JP2011174252A - Multi-stage diameter-enlarged pile and structure - Google Patents

Multi-stage diameter-enlarged pile and structure Download PDF

Info

Publication number
JP2011174252A
JP2011174252A JP2010037739A JP2010037739A JP2011174252A JP 2011174252 A JP2011174252 A JP 2011174252A JP 2010037739 A JP2010037739 A JP 2010037739A JP 2010037739 A JP2010037739 A JP 2010037739A JP 2011174252 A JP2011174252 A JP 2011174252A
Authority
JP
Japan
Prior art keywords
diameter
enlarged
expanded
pile
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010037739A
Other languages
Japanese (ja)
Inventor
Yoshio Hirai
芳雄 平井
Eiji Sato
英二 佐藤
Yuichi Komura
雄一 甲村
Kiyoshi Yamashita
清 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2010037739A priority Critical patent/JP2011174252A/en
Publication of JP2011174252A publication Critical patent/JP2011174252A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a multi-stage diameter-enlarged pile capable of acquiring a required vertical bearing capacity and also reducing construction cost, and to obtain a structure. <P>SOLUTION: The multi-stage diameter-enlarged pile 20 comprises a shaft 28 berried in the ground 12 containing a soft layer 22 and a support layer 24; and diameter-enlarged portions 30 (intermediate diameter-enlarged portions 32, 34, and a bottom-enlarged portion 36) formed at a plurality of locations along the axial direction of the shaft 28. The plurality of diameter-enlarged portions 30 are arranged in the respective supporting layers 24, and their diameters are determined so that the range of stress propagation is set within the respective supporting layers 24 according to thicknesses of the respective supporting layers 24. It is thereby possible to acquire the vertical bearing capacity necessary and sufficient for the multi-stage diameter-enlarged pile 20. Since the diameter-enlarged portions 30 larger than necessary are not constructed, it is possible to reduce the construction cost in comparison with a conventional multi-stage diameter-enlarged pile having the same outer diameters of diameter-enlarged portions. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、多段拡径杭及び構造物に関する。   The present invention relates to a multistage enlarged diameter pile and a structure.

構造物の大型化、高層化に伴い、基礎杭には高い鉛直支持性能及び引抜抵抗性能が要求されており、杭の支持力を増大させるために、鉛直方向の複数箇所で杭を拡径した多段拡径杭が用いられている(例えば、特許文献1参照)。特許文献1の多段拡径杭は、主として中間拡径部の外径と拡底部の外径を等しくしている。   As the structure becomes larger and taller, foundation piles are required to have high vertical support performance and pull-out resistance performance. To increase the support capacity of the pile, the piles have been expanded in multiple locations in the vertical direction. A multistage expanded pile is used (see, for example, Patent Document 1). The multistage expanded pile of patent document 1 mainly makes the outer diameter of the intermediate expanded part and the outer diameter of the expanded bottom part equal.

しかし、構造物が建設される敷地において、中間拡径部を定着する支持層厚が中間拡径部の外径の大きさに対して比較的薄い地盤構成の場合、中間拡径部の底面抵抗力は、支持層だけではなく支持層の直下に堆積する地層の力学特性(強度、変形剛性など)の影響を受けることになる。このため、特許文献1のように、中間拡径部の外径と拡底部の外径を等しくした多段拡径杭では、支持層の直下に堆積する地層の力学特性が支持層に比べて劣る場合(例えば、軟弱な粘土層などの場合)、一部の中間拡径部の外径が必要以上に大きくなることにより、中間拡径部の底面抵抗力に寄与する地盤の影響範囲が軟弱層にまで及び、中間拡径部の底面抵抗力が低下して、必要な鉛直支持力が得られないことがある。また、中間拡径部の外径が必要以上に大きくなるために、施工費用を低減することが困難である。   However, in the site where the structure is constructed, when the support layer thickness for fixing the intermediate enlarged portion is a relatively thin ground structure with respect to the outer diameter of the intermediate enlarged portion, the bottom resistance of the intermediate enlarged portion The force is influenced not only by the support layer but also by the mechanical properties (strength, deformation rigidity, etc.) of the formation deposited directly under the support layer. For this reason, as in Patent Document 1, in a multistage expanded pile in which the outer diameter of the intermediate expanded portion and the outer diameter of the expanded bottom portion are equal, the mechanical properties of the formation deposited immediately below the support layer are inferior to those of the support layer. In some cases (for example, in the case of a soft clay layer), when the outer diameter of some intermediate enlarged portions becomes larger than necessary, the influence range of the ground that contributes to the bottom resistance force of the intermediate enlarged portion is a soft layer. In other words, the bottom resistance force of the intermediate enlarged portion may be reduced, and the required vertical support force may not be obtained. Moreover, since the outer diameter of the intermediate enlarged portion becomes larger than necessary, it is difficult to reduce the construction cost.

特開平4−265321JP-A-4-265321

本発明は、必要な鉛直支持力が得られるとともに施工費用を低減することができる多段拡径杭及び構造物を得ることを目的とする。   An object of this invention is to obtain the multistage enlarged diameter pile and structure which can reduce a construction cost while obtaining required vertical supporting force.

本発明の請求項1に係る多段拡径杭は、軟弱層と軟弱層よりも硬い支持層とを含む複数の層を有する地盤に埋設される軸部と、前記軸部の軸方向の複数箇所に形成され前記軸部の外径よりも大径の拡径部と、を有する多段拡径杭であって、複数の前記拡径部は、前記支持層に配置されるとともに前記支持層の厚さに合わせて外径が決められている。   The multistage expanded pile according to claim 1 of the present invention includes a shaft portion embedded in the ground having a plurality of layers including a soft layer and a support layer harder than the soft layer, and a plurality of locations in the axial direction of the shaft portion. A multi-stage enlarged pile having a larger diameter than the outer diameter of the shaft portion, wherein the plurality of enlarged diameter portions are disposed on the support layer and have a thickness of the support layer. The outer diameter is determined accordingly.

上記構成によれば、杭頭部に荷重が作用して多段拡径杭が鉛直下方向に押し込まれると、拡径部直下の地盤内応力が増加するが、応力伝播範囲が支持層内となるように拡径部の外径が決められているので、地盤が発揮する鉛直支持力を十分に引き出すことができる。これにより、多段拡径杭として必要十分な鉛直支持力を得ることができる。さらに、支持層の厚さに合わせて拡径部の外径が決められているので、必要以上に大きな拡径部を構築することがなくなり、従来のように各拡径部の外径を同じにしているものに比べて、施工費用を低減することができる。   According to the above configuration, when a load acts on the pile head and the multistage enlarged pile is pushed vertically downward, the stress in the ground immediately below the enlarged portion increases, but the stress propagation range is in the support layer. Thus, since the outer diameter of the enlarged-diameter portion is determined, the vertical supporting force exhibited by the ground can be sufficiently extracted. Thereby, a necessary and sufficient vertical supporting force can be obtained as a multistage expanded pile. Furthermore, since the outer diameter of the enlarged diameter portion is determined according to the thickness of the support layer, it is not necessary to construct an enlarged diameter portion larger than necessary, and the outer diameter of each enlarged diameter portion is the same as in the past. The construction cost can be reduced compared to what is being done.

本発明の請求項2に係る多段拡径杭は、前記拡径部の外径は、前記支持層の厚さが薄いところよりも厚いところの方が大きい。この構成によれば、支持層の薄いところでは拡径部の外径を小さくして小さな鉛直支持力を得て、支持層の厚いところでは拡径部の外径を大きくして大きな鉛直支持力を得る。従って、最小限の杭の材料費で地盤が発揮する鉛直支持力を最大限まで引き出すことができ、多段拡径杭として必要十分な鉛直支持力を得ることができる。   In the multistage enlarged diameter pile according to claim 2 of the present invention, the outer diameter of the enlarged diameter portion is larger in the thicker portion than in the thinned support layer. According to this configuration, when the support layer is thin, the outer diameter of the enlarged diameter portion is reduced to obtain a small vertical support force, and when the support layer is thick, the outer diameter of the enlarged diameter portion is increased to increase the vertical support force. Get. Therefore, the vertical supporting force exhibited by the ground can be pulled out to the maximum with the minimum material cost of the pile, and the necessary and sufficient vertical supporting force can be obtained as a multistage enlarged diameter pile.

本発明の請求項3に係る多段拡径杭は、前記拡径部は、前記軸部の下端に形成される拡底部と、前記軸部の中間に形成される中間拡径部と、で構成され、前記拡底部の外径は、前記中間拡径部が負担する鉛直支持力と一本当りの鉛直支持力との差から求められる。この構成によれば、拡底部が十分厚い支持層に設けられる場合に、支持層の応力伝播深さで拡底部の外径を決めないので、拡底部を必要以上に大きくすることがなくなる。これにより、費用削減及び工期短縮が可能となる。   The multi-stage enlarged pile according to claim 3 of the present invention is configured such that the enlarged portion includes an enlarged bottom portion formed at a lower end of the shaft portion and an intermediate enlarged portion formed in the middle of the shaft portion. And the outer diameter of the said expanded base part is calculated | required from the difference of the vertical support force which the said intermediate | middle expanded diameter part bears, and the vertical support force per one. According to this configuration, when the widened portion is provided in a sufficiently thick support layer, the outer diameter of the widened portion is not determined by the stress propagation depth of the support layer, so that the widened portion is not increased more than necessary. Thereby, cost reduction and construction period shortening are possible.

本発明の請求項4に係る多段拡径杭は、前記軸部の外径は、上下方向で等しい。この構成によれば、拡径部のみ地盤の層構成に合わせて外径を決定し、軸部の外径は変化させないので、施工が容易となる。   In the multistage enlarged diameter pile according to claim 4 of the present invention, the outer diameter of the shaft portion is equal in the vertical direction. According to this configuration, the outer diameter is determined only in accordance with the layer configuration of the ground only in the enlarged diameter portion, and the outer diameter of the shaft portion is not changed.

本発明の請求項5に係る多段拡径杭は、少なくとも前記拡径部の下面が前記支持層に根入している。この構成によれば、支持に必要な部分だけ支持層へ根入しているので、多段拡径杭として効率的に鉛直支持力を得ることができる。   In the multistage expanded pile according to claim 5 of the present invention, at least the lower surface of the expanded portion is embedded in the support layer. According to this configuration, since only a portion necessary for support is embedded in the support layer, a vertical support force can be efficiently obtained as a multistage expanded pile.

本発明の請求項6に係る構造物は、請求項1から請求項5のいずれか1項に記載の多段拡径杭と、前記軸部の上に構築された躯体と、を有する。この構成によれば、多段拡径杭の鉛直支持力を上げることができる。さらに、支持層の厚さに合わせて拡径部の外径が決められているので、必要以上に大きな拡径部を構築することがなくなり、従来のように各拡径部の外径を同じにしているものに比べて、施工費用を低減することができる。   A structure according to a sixth aspect of the present invention includes the multistage diameter-expanded pile according to any one of the first to fifth aspects, and a frame constructed on the shaft portion. According to this structure, the vertical supporting force of a multistage enlarged diameter pile can be raised. Furthermore, since the outer diameter of the enlarged diameter portion is determined according to the thickness of the support layer, it is not necessary to construct an enlarged diameter portion larger than necessary, and the outer diameter of each enlarged diameter portion is the same as in the past. The construction cost can be reduced compared to what is being done.

本発明は、上記構成としたので、必要な鉛直支持力が得られるとともに施工費用を低減することができる多段拡径杭及び構造物を得ることができる。   Since this invention was set as the said structure, it can obtain the multistage enlarged diameter pile and structure which can reduce construction cost while obtaining required vertical supporting force.

本発明の実施形態に係る建物全体の構成図である。It is a block diagram of the whole building which concerns on embodiment of this invention. 本発明の実施形態に係る多段拡径杭の施工状態を示す説明図である。It is explanatory drawing which shows the construction state of the multistage enlarged diameter pile which concerns on embodiment of this invention. 本発明の実施形態に係る中間拡径部の模式図である。It is a schematic diagram of the intermediate diameter expansion part which concerns on embodiment of this invention. 本発明の実施形態に係る中間拡径部の応力伝播状態を示す模式図(平面図及び断面図)である。It is a schematic diagram (a top view and a sectional view) showing a stress propagation state of an intermediate diameter expansion part concerning an embodiment of the present invention. 本発明の実施形態に係る中間拡径部の鉛直支持力を試算するための模式図である。It is a schematic diagram for calculating the vertical supporting force of the intermediate diameter enlarged portion according to the embodiment of the present invention. 本発明の実施形態に係る中間拡径部の根入れ状態を示す模式図である。It is a schematic diagram which shows the penetration state of the intermediate diameter expansion part which concerns on embodiment of this invention. (a)従来例の多段拡径杭の模式図である。(b)本実施形態の多段拡径杭の模式図である。(A) It is a schematic diagram of the multistage enlarged diameter pile of a prior art example. (B) It is a schematic diagram of the multistage enlarged diameter pile of this embodiment.

本発明の多段拡径杭及び構造物の実施形態を図面に基づき説明する。図1には、構造物の一例としての建物10が示されている。建物10は、水平方向(矢印X方向)に間隔をあけて地盤12に埋設された複数の多段拡径杭20(20A、20B、20C、20D)と、多段拡径杭20上(地盤12上)に構築された躯体の一例としての複数の柱14及び梁16とで構成されている。   Embodiments of the multistage enlarged pile and the structure of the present invention will be described with reference to the drawings. FIG. 1 shows a building 10 as an example of a structure. The building 10 includes a plurality of multi-stage enlarged piles 20 (20A, 20B, 20C, 20D) embedded in the ground 12 at intervals in the horizontal direction (arrow X direction), and a multi-stage enlarged pile 20 (on the ground 12). ) Constructed with a plurality of pillars 14 and beams 16 as an example of the housing constructed.

地盤12は、一例として、複数の軟弱層22(22A、22B、22C)と、軟弱層22よりも硬い複数の支持層24(24A、24B、24C)とが交互に積層された構成となっている。ここで、支持層24であることの判定方法としては、標準貫入試験方法(JIS A 1219)で得られるN値が50以上の層が5.0m以上確認できれば、そこを支持層とする規定(日本建築学会による)が用いられる。なお、多段拡径杭20A、20B、20C、20Dは同様の構成であるため、以後は多段拡径杭20Aについて説明し、多段拡径杭20B、20C、20Dの説明は省略する。   As an example, the ground 12 has a configuration in which a plurality of soft layers 22 (22A, 22B, 22C) and a plurality of support layers 24 (24A, 24B, 24C) harder than the soft layers 22 are alternately stacked. Yes. Here, as a determination method of being the support layer 24, if a layer having an N value of 50 or more obtained by the standard penetration test method (JIS A 1219) can be confirmed by 5.0 m or more, it is defined as a support layer ( Used by the Architectural Institute of Japan). Since the multistage enlarged piles 20A, 20B, 20C, and 20D have the same configuration, the multistage enlarged pile 20A will be described below, and the explanation of the multistage enlarged piles 20B, 20C, and 20D is omitted.

多段拡径杭20Aは、上下方向(矢印Z方向)を軸方向とする円柱状の軸部28と、軸部28の外周面から径方向外側へ拡径された拡径部30とで構成されている。軸部28は、軟弱層22Aに形成された軸部28Aと、支持層24A及び軟弱層22Bに形成された軸部28Bと、支持層24B及び軟弱層22Cに形成された軸部28Cとで構成されており、本実施形態では、軸部28Aの外径、軸部28Bの外径、軸部28Cの外径が同じ大きさとなっている。なお、軸部28A、28B、28Cの外径が同じとは、設計上同じであることを意味しており、軸部28A、28B、28Cの外径に施工により生じる設計中心値からの誤差分の違いがあっても同じものとみなす。   The multi-stage diameter-expanded pile 20A includes a columnar shaft portion 28 whose axial direction is the vertical direction (arrow Z direction), and a diameter-expanded portion 30 that is expanded radially outward from the outer peripheral surface of the shaft portion 28. ing. The shaft portion 28 includes a shaft portion 28A formed on the soft layer 22A, a shaft portion 28B formed on the support layer 24A and the soft layer 22B, and a shaft portion 28C formed on the support layer 24B and the soft layer 22C. In this embodiment, the outer diameter of the shaft portion 28A, the outer diameter of the shaft portion 28B, and the outer diameter of the shaft portion 28C are the same. Note that the same outer diameter of the shaft portions 28A, 28B, and 28C means that they are the same in design, and an error from the design center value caused by construction on the outer diameter of the shaft portions 28A, 28B, and 28C. Even if there is a difference, it is regarded as the same thing.

一方、拡径部30は、支持層24Aの上部に形成された中間拡径部32と、支持層24Bの上部に形成され最外径が中間拡径部32の最外径よりも大きい中間拡径部34と、支持層24Cの上部に形成され最外径が中間拡径部32の最外径よりも小さい拡底部36とで構成されている。なお、中間拡径部32、中間拡径部34、及び拡底部36の最外径の決定方法については後述する。また、各拡径部30の数は、本実施形態に限定されるものではなく、2つ以上の複数で適宜選択されるものである。   On the other hand, the enlarged diameter portion 30 includes an intermediate enlarged portion 32 formed on the upper portion of the support layer 24A and an intermediate enlarged portion formed on the upper portion of the support layer 24B and having an outermost outer diameter larger than the outermost diameter of the intermediate enlarged portion 32. The diameter portion 34 and an expanded bottom portion 36 formed on the support layer 24 </ b> C and having an outermost outer diameter smaller than the outermost diameter of the intermediate expanded portion 32. In addition, the determination method of the outermost diameter of the intermediate | middle enlarged diameter part 32, the intermediate | middle enlarged diameter part 34, and the expanded bottom part 36 is mentioned later. Moreover, the number of each enlarged diameter part 30 is not limited to this embodiment, and is suitably selected by two or more.

次に、多段拡径杭20を掘削するための掘削機40について説明する。   Next, the excavator 40 for excavating the multistage enlarged pile 20 will be described.

図2に示すように、多段拡径杭20(図1参照)の施工には、一例として掘削機40を用いる。掘削機40は、クレーン42と、旋回装置44と、位置決めアーム46とにより構成されている。クレーン42は、予め、他の掘削手段を用いて地盤12を下方向(矢印DOWN方向)に掘削して形成された杭孔52内にケリーバ48を吊り下げており、ケリーバ48を矢印UP、DOWN方向に昇降させるようになっている。   As shown in FIG. 2, an excavator 40 is used as an example for the construction of the multistage enlarged diameter pile 20 (see FIG. 1). The excavator 40 includes a crane 42, a turning device 44, and a positioning arm 46. The crane 42 previously suspends the kelly bar 48 in a pile hole 52 formed by excavating the ground 12 downward (arrow DOWN direction) using another excavating means. It is designed to move up and down in the direction.

また、クレーン42から張り出した位置決めアーム46の先端には旋回装置44が取付けられている。旋回装置44は、ケリーバ48を矢印R方向に旋回させるようになっており、ケリーバ48の下端部48Aには、径方向に拡径して杭孔52の掘削を行う拡径バケット50の上端部がピン(図示省略)で連結されている。なお、杭孔52内にはベントナイト等の安定液が図示しない補給管から注入されており、孔壁の倒壊を防止している。   Further, a turning device 44 is attached to the tip of the positioning arm 46 protruding from the crane 42. The swivel device 44 is adapted to swivel the kelly bar 48 in the direction of the arrow R, and the lower end portion 48A of the kelly bar 48 has an upper end portion of the enlarged diameter bucket 50 that expands the diameter in the radial direction and excavates the pile hole 52. Are connected by pins (not shown). A stabilizing liquid such as bentonite is injected into the pile hole 52 from a supply pipe (not shown) to prevent the hole wall from collapsing.

拡径バケット50は、杭孔52の中央に配置され回転中心となる中心軸54を有しており、中心軸54の周囲にはリンク機構56が設けられている。リンク機構56は、油圧シリンダ(図示省略)の伸縮動作によって杭孔52の外径方向に拡縮される複数のアーム部材58を有しており、アーム部材58における中心軸54とは反対側の端部に拡翼部60が溶接されている。   The diameter-enlarged bucket 50 has a central axis 54 that is disposed at the center of the pile hole 52 and serves as a rotation center, and a link mechanism 56 is provided around the central axis 54. The link mechanism 56 has a plurality of arm members 58 that are expanded and contracted in the outer diameter direction of the pile hole 52 by an expansion / contraction operation of a hydraulic cylinder (not shown), and an end of the arm member 58 opposite to the central axis 54. The wing expansion part 60 is welded to the part.

拡翼部60は、平断面が円弧状に形成されており、中心軸54を中心として4方向(90°おき)に配置されている。また、拡翼部60には、掘削用のビット(図示省略)が複数設けられている。このような構成により、拡径バケット50は、旋回装置44がケリーバ48を旋回させると、中心軸54と一体に旋回して径方向の拡径量に応じて杭孔52の内周壁を掘削するようになっている。なお、拡径バケット50の上部には、ケリーバ48及び中心軸54の中心が杭孔52の中心から大きくずれないように、杭孔52の内壁と接触するスタビライザ62が設けられている。   The expanded blade portion 60 has a flat cross section formed in an arc shape, and is arranged in four directions (every 90 °) about the central axis 54. Further, the wing expansion portion 60 is provided with a plurality of excavation bits (not shown). With such a configuration, when the turning device 44 turns the kelly bar 48, the diameter-enlarged bucket 50 turns integrally with the center shaft 54 and excavates the inner peripheral wall of the pile hole 52 according to the diameter-enlarged amount. It is like that. Note that a stabilizer 62 that contacts the inner wall of the pile hole 52 is provided on the upper portion of the diameter-enlarged bucket 50 so that the centers of the kelly bar 48 and the central shaft 54 are not greatly displaced from the center of the pile hole 52.

次に、多段拡径杭20の施工手順について説明する。   Next, the construction procedure of the multistage expanded pile 20 will be described.

図2の地盤12において、予め、他の掘削手段を用いて上下方向に軸部28を掘削する。軸部28には、前述のようにベントナイト等の安定液Lが補給されており、孔壁の倒壊を防止している。そして、クレーン42がケリーバ48を矢印down方向へ降下させ、縮径した状態の拡径バケット50を軸部28の底部に降下させる。   In the ground 12 of FIG. 2, the shaft portion 28 is excavated in advance in the vertical direction using another excavating means. As described above, the shaft portion 28 is replenished with a stabilizing liquid L such as bentonite to prevent the hole wall from collapsing. Then, the crane 42 lowers the kelly bar 48 in the arrow down direction, and lowers the diameter-expanded bucket 50 in the reduced diameter state to the bottom of the shaft portion 28.

続いて、旋回装置44が駆動され、ケリーバ48が矢印R方向に旋回する。ここで、油圧シリンダ(図示省略)を動作させることでリンク機構56のアーム部材58が水平方向に移動して、拡翼部60の拡径が行われる。そして、拡翼部60は旋回しながら拡径し、掘削ビット(図示省略)によって軸部28の内壁が掘削され、拡径部30が形成される。このようにして、1箇所の拡径部30が形成される。   Subsequently, the turning device 44 is driven, and the kelly bar 48 turns in the direction of arrow R. Here, by operating a hydraulic cylinder (not shown), the arm member 58 of the link mechanism 56 moves in the horizontal direction, and the diameter of the blade expanding portion 60 is increased. The expanded wing portion 60 expands while turning, and the inner wall of the shaft portion 28 is excavated by an excavation bit (not shown) to form the expanded diameter portion 30. In this way, one enlarged diameter portion 30 is formed.

なお、多段拡径杭20を構築するときは、予め設定された最深部まで他の掘削手段により軸部28を掘削した後、拡径部30の設定箇所で拡翼部60を旋回しながら拡径して掘削し、拡翼部60を一旦縮径して、次の拡径部30の設置箇所に移動する一連の工程を繰り返すことにより、複数の拡径部30(中間拡径部32、34、及び拡底部36)を形成する。そして、各拡径部30の掘削後、縮径された拡径バケット50が引き上げられ、杭孔52の内部に鉄筋かご(図示省略)が配置されて、トレミー管(図示省略)を介して杭孔52内にコンクリートが打設される。これにより、多段拡径杭20が完成する。   When constructing the multistage expanded pile 20, the shaft portion 28 is excavated by other excavating means to a preset deepest portion, and then expanded while rotating the blade expansion portion 60 at the set portion of the expanded portion 30. By digging and excavating, once reducing the diameter of the blade expansion section 60 and moving to the location where the next diameter expansion section 30 is installed, a plurality of diameter expansion sections 30 (intermediate diameter expansion sections 32, 34 and the expanded bottom portion 36). And after excavation of each enlarged diameter part 30, the diameter-expanded bucket 50 reduced in diameter is pulled up, a reinforcing steel cage (not shown) is disposed inside the pile hole 52, and piles are passed through a tremy pipe (not shown). Concrete is placed in the hole 52. Thereby, the multistage enlarged diameter pile 20 is completed.

次に、拡径部30の外径の決定方法について説明する。ここでは、まず、地盤12内の応力の伝播範囲について説明する。   Next, a method for determining the outer diameter of the enlarged diameter portion 30 will be described. Here, first, the propagation range of stress in the ground 12 will be described.

図3には、中間拡径部34の直下地盤(図1の地盤12)の応力の伝播状態が模式図で示されている。多段拡径杭20の杭頭部(軸部28A及び中間拡径部32の図示は省略している)に荷重Rが作用し、多段拡径杭20が鉛直下方向に押込まれると、中間拡径部34直下の地盤内の応力が増加する。そこで、地盤12を弾性体と仮定して、中間拡径部34直下の地盤内の応力の伝播範囲について検討する。なお、中間拡径部32も同様の手順で外径を求められるため、中間拡径部32についての説明は省略する。   FIG. 3 is a schematic diagram showing the state of stress propagation in the direct base plate (the ground 12 in FIG. 1) of the intermediate enlarged diameter portion 34. When the load R acts on the pile head of the multistage expanded pile 20 (the shaft portion 28A and the intermediate expanded section 32 are not shown) and the multistage expanded pile 20 is pushed vertically downward, The stress in the ground just below the enlarged diameter portion 34 increases. Therefore, assuming that the ground 12 is an elastic body, the propagation range of stress in the ground immediately below the intermediate diameter enlarged portion 34 is examined. In addition, since the outer diameter is calculated | required by the same procedure also in the intermediate | middle enlarged diameter part 32, description about the intermediate | middle enlarged diameter part 32 is abbreviate | omitted.

図3(右側)に示すように、中間拡径部34における押込み荷重を円形等分布荷重pと仮定する。また、中間拡径部34直下の地盤内応力増分をσZ1、中間拡径部34の外径をD、軸部28Cの外径をdとする。ここで、σZ1/pについてコンター線(等値線)を求めると、図4に示すような地盤内の応力の伝播範囲(応力球根)が得られる。 As shown in FIG. 3 (right side) is assumed to indentation load in the intermediate diameter portion 34 and the circular etc. distributed load p 1. Further, σ Z1 is an increase in ground stress immediately below the intermediate enlarged portion 34, D 1 is an outer diameter of the intermediate enlarged portion 34, and d is an outer diameter of the shaft portion 28C. Here, when a contour line (isoline) is obtained for σ Z1 / p 1 , a stress propagation range (stress bulb) in the ground as shown in FIG. 4 is obtained.

図4には、σZ1/p=0.1、0.2、0.3、0.5、0.7、0.9の等値線が太い実線で示されている。σZ1/pの値は、小さくなるほど中間拡径部34における押込み荷重が地盤内の応力分布に及ぼす影響が小さくなることを示している。例えば、中間拡径部34の立上り部下端(点E1、E2)から鉛直下方向へ中間拡径部34の外径Dの約1倍以上離れた地盤範囲においては、σZ1/pの値は0.2(円形等分布荷重pの20%)より小さくなっており、中間拡径部34が押込まれることによる地盤内の応力の伝播による影響が小さいことが分かる。地盤内の応力の伝播による影響が小さいということは、必要以上に中間拡径部34の外径Dを大きくしても無駄があることを意味している。 In FIG. 4, the isolines of σ Z1 / p 1 = 0.1, 0.2, 0.3, 0.5, 0.7, 0.9 are shown as thick solid lines. The value of σ Z1 / p 1 shows that the smaller the influence of the indentation load in the intermediate enlarged portion 34 on the stress distribution in the ground, the smaller the value. For example, the rising portion lower about 1-fold or more distant ground range of the outer diameter D 1 of the intermediate diameter portion 34 from the (point E1, E2) to the vertically downward direction of the intermediate diameter portion 34, the sigma Z1 / p 1 The value is smaller than 0.2 (20% of the circular uniform distributed load p 1 ), and it can be seen that the influence of the propagation of stress in the ground due to the pressing of the intermediate enlarged portion 34 is small. That effect of propagation of the stress in the ground is small, which means that even when increasing the outer diameter D 1 of the intermediate diameter portion 34 more than necessary is useless.

ここで、後述する従来例の多段拡径杭200(図7(a)参照)のように、中間拡径部を定着する支持層の厚さが中間拡径部の外径に対して比較的薄い地盤構成の場合、中間拡径部の底面抵抗力は、支持層だけではなく支持層の直下に堆積する地層の力学特性(強度、変形剛性など)の影響を受けることになる。そして、支持層直下に堆積する地層の力学特性が支持層に比べ劣る場合(例えば、軟弱な粘土層など)は、中間拡径部の外径を大きくすると、中間拡径部の底面抵抗力に寄与する地盤内応力の伝播範囲が軟弱層にまで及ぶため、中間拡径部の底面抵抗力が低下してしまうことになる。   Here, the thickness of the support layer fixing the intermediate enlarged portion is relatively smaller than the outer diameter of the intermediate enlarged portion, as in a conventional multistage enlarged pile 200 (see FIG. 7A) described later. In the case of a thin ground configuration, the bottom resistance force of the intermediate expanded portion is affected by not only the support layer but also the mechanical properties (strength, deformation rigidity, etc.) of the layer deposited immediately below the support layer. And when the mechanical properties of the strata deposited directly below the support layer are inferior to those of the support layer (for example, a soft clay layer), increasing the outer diameter of the intermediate enlarged portion will reduce the bottom resistance of the intermediate enlarged portion. Since the propagation range of the contributing stress in the ground extends to the soft layer, the bottom resistance force of the intermediate enlarged portion is reduced.

次に、中間拡径部34の底面抵抗力に寄与する地盤内の応力の伝播範囲Sについて説明する。   Next, the propagation range S of the stress in the ground that contributes to the bottom surface resistance of the intermediate diameter enlarged portion 34 will be described.

図5には、中間拡径部34の模式図が示されている。ここで、支持層24Bを砂礫層、軟弱層22Cを粘性土層として、中間拡径部34を砂礫層に定着する場合を想定し、砂礫層直下の粘性土層も考慮した中間拡径部34の鉛直支持力を試算する。中間拡径部34の外径をD1、軸部28Cの外径をd、支持層24Bの層厚をH、軟弱層22への半外径の拡大量を2/Hとすると、軟弱層22C上端における地盤内応力の分散面積Acは、(1)式で表される。(1)式において、一例としてD=4.0m、d=1.8m、H=3.0mとすると、分散面積Ac=35.9mとなる。 FIG. 5 is a schematic diagram of the intermediate enlarged diameter portion 34. Here, assuming that the support layer 24B is a gravel layer, the soft layer 22C is a viscous soil layer, and the intermediate expanded portion 34 is fixed to the gravel layer, the intermediate expanded portion 34 that also considers the viscous soil layer immediately below the gravel layer. Estimate the vertical bearing capacity. When the outer diameter of the intermediate enlarged portion 34 is D1, the outer diameter of the shaft portion 28C is d, the thickness of the support layer 24B is H, and the amount of expansion of the half outer diameter to the soft layer 22 is 2 / H, the soft layer 22C. The dispersion area Ac of the stress in the ground at the upper end is expressed by equation (1). In the formula (1), when D 1 = 4.0 m, d = 1.8 m, and H = 3.0 m as an example, the dispersion area Ac = 35.9 m 2 .

Figure 2011174252

軟弱層22C上端における地盤12の鉛直応力増分△σzは、中間拡径部34の極限底面抵抗力度をqとして、(2)式で表される。ここで、支持層24Bの厚さが十分に厚い場合の多段拡径杭20先端部における極限先端支持力度に相当する値を7500kN/mと仮定すると、(1)式の結果と(2)式とから、軟弱層22C上端における地盤12の鉛直応力増分△σz=2089kN/mと求められる。
Figure 2011174252

The vertical stress increase Δσ z of the ground 12 at the upper end of the soft layer 22C is expressed by the equation (2), where q m is the ultimate bottom surface resistance force degree of the intermediate expanded portion 34. Assuming that the value corresponding to the ultimate tip support force at the tip of the multi-stage expanded pile 20 when the thickness of the support layer 24B is sufficiently thick is 7500 kN / m 2 , the result of the equation (1) and (2) From the equation, the vertical stress increment Δσ z of the ground 12 at the upper end of the soft layer 22C is determined to be 2089 kN / m 2 .

Figure 2011174252

一方、多段拡径杭20の形状係数をα、β、支持力係数をN、Nγ、N、地盤12の粘着力をc、多段拡径杭20の幅をB(=D)、根入れ深さをD、地盤12の水中単位体積重量をγ、根入れ部分の土の水中単位体積重量をγとすると、軟弱層22C上端における極限鉛直支持力度qは(3)式で表せる(建築基礎構造設計指針 日本建築学会 pp.116−117、2001)。
Figure 2011174252

On the other hand, the shape factor of the multi-stage expanded pile 20 is α, β, the bearing capacity coefficient is N c , N γ , N q , the adhesive strength of the ground 12 is c, and the width of the multi-stage expanded pile 20 is B (= D 1 ). When the depth of root penetration is D f , the unit volume weight of the ground 12 in water is γ 1 , and the unit volume weight of soil in the root portion is γ 2 , the ultimate vertical bearing strength q u at the upper end of the soft layer 22C is (3 ) Expression (Guidelines for Architectural Foundation Structural Design, Architectural Institute of Japan pp. 116-117, 2001)

Figure 2011174252

多段拡径杭20が円形であるとすると、形状係数α=1.2、β=0.3となる。また、せん断抵抗角φ=0°の場合、支持力係数N=5.14、Nγ=0.0、N=1.0となる。ここで、地盤12の粘着力c=200kN/m、多段拡径杭20の幅B=D=4.0m、根入れ深さD=13.0m(図5より)、根入れ部分の土の水中単位体積重量をγ=8kN/mと仮定すると、(3)式により、極限鉛直支持力度q=1338kN/mと求められる。
Figure 2011174252

If the multistage expanded pile 20 is circular, the shape factors α = 1.2 and β = 0.3. Further, when the shear resistance angle φ = 0 °, the bearing force coefficient N c = 5.14, N γ = 0.0, and N q = 1.0. Here, the adhesive strength c of the ground 12 is c = 200 kN / m 2 , the width B of the multistage expanded pile 20 is B = D 1 = 4.0 m, the depth of root penetration D f = 13.0 m (from FIG. 5), the root portion Assuming that the unit volume weight of the soil in water is γ 2 = 8 kN / m 3 , the ultimate vertical bearing strength q u = 1338 kN / m 2 is obtained from the equation (3).

(1)式〜(3)式を用いた算出結果から△σz<qとなり、△σzは中間拡径部34の極限底面抵抗力度qから得られるため、中間拡径部34の極限底面抵抗力は、軟弱層22Cの極限鉛直支持力に依存することがわかる。なお、中間拡径部34の面積Aは(4)式により求められ、中間拡径部34の極限底面抵抗力度qは、極限鉛直支持力度qu、分散面積Ac、及び中間拡径部34の面積Aを用いて(5)式により求められる。 From the calculation results using the formulas (1) to (3), Δσ z <q u , and Δσ z is obtained from the limit bottom surface resistance force q m of the intermediate enlarged portion 34. It can be seen that the ultimate bottom resistance depends on the ultimate vertical support force of the soft layer 22C. The area A r of the intermediate diameter portion 34 is determined by equation (4), ultimate bottom resistance of q m of the intermediate diameter portion 34 has an intrinsic vertical bearing capacity of qu, dispersion area Ac, and the intermediate diameter portion 34 The area Ar is obtained by the equation (5).

Figure 2011174252
Figure 2011174252

Figure 2011174252

ここで、上記演算により得られた極限鉛直支持力度q=1338kN/m、(4)式、及び(5)式を用いて、中間拡径部34の極限底面抵抗力度qを逆算すると、q=4800kN/mとなり、支持層24Bの厚さが十分に厚い場合の中間拡径部34の極限底面抵抗力度q=7500kN/m(仮定した値)と比較して、小さい値となっていることが分かる。これらの演算結果から、中間拡径部34を定着する支持層24Bの厚さが中間拡径部34の外径に対して比較的薄い地盤構成の場合、中間拡径部34の底面抵抗力は、支持層24Bだけではなく支持層24Bの直下に堆積する軟弱層22Cの力学特性の影響を受け、中間拡径部34の外径を大きくすると、中間拡径部34の底面抵抗力が低下してしまうことが確認できた。
Figure 2011174252

Here, using the ultimate vertical support force q u = 1338 kN / m 2 obtained by the above calculation, the equations (4), and (5), the ultimate bottom surface resistance force q m of the intermediate expanded portion 34 is calculated backward. Q m = 4800 kN / m 2 , which is smaller than the limit bottom surface resistance force q m = 7500 kN / m 2 (assumed value) of the intermediate expanded portion 34 when the thickness of the support layer 24B is sufficiently thick It turns out that it is a value. From these calculation results, when the thickness of the support layer 24B fixing the intermediate enlarged portion 34 is a ground structure relatively thin with respect to the outer diameter of the intermediate enlarged portion 34, the bottom resistance force of the intermediate enlarged portion 34 is When the outer diameter of the intermediate enlarged portion 34 is increased due to the influence of the mechanical characteristics of the soft layer 22C deposited not only on the support layer 24B but also directly below the support layer 24B, the bottom resistance of the intermediate enlarged portion 34 decreases. I was able to confirm.

以上の検討結果をふまえ、図6に示すように、本実施形態の多段拡径杭20では、中間拡径部34直下の地盤12内の応力の伝播範囲S(図4のσZ1/pに相当)を支持層24B内に留めるため、中間拡径部34の外径をD、中間拡径部34の支持層24Bへの根入れ深さをt、中間拡径部34を定着する支持層24Bの厚さをHとして、D≦(H−t)の関係を満足するように中間拡径部34の設置深度及び外径を設定している。そして、少なくとも中間拡径部34の下面34Aが支持層24Bに根入れしている。なお、設置深度及び外径は、中間拡径部32及び拡底部36においても同様に設定されるが、拡底部36の外径は、中間拡径部32、34が負担する鉛直支持力と、多段拡径杭20の一本当りで必要とされる鉛直支持力との差から求められる。 Based on the above examination results, as shown in FIG. 6, in the multistage enlarged pile 20 of the present embodiment, the stress propagation range S in the ground 12 immediately below the intermediate enlarged portion 34 (σ Z1 / p 1 in FIG. 4). In the support layer 24B, the outer diameter of the intermediate enlarged portion 34 is D 1 , the depth of penetration of the intermediate enlarged portion 34 into the support layer 24B is t, and the intermediate enlarged portion 34 is fixed. the thickness of the support layer 24B as H 1, and sets the installation depth and the outer diameter of the intermediate diameter portion 34 so as to satisfy the relationship D 1 ≦ (H 1 -t) . And at least the lower surface 34A of the intermediate enlarged diameter portion 34 is embedded in the support layer 24B. The installation depth and the outer diameter are similarly set in the intermediate enlarged portion 32 and the bottom expanded portion 36, but the outer diameter of the bottom expanded portion 36 is the vertical support force borne by the intermediate enlarged portions 32 and 34, and It is calculated | required from the difference with the vertical supporting force required per one multistage expansion pile 20.

次に、本発明の実施形態の作用について説明する。   Next, the operation of the embodiment of the present invention will be described.

図7(a)には、本実施形態との比較対象として、従来例の多段拡径杭200が模式的に示されている。多段拡径杭200は、図示の上下方向を軸方向とする円柱状の軸部202と、軸部202の外周面から径方向外側へ拡径された拡径部210とで構成されている。軸部202は、軟弱層22Aに形成された軸部202Aと、支持層24A及び軟弱層22Bに形成された軸部202Bと、支持層24B及び軟弱層22Cに形成された軸部202Cとで構成されており、軸部202Aの外径、軸部202Bの外径、軸部202Cの外径が同じ大きさ(外径d)となっている。また、拡径部210は、支持層24Aの上部に形成された中間拡径部204と、支持層24Bの上部に形成された中間拡径部206と、支持層24Cの上部に形成された拡底部208とで構成されている。なお、中間拡径部204の外径をD、中間拡径部206の外径をD、拡底部208の外径をDとすると、D=D=Dとなっている。 FIG. 7A schematically shows a conventional multi-stage enlarged pile 200 as a comparison object with the present embodiment. The multi-stage expanded pile 200 includes a columnar shaft portion 202 having an axial direction in the illustrated vertical direction, and a diameter expanded portion 210 that is expanded radially outward from the outer peripheral surface of the shaft portion 202. The shaft portion 202 includes a shaft portion 202A formed on the soft layer 22A, a shaft portion 202B formed on the support layer 24A and the soft layer 22B, and a shaft portion 202C formed on the support layer 24B and the soft layer 22C. The outer diameter of the shaft portion 202A, the outer diameter of the shaft portion 202B, and the outer diameter of the shaft portion 202C are the same size (outer diameter d). Further, the enlarged diameter portion 210 includes an intermediate enlarged diameter portion 204 formed on the support layer 24A, an intermediate enlarged diameter portion 206 formed on the support layer 24B, and an expanded bottom formed on the support layer 24C. Part 208. If the outer diameter of the intermediate enlarged portion 204 is D 4 , the outer diameter of the intermediate enlarged portion 206 is D 5 , and the outer diameter of the expanded bottom portion 208 is D 6 , D 4 = D 5 = D 6 . .

一方、図7(b)には、本実施形態の多段拡径杭20が模式的に示されている。多段拡径杭20は、前述のように、図示の上下方向を軸方向とする円柱状の軸部28(28A、28B、28C)と、軸部28の外周面から径方向外側へ拡径された拡径部30(中間拡径部32、34、及び拡底部36)とで構成されている。各軸部28の外径は同じ大きさ(外径d)となっている。なお、中間拡径部32の外径をD、中間拡径部34の外径をD、拡底部36の外径をDとすると、D<D及びD>D3となっている。 On the other hand, FIG.7 (b) has shown typically the multistage enlarged diameter pile 20 of this embodiment. As described above, the multi-stage expanded-diameter pile 20 is expanded from the outer peripheral surface of the cylindrical portion 28 (28A, 28B, 28C) whose axial direction is the illustrated vertical direction to the outside in the radial direction. The enlarged diameter portion 30 (intermediate enlarged diameter portions 32 and 34 and the expanded bottom portion 36). Each shaft portion 28 has the same outer diameter (outer diameter d). If the outer diameter of the intermediate enlarged portion 32 is D 1 , the outer diameter of the intermediate enlarged portion 34 is D 2 , and the outer diameter of the expanded bottom portion 36 is D 3 , D 1 <D 2 and D 1 > D 3 It has become.

ここで、従来例の多段拡径杭200と本実施形態の多段拡径杭20との比較を行うために試算した結果の一例を表1に示す。表1には、各拡径部の外径D、各軸部の外径d、各支持層の層厚H、根入れ深さD、土の単位体積重量γ、土の粘着力c、各拡径部の面積A、及び分散面積Acの各パラメータと、これらのパラメータを(1)式、(3)式、(4)式、(5)式に代入して得られる極限鉛直支持力度q、極限底面抵抗力度qとが示されている。なお、極限鉛直支持力Qは、(6)式に示すように、拡径部の面積Aと極限鉛直支持力度qとの積で求められる。また、各支持層において、拡径部の支持層への根入れ深さ(図6のtに相当)は、0.5mに設定している。 Here, Table 1 shows an example of a result of a trial calculation in order to compare the multi-stage expanded pile 200 of the conventional example and the multi-stage expanded pile 20 of the present embodiment. Table 1 shows the outer diameter D of each enlarged portion, the outer diameter d of each shaft portion, the layer thickness H of each support layer, the depth of penetration D f , the unit volume weight γ of soil, the adhesive force c of soil, Each parameter of the area A r and the dispersion area Ac of each enlarged diameter portion, and the ultimate vertical support obtained by substituting these parameters into the equations (1), (3), (4), and (5) The strength q u and the ultimate bottom resistance strength q m are shown. Incidentally, ultimate vertical bearing force Q m is determined by the product of the area A r and ultimate vertical bearing capacity of q m of way, the enlarged diameter portion shown in (6). Moreover, in each support layer, the penetration depth (equivalent to t of FIG. 6) of the enlarged diameter part to the support layer is set to 0.5 m.

Figure 2011174252
Figure 2011174252

Figure 2011174252

表1より、本実施形態の多段拡径杭20(図7(b)参照)は、従来例の多段拡径杭200(図7(a)参照)に比べて、極限底面抵抗力度qが等しいか大きくなっており、さらに、全体の体積ΣVが65%まで縮減されていることが分かる。ここで、多段拡径杭全体の鉛直支持力ΣQmを全体の体積ΣVで除した支持力効率ΣQm/ΣV(多段拡径杭の単位体積当たりの支持力)を求めると、表2に示すように本実施形態の多段拡径杭20が従来例の多段拡径杭200に比べて、支持力効率が25%向上していることがわかる。
Figure 2011174252

From Table 1, the multi-stage diameter pile 20 of the present embodiment (see FIG. 7 (b)), the prior art multi-stage expanded piles 200 as compared to (see FIG. 7 (a)), the ultimate bottom resistance index q m It can be seen that the total volume ΣV is reduced to 65%. Here, when the bearing capacity efficiency ΣQm / ΣV (bearing capacity per unit volume of the multi-stage expanded pile) obtained by dividing the vertical bearing capacity ΣQm of the entire multi-stage expanded pile by the entire volume ΣV is shown in Table 2. It can be seen that the multi-stage enlarged pile 20 of the present embodiment is improved in supporting force efficiency by 25% compared to the conventional multi-stage enlarged pile 200.

Figure 2011174252

図7(a)、(b)に示すように、本実施形態の多段拡径杭20の地盤内応力の伝播範囲Sを上から順にS1、S2、S3とし、従来例の多段拡径杭200の地盤内応力の伝播範囲Sを上から順にS4、S5、S6とする。ここで、本実施形態の多段拡径杭20の支持力効率が、従来例の多段拡径杭200の支持力効率に比べて大きくなるのは、従来例の多段拡径杭200における伝播範囲S4が、支持層24Aの領域を超えて軟弱層22Bまで広がっているのに対し、本実施形態の多段拡径杭20における伝播範囲S1、S2、S3がいずれも支持層24A、24B、24C内となっているためと考えられる。
Figure 2011174252

As shown in FIGS. 7A and 7B, the propagation range S of the stress in the ground of the multistage enlarged pile 20 of this embodiment is set to S1, S2, S3 in order from the top, and the multistage enlarged pile 200 of the conventional example is used. The ground propagation stress propagation range S is S4, S5, and S6 in order from the top. Here, the supporting force efficiency of the multi-stage expanded pile 20 of the present embodiment is larger than the supporting capacity efficiency of the conventional multi-stage expanded pile 200 in the propagation range S4 in the conventional multi-stage expanded pile 200. However, the propagation ranges S1, S2, and S3 in the multistage expanded pile 20 of the present embodiment are all within the support layers 24A, 24B, and 24C, while extending beyond the region of the support layer 24A to the soft layer 22B. It is thought to be because.

以上説明したように、本実施形態の多段拡径杭20によれば、杭頭部に荷重が作用して鉛直下方向に押し込まれたときの地盤内応力の伝播範囲Sが各支持層24(24A、24B、24C)内となるように、各拡径部30(中間拡径部32、34、及び拡底部36)の外径が決められており、即ち、各支持層24のうち薄いところでは拡径部30の外径を小さくして小さな鉛直支持力を得て、支持層24の厚いところでは拡径部30の外径を大きくして大きな鉛直支持力を得ているので、地盤12が発揮する鉛直支持力Qを十分に引き出すことができる。これにより、多段拡径杭20として必要十分な鉛直支持力Qを得ることができる。 As described above, according to the multistage expanded pile 20 of the present embodiment, the propagation range S of the stress in the ground when a load is applied to the pile head and pushed vertically downward is set to each support layer 24 ( 24A, 24B, 24C), the outer diameter of each of the enlarged diameter portions 30 (intermediate enlarged diameter portions 32, 34, and expanded bottom portion 36) is determined, that is, the thin portion of each support layer 24. Since the outer diameter of the enlarged diameter portion 30 is reduced to obtain a small vertical supporting force, and the thicker support layer 24 is used to increase the outer diameter of the enlarged diameter portion 30 to obtain a larger vertical supporting force. There can be pulled out of the vertical support force Q m to exert enough. This makes it possible to obtain require sufficient vertical supporting force Q m as a multi-stage diameter piles 20.

また、本実施形態の多段拡径杭20は、各支持層24(24A、24B、24C)の厚さに合わせて各拡径部30(中間拡径部32、34、及び拡底部36)の外径が決められているので、必要以上に大きな拡径部を構築することがなくなり、従来例のように各拡径部の外径を同じにしているものに比べて杭体積が縮減される。これにより、多段拡径杭の施工費用が削減できるとともに、工期短縮及び建設副産物(杭施工時の発生汚泥など)の削減が可能となり、環境負荷低減を図ることが可能となる。   In addition, the multistage enlarged pile 20 of the present embodiment is configured so that the enlarged diameter portions 30 (intermediate enlarged diameter portions 32 and 34 and the expanded bottom portion 36) have thicknesses corresponding to the thicknesses of the support layers 24 (24A, 24B, and 24C). Since the outer diameter is determined, it is no longer necessary to construct an enlarged portion larger than necessary, and the pile volume is reduced compared to the conventional example in which the outer diameter of each enlarged portion is the same. . As a result, the construction cost of the multistage expanded pile can be reduced, the construction period can be shortened, and construction byproducts (such as sludge generated during pile construction) can be reduced, thereby reducing the environmental load.

さらに、拡底部36の外径は、中間拡径部32、34が負担する鉛直支持力と多段拡径杭20一本当りの鉛直支持力との差から求められるので、拡底部36が十分厚い支持層24Cに設けられる場合に、支持層24Cの応力伝播深さで拡底部36の外径を決めないので、拡底部36を必要以上に大きくすることがなくなる。これにより、費用削減及び工期短縮が可能となる。   Further, since the outer diameter of the bottom expanded portion 36 is obtained from the difference between the vertical supporting force borne by the intermediate expanded portions 32 and 34 and the vertical supporting force per one multi-stage expanded pile 20, the bottom expanded portion 36 is sufficiently thick. When the support layer 24C is provided, the outer diameter of the bottom expanded portion 36 is not determined by the stress propagation depth of the support layer 24C, so that the bottom expanded portion 36 is not made larger than necessary. Thereby, cost reduction and construction period shortening are possible.

また、多段拡径杭20は、軸部28(28A、28B、28C)の外径が上下方向で等しくなっており、拡径部30のみ地盤12の層構成に合わせて外径を決定し、軸部28の外径は変化させないので、施工が容易となる。さらに、多段拡径杭20は、支持に必要な部分(少なくとも拡径部30の下面)だけ支持層24へ根入しているので、多段拡径杭20として効率的に鉛直支持力を得ることができる。   Moreover, the multi-stage expanded pile 20 has the same outer diameter of the shaft portion 28 (28A, 28B, 28C) in the vertical direction, and only the expanded portion 30 determines the outer diameter according to the layer configuration of the ground 12, Since the outer diameter of the shaft portion 28 is not changed, the construction becomes easy. Furthermore, since the multistage expanded pile 20 has rooted in the support layer 24 only in the part required for support (at least the lower surface of the expanded section 30), the multistage expanded pile 20 can efficiently obtain the vertical support force as the multistage expanded pile 20. Can do.

また、建物10としては、多段拡径杭20の鉛直支持力が上がるだけでなく、支持層24の厚さに合わせて拡径部30の外径が決められているので、必要以上に大きな拡径部30を構築することがなくなり、従来例の多段拡径杭200(図7(a)参照)のように各拡径部210の外径を同じにしているものに比べて、施工費用を低減することができる。   Moreover, as the building 10 not only increases the vertical support force of the multistage expanded pile 20 but also the outer diameter of the expanded portion 30 is determined according to the thickness of the support layer 24, the expansion is larger than necessary. The construction of the diameter portion 30 is eliminated, and the construction cost is reduced as compared with the case where the outer diameters of the respective enlarged diameter portions 210 are the same as in the conventional multi-stage enlarged pile 200 (see FIG. 7A). Can be reduced.

なお、本発明は上記の実施形態に限定されない。   In addition, this invention is not limited to said embodiment.

多段拡径杭20の本数は、4本だけでなく2本以上の複数本であってもよい。また、中間拡径部の数は、実施形態に記載した2箇所だけでなく3箇所以上の複数箇所であってもよい。さらに、支持層24及び軟弱層22の層数は、2層以上の複数層あってもよい。   The number of the multistage expanded piles 20 may be not only four but also a plurality of two or more. Further, the number of intermediate enlarged portions may be not only two places described in the embodiment but also a plurality of places of three or more places. Furthermore, the number of layers of the support layer 24 and the soft layer 22 may be two or more.

また、支持層24の厚さによっては、中間拡径杭32の外径が中間拡径杭34の外径よりも大径であってもよい。   Depending on the thickness of the support layer 24, the outer diameter of the intermediate enlarged pile 32 may be larger than the outer diameter of the intermediate enlarged pile 34.

10 建物(構造物)
14 柱(躯体)
16 梁(躯体)
20 多段拡径杭
28 軸部
30 拡径部
32 中間拡径部(拡径部)
34 中間拡径部(拡径部)
34A 拡径部の下面
36 拡底部(拡径部)
10 Building (structure)
14 Pillar (frame)
16 Beam
20 Multi-stage expanded pile 28 Shaft 30 Expanded section 32 Intermediate expanded section (expanded section)
34 Middle diameter expansion part (expansion part)
34A The lower surface 36 of the enlarged diameter part 36 The enlarged bottom part (expanded part)

Claims (6)

軟弱層と軟弱層よりも硬い支持層とを含む複数の層を有する地盤に埋設される軸部と、前記軸部の軸方向の複数箇所に形成され前記軸部の外径よりも大径の拡径部と、を有する多段拡径杭であって、
複数の前記拡径部は、前記支持層に配置されるとともに前記支持層の厚さに合わせて外径が決められている多段拡径杭。
A shaft portion embedded in the ground having a plurality of layers including a soft layer and a support layer harder than the soft layer, and formed at a plurality of locations in the axial direction of the shaft portion and having a diameter larger than the outer diameter of the shaft portion A multistage expanded pile having an enlarged diameter portion,
A plurality of the enlarged diameter piles are arranged in the support layer and have an outer diameter determined according to the thickness of the support layer.
前記拡径部の外径は、前記支持層の厚さが薄いところよりも厚いところの方が大きい請求項1に記載の多段拡径杭。   The outer diameter of the said enlarged diameter part is a multistage enlarged diameter pile of Claim 1 with the larger one where the thickness of the said support layer is thicker than the place where the thickness is thin. 前記拡径部は、前記軸部の下端に形成される拡底部と、前記軸部の中間に形成される中間拡径部と、で構成され、
前記拡底部の外径は、前記中間拡径部が負担する鉛直支持力と一本当りの鉛直支持力との差から求められる請求項1に記載の多段拡形杭。
The expanded diameter portion is composed of an expanded bottom portion formed at the lower end of the shaft portion, and an intermediate expanded diameter portion formed in the middle of the shaft portion,
2. The multistage expanded pile according to claim 1, wherein an outer diameter of the expanded bottom portion is obtained from a difference between a vertical supporting force borne by the intermediate expanded portion and a vertical supporting force per one piece.
前記軸部の外径は、上下方向で等しい請求項1から請求項3のいずれか1項に記載の多段拡径杭。   The multi-stage diameter-expanded pile according to any one of claims 1 to 3, wherein an outer diameter of the shaft portion is equal in a vertical direction. 少なくとも前記拡径部の下面が前記支持層に根入している請求項1から請求項4のいずれか1項に記載の多段拡径杭。   The multistage expanded pile according to any one of claims 1 to 4, wherein at least a lower surface of the expanded diameter portion is embedded in the support layer. 請求項1から請求項5のいずれか1項に記載の多段拡径杭と、
前記軸部の上に構築された躯体と、
を有する構造物。
The multistage expanded pile according to any one of claims 1 to 5,
A housing constructed on the shank,
A structure having
JP2010037739A 2010-02-23 2010-02-23 Multi-stage diameter-enlarged pile and structure Pending JP2011174252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037739A JP2011174252A (en) 2010-02-23 2010-02-23 Multi-stage diameter-enlarged pile and structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037739A JP2011174252A (en) 2010-02-23 2010-02-23 Multi-stage diameter-enlarged pile and structure

Publications (1)

Publication Number Publication Date
JP2011174252A true JP2011174252A (en) 2011-09-08

Family

ID=44687349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037739A Pending JP2011174252A (en) 2010-02-23 2010-02-23 Multi-stage diameter-enlarged pile and structure

Country Status (1)

Country Link
JP (1) JP2011174252A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022113A1 (en) 2011-08-09 2013-02-14 Canon Kabushiki Kaisha Image processing apparatus and control method therefor
CN103711123A (en) * 2013-12-17 2014-04-09 上海岩土工程勘察设计研究院有限公司 Bamboo joint type mortar pile and construction method thereof
CN104343111A (en) * 2014-09-28 2015-02-11 山东科技大学 Composite foundation for reinforcing thick sand soil layer by using node piles
CN106245629A (en) * 2016-09-13 2016-12-21 大连理工大学 A kind of anti-skid uplift pile in mountain area and method for designing thereof
CN106759295A (en) * 2017-01-09 2017-05-31 东南大学 The quiet combined pile and its construction method for boring extruding-enlarging branch tray and pile tube
JP2017218810A (en) * 2016-06-08 2017-12-14 株式会社大林組 Construction method for cast-in-place concrete pile
CN114319331A (en) * 2022-03-08 2022-04-12 中国长江三峡集团有限公司 Construction method of underwater pipe pile type foundation and underwater pipe pile type foundation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265312A (en) * 1991-02-18 1992-09-21 Takenaka Komuten Co Ltd Method of multistage bottom-expanding place pile driving construction
JP2003138561A (en) * 2001-11-05 2003-05-14 Takenaka Komuten Co Ltd Method of manufacturing and evaluating pile with multi- stage enlarged-diameter and pile with multi-stage enlarged-diameter
JP2006322257A (en) * 2005-05-20 2006-11-30 Ohbayashi Corp Calculation method of extraction resistance force of pile with node using bearing force acting on inclined face of expanded diameter part, calculation method of pushing-in resistance force, design method of pile with node and pile with node
JP2009068301A (en) * 2007-09-18 2009-04-02 Japan Pile Corp Excavation method and excavator for cast-in-place concrete nodal pile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265312A (en) * 1991-02-18 1992-09-21 Takenaka Komuten Co Ltd Method of multistage bottom-expanding place pile driving construction
JP2003138561A (en) * 2001-11-05 2003-05-14 Takenaka Komuten Co Ltd Method of manufacturing and evaluating pile with multi- stage enlarged-diameter and pile with multi-stage enlarged-diameter
JP2006322257A (en) * 2005-05-20 2006-11-30 Ohbayashi Corp Calculation method of extraction resistance force of pile with node using bearing force acting on inclined face of expanded diameter part, calculation method of pushing-in resistance force, design method of pile with node and pile with node
JP2009068301A (en) * 2007-09-18 2009-04-02 Japan Pile Corp Excavation method and excavator for cast-in-place concrete nodal pile

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN7015001164; 大崎順彦: 建築基礎構造 第1版第1刷, 19910110, p178,p295〜296, 技報堂出版 *
JPN7015001165; 東京都建築構造行政連絡会: 建築構造設計指針 改定第6版第1刷, 20020310, p509〜520, 社団法人東京都建築士事務所協会 *
JPN7015001166; 建築基礎構造設計規準・同解説 第1版第1刷, 19741105, p490〜496, 社団法人日本建築学会 *
JPN7015001168; 建築基礎構造設計指針 第2版第2刷, 20020415, 社団法人日本建築学会 *
JPN7015001171; 山口柏樹: 土質力学(全改定) 第3版第1刷, 19840215, P256-257,p270-273,p338-p339, 技報堂出版 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022113A1 (en) 2011-08-09 2013-02-14 Canon Kabushiki Kaisha Image processing apparatus and control method therefor
CN103711123A (en) * 2013-12-17 2014-04-09 上海岩土工程勘察设计研究院有限公司 Bamboo joint type mortar pile and construction method thereof
CN103711123B (en) * 2013-12-17 2016-01-27 上海岩土工程勘察设计研究院有限公司 The construction method of bamboo joint type mortar pile
CN104343111A (en) * 2014-09-28 2015-02-11 山东科技大学 Composite foundation for reinforcing thick sand soil layer by using node piles
JP2017218810A (en) * 2016-06-08 2017-12-14 株式会社大林組 Construction method for cast-in-place concrete pile
CN106245629A (en) * 2016-09-13 2016-12-21 大连理工大学 A kind of anti-skid uplift pile in mountain area and method for designing thereof
CN106759295A (en) * 2017-01-09 2017-05-31 东南大学 The quiet combined pile and its construction method for boring extruding-enlarging branch tray and pile tube
CN114319331A (en) * 2022-03-08 2022-04-12 中国长江三峡集团有限公司 Construction method of underwater pipe pile type foundation and underwater pipe pile type foundation

Similar Documents

Publication Publication Date Title
JP2011174252A (en) Multi-stage diameter-enlarged pile and structure
JP2015135045A (en) Method for stabilization when installing long object and method for installing long object
JP2012167450A (en) Pile structure and construction method of pile
JP5092705B2 (en) Support structure of structure, construction method of underground structure, replacement method of foundation load
JP5638815B2 (en) Calculation method of pulling resistance of expanded pile, expanded pile, expanded pile arrangement setting method, and expanded pile construction quality judgment method
KR20120102480A (en) Phc pile with improved end bearing capacity and piling method of phc pile using the same
KR100926323B1 (en) Constructing method for extension of underground
JP2013177741A (en) Earthquake strengthening structure of existent structure foundation employing composite ground pile foundation technique
JP2020125630A (en) Building construction method
McNamara et al. A field trial of a reusable, hollow, cast-in-situ pile
JP5176788B2 (en) Construction method of underground structure
JP6740276B2 (en) Foundation pile and method of constructing foundation using the foundation pile
KR20130142829A (en) Installation methods of micro-piles by the rigidity of pile and the depth of rock layer
KR101257905B1 (en) Method for constructing foundation work
JP6182366B2 (en) Excavation method, underground structure construction method, wall body member, excavation wall body
Nhu et al. Using numerical modeling method for design and constructive controlling of excavation wall in Madison Building, Ho Chi Minh city
CN105908738A (en) Large-dimension steel and concrete combined hollow anti-slide pile and construction method thereof
KR101357773B1 (en) Micro pile for reinforcing foundation
KR101334393B1 (en) Pre-boring method for micro pile
JP2020186618A (en) Wall-shaped structure and method for constructing wall-shaped structure
KR20100076404A (en) Metal tubing picket with reinforced tip for auger-drilled piling method
Srivastava et al. Stability analyses of 18 m deep excavation using micro piles
JP2016199915A (en) Foundation structure and foundation construction method
JP2009162034A (en) Method of constructing foundation of structure
JP2020066875A (en) Foundation pile, foundation structure, structural body, and installation method of foundation pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105