JP2011174404A - Two-stage supercharging system - Google Patents

Two-stage supercharging system Download PDF

Info

Publication number
JP2011174404A
JP2011174404A JP2010038499A JP2010038499A JP2011174404A JP 2011174404 A JP2011174404 A JP 2011174404A JP 2010038499 A JP2010038499 A JP 2010038499A JP 2010038499 A JP2010038499 A JP 2010038499A JP 2011174404 A JP2011174404 A JP 2011174404A
Authority
JP
Japan
Prior art keywords
engine
flow path
pressure
pressure stage
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010038499A
Other languages
Japanese (ja)
Other versions
JP5461226B2 (en
Inventor
Hideki Kato
秀輝 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2010038499A priority Critical patent/JP5461226B2/en
Publication of JP2011174404A publication Critical patent/JP2011174404A/en
Application granted granted Critical
Publication of JP5461226B2 publication Critical patent/JP5461226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To safely reduce the diameter of a high-pressure stage turbocharger without using a waste gate pipe. <P>SOLUTION: A bypass flow path 17 is attached to an engine intake flow path which feeds intake air A from a high-pressure stage compressor 4 to an engine 1, a turbine generator 18 is mounted in the bypass flow path 17, and a three-way valve 19 (a flow path change-over means) is provided in the inlet of the bypass flow path 17 for changing over the intake air A flowing from the high-pressure stage compressor 4 to the engine 1 to flow properly to the side of the bypass flow path 17. In a high-speed and high-load region (an operation region shown in the graph of Fig.6 with a cross-hatching) of the engine 1 where exhaust gas G conventionally split-flows into the waste gate pipe 7 (refer to Fig.5), the three-way valve 19 changes over the intake air A flowing from the high-pressure stage compressor 4 to flow to the side of the bypass flow path 17, to guide it to the engine 1 via the turbine generator 18. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、二段過給システムに関するものである。   The present invention relates to a two-stage supercharging system.

近年、低速軽負荷域での燃費向上、トルクアップや高EGR率の実現のために、小径の高圧段ターボチャージャを採用した二段過給システムが検討されており、この種の二段過給システムにおいては、図5に示す如く、エンジン1の排気マニホールド2から送出される排気Gにより高圧段タービン3を作動させ且つ高圧段コンプレッサ4で圧縮した吸気Aをエンジン1の吸気マニホールド5へ送給する高圧段ターボチャージャ6と、該高圧段ターボチャージャ6の高圧段タービン3から送出される排気Gにより低圧段タービン8を作動させ且つ低圧段コンプレッサ9で圧縮した吸気Aを前記高圧段コンプレッサ4へ送給する低圧段ターボチャージャ10とが備えられている。   In recent years, a two-stage turbocharging system that uses a small-diameter high-pressure turbocharger has been studied in order to improve fuel efficiency, increase torque, and achieve a high EGR rate in the low-speed and light-load range. In the system, as shown in FIG. 5, the high-pressure turbine 3 is operated by the exhaust G sent from the exhaust manifold 2 of the engine 1 and the intake air A compressed by the high-pressure compressor 4 is supplied to the intake manifold 5 of the engine 1. The high-pressure stage turbocharger 6 and the exhaust A sent from the high-pressure stage turbine 3 of the high-pressure stage turbocharger 6 actuates the low-pressure stage turbine 8 and is compressed by the low-pressure stage compressor 9 into the high-pressure stage compressor 4. A low-pressure turbocharger 10 for feeding is provided.

更に、前記低圧段ターボチャージャ10の低圧段コンプレッサ9の吐出側と前記高圧段ターボチャージャ6の高圧段コンプレッサ4の吸入側との間のエンジン吸気流路には、インタクーラ12が介装されており、前記高圧段コンプレッサ4の吐出側とエンジン1の吸気マニホールド5との間のエンジン吸気流路には、アフタクーラ13が介装されている。   Further, an intercooler 12 is interposed in the engine intake passage between the discharge side of the low-pressure stage compressor 9 of the low-pressure stage turbocharger 10 and the suction side of the high-pressure stage compressor 4 of the high-pressure stage turbocharger 6. An aftercooler 13 is interposed in the engine intake passage between the discharge side of the high-pressure compressor 4 and the intake manifold 5 of the engine 1.

また、エンジン排気流路の高圧段タービン3よりも上流側(具体的には排気マニホールド2)からエンジン吸気流路のアフタクーラ13よりも下流側(具体的には吸気マニホールド5)へ至るEGR配管14が設けられ、該EGR配管14には、エンジン排気流路から分流した排気Gを冷却するEGRクーラ15と、エンジン吸気流路へ還流すべき排気Gの流量を調整するEGRバルブ16とが設けられている。   Further, the EGR pipe 14 extends from the upstream side (specifically, the exhaust manifold 2) of the engine exhaust passage to the downstream side (specifically, the intake manifold 5) of the aftercooler 13 of the engine intake passage. The EGR pipe 14 is provided with an EGR cooler 15 that cools the exhaust gas G that has been diverted from the engine exhaust flow path, and an EGR valve 16 that adjusts the flow rate of the exhaust G to be recirculated to the engine intake flow path. ing.

而して、斯かる二段過給システムにおいては、エンジン1が稼動状態である時に、排気マニホールド2から送出される排気Gが、高圧段タービン3へ流入して高圧段コンプレッサ4を駆動した後、低圧段タービン8へ流入して低圧段コンプレッサ9を駆動し、該低圧段コンプレッサ9に流入して圧縮された吸気Aは、インタクーラ12を経て高圧段コンプレッサ4に送給され、該高圧段コンプレッサ4で再び圧縮され、アフタクーラ13を経て吸気マニホールド5へ送給されるので、シリンダへの吸気Aの送給量が増加し、1サイクル当たりの燃料噴射量を多くすれば、エンジン1の出力を高めることができる。   Thus, in such a two-stage supercharging system, when the engine 1 is in operation, the exhaust G sent from the exhaust manifold 2 flows into the high-pressure turbine 3 and drives the high-pressure compressor 4. The intake air A that flows into the low-pressure turbine 8 and drives the low-pressure compressor 9 and flows into the low-pressure compressor 9 and is compressed is supplied to the high-pressure compressor 4 through the intercooler 12, and the high-pressure compressor 4 is compressed again and supplied to the intake manifold 5 via the aftercooler 13. Therefore, if the amount of intake A supplied to the cylinder is increased and the fuel injection amount per cycle is increased, the output of the engine 1 is increased. Can be increased.

また、前記排気Gの一部は、排気マニホールド2からEGR配管14へ流入し、EGRクーラ15で冷却され且つEGRバルブ16で流量調整が行われた排気Gが、吸気Aと一緒に吸気マニホールド5へ送給され、これによりシリンダ内の燃焼温度の低下が図られ、NOxの発生が低減される。   Further, a part of the exhaust G flows from the exhaust manifold 2 into the EGR pipe 14, and the exhaust G cooled by the EGR cooler 15 and adjusted in flow rate by the EGR valve 16 is combined with the intake air A with the intake manifold 5. Thus, the combustion temperature in the cylinder is lowered, and the generation of NOx is reduced.

尚、前述の如き二段過給システムと関連する一般的技術水準を示すものとしては、例えば、下記の特許文献1、2等が既に存在している。   For example, Patent Documents 1 and 2 listed below already exist as the general technical level related to the two-stage turbocharging system as described above.

特開2005−147030号公報JP 2005-147030 A 特開平5−180089号公報JP-A-5-180089

しかしながら、このように小径の高圧段ターボチャージャ6で高出力を実現した二段過給システムにおいては、排気Gの流量が大きい高速高負荷域(図6のグラフ中にクロスハッチングを付して示す運転領域)で小径の高圧段ターボチャージャ6が過剰に回転して過給圧が必要以上に高まり、エンジン1の各気筒の最大筒内圧が制限値を超えて運転不可となってしまうため、高圧段タービン3を迂回するウエストゲート配管7を設けると共に、該ウエストゲート配管7の途中に流路を開閉するウエストゲートバルブ11を設け、該ウエストゲートバルブ11を高速高負荷域で開けて適正な流量の排気Gのみ高圧段タービン3に流し、残りは高圧段タービン3を迂回させて低圧段タービン8へ導くようにしているが、このような高温の排気Gが通るウエストゲート配管7を増設すると、電子基盤等の熱に弱い周辺機器を近くに配置できなくなるためにレイアウト面で大きな制約がかかり、しかも、ウエストゲートバルブ11に十分な耐熱性を持たせなければならないことで設備コストが高騰するという問題があった。   However, in the two-stage turbocharging system that achieves high output with the small-diameter high-pressure turbocharger 6 as described above, a high-speed and high-load region where the flow rate of the exhaust G is large (shown with cross-hatching in the graph of FIG. 6). In the operation region), the high-pressure turbocharger 6 having a small diameter rotates excessively and the supercharging pressure is increased more than necessary, and the maximum in-cylinder pressure of each cylinder of the engine 1 exceeds the limit value, so that the operation becomes impossible. A waste gate pipe 7 that bypasses the stage turbine 3 is provided, a waste gate valve 11 that opens and closes the flow path is provided in the middle of the waste gate pipe 7, and the waste gate valve 11 is opened in a high-speed and high-load region to obtain an appropriate flow rate. Only the exhaust gas G is allowed to flow to the high-pressure stage turbine 3, and the rest is bypassed to the high-pressure stage turbine 3 and led to the low-pressure stage turbine 8. If the waste gate pipe 7 is increased, peripheral devices such as electronic boards that are vulnerable to heat cannot be placed nearby, so there are significant restrictions in terms of layout, and the waste gate valve 11 must have sufficient heat resistance. There was a problem that the equipment cost would rise due to the failure.

一方、高速高負荷域でも過剰回転せずに全排気ガス量に対応できるよう高圧段ターボチャージャ6を大径化して容量を上げることも考えられるが、そのようにしたのでは、低速軽負荷域において燃費が悪化したり、NOx低減に必要なEGR量を得ることができなくなるといった問題を招いてしまうことになり、小径の高圧段ターボチャージャ6で高出力を実現しようとする意義が損なわれてしまう。   On the other hand, it is possible to increase the capacity by increasing the diameter of the high-pressure turbocharger 6 so that it can accommodate the total exhaust gas amount without excessive rotation even in the high speed and high load range. This will cause problems such as deterioration of fuel economy and inability to obtain the EGR amount necessary for NOx reduction, and impairs the significance of achieving high output with the small-diameter high-pressure turbocharger 6. End up.

本発明は、斯かる実情に鑑みてなしたもので、ウエストゲート配管を用いることなく、高圧段ターボチャージャの小径化を支障なく実現し得る二段過給システムを提供することを目的としている。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a two-stage turbocharging system that can realize a reduction in the diameter of a high-pressure turbocharger without any trouble without using a wastegate pipe.

本発明は、エンジンから送出される排気によって高圧段タービンを作動させ且つ高圧段コンプレッサで圧縮した吸気をエンジンへ送給する高圧段ターボチャージャと、該高圧段ターボチャージャの高圧段タービンから送出される排気によって低圧段タービンを作動させ且つ低圧段コンプレッサで圧縮した吸気を前記高圧段コンプレッサへ送給する低圧段ターボチャージャとを備えた二段過給システムにおいて、高圧段コンプレッサからエンジンへ吸気を送給するエンジン吸気流路に付設されたバイパス流路と、該バイパス流路に装備されたタービンジェネレータと、高圧段コンプレッサからエンジンに向かう吸気の流れを適宜にバイパス流路側へ切り替える流路切替手段とを備え、エンジンの高速高負荷領域において前記流路切替手段により高圧段コンプレッサからの吸気の流れを前記バイパス流路側に切り替えて前記タービンジェネレータを経由させてからエンジンに導き得るように構成したことを特徴とするものである。   The present invention relates to a high-pressure stage turbocharger that operates a high-pressure stage turbine by exhaust gas delivered from an engine and supplies intake air compressed by a high-pressure stage compressor to the engine, and the high-pressure stage turbine of the high-pressure stage turbocharger. In a two-stage supercharging system that operates a low-pressure turbine by exhaust gas and supplies intake air compressed by a low-pressure compressor to the high-pressure compressor, the intake air is supplied from the high-pressure compressor to the engine. A bypass flow path attached to the engine intake flow path, a turbine generator equipped in the bypass flow path, and flow path switching means for appropriately switching the flow of intake air from the high pressure compressor toward the engine to the bypass flow path side. Equipped with the flow path switching means in the high speed and high load region of the engine. Is characterized in that it has configured to obtain guidance on the engine were allowed to through the turbine generator the flow of intake air from the intermediate pressure stage compressor is switched to the bypass flow.

而して、このようにした場合に、エンジンの高速高負荷領域で流路切替手段により高圧段コンプレッサからの吸気の流れをバイパス流路側に切り替えてタービンジェネレータを経由させてからエンジンに導くと、前記吸気の流れによりタービンジェネレータが駆動されて発電が行われる一方、該タービンジェネレータで仕事をすることにより過給圧が下がり、これに伴いエンジンに供給される吸気量(新気量)が減少して該エンジンから排出される排気も減ることになり、小径の高圧段ターボチャージャでも過剰回転せずに全排気ガス量に対応することが可能となる。   Thus, in this case, when the flow of the intake air from the high-pressure compressor is switched to the bypass flow path side by the flow path switching means in the high speed and high load region of the engine and guided to the engine through the turbine generator, While the turbine generator is driven by the flow of the intake air to generate electricity, the supercharging pressure is lowered by working with the turbine generator, and the intake air amount (fresh air amount) supplied to the engine is reduced accordingly. As a result, the exhaust gas discharged from the engine is reduced, and even a small-diameter high-pressure turbocharger can cope with the total exhaust gas amount without excessive rotation.

更に、タービンジェネレータで発電が行われることで既存のオルタネータの負担が少なくなり、従来よりも容量の小さなオルタネータで電力を賄うことが可能となるため、該オルタネータの駆動に必要なエンジン側の負担が少なくなって燃費が大幅に改善されることになる。   Furthermore, since the power generated by the turbine generator is reduced, the burden on the existing alternator is reduced, and it is possible to cover the power with an alternator having a smaller capacity than before, so the burden on the engine side required to drive the alternator is reduced. The fuel consumption will be greatly improved.

また、本発明においては、高圧段コンプレッサと吸気マニホールドとの間に装備されたアフタクーラより上流にバイパス流路及びタービンジェネレータを配置することが好ましく、このようにすれば、アフタクーラで熱回収される前の温度エネルギーの高い吸気から効率良く動力回収することが可能となり、しかも、先にタービンジェネレータを経て過給圧が下がることで吸気温度も下がり、アフタクーラにおける冷却負荷が低減されることになる。   In the present invention, it is preferable to dispose the bypass flow path and the turbine generator upstream of the aftercooler provided between the high-pressure compressor and the intake manifold. In this way, before the heat is recovered by the aftercooler. The power can be efficiently recovered from the intake air having a high temperature energy, and the intake air temperature is lowered by reducing the supercharging pressure through the turbine generator first, and the cooling load in the aftercooler is reduced.

本発明の二段過給システムによれば、下記の如き種々の優れた効果を奏し得る。   According to the two-stage supercharging system of the present invention, various excellent effects as described below can be obtained.

(I)本発明の請求項1に係る発明によれば、熱対策が必要なウエストゲート配管を用いなくても、エンジンの高速高負荷領域で流路切替手段により高圧段コンプレッサからの吸気の流れをバイパス流路側に切り替えてタービンジェネレータを経由させ、該タービンジェネレータを駆動する仕事を行わせることで過給圧を下げ、これによりエンジンに供給される吸気量(新気量)を減少させて該エンジンから排出される排気を減らすことができるので、小径の高圧段ターボチャージャでも過剰回転させずに全排気ガス量に対応させることができ、高圧段ターボチャージャの小径化を支障なく実現することができて、電子基盤等の熱に弱い周辺機器の配置に関するレイアウト面での制約を大幅に緩和することができ、しかも、耐熱性を有する高価なウエストゲートバルブを不要とすることで大幅な設備コストの削減を図ることもできる。   (I) According to the invention of claim 1 of the present invention, the flow of intake air from the high-pressure stage compressor by the flow path switching means in the high-speed and high-load region of the engine without using the wastegate piping that requires countermeasures against heat. Is switched to the bypass flow path side and passed through the turbine generator to perform the work of driving the turbine generator to lower the supercharging pressure, thereby reducing the intake air amount (fresh air amount) supplied to the engine. Since the exhaust exhausted from the engine can be reduced, even a small-diameter high-pressure turbocharger can cope with the total exhaust gas amount without excessive rotation, and the high-pressure turbocharger can be reduced in diameter without any trouble. It is possible to greatly relax the layout restrictions on the layout of peripheral devices that are vulnerable to heat, such as electronic boards, and it has high heat resistance. The wastegate valve may be reduced in significant equipment cost by eliminating the need such.

(II)本発明の請求項1に係る発明によれば、タービンジェネレータで発電を行うことによりオルタネータの負担を少なくすることができ、従来よりもオルタネータの容量を小さくすることができるので、該オルタネータの駆動に必要なエンジン側の負担を減らして燃費の大幅な改善を図ることができる。   (II) According to the invention according to claim 1 of the present invention, the load on the alternator can be reduced by generating power with the turbine generator, and the capacity of the alternator can be made smaller than before. The fuel consumption can be greatly improved by reducing the load on the engine side required for driving the vehicle.

(III)本発明の請求項2に係る発明によれば、アフタクーラで熱回収される前の温度エネルギーの高い吸気から効率良く動力回収することができる一方、先にタービンジェネレータを経由させることで過給圧を落として吸気温度を下げることができるので、アフタクーラにおける冷却負荷を大幅に低減させることができ、アフタクーラの容量を小さくして設備コストを削減したり、アフタクーラの冷却能力をそのまま維持して吸気温度を従来より下げることでNOx低減効果を高めたりすることができる。   (III) According to the invention of claim 2 of the present invention, power can be efficiently recovered from intake air having high temperature energy before heat recovery by the aftercooler, while excessive power can be recovered by first passing through the turbine generator. Since the intake air temperature can be lowered by reducing the supply pressure, the cooling load in the aftercooler can be greatly reduced, the capacity of the aftercooler can be reduced to reduce the equipment cost, and the cooling capacity of the aftercooler can be maintained as it is. The NOx reduction effect can be enhanced by lowering the intake air temperature than before.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 図1の三方弁により流路を切り替えた状態を示す概略図である。It is the schematic which shows the state which switched the flow path with the three-way valve of FIG. タービンジェネレータによる過給圧低下の効果を示すグラフである。It is a graph which shows the effect of the supercharging pressure fall by a turbine generator. 最大筒内圧の制限値内での運転が可能となることを示すグラフである。It is a graph which shows that the driving | operation within the limit value of the maximum in-cylinder pressure is attained. 従来の二段過給システムの一例を示す概略図である。It is the schematic which shows an example of the conventional two-stage supercharging system. 従来のウエストゲート配管を利用していた運転領域を示すグラフである。It is a graph which shows the operation area | region which utilized the conventional wastegate piping.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1及び図2は本発明を実施する形態の一例を示すもので、図5と同一の符号を付した部分は同一物を表わしている。   1 and 2 show an example of an embodiment for carrying out the present invention, and portions denoted by the same reference numerals as those in FIG. 5 represent the same items.

図1に全体図を示す如く、本形態例の二段過給システムにおいては、先に図5で説明した従来の二段過給システムと基本的な構成は同様であるが、従来の二段過給システムに用いられていたウエストゲート配管7(図5参照)及びウエストゲートバルブ11(図5参照)を廃止する一方、高圧段コンプレッサ4からエンジン1へ吸気Aを送給するエンジン吸気流路におけるアフタクーラ13より上流にバイパス流路17を付設し、該バイパス流路17にタービンジェネレータ18を装備し、前記バイパス流路17の入口部に前記高圧段コンプレッサ4からエンジン1へ向かう吸気Aの流れを適宜にバイパス流路17側へ切り替える三方弁19(流路切替手段)を設けており、従来においてウエストゲート配管7(図5参照)に排気Gを分流していたエンジン1の高速高負荷領域(図6のグラフ中にクロスハッチングを付して示す運転領域)で前記三方弁19により高圧段コンプレッサ4からの吸気Aの流れを前記バイパス流路17側に切り替えて前記タービンジェネレータ18を経由させてからエンジン1に導き得るように構成している。   As shown in FIG. 1, the basic configuration of the two-stage turbocharging system of this embodiment is the same as that of the conventional two-stage turbocharging system described above with reference to FIG. The engine intake passage for supplying the intake air A from the high-pressure compressor 4 to the engine 1 while eliminating the waste gate pipe 7 (see FIG. 5) and the waste gate valve 11 (see FIG. 5) used in the supercharging system. A bypass flow path 17 is provided upstream of the aftercooler 13 in the engine, and a turbine generator 18 is provided in the bypass flow path 17, and the flow of intake air A from the high-pressure compressor 4 toward the engine 1 at the inlet of the bypass flow path 17. Is provided with a three-way valve 19 (flow path switching means) for switching to the bypass flow path 17 side as appropriate, and the exhaust G is divided into the wastegate pipe 7 (see FIG. 5) in the past. The three-way valve 19 switches the flow of intake air A from the high-pressure compressor 4 to the bypass passage 17 side in the high-speed and high-load region of the engine 1 (the operation region indicated by cross-hatching in the graph of FIG. 6). Thus, the engine 1 can be guided through the turbine generator 18.

ここに図示している例では、前記三方弁19がエンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置20からの制御信号20aにより制御されるようになっており、例えば、この制御装置20に燃料噴射量とエンジン1の回転数との二次元制御マップを組み込んでおき、高圧段コンプレッサ4からエンジン1へ吸気Aを直接的に導いた場合に高圧段タービン3が過剰に回転して各気筒の最大筒内圧が制限値を超えてしまうことが想定される高速高負荷領域において、三方弁19により流路を図1の状態から図2の状態に切り替える制御信号20aが制御装置20から出力されるようにしてある。   In the example shown here, the three-way valve 19 is controlled by a control signal 20a from a control device 20 constituting an engine control computer (ECU: Electronic Control Unit). Is incorporated with a two-dimensional control map of the fuel injection amount and the rotational speed of the engine 1, and when the intake air A is led directly from the high-pressure compressor 4 to the engine 1, the high-pressure turbine 3 rotates excessively. In a high-speed and high-load region where the maximum in-cylinder pressure of the cylinder is assumed to exceed the limit value, a control signal 20a for switching the flow path from the state of FIG. 1 to the state of FIG. It is supposed to be.

而して、このようにした場合に、エンジン1の高速高負荷領域で三方弁19により高圧段コンプレッサ4からの吸気Aの流れをバイパス流路17側に切り替えてタービンジェネレータ18を経由させてからエンジン1に導くと、前記吸気Aの流れによりタービンジェネレータ18が駆動されて発電が行われる一方、該タービンジェネレータ18で仕事をすることにより図3のグラフに示す如き差圧が前後に生じて吸気マニホールド5の圧力(過給圧)が下がり、これに伴いエンジン1に供給される吸気量(新気量:図4のグラフを参照)が減らされて該エンジン1から排出される排気Gも減ることになり、小径の高圧段ターボチャージャ6でも過剰回転せずに全排気ガス量に対応することが可能となる。   Thus, in this case, after the flow of the intake air A from the high-pressure compressor 4 is switched to the bypass flow path 17 side by the three-way valve 19 in the high-speed and high-load region of the engine 1 and passed through the turbine generator 18. When guided to the engine 1, the turbine generator 18 is driven by the flow of the intake air A to generate electric power. On the other hand, when the turbine generator 18 performs work, a differential pressure as shown in the graph of FIG. As the pressure (supercharging pressure) of the manifold 5 decreases, the intake air amount (new air amount: see the graph of FIG. 4) supplied to the engine 1 is reduced, and the exhaust G discharged from the engine 1 also decreases. Therefore, even the small-diameter high-pressure turbocharger 6 can cope with the total exhaust gas amount without excessive rotation.

即ち、図4のグラフに示す如く、タービンジェネレータ18の膨張比を適切に調整しておけば、タービンジェネレータ18の前後に所要の差圧が生じることでエンジン1の各気筒における最大筒内圧Pmaxが制限値(許容Pmax)以下に抑えられ、従来のウエストゲート配管7(図5参照)を用いた場合と同様に、エンジン1の各気筒の最大筒内圧Pmaxが制限値(許容Pmax)を超えて運転不可となってしまう事態を回避することが可能となる。   That is, as shown in the graph of FIG. 4, if the expansion ratio of the turbine generator 18 is appropriately adjusted, a required differential pressure is generated before and after the turbine generator 18, so that the maximum in-cylinder pressure Pmax in each cylinder of the engine 1 is increased. The maximum in-cylinder pressure Pmax of each cylinder of the engine 1 exceeds the limit value (allowable Pmax) as in the case of using the conventional wastegate pipe 7 (see FIG. 5). It becomes possible to avoid the situation where driving becomes impossible.

また、タービンジェネレータ18で発電が行われることで既存のオルタネータの負担が少なくなり、従来よりも容量の小さなオルタネータで電力を賄うことが可能となるため、該オルタネータの駆動に必要なエンジン1側の負担が少なくなって燃費が大幅に改善されることになる。   In addition, since power is generated by the turbine generator 18, the burden on the existing alternator is reduced, and it is possible to cover the power with an alternator having a smaller capacity than the conventional one. Therefore, the engine 1 side required for driving the alternator The burden will be reduced and fuel efficiency will be greatly improved.

尚、この際に発電された電力は、バッテリ等に蓄電しておくようにすれば良いが、エンジン1に電動アシスト機構を付設して積極的に電力をエンジン1の補助動力として活用し、これにより燃費の大幅な向上を図るようにすることも可能である。   The electric power generated at this time may be stored in a battery or the like. However, an electric assist mechanism is attached to the engine 1 to positively utilize the electric power as auxiliary power for the engine 1. Thus, it is possible to significantly improve fuel consumption.

更に、特に本形態例の場合は、アフタクーラ13より上流にバイパス流路17及びタービンジェネレータ18が配置されているので、アフタクーラ13で熱回収される前の温度エネルギーの高い吸気Aから効率良く動力回収することが可能となり、しかも、先にタービンジェネレータ18を経て過給圧が下がることで吸気温度も下がり、アフタクーラ13における冷却負荷が低減されることになる。   Further, particularly in the case of this embodiment, since the bypass flow path 17 and the turbine generator 18 are arranged upstream of the aftercooler 13, the power is efficiently recovered from the intake air A having a high temperature energy before being recovered by the aftercooler 13. In addition, since the supercharging pressure is lowered through the turbine generator 18 first, the intake air temperature is also lowered, and the cooling load on the aftercooler 13 is reduced.

従って、上記形態例によれば、熱対策が必要なウエストゲート配管7(図5参照)を用いなくても、エンジン1の高速高負荷領域で流路切替手段により高圧段コンプレッサ4からの吸気Aの流れをバイパス流路17側に切り替えてタービンジェネレータ18を経由させ、該タービンジェネレータ18を駆動する仕事を行わせることで過給圧を下げ、これによりエンジン1に供給される吸気量(新気量)を減少させて該エンジン1から排出される排気を減らすことができるので、小径の高圧段ターボチャージャ6でも過剰回転させずに全排気ガス量に対応させることができ、高圧段ターボチャージャ6の小径化を支障なく実現することができて、電子基盤等の熱に弱い周辺機器の配置に関するレイアウト面での制約を大幅に緩和することができ、しかも、耐熱性を有する高価なウエストゲートバルブ11(図5参照)を不要とすることで大幅な設備コストの削減を図ることもできる。   Therefore, according to the above-described embodiment, the intake air A from the high-pressure compressor 4 can be obtained by the flow path switching means in the high-speed and high-load region of the engine 1 without using the wastegate pipe 7 (see FIG. 5) that requires heat countermeasures. Is switched to the bypass flow path 17 side and passed through the turbine generator 18 to perform the work of driving the turbine generator 18 to reduce the supercharging pressure, whereby the intake air amount (fresh air) supplied to the engine 1 is reduced. The amount of exhaust discharged from the engine 1 can be reduced, so that even a small-diameter high-pressure turbocharger 6 can correspond to the total exhaust gas amount without excessive rotation, and the high-pressure turbocharger 6 Can be achieved without hindrance, and layout restrictions on the placement of heat-sensitive peripheral devices such as electronic boards can be greatly relaxed. Moreover, it is also possible to by a costly waste gate valve 11 (see FIG. 5) required significant reduction of equipment costs having heat resistance.

更に、タービンジェネレータ18で発電を行うことによりオルタネータの負担を少なくすることができ、従来よりもオルタネータの容量を小さくすることができるので、該オルタネータの駆動に必要なエンジン1側の負担を減らして燃費の大幅な改善を図ることができる。   Furthermore, by generating power with the turbine generator 18, the load on the alternator can be reduced, and the capacity of the alternator can be reduced as compared with the prior art. Therefore, the load on the engine 1 side required for driving the alternator can be reduced. Significant improvement in fuel consumption can be achieved.

また、特に本形態例においては、アフタクーラ13で熱回収される前の温度エネルギーの高い吸気Aから効率良く動力回収することができる一方、先にタービンジェネレータ18を経由させることで過給圧を落として吸気温度を下げることができるので、アフタクーラ13における冷却負荷を大幅に低減させることができ、アフタクーラ13の容量を小さくして設備コストを削減したり、アフタクーラ13の冷却能力をそのまま維持して吸気温度を従来より下げることでNOx低減効果を高めたりすることができる。   Particularly in the present embodiment, power can be efficiently recovered from the intake air A having a high temperature energy before being recovered by the aftercooler 13, while the supercharging pressure is reduced by passing the turbine generator 18 first. Therefore, the cooling load on the aftercooler 13 can be greatly reduced, the capacity of the aftercooler 13 can be reduced to reduce the equipment cost, or the cooling capacity of the aftercooler 13 can be maintained as it is and the intake air can be reduced. The NOx reduction effect can be enhanced by lowering the temperature than before.

尚、本発明の二段過給システムは、上述の形態例にのみ限定されるものではなく、吸気絞り手段の制御については、必ずしも燃料噴射量とエンジンの回転数との二次元制御マップに基づいて行うことに限定されないこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The two-stage turbocharging system of the present invention is not limited to the above-described embodiment. The control of the intake throttle means is not necessarily based on the two-dimensional control map of the fuel injection amount and the engine speed. Of course, various modifications can be added without departing from the scope of the present invention.

1 エンジン
3 高圧段タービン
4 高圧段コンプレッサ
6 高圧段ターボチャージャ
8 低圧段タービン
9 低圧段コンプレッサ
10 低圧段ターボチャージャ
13 アフタクーラ
17 バイパス流路
18 タービンジェネレータ
19 三方弁(流路切替手段)
A 吸気
G 排気
DESCRIPTION OF SYMBOLS 1 Engine 3 High pressure stage turbine 4 High pressure stage compressor 6 High pressure stage turbocharger 8 Low pressure stage turbine 9 Low pressure stage compressor 10 Low pressure stage turbocharger 13 After cooler 17 Bypass flow path 18 Turbine generator 19 Three-way valve (flow path switching means)
A Intake G Exhaust

Claims (2)

エンジンから送出される排気によって高圧段タービンを作動させ且つ高圧段コンプレッサで圧縮した吸気をエンジンへ送給する高圧段ターボチャージャと、該高圧段ターボチャージャの高圧段タービンから送出される排気によって低圧段タービンを作動させ且つ低圧段コンプレッサで圧縮した吸気を前記高圧段コンプレッサへ送給する低圧段ターボチャージャとを備えた二段過給システムにおいて、高圧段コンプレッサからエンジンへ吸気を送給するエンジン吸気流路に付設されたバイパス流路と、該バイパス流路に装備されたタービンジェネレータと、高圧段コンプレッサからエンジンに向かう吸気の流れを適宜にバイパス流路側へ切り替える流路切替手段とを備え、エンジンの高速高負荷領域において前記流路切替手段により高圧段コンプレッサからの吸気の流れを前記バイパス流路側に切り替えて前記タービンジェネレータを経由させてからエンジンに導き得るように構成したことを特徴とする二段過給システム。   A high-pressure stage turbocharger that operates a high-pressure stage turbine by exhaust gas sent from the engine and supplies intake air compressed by a high-pressure stage compressor to the engine, and a low-pressure stage by exhaust gas sent from the high-pressure stage turbine of the high-pressure stage turbocharger Engine intake flow for supplying intake air from a high-pressure stage compressor to an engine in a two-stage supercharging system comprising a low-pressure stage turbocharger that operates a turbine and compresses intake air compressed by a low-pressure stage compressor to the high-pressure stage compressor A bypass flow path attached to the road, a turbine generator equipped in the bypass flow path, and flow path switching means for appropriately switching the flow of intake air from the high-pressure compressor toward the engine to the bypass flow path side. In the high-speed and high-load region, the flow path switching means Two-stage supercharging system, characterized in that the flow of air is switched to the bypass flow and configured to obtain guidance on the engine were allowed to via the turbine generator from suppressor. 高圧段コンプレッサと吸気マニホールドとの間に装備されたアフタクーラより上流にバイパス流路及びタービンジェネレータを配置したことを特徴とする請求項1に記載の二段過給システム。   The two-stage turbocharging system according to claim 1, wherein a bypass flow path and a turbine generator are arranged upstream of an aftercooler provided between the high-pressure compressor and the intake manifold.
JP2010038499A 2010-02-24 2010-02-24 Two-stage turbocharging system Active JP5461226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010038499A JP5461226B2 (en) 2010-02-24 2010-02-24 Two-stage turbocharging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010038499A JP5461226B2 (en) 2010-02-24 2010-02-24 Two-stage turbocharging system

Publications (2)

Publication Number Publication Date
JP2011174404A true JP2011174404A (en) 2011-09-08
JP5461226B2 JP5461226B2 (en) 2014-04-02

Family

ID=44687479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010038499A Active JP5461226B2 (en) 2010-02-24 2010-02-24 Two-stage turbocharging system

Country Status (1)

Country Link
JP (1) JP5461226B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160333773A1 (en) * 2013-12-19 2016-11-17 Volvo Truck Corporation Internal combustion engine system
CN114526153A (en) * 2022-02-14 2022-05-24 河南柴油机重工有限责任公司 Electric auxiliary pressurization system for marine diesel engine and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121731U (en) * 1981-01-26 1982-07-29
JPH08114127A (en) * 1994-10-14 1996-05-07 Takashi Adachi Device for recovering negative pressure flow energy in intake pipe for internal combustion engine
JP2009185737A (en) * 2008-02-07 2009-08-20 Mazda Motor Corp Supercharger for engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121731U (en) * 1981-01-26 1982-07-29
JPH08114127A (en) * 1994-10-14 1996-05-07 Takashi Adachi Device for recovering negative pressure flow energy in intake pipe for internal combustion engine
JP2009185737A (en) * 2008-02-07 2009-08-20 Mazda Motor Corp Supercharger for engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160333773A1 (en) * 2013-12-19 2016-11-17 Volvo Truck Corporation Internal combustion engine system
US10161300B2 (en) * 2013-12-19 2018-12-25 Volvo Truck Corporation Internal combustion engine system
CN114526153A (en) * 2022-02-14 2022-05-24 河南柴油机重工有限责任公司 Electric auxiliary pressurization system for marine diesel engine and control method

Also Published As

Publication number Publication date
JP5461226B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP4741678B2 (en) Diesel engine with supercharger
US8789370B2 (en) Device for supporting a supercharging device
CN108612583B (en) Engine system
CN106958489A (en) Engine system
JP2004308487A (en) Exhaust gas supercharged engine with egr
JP2012159079A (en) Large turbocharged two-stroke diesel engine with exhaust gas recirculation
JP2010138892A (en) Internal combustion engine equipped with two exhaust turbochargers coupled in series together
JP2006242051A (en) Surplus exhaust energy recovery system for engine
JP2009115089A (en) Engine with supercharger and its operating method
JP2007077900A (en) Two-stage supercharging system
WO2015163228A1 (en) Hybrid vehicle
JP2012197716A (en) Exhaust loss recovery device
JP2014098324A (en) Supercharger for engine
JP2007071179A (en) Two stage supercharging system
JP5461226B2 (en) Two-stage turbocharging system
JP2009191668A (en) Supercharging device and supercharging engine system
JP4511845B2 (en) Internal combustion engine with a supercharger
JP2009191667A (en) Supercharging device and supercharging engine system
KR101526388B1 (en) Engine system
JP2010127126A (en) Two-stage supercharging system
JP2011007051A (en) Diesel engine
JP2007077899A (en) Two-stage supercharging system
JP2008280975A (en) Exhaust gas recirculation device
JP2002266649A (en) Egr device
JP2005054710A (en) Exhaust gas recirculation device for turbo compound engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5461226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250