JP2011174100A - Copper-zinc alloy electroplating liquid - Google Patents

Copper-zinc alloy electroplating liquid Download PDF

Info

Publication number
JP2011174100A
JP2011174100A JP2010036957A JP2010036957A JP2011174100A JP 2011174100 A JP2011174100 A JP 2011174100A JP 2010036957 A JP2010036957 A JP 2010036957A JP 2010036957 A JP2010036957 A JP 2010036957A JP 2011174100 A JP2011174100 A JP 2011174100A
Authority
JP
Japan
Prior art keywords
group
copper
zinc alloy
alloy electroplating
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010036957A
Other languages
Japanese (ja)
Other versions
JP5645422B2 (en
Inventor
Yutaka Fujiwara
裕 藤原
Yasuyuki Kobayashi
靖之 小林
Katsushi Miwa
勝司 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANEI SHOKAI KK
Osaka Municipal Technical Research Institute
Original Assignee
SANEI SHOKAI KK
Osaka Municipal Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANEI SHOKAI KK, Osaka Municipal Technical Research Institute filed Critical SANEI SHOKAI KK
Priority to JP2010036957A priority Critical patent/JP5645422B2/en
Publication of JP2011174100A publication Critical patent/JP2011174100A/en
Application granted granted Critical
Publication of JP5645422B2 publication Critical patent/JP5645422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-zinc alloy electroplating liquid which allows to directly and stably form a dense copper-zinc alloy plating film having adhesion and smoothness on the body to be plated, further has excellent safety to reduce adverse influence on the human body and environment, has a fixed plating film composition without depending on current density during electrolysis, and provide a glossy plating film even after performing continuous electrolysis for a long time. <P>SOLUTION: The copper-zinc alloy electroplating liquid contains components shown in the following (a) to (f): (a) a copper compound; (b) a zinc compound; (c) at least one kind of compound selected from polyphosphoric acids and the salts thereof; (d) at least one kind of compound selected from oxycarboxylic acids and the salts thereof; (e) aralkyl ester of α-amino acid; and (f) a sulfonamide product of the aralkyl ester of α-amino acid. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、銅−亜鉛合金電気めっき液、及び該合金電気めっき液を用いるめっき方法に関する。   The present invention relates to a copper-zinc alloy electroplating solution and a plating method using the alloy electroplating solution.

銅−亜鉛合金めっきは、黄銅めっき又は真鍮めっきとも呼ばれており、金属製品、プラスチック製品、セラミックス製品等の素材に対して真鍮色の金属光沢及び色調を付与する目的(装飾めっき)で、広く使用されている。また、銅−亜鉛合金めっきは、ラジアルタイヤ用スチールコードとゴムの密着性を向上させる目的においても使用されている。さらに、鉄鋼製フランジの表面処理として、ゴムパッキンとの密着性能を確保する目的においても使用されている。   Copper-zinc alloy plating, also called brass plating or brass plating, is widely used for the purpose of giving a metallic luster and color tone of brass color to materials such as metal products, plastic products and ceramic products (decorative plating). in use. Copper-zinc alloy plating is also used for the purpose of improving the adhesion between the steel cord for radial tire and the rubber. Furthermore, it is used also for the purpose of ensuring the adhesion performance with the rubber packing as a surface treatment of the steel flange.

しかしながら、現在、工業的に広く使用されている銅−亜鉛合金めっき液は、シアン化合物を含んでいるため、人体や環境に対して悪影響がある。   However, the copper-zinc alloy plating solution widely used industrially now has a bad influence on the human body and the environment because it contains a cyanide compound.

また、銅−亜鉛合金めっき方法として、被めっき体に対して銅めっき皮膜を形成した後、該皮膜上に対してさらに亜鉛めっき皮膜を形成し、さらに熱拡散処理を行う方法も用いられている。しかしながら、銅−亜鉛合金を形成するための熱拡散処理条件(温度、時間等)が限られているため、工程管理が困難である。また、全体の工程数が多いため、コストが高く、上記した熱拡散処理工程自体のコストが高いという問題がある。   Moreover, as a copper-zinc alloy plating method, after forming a copper plating film with respect to a to-be-plated body, the method of further forming a zinc plating film on this film, and also performing a thermal diffusion process is also used. . However, since thermal diffusion treatment conditions (temperature, time, etc.) for forming a copper-zinc alloy are limited, process management is difficult. Moreover, since there are many whole processes, there exists a problem that cost is high and the cost of the above-mentioned thermal diffusion process itself is high.

このような背景から、シアン化合物を含むめっき液を用いた方法、及び銅めっき皮膜を形成した後に亜鉛めっき皮膜を形成し、さらに熱拡散処理を行う方法に代わる、新たな銅−亜鉛合金めっき方法が要望されている。   Against this background, a new copper-zinc alloy plating method that replaces the method using a plating solution containing a cyanide compound and the method of forming a zinc plating film after forming a copper plating film and further performing a thermal diffusion treatment Is desired.

下記特許文献1には、ピロリン酸、アルカノールポリアミン、及びエピハロヒドリンの重合物を含むめっき浴を用いて、銅−亜鉛合金めっき皮膜を形成させる方法が記載されている。しかしながら、該文献の方法で得られる合金めっきの組成は、銅:亜鉛=70〜80:20〜30(重量比)であるのに対し、めっき浴中の金属濃度比は、銅:亜鉛=10:90(重量比)である。このような方法では、めっき浴中の銅がすぐに欠乏し、安定した連続操業を行うことはできない。   Patent Document 1 listed below describes a method for forming a copper-zinc alloy plating film using a plating bath containing a polymer of pyrophosphoric acid, alkanol polyamine, and epihalohydrin. However, the composition of the alloy plating obtained by the method of this document is copper: zinc = 70-80: 20-30 (weight ratio), whereas the metal concentration ratio in the plating bath is copper: zinc = 10. : 90 (weight ratio). In such a method, copper in the plating bath is deficient immediately, and stable continuous operation cannot be performed.

下記特許文献2には、グルコヘプトン酸を含むめっき浴を用いて、銅−亜鉛合金めっき皮膜を形成させる方法が記載されている。しかしながら、該文献の方法では均一なめっき皮膜を得ることができず、さらに緻密なめっき皮膜を得るには、該めっき皮膜が形成された被めっき体に対してボール研磨をしなければならないという問題がある。   The following Patent Document 2 describes a method of forming a copper-zinc alloy plating film using a plating bath containing glucoheptonic acid. However, the method of this document cannot obtain a uniform plating film, and in order to obtain a denser plating film, the object to be plated on which the plating film is formed must be ground. There is.

下記特許文献3には、(a)銅塩及び亜鉛塩、(b)ピロリン酸のアルカリ金属塩及びポリリン酸のアルカリ金属塩から選ばれた少なくとも1種、(c)オキシカルボン酸及びその塩から選ばれた少なくとも1種、並びに(d)アミノ酸及びその塩から選ばれた少なくとも1種を含有することを特徴とするめっき浴を用いて、銅−亜鉛合金めっき皮膜を形成させる方法が記載されている。しかしながら、上記しためっき浴は電解を続けると、アミノ酸が分解するため、光沢のあるめっき皮膜が得られなくなる。特に、陰極(例えば、鉄鋼素地等)上では、該アミノ酸の分解が早いため、陰極上に安定して連続的に緻密な銅−亜鉛合金めっき皮膜を形成させることはできない。   Patent Document 3 listed below includes (a) at least one selected from a copper salt and a zinc salt, (b) an alkali metal salt of pyrophosphoric acid and an alkali metal salt of polyphosphoric acid, and (c) an oxycarboxylic acid and a salt thereof. Described is a method for forming a copper-zinc alloy plating film using a plating bath characterized by containing at least one selected from (d) amino acids and salts thereof. Yes. However, when the above-described plating bath continues to be electrolyzed, amino acids are decomposed, so that a glossy plating film cannot be obtained. In particular, since the amino acid is rapidly decomposed on the cathode (for example, a steel substrate), a stable and dense copper-zinc alloy plating film cannot be formed on the cathode.

特開昭59−215492号公報JP 59-215492 A 特開昭59−50191号公報JP 59-50191 A 特公平3−20478号No. 3-20478

本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、被めっき体に対して安定して密着性及び平滑性に優れた緻密な銅−亜鉛合金めっき皮膜を直接形成でき、しかも人体や環境に対する悪影響が少ない安全性に優れた銅−亜鉛合金電気めっき液を提供する。また、電解中の電流密度によらず該めっき皮膜の組成が一定であって、長時間連続電解を行った後においても、光沢のあるめっき皮膜が得られる銅−亜鉛合金電気めっき液を提供する。   The present invention has been made in view of the current state of the prior art described above, and its main purpose is a dense copper-zinc alloy plating film that is stable and excellent in adhesion and smoothness to the object to be plated. A copper-zinc alloy electroplating solution excellent in safety can be provided which can be directly formed and has little adverse effects on the human body and the environment. Also provided is a copper-zinc alloy electroplating solution in which the composition of the plating film is constant regardless of the current density during electrolysis, and a glossy plating film can be obtained even after continuous electrolysis for a long time. .

本発明者は、上記のような技術の現状に鑑みて鋭意研究を進めた結果、めっき液として特定の化合物を用いることによって、上記した目的を達成し得る銅−亜鉛合金電気めっきが得られることを見出し、ここに本発明を完成するに至った。   As a result of intensive studies in view of the current state of the art as described above, the present inventor can obtain a copper-zinc alloy electroplating that can achieve the above-described object by using a specific compound as a plating solution. The present invention was completed here.

即ち、本発明は、下記の銅−亜鉛合金電気めっき液、及び該合金電気めっき液を用いるめっき方法を提供するものである。
1. 下記(a)〜(f)に示す成分を含有する、銅−亜鉛合金電気めっき液:
(a)銅化合物、
(b)亜鉛化合物、
(c)ポリリン酸及びその塩から選ばれた少なくとも1種の化合物、
(d)オキシカルボン酸及びその塩から選ばれた少なくとも1種の化合物、
(e)α−アミノ酸のアラルキルエステル、
(f)α−アミノ酸のアラルキルエステルのスルホンアミド化物。
2. 前記(e)成分が、式(1):
That is, the present invention provides the following copper-zinc alloy electroplating solution and a plating method using the alloy electroplating solution.
1. Copper-zinc alloy electroplating solution containing the components shown in the following (a) to (f):
(A) a copper compound,
(B) a zinc compound,
(C) at least one compound selected from polyphosphoric acid and salts thereof,
(D) at least one compound selected from oxycarboxylic acids and salts thereof;
(E) an aralkyl ester of an α-amino acid,
(F) A sulfonamidation product of an aralkyl ester of an α-amino acid.
2. The component (e) is represented by the formula (1):

Figure 2011174100
Figure 2011174100

[式中、Rは、 [Wherein R 1 is

Figure 2011174100
Figure 2011174100

−H、−CH、−CH(CH、−CHCH(CH、−CH(CH)CHCH、−CH−Ph(該Phはフェニル基)、−CHCHSHCH、−CH−Ph’−OH(該Ph’はフェニレン基)、−CHOH、−CH(CH)OH、−CHSH、−CHCONH、−CHCHCONH、−(CHNH、−(CHNHC(=NH)NH、−CHCOOH、−CHCHCOOH、又は−(CH−であって式(1)中のアミノ基と結合して環状を形成する基であり、
は、置換基を有することのあるアラルキル基である。]
で表されるα−アミノ酸のアラルキルエステルである、上記項1に記載の銅−亜鉛合金電気めっき液。
3. 前記Rが、
-H, -CH 3, -CH (CH 3) 2, -CH 2 CH (CH 3) 2, -CH (CH 3) CH 2 CH 3, -CH 2 -Ph ( wherein Ph is phenyl group), - CH 2 CH 2 SHCH 3, -CH 2 -Ph'-OH ( wherein Ph 'is a phenylene group), - CH 2 OH, -CH 2 (CH 3) OH, -CH 2 SH, -CH 2 CONH 2, - CH 2 CH 2 CONH 2, - (CH 2) 4 NH 2, - (CH 2) 3 NHC (= NH) NH 2, -CH 2 COOH, -CH 2 CH 2 COOH, or - (CH 2) 3 - And is a group that combines with the amino group in formula (1) to form a ring,
R 2 is an aralkyl group that may have a substituent. ]
The copper-zinc alloy electroplating solution according to Item 1, which is an aralkyl ester of an α-amino acid represented by:
3. R 1 is

Figure 2011174100
Figure 2011174100

−CHCONH、−CHCHCONH、−(CHNH又は−(CHNHC(=NH)NHである、上記項2に記載の銅−亜鉛合金電気めっき液。
4. 前記Rが、−R−Rであって、
前記Rは、炭素数1〜4のアルキレン基であり、
前記Rは、アリール基(該アリール基は、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数2〜5のアルカノイル基、炭素数2〜5のアルキルカルボニルオキシ基、炭素数2〜5のアルコキシカルボニル基、フェニル基、置換フェニル基、置換シリル基、シアノ基、ニトロ基及びスルホ基から選ばれる1個又は2個以上の置換基を有してもよい)
である、上記項2又は3に記載の銅−亜鉛合金電気めっき液。
5. 前記Rのアリール基が、フェニル基、ナフチル基又はアントリル基である、上記項4に記載の銅−亜鉛合金電気めっき液。
6. 前記(f)成分が、式(2):
The copper-zinc alloy electricity according to item 2, which is —CH 2 CONH 2 , —CH 2 CH 2 CONH 2 , — (CH 2 ) 4 NH 2 or — (CH 2 ) 3 NHC (═NH) NH 2. Plating solution.
4). R 2 is —R 3 —R 4 ,
R 3 is an alkylene group having 1 to 4 carbon atoms,
R 4 represents an aryl group (the aryl group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkanoyl group having 2 to 5 carbon atoms, or an alkyl having 2 to 5 carbon atoms). It may have one or more substituents selected from a carbonyloxy group, an alkoxycarbonyl group having 2 to 5 carbon atoms, a phenyl group, a substituted phenyl group, a substituted silyl group, a cyano group, a nitro group, and a sulfo group. Good)
Item 4. The copper-zinc alloy electroplating solution according to Item 2 or 3 above.
5. The aryl group of R 4 is a phenyl group, a naphthyl group or an anthryl group, copper according to Item 4 - zinc alloy electroplating solution.
6). The component (f) is represented by the formula (2):

Figure 2011174100
Figure 2011174100

[式中、Rは、 [Wherein R 5 represents

Figure 2011174100
Figure 2011174100

−H、−CH、−CH(CH、−CHCH(CH、−CH(CH)CHCH、−CH−Ph(該Phはフェニル基)、−CHCHSHCH、−CH−Ph’−OH(該Ph’はフェニレン基)、−CHOH、−CH(CH)OH、−CHSH、−CHCONH、−CHCHCONH、−(CHNH、−(CHNHC(=NH)NH、−CHCOOH、−CHCHCOOH、又は−(CH−であって式(2)中のアミノ基と結合して環状を形成する基であり、
は、置換基を有することのあるアラルキル基であり、
は、置換基を有することのあるアリール基である。]
で表されるα−アミノ酸のアラルキルエステルのスルホンアミド化物である、上記項1〜5のいずれかに記載の銅−亜鉛合金電気めっき液。
7. 前記Rが、
-H, -CH 3, -CH (CH 3) 2, -CH 2 CH (CH 3) 2, -CH (CH 3) CH 2 CH 3, -CH 2 -Ph ( wherein Ph is phenyl group), - CH 2 CH 2 SHCH 3, -CH 2 -Ph'-OH ( wherein Ph 'is a phenylene group), - CH 2 OH, -CH 2 (CH 3) OH, -CH 2 SH, -CH 2 CONH 2, - CH 2 CH 2 CONH 2, - (CH 2) 4 NH 2, - (CH 2) 3 NHC (= NH) NH 2, -CH 2 COOH, -CH 2 CH 2 COOH, or - (CH 2) 3 - And is a group that combines with the amino group in formula (2) to form a ring,
R 6 is an aralkyl group that may have a substituent,
R 7 is an aryl group that may have a substituent. ]
Item 6. The copper-zinc alloy electroplating solution according to any one of Items 1 to 5, which is a sulfonamidation product of an aralkyl ester of an α-amino acid represented by:
7). R 5 is

Figure 2011174100
Figure 2011174100

−CHCONH、−CHCHCONH、−(CHNH又は−(CHNHC(=NH)NHである、上記項6に記載の銅−亜鉛合金電気めっき液。
8. 前記Rのアリール基が、フェニル基、ナフチル基又はアントリル基である、上記項6又は7に記載の銅−亜鉛合金電気めっき液。
9. 前記Rが、−R−Rであって、
前記Rは、炭素数1〜4のアルキレン基であり、
前記Rは、アリール基(該アリール基は、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数2〜5のアルカノイル基、炭素数2〜5のアルキルカルボニルオキシ基、炭素数2〜5のアルコキシカルボニル基、フェニル基、置換フェニル基、置換シリル基、シアノ基、ニトロ基及びスルホ基から選ばれる1個又は2個以上の置換基を有してもよい)
である、上記項6〜8のいずれかに記載の銅−亜鉛合金電気めっき液。
10. 前記Rのアリール基が、フェニル基、ナフチル基又はアントリル基である、上記項9に記載の銅−亜鉛合金電気めっき液。
11. 前記(e)成分の含有量が、0.02〜5g/Lである、上記項1〜10のいずれかに記載の銅−亜鉛合金電気めっき液。
12. 前記(f)成分の含有量が、0.5〜4g/Lである、上記項1〜11のいずれかに記載の銅−亜鉛合金電気めっき液。
13. 前記オキシカルボン酸が、グリコール酸、乳酸、リンゴ酸、クエン酸、酒石酸、グルコン酸及びグルコヘプトン酸からなる群から選ばれた少なくとも一種である、上記項1〜12のいずれかに記載の銅−亜鉛合金電気めっき液。
14. コバルト金属塩をさらに含有する、上記項1〜13のいずれかに記載の銅−亜鉛合金電気めっき液。
15. 上記項1〜14のいずれかに記載の銅−亜鉛合金電気めっき液中において、金属、プラスチック又はセラミックスを陰極として通電することを特徴とする、銅−亜鉛合金電気めっき方法。
16. 上記項15に記載の方法によって銅−亜鉛合金電気めっきが皮膜された、タイヤ用スチールコード。
The copper-zinc alloy electricity according to the above item 6, which is —CH 2 CONH 2 , —CH 2 CH 2 CONH 2 , — (CH 2 ) 4 NH 2 or — (CH 2 ) 3 NHC (═NH) NH 2. Plating solution.
8). Item 8. The copper-zinc alloy electroplating solution according to Item 6 or 7, wherein the aryl group of R 7 is a phenyl group, a naphthyl group, or an anthryl group.
9. R 6 is —R 8 —R 9 and
R 8 is an alkylene group having 1 to 4 carbon atoms,
R 9 represents an aryl group (the aryl group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkanoyl group having 2 to 5 carbon atoms, or an alkyl having 2 to 5 carbon atoms). It may have one or more substituents selected from a carbonyloxy group, an alkoxycarbonyl group having 2 to 5 carbon atoms, a phenyl group, a substituted phenyl group, a substituted silyl group, a cyano group, a nitro group, and a sulfo group. Good)
The copper-zinc alloy electroplating solution according to any one of Items 6 to 8, which is
10. The aryl group of R 9 is a phenyl group, a naphthyl group or an anthryl group, copper according to Item 9 - zinc alloy electroplating solution.
11. Item 11. The copper-zinc alloy electroplating solution according to any one of Items 1 to 10, wherein the content of the component (e) is 0.02 to 5 g / L.
12 The copper-zinc alloy electroplating solution according to any one of Items 1 to 11, wherein the content of the component (f) is 0.5 to 4 g / L.
13. The copper-zinc according to any one of Items 1 to 12, wherein the oxycarboxylic acid is at least one selected from the group consisting of glycolic acid, lactic acid, malic acid, citric acid, tartaric acid, gluconic acid, and glucoheptonic acid. Alloy electroplating solution.
14 Item 14. The copper-zinc alloy electroplating solution according to any one of Items 1 to 13, further containing a cobalt metal salt.
15. The copper-zinc alloy electroplating method according to any one of the above items 1 to 14, wherein a current is supplied with a metal, plastic, or ceramic as a cathode in the copper-zinc alloy electroplating solution.
16. 16. A steel cord for tire, which is coated with a copper-zinc alloy electroplating by the method according to item 15.

本発明の銅−亜鉛合金電気めっき液は、下記(a)〜(f)成分、
(a)銅化合物、
(b)亜鉛化合物、
(c)ポリリン酸及びその塩から選ばれた少なくとも1種の化合物、
(d)オキシカルボン酸及びその塩から選ばれた少なくとも1種の化合物、
(e)α−アミノ酸のアラルキルエステル、
(f)α−アミノ酸のアラルキルエステルのスルホンアミド化物、
を含有することを特徴とするものである。
The copper-zinc alloy electroplating solution of the present invention comprises the following components (a) to (f):
(A) a copper compound,
(B) a zinc compound,
(C) at least one compound selected from polyphosphoric acid and salts thereof,
(D) at least one compound selected from oxycarboxylic acids and salts thereof;
(E) an aralkyl ester of an α-amino acid,
(F) a sulfonamidation product of an aralkyl ester of an α-amino acid,
It is characterized by containing.

以下、本発明の銅−亜鉛合金電気めっき液について具体的に説明する。   Hereinafter, the copper-zinc alloy electroplating solution of the present invention will be specifically described.

銅−亜鉛合金電気めっき液の組成
(a)銅化合物
本発明の銅−亜鉛合金電気めっき液では、公知の銅化合物を使用することができる。例えば、ピロリン酸銅、硫酸銅、塩化銅、スルファミン酸銅、シュウ酸銅、酢酸銅、塩基性炭酸銅、臭化銅、蟻酸銅、水酸化銅、酸化銅、リン酸銅、ケイフッ化銅、ステアリン酸銅、クエン酸銅等が挙げられる。また、上記した銅化合物の水和物を使用することもできる。これらの銅化合物は、一種単独又は二種以上混合して用いることができる。
Composition of Copper-Zinc Alloy Electroplating Solution (a) Copper Compound A known copper compound can be used in the copper-zinc alloy electroplating solution of the present invention. For example, copper pyrophosphate, copper sulfate, copper chloride, copper sulfamate, copper oxalate, copper acetate, basic copper carbonate, copper bromide, copper formate, copper hydroxide, copper oxide, copper phosphate, copper silicofluoride, Examples include copper stearate and copper citrate. Moreover, the hydrate of a copper compound mentioned above can also be used. These copper compounds can be used individually by 1 type or in mixture of 2 or more types.

本発明の銅−亜鉛合金電気めっき液に含有される銅イオンの濃度については、密着性及び平滑性に優れた緻密なめっき皮膜を得るために、2〜40g/L(銅金属分換算)の範囲であることが好ましく、6〜12g/L(銅金属分換算)がより好ましい。   About the density | concentration of the copper ion contained in the copper-zinc alloy electroplating liquid of this invention, in order to obtain a precise plating film excellent in adhesiveness and smoothness, it is 2-40 g / L (in copper metal content conversion). It is preferable that it is a range, and 6-12 g / L (in copper metal content conversion) is more preferable.

(b)亜鉛化合物
本発明の銅−亜鉛合金電気めっき液では、公知の銅化合物を使用することができる。例えば、ピロリン酸亜鉛、硫酸亜鉛、塩化亜鉛、スルファミン酸亜鉛、酸化亜鉛、酢酸亜鉛、臭化亜鉛、塩基性炭酸亜鉛、シュウ酸亜鉛、リン酸亜鉛、ケイフッ化亜鉛、ステアリン酸亜鉛、乳酸亜鉛等が挙げられる。また、上記した亜鉛化合物の水和物を使用することもできる。これらの亜鉛化合物は、一種単独又は二種以上混合して用いることができる。
(B) Zinc Compound In the copper-zinc alloy electroplating solution of the present invention, a known copper compound can be used. For example, zinc pyrophosphate, zinc sulfate, zinc chloride, zinc sulfamate, zinc oxide, zinc acetate, zinc bromide, basic zinc carbonate, zinc oxalate, zinc phosphate, zinc silicofluoride, zinc stearate, zinc lactate, etc. Is mentioned. Moreover, the above-mentioned zinc compound hydrate can also be used. These zinc compounds can be used singly or in combination of two or more.

本発明の銅−亜鉛合金電気めっき液に含有される亜鉛イオンの濃度については、密着性及び平滑性に優れた緻密なめっき皮膜を得るために、0.5〜30g/L(亜鉛金属分換算)の範囲であることが好ましく、1.5〜5g/L(亜鉛金属分換算)がより好ましい。   About the density | concentration of the zinc ion contained in the copper-zinc alloy electroplating liquid of this invention, in order to obtain the precise plating film excellent in adhesiveness and smoothness, 0.5-30 g / L (Zinc metal content conversion) ) Is preferable, and 1.5 to 5 g / L (in terms of zinc metal content) is more preferable.

なお、本発明の銅−亜鉛合金電気めっき液中における銅と亜鉛の重量比は、亜鉛(亜鉛金属分換算)1重量部に対して、銅(銅金属分換算)1.5〜5重量部とすることが好ましい。   In addition, the weight ratio of copper and zinc in the copper-zinc alloy electroplating solution of the present invention is 1.5 to 5 parts by weight of copper (in terms of copper metal) relative to 1 part by weight of zinc (in terms of zinc metal). It is preferable that

(c)ポリリン酸及びその塩から選ばれた少なくとも1種の化合物
本発明の銅−亜鉛合金電気めっき液では、ポリリン酸及びその塩から選ばれた少なくとも1種の化合物を使用する。該化合物を使用することにより、高pH領域で銅イオン及び亜鉛イオンと安定な錯体を形成することができる。
(C) At least one compound selected from polyphosphoric acid and a salt thereof In the copper-zinc alloy electroplating solution of the present invention, at least one compound selected from polyphosphoric acid and a salt thereof is used. By using the compound, a stable complex can be formed with copper ions and zinc ions in a high pH region.

本発明の銅−亜鉛合金電気めっき液では、公知のポリリン酸及びその塩を使用することができる。例えば、ピロリン酸、トリポリリン酸、テトラポリリン酸、メタリン酸、1−ヒドロキシエタン−1,1−ジホスホン酸、アミノトリメチレンホスホン酸、エチレンジアミンテトラメチレンホスホン酸、フィチン酸、トリメタリン酸、テトラメタリン酸、ヘキサメタリン酸等のポリリン酸が挙げられる。また、ポリリン酸塩としては、上記したポリリン酸のナトリウム塩、カリウム塩、アンモニウム塩、カルシウム塩、マグネシウム塩等が挙げられる。これらのポリリン酸及びその塩は、一種単独又は二種以上混合して用いることができる。   In the copper-zinc alloy electroplating solution of the present invention, known polyphosphoric acid and salts thereof can be used. For example, pyrophosphoric acid, tripolyphosphoric acid, tetrapolyphosphoric acid, metaphosphoric acid, 1-hydroxyethane-1,1-diphosphonic acid, aminotrimethylenephosphonic acid, ethylenediaminetetramethylenephosphonic acid, phytic acid, trimetaphosphoric acid, tetrametaphosphoric acid, hexametalin And polyphosphoric acid such as acid. Examples of the polyphosphate include the sodium salt, potassium salt, ammonium salt, calcium salt, and magnesium salt of polyphosphoric acid described above. These polyphosphoric acids and salts thereof can be used singly or in combination of two or more.

本発明の銅−亜鉛合金電気めっき液に含有されるポリリン酸及びその塩の濃度については、150〜400g/Lの範囲であることが好ましく、250〜380g/Lがより好ましい。   About the density | concentration of the polyphosphoric acid and its salt contained in the copper-zinc alloy electroplating liquid of this invention, it is preferable that it is the range of 150-400 g / L, and 250-380 g / L is more preferable.

(d)オキシカルボン酸及びその塩から選ばれた少なくとも1種の化合物
本発明の銅−亜鉛合金電気めっき液では、オキシカルボン酸及びその塩から選ばれた少なくとも1種の化合物を使用する。該化合物を使用することにより、高pH領域で銅イオン及び亜鉛イオンと安定な錯体を形成することができる。また、該化合物は、高いpH領域で優れたpH緩衝能を有する。例えば、めっき皮膜を形成する際にめっき素地(カソード)近傍から水素が多く発生しても、銅イオン及び亜鉛イオンと安定して錯体形成するとともに、pHが上昇することを防止することができる。そのため、めっき素地近傍における水酸化銅及び/又は水酸化亜鉛からなる沈殿物の発生を防止することができる。
(D) At least one compound selected from oxycarboxylic acid and salts thereof In the copper-zinc alloy electroplating solution of the present invention, at least one compound selected from oxycarboxylic acids and salts thereof is used. By using the compound, a stable complex can be formed with copper ions and zinc ions in a high pH region. Further, the compound has an excellent pH buffering ability in a high pH region. For example, even when a large amount of hydrogen is generated from the vicinity of the plating base (cathode) when forming the plating film, it is possible to stably form a complex with copper ions and zinc ions and to prevent the pH from rising. Therefore, generation | occurrence | production of the deposit which consists of copper hydroxide and / or zinc hydroxide in the plating base vicinity can be prevented.

本発明の銅−亜鉛合金電気めっき液では、公知のオキシカルボン酸及びその塩を使用することができる。例えば、グリコール酸、乳酸、リンゴ酸、クエン酸、酒石酸、グルコン酸、グルコヘプトン酸等のオキシカルボン酸が挙げられる。また、オキシカルボン酸塩としては、上記したオキシカルボン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩、カルシウム塩、マグネシウム塩等が挙げられる。なお、酒石酸塩の具体例として吐酒石(酒石酸アンチモニルカリウム)、ロッシェル塩(酒石酸ナトリウムカリウム)等が挙げられるが、いずれも使用が可能である。これらのオキシカルボン酸及びその塩は、一種単独又は二種以上混合して用いることができる。   In the copper-zinc alloy electroplating solution of the present invention, known oxycarboxylic acids and salts thereof can be used. Examples thereof include oxycarboxylic acids such as glycolic acid, lactic acid, malic acid, citric acid, tartaric acid, gluconic acid, and glucoheptonic acid. Examples of the oxycarboxylate include lithium salt, sodium salt, potassium salt, ammonium salt, calcium salt, and magnesium salt of oxycarboxylic acid described above. Specific examples of tartrate include tartrate (potassium antimonyl potassium tartrate), Rochelle salt (potassium sodium tartrate), and any of these can be used. These oxycarboxylic acids and salts thereof can be used singly or in combination of two or more.

本発明の銅−亜鉛合金電気めっき液に含有されるオキシカルボン酸及びその塩の濃度については、50〜400g/Lの範囲であることが好ましく、60〜100g/Lがより好ましい。   About the density | concentration of the oxycarboxylic acid and its salt contained in the copper-zinc alloy electroplating liquid of this invention, it is preferable that it is the range of 50-400 g / L, and 60-100 g / L is more preferable.

(e)α−アミノ酸のアラルキルエステル
本発明の銅−亜鉛合金電気めっき液では、α−アミノ酸のアラルキルエステルを使用する。該化合物は、カソードに吸着しながら銅イオンと安定な錯体を形成し、銅のめっき析出速度(還元速度)を低下させる。そのため、銅のめっき速度と亜鉛のめっき速度を制御することが可能となり、広範囲の電流密度で一定組成の銅-亜鉛合金めっき皮膜を得ることができる。
(E) Aralkyl ester of α-amino acid In the copper-zinc alloy electroplating solution of the present invention, an aralkyl ester of α-amino acid is used. The compound forms a stable complex with copper ions while adsorbing to the cathode, and reduces the copper plating deposition rate (reduction rate). Therefore, the copper plating rate and the zinc plating rate can be controlled, and a copper-zinc alloy plating film having a constant composition can be obtained with a wide range of current densities.

また、該化合物は、分解されやすいカルボキシル基(−COOH)中の水素原子を、前述の分解されにくいアラルキル基で置換しているため、カソード吸着時において加水分解されることも、アノード近傍で酸化分解されることもない。そのため、陰極上に安定して長時間連続的に銅−亜鉛合金めっき皮膜を形成させることができる。   In addition, since the compound substitutes a hydrogen atom in a carboxyl group (—COOH) that is easily decomposed with the aforementioned aralkyl group that is difficult to decompose, it can be hydrolyzed at the time of cathode adsorption or oxidized near the anode. It will not be disassembled. Therefore, a copper-zinc alloy plating film can be formed on the cathode stably and continuously for a long time.

式(1)で表されるα−アミノ酸のアラルキルエステルは、例えば下記反応式に示されるように、2段階の工程により製造することができる。   The aralkyl ester of an α-amino acid represented by the formula (1) can be produced by a two-step process, for example, as shown in the following reaction formula.

Figure 2011174100
Figure 2011174100

式(1)で表される化合物の式中、Rは、 In the formula of the compound represented by the formula (1), R 1 is

Figure 2011174100
Figure 2011174100

−H、−CH、−CH(CH、−CHCH(CH、−CH(CH)CHCH、−CH−Ph(該Phはフェニル基)、−CHCHSHCH、−CH−Ph’−OH(該Ph’はフェニレン基)、−CHOH、−CH(CH)OH、−CHSH、−CHCONH、−CHCHCONH、−(CHNH、−(CHNHC(=NH)NH、−CHCOOH、−CHCHCOOH、又は−(CH−であって式(1)中の−NH基と結合して環状を形成する基を表す。なお、Rが−(CH−であって式(1)中の−NH基と結合して環状を形成する基である場合の該α−アミノ酸のアラルキルエステル(1)は、式(1a): -H, -CH 3, -CH (CH 3) 2, -CH 2 CH (CH 3) 2, -CH (CH 3) CH 2 CH 3, -CH 2 -Ph ( wherein Ph is phenyl group), - CH 2 CH 2 SHCH 3, -CH 2 -Ph'-OH ( wherein Ph 'is a phenylene group), - CH 2 OH, -CH 2 (CH 3) OH, -CH 2 SH, -CH 2 CONH 2, - CH 2 CH 2 CONH 2, - (CH 2) 4 NH 2, - (CH 2) 3 NHC (= NH) NH 2, -CH 2 COOH, -CH 2 CH 2 COOH, or - (CH 2) 3 - And a group that forms a ring by bonding to the —NH 2 group in formula (1). The aralkyl ester (1) of the α-amino acid when R 1 is — (CH 2 ) 3 — and is a group that combines with the —NH 2 group in formula (1) to form a ring, Formula (1a):

Figure 2011174100
Figure 2011174100

で表される。 It is represented by

の中でも、 Among R 1 ,

Figure 2011174100
Figure 2011174100

−CHCONH、−CHCHCONH、−(CHNH又は−(CHNHC(=NH)NHが好ましい。上記した基は、それぞれR中に−NH−基を有するため、めっき皮膜の成長面により安定して吸着することができる。そのため、銅と亜鉛のめっき速度を制御し、かつ安定な組成の合金皮膜を形成することが可能となる。 -CH 2 CONH 2, -CH 2 CH 2 CONH 2, - (CH 2) 4 NH 2 or - (CH 2) 3 NHC ( = NH) NH 2 are preferred. Since each of the groups described above has a —NH— group in R 1 , it can be adsorbed more stably on the growth surface of the plating film. Therefore, it is possible to control the plating rate of copper and zinc and to form an alloy film having a stable composition.

式(1)で表される化合物の式中、−Rは置換基を有することのあるアラルキル基であり、より具体的には、−R−Rで表すことができる。 In the formula of the compound represented by the formula (1), —R 2 is an aralkyl group that may have a substituent, and more specifically can be represented by —R 3 —R 4 .

前記Rは、メチレン基(−CH−)、エチレン基(−CHCH−)等の炭素数1〜4のアルキレン基を表す。好ましくは、炭素数1〜2のアルキレン基である。 R 3 represents an alkylene group having 1 to 4 carbon atoms such as a methylene group (—CH 2 —) and an ethylene group (—CH 2 CH 2 —). Preferably, it is a C1-C2 alkylene group.

前記Rはハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数2〜5のアルカノイル基、炭素数2〜5のアルキルカルボニルオキシ基、炭素数2〜5のアルコキシカルボニル基、フェニル基、置換フェニル基、置換シリル基、シアノ基、ニトロ基及びスルホ基から選ばれる1個又は2個以上の置換基を有してもよいアリール基を表す。該アリール基は、(1)で表されるα−アミノ酸のアラルキルエステル中、側鎖として結合されるため、(3)で表されるアミノ酸中のカルボキシル基がめっき電解によって分解することを防ぐ。 R 4 is a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkanoyl group having 2 to 5 carbon atoms, an alkylcarbonyloxy group having 2 to 5 carbon atoms, or 2 to 5 carbon atoms. Represents an aryl group which may have one or more substituents selected from an alkoxycarbonyl group, a phenyl group, a substituted phenyl group, a substituted silyl group, a cyano group, a nitro group and a sulfo group. Since the aryl group is bonded as a side chain in the aralkyl ester of the α-amino acid represented by (1), the carboxyl group in the amino acid represented by (3) is prevented from being decomposed by plating electrolysis.

アリール基としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基等が挙げられる。好ましくは、フェニル基、ナフチル基又はアントリル基である。   Examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. Preferably, they are a phenyl group, a naphthyl group, or an anthryl group.

ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。   Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

炭素数1〜4のアルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、c−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基、c−ブチル基等が挙げられる。なお、本願明細書において、「n」はノルマル、「i」はイソ、「s」はセカンダリー、「t」はターシャリー、「c」はシクロを意味する。   Examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, c-propyl group, n-butyl group, i-butyl group, s-butyl group, and t-butyl. Group, c-butyl group and the like. In the present specification, “n” means normal, “i” means iso, “s” means secondary, “t” means tertiary, and “c” means cyclo.

炭素数1〜4のアルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、c−プロポキシ基、n−ブトキシ基、i−ブトキシ基、s−ブトキシ基、t−ブトキシ基、c−ブトキシ基等が挙げられる。   Examples of the alkoxy group having 1 to 4 carbon atoms include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, c-propoxy group, n-butoxy group, i-butoxy group, s-butoxy group, and t-butoxy group. Group, c-butoxy group and the like.

炭素数2〜5のアルカノイル基としては、アセチル基、エチルカルボニル基、n−プロピルカルボニル基、i−プロピルカルボニル基、c−プロピルカルボニル基、n−ブチルカルボニル基、i−ブチルカルボニル基、s−ブチルカルボニル基、t−ブチルカルボニル基、c−ブチルカルボニル基等が挙げられる。   Examples of the alkanoyl group having 2 to 5 carbon atoms include acetyl group, ethylcarbonyl group, n-propylcarbonyl group, i-propylcarbonyl group, c-propylcarbonyl group, n-butylcarbonyl group, i-butylcarbonyl group, s- Examples thereof include a butylcarbonyl group, a t-butylcarbonyl group, and a c-butylcarbonyl group.

炭素数2〜5のアルキルカルボニルオキシ基としては、メチルカルボニルオキシ基、エチルカルボニルオキシ基、n−プロポキシカルボニルオキシ基、i−プロポキシカルボニルオキシ基、c−プロポキシカルボニルオキシ基、n−ブトキシカルボニルオキシ基、i−ブトキシカルボニルオキシ基、s−ブトキシカルボニルオキシ基、t−ブトキシカルボニルオキシ基、c−ブトキシカルボニルオキシ基等が挙げられる。   Examples of the alkylcarbonyloxy group having 2 to 5 carbon atoms include methylcarbonyloxy group, ethylcarbonyloxy group, n-propoxycarbonyloxy group, i-propoxycarbonyloxy group, c-propoxycarbonyloxy group, and n-butoxycarbonyloxy group. I-butoxycarbonyloxy group, s-butoxycarbonyloxy group, t-butoxycarbonyloxy group, c-butoxycarbonyloxy group and the like.

炭素数2〜5のアルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、i−プロポキシカルボニル基、c−プロポキシカルボニル基、n−ブトキシカルボニル基、i−ブトキシカルボニル基、s−ブトキシカルボニル基、t−ブトキシカルボニル基、c−ブトキシカルボニル基等が挙げられる。   Examples of the alkoxycarbonyl group having 2 to 5 carbon atoms include methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, i-propoxycarbonyl group, c-propoxycarbonyl group, n-butoxycarbonyl group, i-butoxycarbonyl group, Examples thereof include s-butoxycarbonyl group, t-butoxycarbonyl group, c-butoxycarbonyl group and the like.

置換フェニル基としては、例えば、フルオロフェニル基、クロロフェニル基、ブロモフェニル基、トリル基、エチルフェニル基、t−ブチルフェニル基、メトキシフェニル基(いずれもオルト体、メタ体、パラ体が存在する。)、3,5−ジメチルフェニル基等が挙げられる。   Examples of the substituted phenyl group include a fluorophenyl group, a chlorophenyl group, a bromophenyl group, a tolyl group, an ethylphenyl group, a t-butylphenyl group, and a methoxyphenyl group (all of which are ortho, meta, and para). ), 3,5-dimethylphenyl group and the like.

置換シリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリn−プロピルシリル基、トリi−プロピルシリル基、トリn−ブチルシリル基、トリi−ブチルシリル基、トリn−ヘキシルシリル基、ジメチルエチルシリル基、ジメチルn−プロピルシリル基、ジメチルn−ブチルシリル基、ジメチルi−ブチルシリル基、ジメチルt−ブチルシリル基、ジメチルn−ペンチルシリル基、ジメチルn−オクチルシリル基、ジメチルc−ヘキシルシリル基、ジメチルテキシルシリル基、ジメチル−2,3−ジメチルプロピルシリル基、ジメチル−2−(ビシクロヘプチル)シリル基、ジメチルベンジルシリル基、ジメチルフェニルシリル基、ジメチルp−トリルシリル基、ジメチルフロフェメシルシリル基、メチルジフェニルシリル基、トリフェニルシリル基、ジフェニルt−ブチルシリル基、トリベンジルシリル基、ジフェニルビニルシリル基、ジフェニルn−ブチルシリル基、フェニルメチルビニルシリル基等を挙げることができる。   Examples of the substituted silyl group include trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, tri-i-propylsilyl group, tri-n-butylsilyl group, tri-i-butylsilyl group, tri-n-hexylsilyl group, dimethylethyl Silyl group, dimethyl n-propylsilyl group, dimethyl n-butylsilyl group, dimethyl i-butylsilyl group, dimethyl t-butylsilyl group, dimethyl n-pentylsilyl group, dimethyl n-octylsilyl group, dimethyl c-hexylsilyl group, dimethyl Texylsilyl group, dimethyl-2,3-dimethylpropylsilyl group, dimethyl-2- (bicycloheptyl) silyl group, dimethylbenzylsilyl group, dimethylphenylsilyl group, dimethyl p-tolylsilyl group, dimethylfurofemesylsilyl group, Methyldiphenyl Lil group, triphenylsilyl group, diphenyl t- butylsilyl group include tribenzylsilyl group, diphenyl vinyl silyl group, diphenyl n- butylsilyl group, etc. phenylmethyl vinyl silyl group.

これらの式(1)で表されるα−アミノ酸のアラルキルエステルは、一種単独又は二種以上混合して用いることができる。   These aralkyl esters of α-amino acids represented by the formula (1) can be used singly or in combination of two or more.

本発明の銅−亜鉛合金電気めっき液に含有される(e)成分の濃度については、0.02〜5g/Lの範囲であることが好ましく、0.1〜2g/Lがより好ましい。   About the density | concentration of the (e) component contained in the copper-zinc alloy electroplating liquid of this invention, it is preferable that it is the range of 0.02-5 g / L, and 0.1-2 g / L is more preferable.

以下に、工程(A)及び工程(B)の各工程について詳細に説明する。
[工程(A)]
工程(A)によれば、式(3)で表される化合物をエステル化させることにより、式(4)で表されるα−アミノ酸から誘導されるエステル化合物を得ることができる。工程(A)の反応は、式(3)で表される化合物と、式(5)で表される炭素数1〜4の低級アルコールとを反応させることにより実施される。工程(A)の反応式は、以下のように示される。
Below, each process of a process (A) and a process (B) is demonstrated in detail.
[Step (A)]
According to the step (A), an ester compound derived from an α-amino acid represented by the formula (4) can be obtained by esterifying the compound represented by the formula (3). The reaction in step (A) is carried out by reacting the compound represented by formula (3) with the lower alcohol having 1 to 4 carbon atoms represented by formula (5). The reaction formula of the step (A) is shown as follows.

Figure 2011174100
Figure 2011174100

式(3)で表される化合物としては、α−アミノ酸を使用することができる。式(3)中のRは、前記に同じである。式(3)中のRと、その場合における式(3)で表される化合物を、以下の対応表で示す。 As the compound represented by the formula (3), an α-amino acid can be used. R 1 in formula (3) is the same as described above. The compounds represented by R 1 in formula (3) and formula (3) in that case are shown in the following correspondence table.

Figure 2011174100
Figure 2011174100

式(5)で表されるアルコール中のR’は、炭素数1〜4のアルキル基を示す。例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基等が挙げられる。 R 3 ′ in the alcohol represented by the formula (5) represents an alkyl group having 1 to 4 carbon atoms. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, an s-butyl group, and a t-butyl group.

式(5)で表されるアルコールの使用量は、適宜選択可能であるが、通常は式(3)で表される化合物1モルに対して、1〜10モルであり、好ましくは2〜4モルである。   Although the usage-amount of the alcohol represented by Formula (5) can be selected suitably, it is 1-10 mol normally with respect to 1 mol of compounds represented by Formula (3), Preferably it is 2-4 Is a mole.

工程(A)の反応においては、触媒の存在下で反応を行うことが好ましい。触媒の存在下で反応を行うことにより、反応を速やかに進行させることができる。触媒としては、塩化水素ガス、フッ化水素、臭化水素、ヨウ化水素等のハロゲン化水素を使用することができる。   In the reaction of step (A), the reaction is preferably performed in the presence of a catalyst. By performing the reaction in the presence of a catalyst, the reaction can be rapidly advanced. As the catalyst, hydrogen halide such as hydrogen chloride gas, hydrogen fluoride, hydrogen bromide, hydrogen iodide can be used.

触媒の使用量は、適宜選択可能であるが、通常は式(3)で表される化合物1モルに対して5〜20モルであり、好ましくは10〜15モルである。   Although the usage-amount of a catalyst can be selected suitably, it is 5-20 mol normally with respect to 1 mol of compounds represented by Formula (3), Preferably it is 10-15 mol.

工程(A)の反応は、反応容器内に、式(3)で表される化合物及び式(5)で表されるアルコールを投入して行われる。その際、適宜触媒を投入して反応を促進させることができる。   The reaction in the step (A) is performed by charging the compound represented by the formula (3) and the alcohol represented by the formula (5) into a reaction vessel. At that time, a catalyst can be appropriately added to promote the reaction.

反応温度は、通常60〜120℃であり、80〜95℃が好ましい。反応温度が60〜120℃であれば、式(3)で表される化合物を分解させることなく、高い収率(例えば90%以上)で、式(4)で表される化合物を得ることが可能となる。反応時間は、通常30分〜5時間程度であり、好ましくは1〜3時間程度である。   The reaction temperature is usually 60 to 120 ° C, preferably 80 to 95 ° C. When the reaction temperature is 60 to 120 ° C., the compound represented by the formula (4) can be obtained in a high yield (for example, 90% or more) without decomposing the compound represented by the formula (3). It becomes possible. The reaction time is usually about 30 minutes to 5 hours, preferably about 1 to 3 hours.

[工程(B)]
工程(B)によれば、工程(A)で得られた式(4)で表される化合物に対して、Rで表されるアリール基を付加させることにより、式(1)で表されるα−アミノ酸のアラルキルエステルを得ることができる。工程(B)の反応は、式(4)で表される化合物と、式(6)で表される化合物とを反応させることにより実施される。工程(B)の反応式は、以下のように示される。
[Step (B)]
According to the step (B), the compound represented by the formula (4) obtained in the step (A) is represented by the formula (1) by adding an aryl group represented by R 4. An aralkyl ester of α-amino acid can be obtained. The reaction in the step (B) is carried out by reacting the compound represented by the formula (4) with the compound represented by the formula (6). The reaction formula of the step (B) is shown as follows.

Figure 2011174100
Figure 2011174100

式(6)中、Rは前記に同じである。 In formula (6), R 4 is the same as described above.

式(6)中、Xはハロゲン原子を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。   In formula (6), X represents a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

式(6)で表される化合物の使用量は、適宜選択可能であるが、通常は式(4)で表される化合物1モルに対して、1〜3モルであり、好ましくは1〜2モルである。   Although the usage-amount of the compound represented by Formula (6) can be selected suitably, it is 1-3 mol normally with respect to 1 mol of compounds represented by Formula (4), Preferably it is 1-2. Is a mole.

工程(B)の反応における溶媒は、反応に不活性であれば制限されるものではなく、水、アセトン、メチルエチルケトン、アセトニトリル、プロピオニトリル、ブチロニトリル、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、1,4−ジオキサン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルイミダゾリジノン、スルホラン、ジメチルスルホキシド、N−メチルピロリドン等の親水性有機溶媒、ギ酸、酢酸、プロピオン酸等の有機酸等が挙げられる。また、これらの溶媒を混合して用いることも可能である。工程(B)の反応における溶媒として好ましくは、水、又は水及び親水性有機溶媒の混合溶媒であり、特に好ましくは、水の単独溶媒である。   The solvent in the reaction of the step (B) is not limited as long as it is inert to the reaction. Water, acetone, methyl ethyl ketone, acetonitrile, propionitrile, butyronitrile, methanol, ethanol, isopropyl alcohol, tetrahydrofuran, 1, 4 -Hydrophilic organic solvents such as dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, sulfolane, dimethyl sulfoxide, N-methylpyrrolidone, formic acid, acetic acid, propionic acid, etc. An organic acid etc. are mentioned. Moreover, it is also possible to mix and use these solvents. As the solvent in the reaction in the step (B), water or a mixed solvent of water and a hydrophilic organic solvent is preferable, and water is particularly preferably a single solvent.

溶媒の使用量は、特に制限されるものではないが、作業性、経済性等により適宜決定される。   The amount of the solvent used is not particularly limited, but is appropriately determined depending on workability, economy and the like.

工程(B)の反応は、反応容器内に、式(4)で表される化合物及び式(6)で表される化合物を投入して行われる。   The reaction in the step (B) is performed by introducing the compound represented by the formula (4) and the compound represented by the formula (6) into a reaction vessel.

反応温度は、通常60〜100℃であり、80〜90℃が好ましい。反応温度が60〜100℃であれば、式(4)で表される化合物を分解させることなく、高い収率(例えば90%以上)で、式(1)で表される化合物を得ることが可能となる。反応時間は、通常30分〜2時間程度であり、好ましくは1〜1.5時間程度である。   The reaction temperature is usually 60 to 100 ° C, preferably 80 to 90 ° C. When the reaction temperature is 60 to 100 ° C., the compound represented by the formula (1) can be obtained in a high yield (for example, 90% or more) without decomposing the compound represented by the formula (4). It becomes possible. The reaction time is usually about 30 minutes to 2 hours, preferably about 1 to 1.5 hours.

(f)α−アミノ酸のアラルキルエステルのスルホンアミド化物
本発明の銅−亜鉛合金電気めっき液では、α−アミノ酸のアラルキルエステルのスルホンアミド化物を使用する。該化合物は、(e)α−アミノ酸のアラルキルエステルと同様、カソードに吸着しながら銅イオンと安定な錯体を形成し、銅のめっき析出速度(還元速度)を低下させる。そのため、銅のめっき速度と亜鉛のめっき速度を制御することが可能となり、広範囲の電流密度で一定組成の銅-亜鉛合金めっき皮膜を得ることができる。
(F) Sulfonamidation product of α-amino acid aralkyl ester In the copper-zinc alloy electroplating solution of the present invention, a sulfonamidation product of α-amino acid aralkyl ester is used. The compound forms a stable complex with copper ions while adsorbing to the cathode, and reduces the copper plating deposition rate (reduction rate), similarly to the aralkyl ester of (e) α-amino acid. Therefore, the copper plating rate and the zinc plating rate can be controlled, and a copper-zinc alloy plating film having a constant composition can be obtained with a wide range of current densities.

また、該化合物は、(e)α−アミノ酸のアラルキルエステルと同様、分解されやすいカルボキシル基(−COOH)中の水素原子を、前述の分解されにくいアラルキル基で置換しているため、カソード吸着時において加水分解されることも、アノード近傍で酸化分解されることもない。   In addition, as in the case of (e) the α-amino acid aralkyl ester, the compound substitutes the hydrogen atom in the easily decomposed carboxyl group (—COOH) with the aralkyl group which is not easily decomposed. It is neither hydrolyzed nor oxidized near the anode.

本発明のめっき液では、−NH基を有する(e)成分と、−NH−SO−R基を有する(f)成分を併用するため、(e)成分及び(f)成分のカソードへの吸着効果が相乗的なものとなる。その結果、陰極上に安定して長時間連続的に、緻密かつ一定組成の銅−亜鉛合金めっき皮膜を形成させることができる。 In the plating solution of the present invention, since the component (e) having the —NH 2 group and the component (f) having the —NH—SO 2 —R 7 group are used in combination, the cathode of the component (e) and the component (f) The adsorbing effect on the water becomes synergistic. As a result, a dense and constant composition copper-zinc alloy plating film can be stably and continuously formed on the cathode for a long time.

式(2)で表されるα−アミノ酸のアラルキルエステルのスルホンアミド化物は、下記反応式に示されるように、式(1)’で表される化合物と、式(7)で表される少なくとも一個のスルホ基を有する芳香族化合物との反応により製造される。   The sulfonamidated product of an aralkyl ester of an α-amino acid represented by the formula (2) is composed of a compound represented by the formula (1) ′ and at least represented by the formula (7), as shown in the following reaction formula: It is produced by reaction with an aromatic compound having one sulfo group.

Figure 2011174100
Figure 2011174100

式(1)’で表される化合物の式中、Rは、上記Rで例示された基と同じ基を例示することができる。また、−Rは、−Rと同様、置換基を有することのあるアラルキル基である。なお、−Rに関して、より具体的には、−R−Rで表すことができる。Rは、前記Rで例示された基と同じ基を例示することができ、またRは、前記Rで例示された基と同じ基を例示することができる。 In the formula of the compound represented by the formula (1) ′, R 5 can be exemplified by the same groups as those exemplified for R 1 above. Further, -R 6, similar to -R 2, an aralkyl group which may have a substituent. Regarding -R 6, more specifically, it can be represented by -R 8 -R 9. R 8 can exemplify the same group as the group exemplified for R 3 , and R 9 can exemplify the same group as the group exemplified for R 4 .

(f)成分を本発明のめっき液に使用する際、該(f)成分の式(2)中のRは、同じく本発明のめっき液に含まれる(e)成分の式(1)中のRと同一であっても、異なっていてもよい。また、同様に、RはRと同一であっても、異なっていてもよい。 When the component (f) is used in the plating solution of the present invention, R 5 in the formula (2) of the component (f) is the same as that in the formula (1) of the component (e) included in the plating solution of the present invention. R 1 may be the same as or different from R 1 . Similarly, R 6 may be the same as or different from R 2 .

式(1)’で表される化合物は、例えば、上記した工程(A)及び工程(B)の2段階による反応と同じ方法によって、製造することができる。   The compound represented by the formula (1) ′ can be produced, for example, by the same method as the reaction in the two steps of the above-described step (A) and step (B).

式(7)で表される少なくとも一個のスルホ基を有する芳香族化合物中のRは、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数2〜5のアルカノイル基、炭素数2〜5のアルキルカルボニルオキシ基、炭素数2〜5のアルコキシカルボニル基、フェニル基、置換フェニル基、置換シリル基、シアノ基、ニトロ基及びスルホ基から選ばれる少なくとも1個又は2個以上の置換基を有してもよいアリール基である。上記した各置換基については、それぞれ上記したRに関する各置換基のものと同様のものが挙げられる。該アリール基は、(2)で表されるα−アミノ酸のアラルキルエステルのスルホンアミド化物中、側鎖として結合されるため、(1)’の−NH基がめっき電解によって分解することを防ぐ。 R 7 in the aromatic compound having at least one sulfo group represented by the formula (7) is a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or 2 to 5 carbon atoms. An alkanoyl group, an alkylcarbonyloxy group having 2 to 5 carbon atoms, an alkoxycarbonyl group having 2 to 5 carbon atoms, a phenyl group, a substituted phenyl group, a substituted silyl group, a cyano group, a nitro group, and a sulfo group. Or it is an aryl group which may have two or more substituents. About each above-mentioned substituent, the thing similar to each of the above-mentioned each substituent regarding R < 4 > is mentioned, respectively. Since the aryl group is bonded as a side chain in the sulfonamidation product of the α-amino acid aralkyl ester represented by (2), the —NH 2 group of (1) ′ is prevented from being decomposed by plating electrolysis. .

これらの式(2)で表されるα−アミノ酸のアラルキルエステルのスルホンアミド化物は、一種単独又は二種以上混合して用いることができる。   These sulfonamidated products of α-amino acid aralkyl esters represented by the formula (2) can be used singly or in combination of two or more.

本発明の銅−亜鉛合金電気めっき液に含有される(f)成分の濃度については、0.5〜4g/Lの範囲であることが好ましく、1〜3g/Lがより好ましい。   About the density | concentration of (f) component contained in the copper-zinc alloy electroplating liquid of this invention, it is preferable that it is the range of 0.5-4 g / L, and 1-3 g / L is more preferable.

以下に、工程(C)ついて詳細に説明する。
[工程(C)]
式(7)で表される少なくとも一個のスルホ基を有する芳香族化合物の使用量は、適宜選択可能であるが、通常は式(1)’で表される化合物1モルに対して、1〜5モルであり、好ましくは1〜3モルである。
Hereinafter, the step (C) will be described in detail.
[Step (C)]
Although the usage-amount of the aromatic compound which has at least 1 sulfo group represented by Formula (7) can be selected suitably, normally 1-mol with respect to 1 mol of compounds represented by Formula (1) '. 5 moles, preferably 1 to 3 moles.

工程(C)の反応においては、触媒の存在下で反応を行うことが好ましい。触媒の存在下で反応を行うことにより、反応を速やかに進行させることができる。触媒としては、発煙硫酸、濃硫酸、チオ硫酸等を使用することができる。   In the reaction of step (C), it is preferable to carry out the reaction in the presence of a catalyst. By performing the reaction in the presence of a catalyst, the reaction can be rapidly advanced. As the catalyst, fuming sulfuric acid, concentrated sulfuric acid, thiosulfuric acid and the like can be used.

触媒の使用量は、適宜選択可能であるが、通常は式(1)’で表される化合物1モルに対して5モル以下であり、好ましくは1〜3モルである。   The amount of the catalyst used can be appropriately selected, but is usually 5 mol or less, preferably 1 to 3 mol, relative to 1 mol of the compound represented by the formula (1) ′.

工程(C)の反応における溶媒は、反応に不活性であれば制限されるものではなく、水、アセトン、メチルエチルケトン、アセトニトリル、プロピオニトリル、ブチロニトリル、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、1,4−ジオキサン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルイミダゾリジノン、スルホラン、ジメチルスルホキシド、N−メチルピロリドン等の親水性有機溶媒、ギ酸、酢酸、プロピオン酸等の有機酸等が挙げられる。また、これらの溶媒を混合して用いることも可能である。工程(C)の反応における溶媒として好ましくは、水、又は水及び親水性有機溶媒の混合溶媒であり、特に好ましくは、水の単独溶媒である。   The solvent in the reaction of the step (C) is not limited as long as it is inert to the reaction, and water, acetone, methyl ethyl ketone, acetonitrile, propionitrile, butyronitrile, methanol, ethanol, isopropyl alcohol, tetrahydrofuran, 1, 4 -Hydrophilic organic solvents such as dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, sulfolane, dimethyl sulfoxide, N-methylpyrrolidone, formic acid, acetic acid, propionic acid, etc. An organic acid etc. are mentioned. Moreover, it is also possible to mix and use these solvents. As the solvent in the reaction in the step (C), water or a mixed solvent of water and a hydrophilic organic solvent is preferable, and water is particularly preferably a single solvent.

溶媒の使用量は、特に制限されるものではないが、作業性、経済性等により適宜決定される。   The amount of the solvent used is not particularly limited, but is appropriately determined depending on workability, economy and the like.

工程(C)の反応は、反応容器内に、式(1)’で表される化合物及び式(7)で表される少なくとも一個のスルホ基を有する芳香族化合物を投入して行われる。その際、適宜触媒を投入して反応を促進させることができる。なお、反応は、攪拌又は未攪拌下で行うことが可能である。   The reaction in the step (C) is performed by charging a compound represented by the formula (1) ′ and an aromatic compound having at least one sulfo group represented by the formula (7) into a reaction vessel. At that time, a catalyst can be appropriately added to promote the reaction. The reaction can be performed with stirring or without stirring.

反応温度は、通常60〜100℃であり、80〜90℃が好ましい。反応温度が60〜100℃であれば、式(1)’で表される化合物を分解させることなく、高い収率(例えば90%以上)で、式(2)で表される化合物を得ることが可能となる。反応時間は、通常30分〜2時間程度であり、好ましくは1〜1.5時間程度である。   The reaction temperature is usually 60 to 100 ° C, preferably 80 to 90 ° C. When the reaction temperature is 60 to 100 ° C., the compound represented by the formula (2) is obtained in a high yield (for example, 90% or more) without decomposing the compound represented by the formula (1) ′. Is possible. The reaction time is usually about 30 minutes to 2 hours, preferably about 1 to 1.5 hours.

(g)その他の成分
本発明の銅−亜鉛合金電気めっき液は、上記した(a)〜(f)成分の他、さらにコバルト化合物を含有することができる。上記コバルト化合物を含有することによって、得られる銅−亜鉛合金めっき皮膜中にはコバルトが共析する。この共析により、被めっき体上に対してさらに密着性、平滑性に優れた緻密な銅−亜鉛合金めっき皮膜を形成することができる。このようなコバルト含有銅−亜鉛合金めっき皮膜は、特にゴムとの接着性に優れているため、タイヤ用スチールコードのためのめっき皮膜として適している。
(G) Other components The copper-zinc alloy electroplating solution of the present invention may further contain a cobalt compound in addition to the components (a) to (f) described above. Cobalt is eutectoid in the obtained copper-zinc alloy plating film by containing the cobalt compound. By this eutectoid, a dense copper-zinc alloy plating film having excellent adhesion and smoothness can be formed on the object to be plated. Such a cobalt-containing copper-zinc alloy plating film is particularly excellent in adhesion to rubber, and is therefore suitable as a plating film for tire steel cords.

上記したコバルト化合物としては、水に可溶性のコバルト化合物を使用することができる。例えば、硫酸コバルト、硝酸コバルト、塩化コバルト、リン酸コバルト、酸化コバルト、炭酸コバルト、酢酸コバルト、ナフテン酸コバルト等が挙げられる。   As the above-described cobalt compound, a cobalt compound soluble in water can be used. Examples thereof include cobalt sulfate, cobalt nitrate, cobalt chloride, cobalt phosphate, cobalt oxide, cobalt carbonate, cobalt acetate, and cobalt naphthenate.

コバルト化合物の含有量は、共析するコバルト量がめっき皮膜中0.001wt%以上(好ましくは0.01〜0.5wt%)となるように含有すればよい。なお、本発明の銅−亜鉛合金電気めっき液に含有されるコバルトイオンの濃度は、0.1〜2g/L(コバルト金属分換算)が好ましい。   The cobalt compound may be contained so that the amount of cobalt to be eutectoid is 0.001 wt% or more (preferably 0.01 to 0.5 wt%) in the plating film. In addition, as for the density | concentration of the cobalt ion contained in the copper-zinc alloy electroplating liquid of this invention, 0.1-2 g / L (cobalt metal content conversion) is preferable.

また、本発明の銅−亜鉛合金電気めっき液は、上記した(a)〜(f)成分の他、酸、アルカリ等をpH調整剤として使用することができる。pHを低下させるための酸としては、塩酸、硫酸、硝酸、リン酸、シュウ酸等の他、上記した(c)成分のポリリン酸、(d)成分のオキシカルボン酸が挙げられる。pHを上昇させるためのアルカリとしては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物;アルカリ金属の炭酸塩;アルカリ土類金属の炭酸塩;水酸化アンモニウム、炭酸アンモニウム等のアンモニウム塩;等が挙げられる。また、銅又は亜鉛の水酸化物、炭酸塩等を適宜用いて金属濃度の調整とpH調整を同時に行うことも可能である。   Moreover, the copper-zinc alloy electroplating liquid of this invention can use an acid, an alkali, etc. as a pH adjuster other than above-mentioned (a)-(f) component. Examples of the acid for lowering the pH include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, oxalic acid, and the like, polyphosphoric acid as component (c) and oxycarboxylic acid as component (d). Examples of the alkali for raising the pH include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide; alkali metal carbonates; alkaline earth Metal carbonates; ammonium salts such as ammonium hydroxide and ammonium carbonate; and the like. It is also possible to adjust the metal concentration and the pH at the same time by appropriately using copper or zinc hydroxide, carbonate or the like.

(h)銅−亜鉛合金電気めっき液のpH
本発明の銅−亜鉛合金電気めっき液のpHは、7〜14であることが好ましい。上記した特定の(a)〜(f)成分を含有し、かつ、上記したpH範囲とすれば、より安定した銅−亜鉛合金電気めっき液を得ることができる。pHのより好ましい範囲は、10〜13である。pHの値が低すぎる場合、(c)成分の加水分解が起こり,浴組成が変動する。
(H) pH of copper-zinc alloy electroplating solution
The pH of the copper-zinc alloy electroplating solution of the present invention is preferably 7-14. A more stable copper-zinc alloy electroplating solution can be obtained when the above-mentioned specific components (a) to (f) are contained and the pH range is set. A more preferable range of pH is 10-13. If the pH value is too low, hydrolysis of component (c) occurs and the bath composition varies.

被めっき体
本発明の銅−亜鉛合金電気めっき液は、鉄、銅合金、亜鉛合金、アルミニウム合金等の金属製品を被めっき体として、銅−亜鉛合金めっき皮膜を形成することができる。また、プラスチック製品、セラミックス製品等の物品を被めっき体として銅−亜鉛合金めっき皮膜を形成することができる。この場合、常法に従って無電解被めっき処理をしたのち、本発明の銅−亜鉛合金めっき液によって、電気めっきを行えばよい。
To-be-plated body The copper-zinc alloy electroplating solution of the present invention can form a copper-zinc alloy plating film using a metal product such as iron, copper alloy, zinc alloy, and aluminum alloy as the body to be plated. Moreover, a copper-zinc alloy plating film can be formed by using articles such as plastic products and ceramic products to be plated. In this case, after electroless plating treatment according to a conventional method, electroplating may be performed with the copper-zinc alloy plating solution of the present invention.

特に、被めっき体が鉄であるとき、連続的に安定して密着性、平滑性に優れた緻密な銅−亜鉛合金めっき皮膜を得ることができる。   In particular, when the object to be plated is iron, it is possible to obtain a dense copper-zinc alloy plating film that is continuously stable and excellent in adhesion and smoothness.

銅−亜鉛合金電気めっき方法
上記した本発明の銅−亜鉛合金電気めっき液を用いて銅−亜鉛合金めっき皮膜を形成する方法については、常法に従えば良い。例えば、バフ研磨、脱脂、希釈酸浸漬、酸電解等の前処理を行うことが可能であり、前記前処理の後、ニッケルめっき等の下地保護用めっきを施すことも可能である。
Copper-Zinc Alloy Electroplating Method The method for forming a copper-zinc alloy plating film using the above-described copper-zinc alloy electroplating solution of the present invention may be according to a conventional method. For example, pretreatment such as buffing, degreasing, dilute acid immersion, and acid electrolysis can be performed, and after the pretreatment, plating for base protection such as nickel plating can be performed.

本発明の銅−亜鉛合金電気めっき液を用いて銅−亜鉛合金めっき皮膜を形成する場合には、めっき液の液温は、特に限定されない。10〜60℃程度とすることが好ましく、20〜40℃程度とすることがより好ましく、攪拌又は未攪拌下に行うことができる。   When forming a copper-zinc alloy plating film using the copper-zinc alloy electroplating solution of the present invention, the temperature of the plating solution is not particularly limited. It is preferable to set it as about 10-60 degreeC, It is more preferable to set it as about 20-40 degreeC, and it can carry out under stirring or unstirring.

また、平均陰極電流密度は、通常、0.05〜50A/dmとすることが好ましく、0.1〜20A/dmとすることがより好ましい。 The average cathode current density may generally preferably be 0.05~50A / dm 2, and more preferably a 0.1~20A / dm 2.

電気めっきの具体的な方法については、ラック法、バレル法(バレルめっき)等で行うことができる。タイヤ用スチールコード等の長尺状被めっき体については、フープめっき法(リール・トゥ・リール方式)で行うことができる。   About the specific method of electroplating, it can carry out by the rack method, the barrel method (barrel plating), etc. For a long object to be plated such as a steel cord for tires, the hoop plating method (reel-to-reel method) can be used.

陽極としては、銅−亜鉛合金、ステンレス鋼、カーボン、貴金属酸化物が被覆されたチタン(寸法安定性陽極)のいずれも使用することができる。   As the anode, any of copper-zinc alloy, stainless steel, carbon, and titanium coated with a noble metal oxide (dimensionally stable anode) can be used.

銅−亜鉛合金を陽極として用いた場合、陽極の溶解が順調であり、めっき液組成の変動が小さい。そのため、該めっき液の成分補給はほとんど不要となる。   When a copper-zinc alloy is used as the anode, the dissolution of the anode is smooth and the variation of the plating solution composition is small. Therefore, almost no component replenishment of the plating solution is required.

ステンレス鋼等の不溶な材質を陽極とした場合、通電量に応じて銅及び亜鉛分の濃度が減少するだけで、他の成分は分解されない。つまり、通電量に応じて減少した銅及び亜鉛を補給すれば良い(銅の補給には銅化合物を加え、亜鉛の補給には亜鉛化合物を加えれば良い)ため、液組成を一定に保つことが容易となる。   When an insoluble material such as stainless steel is used as the anode, the concentration of the copper and zinc components only decreases depending on the amount of energization, and other components are not decomposed. In other words, it is only necessary to replenish copper and zinc which are reduced according to the amount of electricity applied (adding a copper compound to replenish copper and a zinc compound to replenish zinc), so that the liquid composition can be kept constant. It becomes easy.

形成される銅−亜鉛合金めっき皮膜の膜厚については限定的ではないが、例えばタイヤ用スチールコードとして使用するためには、通常、0.1〜50μm程度とすればよく、めっき時間については、30秒〜30分程度とすればよい。   The film thickness of the copper-zinc alloy plating film to be formed is not limited. For example, in order to use it as a steel cord for tires, it may be usually about 0.1 to 50 μm. What is necessary is just about 30 seconds-30 minutes.

本発明の銅−亜鉛合金電気めっき液によれば、通常、銅:亜鉛=60:40〜80:20(好ましくは60:40〜70:30)(重量比)の組成からなる合金めっき皮膜を安定して得ることができる。   According to the copper-zinc alloy electroplating solution of the present invention, an alloy plating film having a composition of copper: zinc = 60: 40-80: 20 (preferably 60: 40-70: 30) (weight ratio) is usually used. It can be obtained stably.

本発明の銅−亜鉛合金電気めっき液を用いて銅−亜鉛合金めっき皮膜を形成することによって、被めっき体上に安定して密着性及び平滑性に優れた緻密な銅−亜鉛合金めっき皮膜を形成することができる。また、電解中の電流密度によらず該めっき皮膜の組成が一定であって、長時間連続電解を行った後においても、光沢のあるめっき皮膜が得られる。しかも、該めっき液は、人体や環境に対する悪影響が少ないため、安全性に優れる。   By forming a copper-zinc alloy plating film using the copper-zinc alloy electroplating solution of the present invention, a dense copper-zinc alloy plating film having excellent adhesion and smoothness can be stably formed on the object to be plated. Can be formed. Moreover, the composition of the plating film is constant regardless of the current density during electrolysis, and a glossy plating film can be obtained even after long-term continuous electrolysis. Moreover, since the plating solution has little adverse effect on the human body and the environment, it is excellent in safety.

本発明の実施例に係るめっき試験槽(ハルセル試験槽)の概略図である。It is the schematic of the plating test tank (Hull cell test tank) which concerns on the Example of this invention. 本発明の実施例に係るめっき試験槽(ハルセル試験槽)の上面図である。It is a top view of the plating test tank (Hull cell test tank) concerning the example of the present invention.

以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は実施例に限定されない。
(I) (e)α−アミノ酸のアラルキルエステルの合成
合成例1 ヒスチジンフェニルメチルエステル化合物(i)の合成
ヒスチジン100g及びメタノール1000gを、温度計、塩化水素ガス導入ホース口及び還流冷却器を備えた三口フラスコに仕込んだ。次に、塩化水素ガス160gを吹き込み、その後、約6時間、80℃で加熱還流を行って、ヒスチジンをメタノール中に完全に溶解させた。さらに蒸留して、メタノール及び塩化水素ガスを回収したところ、以下の式:
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.
(I) (e) Synthesis of aralkyl ester of α-amino acid Synthesis Example 1 Synthesis of histidine phenylmethyl ester compound (i) 100 g of histidine and 1000 g of methanol were added to a thermometer, a hydrogen chloride gas introduction hose port and reflux cooling. A three-necked flask equipped with a vessel was charged. Next, 160 g of hydrogen chloride gas was blown in, and then heated and refluxed at 80 ° C. for about 6 hours to completely dissolve histidine in methanol. Further distillation to recover methanol and hydrogen chloride gas gave the following formula:

Figure 2011174100
Figure 2011174100

で表される粉末のヒスチジンメチルエステル100gが得られた。該ヒスチジンメチルエステル粉末100g及び水825gを、温度計、攪拌機、滴下口および還流冷却器を備えた四口フラスコに仕込み、該粉末を水中に完全に溶解させた。次に、温度が80℃になるようにフラスコ中の溶液を加熱した後、クロロベンゼン46.7gを約1時間で滴下した。滴下終了後、フラスコ中の溶液を直ちに90℃にまで加熱し、約30分間上記温度を保持し、反応を終了した。なお。試験管に入った純水に対して、上記した反応生成物の水溶液をスポイトで2〜3滴滴下してよく混合したところ、白濁や濁りがなく、完全に無色透明であって、油状の物が浮いていなかったので、これをもって反応が終了していることを確認した。上記した反応生成物を蒸留吸引して水分を完全に除去したところ、以下の式: As a result, 100 g of powdered histidine methyl ester was obtained. 100 g of the histidine methyl ester powder and 825 g of water were charged into a four-necked flask equipped with a thermometer, a stirrer, a dripping port and a reflux condenser, and the powder was completely dissolved in water. Next, after heating the solution in a flask so that temperature might be set to 80 degreeC, 46.7g of chlorobenzene was dripped in about 1 hour. After completion of dropping, the solution in the flask was immediately heated to 90 ° C., and the temperature was maintained for about 30 minutes to complete the reaction. Note that. When 2 to 3 drops of the above reaction product aqueous solution is dropped into a test tube with a dropper and mixed well, there is no white turbidity or turbidity, and it is completely colorless and transparent. It was confirmed that the reaction was completed with this. When the above reaction product was distilled and sucked to completely remove water, the following formula:

Figure 2011174100
Figure 2011174100

で表される針状結晶のヒスチジンフェニルメチルエステル化合物(i)が得られた。 A histidine phenylmethyl ester compound (i) having a needle-like crystal represented by

合成例2 リシンフェニルエチルエステル化合物(ii)の合成
ヒスチジン100gに代えてリシン100gを使用し、メタノール1000gに代えてエタノール1500gを使用し、クロロベンゼン46.7gに代えてブロモベンゼン70gを使用した以外は、合成例1と同様にして、最終的に以下の式:
Synthesis Example 2 Synthesis of lysine phenylethyl ester compound (ii) 100 g of lysine was used instead of 100 g of histidine, 1500 g of ethanol was used instead of 1000 g of methanol, and 70 g of bromobenzene was used instead of 46.7 g of chlorobenzene. In the same manner as in Synthesis Example 1, the following formula:

Figure 2011174100
Figure 2011174100

で表される針状結晶のリシンフェニルエチルエステル化合物(ii)が得られた。 A needle-shaped lysine phenylethyl ester compound (ii) represented by

合成例3 トリプトファンナフタレンメチルエステル化合物(iii)の合成
ヒスチジン100gに代えてトリプトファン100gを使用し、クロロベンゼン46.7gに代えて1−クロロナフタレン51gを使用し、さらにメタノールの使用量を750gとした以外は、合成例1と同様にして、最終的に以下の式:
Synthesis Example 3 Synthesis of tryptophan naphthalene methyl ester compound (iii) 100 g of tryptophan was used instead of 100 g of histidine, 51 g of 1-chloronaphthalene was used instead of 46.7 g of chlorobenzene, and the amount of methanol used was 750 g. Is the same as in Synthesis Example 1 and finally the following formula:

Figure 2011174100
Figure 2011174100

で表される針状結晶のトリプトファンナフタレンメチルエステル化合物(iii)が得られた。 A needle-like crystal tryptophan naphthalene methyl ester compound (iii) represented by the formula:

(II) (f)α−アミノ酸のアラルキルエステルのスルホンアミド化物の合成
合成例4 ヒスチジンフェニルメチルエステルのフェニルスルホン酸アミド化合物(iv)の合成
合成例1で得られたヒスチジンフェニルメチルエステル化合物(i)100g、p−トルエンスルホン酸74.4g及び水872gを、温度計、攪拌機、滴下口および還流冷却器を備えた四口フラスコに仕込んだ。次に、直ちに温度が90〜100℃となるようにフラスコ中の溶液を加熱し、上記温度を保持しつつ、約3時間該溶液を攪拌した。その後、温度が40℃となるように冷却し、発煙硫酸65.2gを約1時間で滴下した。この間、温度が上昇するが、80℃を超えないように該溶液を冷却しながら、発煙硫酸を滴下した。滴下の終了後、フラスコ中の溶液を50℃に保持しつつ、約2時間攪拌し、反応を終了した。上記した反応生成物を蒸留吸引して水分及び発煙硫酸を完全に除去したところ、以下の式:
(II) (f) Synthesis of sulfonamidation product of aralkyl ester of α-amino acid Synthesis Example 4 Synthesis of phenylsulfonic acid amide compound (iv) of histidine phenylmethyl ester Histidine phenylmethyl obtained in Synthesis Example 1 100 g of the ester compound (i), 74.4 g of p-toluenesulfonic acid and 872 g of water were charged into a four-necked flask equipped with a thermometer, a stirrer, a dropping port and a reflux condenser. Next, the solution in the flask was heated so that the temperature immediately became 90 to 100 ° C., and the solution was stirred for about 3 hours while maintaining the temperature. Then, it cooled so that temperature might be set to 40 degreeC, and 65.2 g of fuming sulfuric acid was dripped in about 1 hour. During this time, although the temperature rose, fuming sulfuric acid was added dropwise while cooling the solution so as not to exceed 80 ° C. After completion of the dropping, the solution in the flask was stirred for about 2 hours while maintaining the temperature at 50 ° C. to complete the reaction. When the above reaction product was distilled and sucked to completely remove moisture and fuming sulfuric acid, the following formula:

Figure 2011174100
Figure 2011174100

で表される針状結晶のヒスチジンフェニルメチルエステルのフェニルスルホン酸アミド化合物(iv)が得られた。 A phenylsulfonic acid amide compound (iv) of histidine phenylmethyl ester in the form of needles represented by

合成例5 リシンフェニルエチルエステルのナフタレンスルホン酸アミド化合物(v)の合成
ヒスチジンフェニルメチルエステル(i)100gに代えて合成例2で得られたリシンフェニルエチルエステル(ii)100gを使用し、p−トルエンスルホン酸74.4gに代えて1,3,6−ナフタレントリスルホン酸163gを使用した以外は、合成例4と同様にして、以下の式:
Synthesis Example 5 Synthesis of naphthalenesulfonic acid amide compound (v) of lysine phenylethyl ester In place of 100 g of histidine phenylmethyl ester (i), 100 g of lysine phenylethyl ester (ii) obtained in Synthesis Example 2 was used, and p- Similar to Synthesis Example 4 except that 163 g of 1,3,6-naphthalene trisulfonic acid was used instead of 74.4 g of toluenesulfonic acid, the following formula:

Figure 2011174100
Figure 2011174100

で表される針状結晶のリシンフェニルエチルエステルのナフタレンスルホン酸アミド化合物(v)が得られた。 Thus, a naphthalenesulfonic acid amide compound (v) of lysine phenylethyl ester in the form of needles was obtained.

合成例6 トリプトファンフェニルメチルエステルのナフタレンスルホン酸アミド化合物(vi)の合成
ヒスチジンフェニルメチルエステル(i)100gに代えて、以下の式:
Synthesis Example 6 Synthesis of naphthalenesulfonic acid amide compound (vi) of tryptophan phenylmethyl ester In place of 100 g of histidine phenylmethyl ester (i), the following formula:

Figure 2011174100
Figure 2011174100

で表されるトリプトファンフェニルメチルエステル100gを使用し、p−トルエンスルホン酸74.4gに代えて1,6−ナフタレンジスルホン酸58gを使用した以外は、合成例4と同様にして、以下の式: In the same manner as in Synthesis Example 4 except that 100 g of tryptophan phenylmethyl ester represented by the formula (1) is used and 58 g of 1,6-naphthalenedisulfonic acid is used instead of 74.4 g of p-toluenesulfonic acid, the following formula:

Figure 2011174100
Figure 2011174100

で表される針状結晶のトリプトファンフェニルメチルエステルのナフタレンスルホン酸アミド化合物(vi)が得られた。 A naphthalenesulfonic acid amide compound (vi) of a tryptophan phenylmethyl ester in the form of needles represented by the formula:

(III) 銅−亜鉛合金電気めっき液の調製
下記組成を有する本発明銅−亜鉛合金電気めっき液1〜6(本発明めっき液1〜6)を調製した。本発明めっき液1〜6の組成を以下の表2に示す。
(III) Preparation of copper-zinc alloy electroplating solution The present invention copper-zinc alloy electroplating solutions 1-6 (present invention plating solutions 1-6) having the following composition were prepared. The compositions of the present plating solutions 1-6 are shown in Table 2 below.

Figure 2011174100
※単位:g/L 但し、( )内の数値は、金属分換算量のg/L
Figure 2011174100
* Unit: g / L However, the value in () is g / L of metal equivalent.

(IV) 実施例1:銅−亜鉛合金めっき皮膜の膜厚、合金組成、密着性、外観及び色調評価
本発明のめっき液1〜6を用いて、磨き鋼板に対して銅−亜鉛合金めっき皮膜を形成した。なお、各々以下の表3に記載された電流及びめっき時間で、銅−亜鉛合金めっきを行った。このときの本発明のめっき液1〜6の温度及びpHを併せて以下の表3に示す。また、その他のめっき条件についても、以下に示す。
(IV) Example 1: Evaluation of film thickness, alloy composition, adhesion, appearance and color tone of copper-zinc alloy plating film Copper-zinc alloy plating film on polished steel plate using plating solutions 1-6 of the present invention Formed. In addition, copper-zinc alloy plating was performed at the current and plating time described in Table 3 below. The temperature and pH of the plating solutions 1 to 6 of the present invention at this time are shown in Table 3 below. Other plating conditions are also shown below.

Figure 2011174100
Figure 2011174100

<めっき皮膜形成の条件(ハルセル試験)>
めっき素地:磨き鋼板
めっき素地のめっき面:幅10cm×深さ5cm
陽極:Cu/Zn=70/30の黄銅
陽極のめっき液に対する浸漬面:幅6.5cm×深さ5cm
めっき試験槽:ハルセル試験槽(容量267mLの台形型めっき試験槽)
上記した条件によって得られためっき皮膜に対して、膜厚、合金組成(銅含有率、亜鉛含有率及びコバルト含有率)を蛍光X線膜厚計にて測定した。また、外観、色調を観察するとともに、折り曲げ試験によって密着性の評価を行った。密着性の評価においては、10倍のルーペにより観察し、外観変化が見られなかった場合を良好、容易にクラックが観察された場合を不良とした。
<Plating film formation conditions (Hull cell test)>
Plating base: Plated surface of polished steel plate base: width 10 cm x depth 5 cm
Anode: Cu / Zn = 70/30 brass anode immersion surface with respect to the plating solution: width 6.5 cm × depth 5 cm
Plating test tank: Hull cell test tank (trapezoidal plating test tank with a capacity of 267 mL)
The film thickness and alloy composition (copper content, zinc content, and cobalt content) were measured with a fluorescent X-ray film thickness meter for the plating film obtained under the above conditions. In addition, the appearance and color tone were observed, and the adhesion was evaluated by a bending test. In the evaluation of adhesion, it was observed with a 10-fold magnifier, and the case where no change in appearance was observed was good, and the case where cracks were easily observed was regarded as poor.

なお、タイヤ用スチールコードへのめっきの際に、ロールトゥロール方式により、高電流密度で高速めっきを行うことを想定して、実施例では幅10cmのめっき素地の高電流密度側のめっき皮膜を評価した。   In the embodiment, assuming that high-speed plating is performed at a high current density by a roll-to-roll method when plating on a steel cord for tires, a plating film on the high current density side of a plating base having a width of 10 cm is used in the examples. evaluated.

[本発明めっき液1におけるめっき皮膜の評価結果]
本発明めっき液1を用いて得られためっき皮膜に対し、高電流密度側における端(下記図1及び図2におけるA点を示す)からの距離に応じたカソードの局所電流密度、めっき厚さ、銅含有率、亜鉛含有率、密着性、外観・色調を、以下の表4に示す。なお、高電流密度側の端からの距離については、下記図2で説明している。
[Evaluation result of plating film in the plating solution 1 of the present invention]
With respect to the plating film obtained using the plating solution 1 of the present invention, the local current density and plating thickness of the cathode according to the distance from the end on the high current density side (shown as point A in FIGS. 1 and 2 below) Table 4 below shows the copper content, zinc content, adhesion, appearance and color tone. The distance from the end on the high current density side is described in FIG.

Figure 2011174100
Figure 2011174100

[本発明めっき液2におけるめっき皮膜の評価結果]
本発明めっき液2を用いて得られためっき皮膜に対し、高電流密度側における端からの距離に応じたカソードの局所電流密度、めっき厚さ、銅含有率、亜鉛含有率、密着性、外観・色調を、以下の表5に示す。
[Evaluation results of plating film in the plating solution 2 of the present invention]
For the plating film obtained by using the plating solution 2 of the present invention, the local current density of the cathode, the plating thickness, the copper content, the zinc content, the adhesion, the appearance according to the distance from the end on the high current density side The color tone is shown in Table 5 below.

Figure 2011174100
Figure 2011174100

[本発明めっき液3におけるめっき皮膜の評価結果]
本発明めっき液3を用いて得られためっき皮膜に対し、高電流密度側における端からの距離に応じたカソードの局所電流密度、めっき厚さ、銅含有率、亜鉛含有率、密着性、外観・色調を、以下の表6に示す。
[Evaluation results of plating film in the plating solution 3 of the present invention]
For the plating film obtained by using the plating solution 3 of the present invention, the local current density of the cathode, the plating thickness, the copper content, the zinc content, the adhesion, the appearance according to the distance from the end on the high current density side The color tone is shown in Table 6 below.

Figure 2011174100
Figure 2011174100

[本発明めっき液4におけるめっき皮膜の評価結果]
本発明めっき液4を用いて得られためっき皮膜に対し、高電流密度側における端からの距離に応じたカソードの局所電流密度、めっき厚さ、銅含有率、亜鉛含有率、密着性、外観・色調を、以下の表7に示す。
[Evaluation results of plating film in the plating solution 4 of the present invention]
For the plating film obtained using the plating solution 4 of the present invention, the local current density of the cathode according to the distance from the end on the high current density side, the plating thickness, the copper content, the zinc content, the adhesion, the appearance The color tone is shown in Table 7 below.

Figure 2011174100
Figure 2011174100

[本発明めっき液5におけるめっき皮膜の評価結果]
本発明めっき液5を用いて得られためっき皮膜に対し、高電流密度側における端からの距離に応じたカソードの局所電流密度、めっき厚さ、銅含有率、亜鉛含有率、密着性、外観・色調を、以下の表8に示す。
[Evaluation result of plating film in the plating solution 5 of the present invention]
For the plating film obtained using the plating solution 5 of the present invention, the local current density of the cathode according to the distance from the end on the high current density side, plating thickness, copper content, zinc content, adhesion, appearance The color tone is shown in Table 8 below.

Figure 2011174100
Figure 2011174100

(V) 実施例2:(e)及び(f)成分の安定性試験
[i] 本発明のめっき液6(建浴直後)を用いて、磨き鋼板に対して銅−亜鉛合金めっき皮膜を形成した。なお、めっき液のpHは12.8、液温度は25℃であって、電流は1A、めっき時間は10分とした。また、その他のめっき皮膜形成の条件は、実施例1と同様の条件とした。
[ii] 次に、使用中のめっき浴の組成が、本発明のめっき液6と同じ組成となるように(e)及び(f)成分を補給しながら、電流1Aで4000分間連続してめっき皮膜形成を行った。
[iii] その後、めっき液として、[ii]の後のめっき液(連続電解後)を使用する以外は、[i]と同じ条件でめっき皮膜を形成した。
[iv] [i]及び[iii]で得られためっき皮膜に対し、それぞれ膜厚、合金組成(銅含有率、亜鉛含有率及びコバルト含有率)を蛍光X線膜厚計にて測定した。また、外観、色調を観察するとともに、折り曲げ試験によって密着性の評価を行った。高電流密度側における端からの距離に応じたカソードの局所電流密度、めっき厚さ、銅含有率、亜鉛含有率、密着性、外観・色調を、それぞれ以下の表9に示す。
(V) Example 2: Stability test of components (e) and (f)
[i] A copper-zinc alloy plating film was formed on the polished steel plate using the plating solution 6 of the present invention (immediately after the building bath). The pH of the plating solution was 12.8, the solution temperature was 25 ° C., the current was 1 A, and the plating time was 10 minutes. Other plating film formation conditions were the same as those in Example 1.
[ii] Next, plating is continuously performed for 4000 minutes at a current of 1 A while supplying the components (e) and (f) so that the composition of the plating bath in use is the same as that of the plating solution 6 of the present invention. Film formation was performed.
[iii] Thereafter, a plating film was formed under the same conditions as [i] except that the plating solution after [ii] (after continuous electrolysis) was used as the plating solution.
[iv] The film thickness and alloy composition (copper content, zinc content, and cobalt content) of the plating films obtained in [i] and [iii] were measured with a fluorescent X-ray film thickness meter. In addition, the appearance and color tone were observed, and the adhesion was evaluated by a bending test. Table 9 below shows the local current density, plating thickness, copper content, zinc content, adhesion, appearance, and color tone of the cathode according to the distance from the end on the high current density side.

Figure 2011174100
Figure 2011174100

表9から明らかなように、4000分間連続電解後における本発明めっき液6を使用して得られためっき皮膜は、めっき厚さ、合金組成、密着性及び外観・色調の点で、建浴直後における本発明のめっき液6を使用した場合とほぼ同じである。すなわち、電解によって(e)α−アミノ酸のアラルキルエステル、及び(f)α−アミノ酸のアラルキルエステルのスルホンアミド化物が分解せず、有効に機能している。   As is clear from Table 9, the plating film obtained using the plating solution 6 of the present invention after continuous electrolysis for 4000 minutes was immediately after the building bath in terms of plating thickness, alloy composition, adhesion, appearance and color tone. This is almost the same as when the plating solution 6 of the present invention is used. That is, (e) the aralkyl ester of an α-amino acid and (f) the sulfonamidated product of an aralkyl ester of an α-amino acid are not decomposed by electrolysis and function effectively.

Claims (16)

下記(a)〜(f)に示す成分を含有する、銅−亜鉛合金電気めっき液:
(a)銅化合物、
(b)亜鉛化合物、
(c)ポリリン酸及びその塩から選ばれた少なくとも1種の化合物、
(d)オキシカルボン酸及びその塩から選ばれた少なくとも1種の化合物、
(e)α−アミノ酸のアラルキルエステル、
(f)α−アミノ酸のアラルキルエステルのスルホンアミド化物。
Copper-zinc alloy electroplating solution containing the components shown in the following (a) to (f):
(A) a copper compound,
(B) a zinc compound,
(C) at least one compound selected from polyphosphoric acid and salts thereof,
(D) at least one compound selected from oxycarboxylic acids and salts thereof;
(E) an aralkyl ester of an α-amino acid,
(F) A sulfonamidation product of an aralkyl ester of an α-amino acid.
前記(e)成分が、式(1):
Figure 2011174100
[式中、Rは、
Figure 2011174100
−H、−CH、−CH(CH、−CHCH(CH、−CH(CH)CHCH、−CH−Ph(該Phはフェニル基)、−CHCHSHCH、−CH−Ph’−OH(該Ph’はフェニレン基)、−CHOH、−CH(CH)OH、−CHSH、−CHCONH、−CHCHCONH、−(CHNH、−(CHNHC(=NH)NH、−CHCOOH、−CHCHCOOH、又は−(CH−であって式(1)中のアミノ基と結合して環状を形成する基であり、
は、置換基を有することのあるアラルキル基である。]
で表されるα−アミノ酸のアラルキルエステルである、請求項1に記載の銅−亜鉛合金電気めっき液。
The component (e) is represented by the formula (1):
Figure 2011174100
[Wherein R 1 is
Figure 2011174100
-H, -CH 3, -CH (CH 3) 2, -CH 2 CH (CH 3) 2, -CH (CH 3) CH 2 CH 3, -CH 2 -Ph ( wherein Ph is phenyl group), - CH 2 CH 2 SHCH 3, -CH 2 -Ph'-OH ( wherein Ph 'is a phenylene group), - CH 2 OH, -CH 2 (CH 3) OH, -CH 2 SH, -CH 2 CONH 2, - CH 2 CH 2 CONH 2, - (CH 2) 4 NH 2, - (CH 2) 3 NHC (= NH) NH 2, -CH 2 COOH, -CH 2 CH 2 COOH, or - (CH 2) 3 - And is a group that combines with the amino group in formula (1) to form a ring,
R 2 is an aralkyl group that may have a substituent. ]
The copper-zinc alloy electroplating solution of Claim 1 which is the aralkyl ester of the alpha-amino acid represented by these.
前記Rが、
Figure 2011174100
−CHCONH、−CHCHCONH、−(CHNH又は−(CHNHC(=NH)NHである、請求項2に記載の銅−亜鉛合金電気めっき液。
R 1 is
Figure 2011174100
-CH 2 CONH 2, -CH 2 CH 2 CONH 2, - (CH 2) 4 NH 2 or - (CH 2) 3 NHC ( = NH) is NH 2, copper according to claim 2 - zinc alloy electroplating Plating solution.
前記Rが、−R−Rであって、
前記Rは、炭素数1〜4のアルキレン基であり、
前記Rは、アリール基(該アリール基は、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数2〜5のアルカノイル基、炭素数2〜5のアルキルカルボニルオキシ基、炭素数2〜5のアルコキシカルボニル基、フェニル基、置換フェニル基、置換シリル基、シアノ基、ニトロ基及びスルホ基から選ばれる1個又は2個以上の置換基を有してもよい)
である、請求項2又は3に記載の銅−亜鉛合金電気めっき液。
R 2 is —R 3 —R 4 ,
R 3 is an alkylene group having 1 to 4 carbon atoms,
R 4 represents an aryl group (the aryl group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkanoyl group having 2 to 5 carbon atoms, or an alkyl having 2 to 5 carbon atoms). It may have one or more substituents selected from a carbonyloxy group, an alkoxycarbonyl group having 2 to 5 carbon atoms, a phenyl group, a substituted phenyl group, a substituted silyl group, a cyano group, a nitro group, and a sulfo group. Good)
The copper-zinc alloy electroplating solution according to claim 2 or 3.
前記Rのアリール基が、フェニル基、ナフチル基又はアントリル基である、請求項4に記載の銅−亜鉛合金電気めっき液。 The copper-zinc alloy electroplating solution according to claim 4, wherein the aryl group of R 4 is a phenyl group, a naphthyl group, or an anthryl group. 前記(f)成分が、式(2):
Figure 2011174100
[式中、Rは、
Figure 2011174100
−H、−CH、−CH(CH、−CHCH(CH、−CH(CH)CHCH、−CH−Ph(該Phはフェニル基)、−CHCHSHCH、−CH−Ph’−OH(該Ph’はフェニレン基)、−CHOH、−CH(CH)OH、−CHSH、−CHCONH、−CHCHCONH、−(CHNH、−(CHNHC(=NH)NH、−CHCOOH、−CHCHCOOH、又は−(CH−であって式(2)中のアミノ基と結合して環状を形成する基であり、
は、置換基を有することのあるアラルキル基であり、
は、置換基を有することのあるアリール基である。]
で表されるα−アミノ酸のアラルキルエステルのスルホンアミド化物である、請求項1〜5のいずれかに記載の銅−亜鉛合金電気めっき液。
The component (f) is represented by the formula (2):
Figure 2011174100
[Wherein R 5 represents
Figure 2011174100
-H, -CH 3, -CH (CH 3) 2, -CH 2 CH (CH 3) 2, -CH (CH 3) CH 2 CH 3, -CH 2 -Ph ( wherein Ph is phenyl group), - CH 2 CH 2 SHCH 3, -CH 2 -Ph'-OH ( wherein Ph 'is a phenylene group), - CH 2 OH, -CH 2 (CH 3) OH, -CH 2 SH, -CH 2 CONH 2, - CH 2 CH 2 CONH 2, - (CH 2) 4 NH 2, - (CH 2) 3 NHC (= NH) NH 2, -CH 2 COOH, -CH 2 CH 2 COOH, or - (CH 2) 3 - And is a group that combines with the amino group in formula (2) to form a ring,
R 6 is an aralkyl group that may have a substituent,
R 7 is an aryl group that may have a substituent. ]
The copper-zinc alloy electroplating liquid in any one of Claims 1-5 which is the sulfonamidation product of the aralkyl ester of the alpha-amino acid represented by these.
前記Rが、
Figure 2011174100
−CHCONH、−CHCHCONH、−(CHNH又は−(CHNHC(=NH)NHである、請求項6に記載の銅−亜鉛合金電気めっき液。
R 5 is
Figure 2011174100
-CH 2 CONH 2, -CH 2 CH 2 CONH 2, - (CH 2) 4 NH 2 or - (CH 2) a 3 NHC (= NH) NH 2 , copper according to claim 6 - zinc alloy electroplating Plating solution.
前記Rのアリール基が、フェニル基、ナフチル基又はアントリル基である、請求項6又は7に記載の銅−亜鉛合金電気めっき液。 The copper-zinc alloy electroplating solution according to claim 6 or 7, wherein the aryl group of R 7 is a phenyl group, a naphthyl group, or an anthryl group. 前記Rが、−R−Rであって、
前記Rは、炭素数1〜4のアルキレン基であり、
前記Rは、アリール基(該アリール基は、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数2〜5のアルカノイル基、炭素数2〜5のアルキルカルボニルオキシ基、炭素数2〜5のアルコキシカルボニル基、フェニル基、置換フェニル基、置換シリル基、シアノ基、ニトロ基及びスルホ基から選ばれる1個又は2個以上の置換基を有してもよい)
である、請求項6〜8のいずれかに記載の銅−亜鉛合金電気めっき液。
R 6 is —R 8 —R 9 and
R 8 is an alkylene group having 1 to 4 carbon atoms,
R 9 represents an aryl group (the aryl group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkanoyl group having 2 to 5 carbon atoms, or an alkyl having 2 to 5 carbon atoms). It may have one or more substituents selected from a carbonyloxy group, an alkoxycarbonyl group having 2 to 5 carbon atoms, a phenyl group, a substituted phenyl group, a substituted silyl group, a cyano group, a nitro group, and a sulfo group. Good)
The copper-zinc alloy electroplating solution according to any one of claims 6 to 8.
前記Rのアリール基が、フェニル基、ナフチル基又はアントリル基である、請求項9に記載の銅−亜鉛合金電気めっき液。 The copper-zinc alloy electroplating solution according to claim 9, wherein the aryl group of R 9 is a phenyl group, a naphthyl group, or an anthryl group. 前記(e)成分の含有量が、0.02〜5g/Lである、請求項1〜10のいずれかに記載の銅−亜鉛合金電気めっき液。 The copper-zinc alloy electroplating solution according to any one of claims 1 to 10, wherein the content of the component (e) is 0.02 to 5 g / L. 前記(f)成分の含有量が、0.5〜4g/Lである、請求項1〜11のいずれかに記載の銅−亜鉛合金電気めっき液。 The copper-zinc alloy electroplating solution according to any one of claims 1 to 11, wherein the content of the component (f) is 0.5 to 4 g / L. 前記オキシカルボン酸が、グリコール酸、乳酸、リンゴ酸、クエン酸、酒石酸、グルコン酸及びグルコヘプトン酸からなる群から選ばれた少なくとも一種である、請求項1〜12のいずれかに記載の銅−亜鉛合金電気めっき液。 The copper-zinc according to any one of claims 1 to 12, wherein the oxycarboxylic acid is at least one selected from the group consisting of glycolic acid, lactic acid, malic acid, citric acid, tartaric acid, gluconic acid and glucoheptonic acid. Alloy electroplating solution. コバルト金属塩をさらに含有する、請求項1〜13のいずれかに記載の銅−亜鉛合金電気めっき液。 The copper-zinc alloy electroplating solution according to any one of claims 1 to 13, further comprising a cobalt metal salt. 請求項1〜14のいずれかに記載の銅−亜鉛合金電気めっき液中において、金属、プラスチック又はセラミックスを陰極として通電することを特徴とする、銅−亜鉛合金電気めっき方法。 The copper-zinc alloy electroplating method according to any one of claims 1 to 14, wherein a current is supplied with a metal, plastic or ceramic as a cathode. 請求項15に記載の方法によって銅−亜鉛合金電気めっきが皮膜された、タイヤ用スチールコード。 The steel cord for tires by which the copper-zinc alloy electroplating was coat | covered by the method of Claim 15.
JP2010036957A 2010-02-23 2010-02-23 Copper-zinc alloy electroplating solution Active JP5645422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036957A JP5645422B2 (en) 2010-02-23 2010-02-23 Copper-zinc alloy electroplating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036957A JP5645422B2 (en) 2010-02-23 2010-02-23 Copper-zinc alloy electroplating solution

Publications (2)

Publication Number Publication Date
JP2011174100A true JP2011174100A (en) 2011-09-08
JP5645422B2 JP5645422B2 (en) 2014-12-24

Family

ID=44687221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036957A Active JP5645422B2 (en) 2010-02-23 2010-02-23 Copper-zinc alloy electroplating solution

Country Status (1)

Country Link
JP (1) JP5645422B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120462A (en) * 2014-06-25 2014-10-29 济南大学 Method for carrying out cyanide-free cuprous brass electroplating on steel cord and method for passivating brass coating
JP5740616B1 (en) * 2014-09-25 2015-06-24 ユケン工業株式会社 Additive for acidic zinc alloy plating bath, acidic zinc alloy plating bath, and method for producing zinc alloy plated member
CN105543914A (en) * 2015-12-23 2016-05-04 苏州市金星工艺镀饰有限公司 Electroplating method for decorative copper zinc alloy electroplating solution
JP2017517648A (en) * 2014-06-12 2017-06-29 コンパニー ゼネラール デ エタブリッスマン ミシュラン In-situ rubberized cable containing rubberizing composition containing corrosion inhibitor
JP2017517649A (en) * 2014-06-12 2017-06-29 コンパニー ゼネラール デ エタブリッスマン ミシュラン In-situ rubberized cable with rubberizing composition containing corrosion inhibitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215492A (en) * 1983-05-19 1984-12-05 Nippon Kagaku Sangyo Kk Zinc alloy electroplating bath
JPS63203790A (en) * 1987-02-17 1988-08-23 Oosakashi Bright copper-zinc alloy electroplating bath containing no cyanogen compound
JPS63206494A (en) * 1987-02-20 1988-08-25 Yutaka Fujiwara Bright copper-zinc-tin alloy electroplating bath containing no cyanide compound
JP2009149978A (en) * 2007-11-26 2009-07-09 Bridgestone Corp Copper-zinc alloy electroplating bath and plating method using the same
JP2009270184A (en) * 2008-05-12 2009-11-19 Bridgestone Corp Copper-zinc alloy electroplating bath and plating method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215492A (en) * 1983-05-19 1984-12-05 Nippon Kagaku Sangyo Kk Zinc alloy electroplating bath
JPS63203790A (en) * 1987-02-17 1988-08-23 Oosakashi Bright copper-zinc alloy electroplating bath containing no cyanogen compound
JPS63206494A (en) * 1987-02-20 1988-08-25 Yutaka Fujiwara Bright copper-zinc-tin alloy electroplating bath containing no cyanide compound
JP2009149978A (en) * 2007-11-26 2009-07-09 Bridgestone Corp Copper-zinc alloy electroplating bath and plating method using the same
JP2009270184A (en) * 2008-05-12 2009-11-19 Bridgestone Corp Copper-zinc alloy electroplating bath and plating method using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517648A (en) * 2014-06-12 2017-06-29 コンパニー ゼネラール デ エタブリッスマン ミシュラン In-situ rubberized cable containing rubberizing composition containing corrosion inhibitor
JP2017517649A (en) * 2014-06-12 2017-06-29 コンパニー ゼネラール デ エタブリッスマン ミシュラン In-situ rubberized cable with rubberizing composition containing corrosion inhibitor
US10378148B2 (en) 2014-06-12 2019-08-13 Compagnie Generale Des Etablissements Michelin Cable gummed in situ and containing a gumming composition that contains a corrosion inhibitor
US10662582B2 (en) 2014-06-12 2020-05-26 Compagnie Generale Des Etablissements Michelin Cable rubberized in situ comprising a rubberizing composition comprising a corrosion inhibitor
CN104120462A (en) * 2014-06-25 2014-10-29 济南大学 Method for carrying out cyanide-free cuprous brass electroplating on steel cord and method for passivating brass coating
JP5740616B1 (en) * 2014-09-25 2015-06-24 ユケン工業株式会社 Additive for acidic zinc alloy plating bath, acidic zinc alloy plating bath, and method for producing zinc alloy plated member
JP2016065295A (en) * 2014-09-25 2016-04-28 ユケン工業株式会社 Additive for acidic zinc alloy plating bath, acidic zinc alloy plating bath and manufacturing method of zinc alloy plating member
US9587320B2 (en) 2014-09-25 2017-03-07 Yuken Industry Co., Ltd. Additive for acid zinc alloy plating bath, acid zinc alloy plating bath, and method for producing zinc alloy plated article
CN105543914A (en) * 2015-12-23 2016-05-04 苏州市金星工艺镀饰有限公司 Electroplating method for decorative copper zinc alloy electroplating solution

Also Published As

Publication number Publication date
JP5645422B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5645422B2 (en) Copper-zinc alloy electroplating solution
EP2310558B1 (en) Improved copper-tin electrolyte and process for the deposition of tin-bronze layers
JP2004019004A (en) Electroless nickel plating solution
JP2006348383A (en) Improved electrolyte for gold alloy
JPS6214232B2 (en)
US1921941A (en) Electrodeposition of palladium
TWI402381B (en) Method to electrodeposit metals using ionic liquids
CA1048964A (en) Gold plating solutions and method
JP5336762B2 (en) Copper-zinc alloy electroplating bath and plating method using the same
JPH06104914B2 (en) Alkaline cyanide bath for electrodeposition of copper-tin alloy coating with ground color or gloss
JPS6045712B2 (en) Improved coumarin method and nickel plating bath
JP6210148B2 (en) SnAg alloy plating solution
JP7219120B2 (en) Electrolytic gold plating solution and its manufacturing method, gold plating method and gold complex
FR2467892A1 (en) AQUEOUS SOLUTIONS FOR ELECTROLYTIC ZINC COATING AND THEIR METHOD OF USE
JP5599515B2 (en) Improved method for producing polymeric phenazonium compounds
US3778359A (en) Zinc electroplating baths and process
CN1195904C (en) Aqueous solution for electrodepositing tin-zinc alloys
US3492135A (en) Stabilized bath for deposition of copper by chemical reduction
CN107848927A (en) Method for synthesizing 9,9 pairs of (methoxy) fluorenes
US20120003498A1 (en) Copper-zinc alloy electroplating bath and method of plating using same
CN1149305C (en) Chromium plating from baths catalyzed with alkanedisulfonic-alkanesulfonic compounds with inhibitors such as aminealkane sulfonic and heterocyclic bases
US3425917A (en) Electrodeposition of silver antimony alloys
JPH09256187A (en) Brightness adjusting agent for semi-bright silver plating
SU521358A1 (en) Electrolyte to precipitate gallium
USRE25883E (en) Gold plating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141104

R150 Certificate of patent or registration of utility model

Ref document number: 5645422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250