyscraper building including power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040760A JP2011174448A (en) 2010-02-25 2010-02-25 Skyscraper building including power generation system

Publications (1)

Publication Number Publication Date
JP2011174448A true JP2011174448A (en) 2011-09-08

Family

ID=44687514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040760A Pending JP2011174448A (en) 2010-02-25 2010-02-25 Skyscraper building including power generation system

Country Status (1)

Country Link
JP (1) JP2011174448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113650726A (en) * 2021-09-17 2021-11-16 中国船舶科学研究中心 Ship superstructure arrangement structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113650726A (en) * 2021-09-17 2021-11-16 中国船舶科学研究中心 Ship superstructure arrangement structure

Similar Documents

Publication Publication Date Title
Roga et al. Recent technology and challenges of wind energy generation: A review
Mohamed Impacts of solidity and hybrid system in small wind turbines performance
US8894348B2 (en) Wind turbine
Gao et al. Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm
US8546971B2 (en) Apparatus for generating electricity from wind power
Zanforlin et al. Improving the performance of wind turbines in urban environment by integrating the action of a diffuser with the aerodynamics of the rooftops
Mendoza et al. Improving farm efficiency of interacting vertical‐axis wind turbines through wake deflection using pitched struts
AU2013201573B2 (en) Omni-directional wind power harnessing device
CN104675631A (en) Novel rotating plate hesitance type efficient power generation assembly (commonly used for wind power and hydraulic power)
Wang et al. Small wind turbines and their potential for internet of things applications
Karadag et al. Wind turbine integration to tall buildings
Goudarzi et al. Wind energy conversion: the potential of a novel ducted turbine for residential and commercial applications
JP2011174448A (en) Skyscraper building including power generation system
Tajeddin et al. Towards realistic design of wind dams: An innovative approach to enhance wind potential
US20130119662A1 (en) Wind turbine control
KR101338122B1 (en) Floating wind power generation with passive yawing damper
CN202047938U (en) Umbrella-shaped chimney type wind power generation station
JP2011174447A (en) Power generation system for super-high rise building
JP2016079966A (en) Vertical shaft type wind turbine
JP2007056853A (en) Left and right rotation vertical shaft windmill with four corner control plate
JP2003003944A (en) Hybrid wind power generator
Degrassi et al. A Retrospective of Wind Turbine Architectural Integration in the Built Environment
CN102691623A (en) Umbrella-shaped chimney-type wind power station
WO2022254763A1 (en) Turbine device, and electricity generating device
KR100955516B1 (en) Has a new-born energy facility and the environmental house which hits

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125