JP2011173390A - Method and apparatus for preheating vulcanization mold - Google Patents

Method and apparatus for preheating vulcanization mold Download PDF

Info

Publication number
JP2011173390A
JP2011173390A JP2010040826A JP2010040826A JP2011173390A JP 2011173390 A JP2011173390 A JP 2011173390A JP 2010040826 A JP2010040826 A JP 2010040826A JP 2010040826 A JP2010040826 A JP 2010040826A JP 2011173390 A JP2011173390 A JP 2011173390A
Authority
JP
Japan
Prior art keywords
temperature
vulcanization mold
preheating
mold
vulcanization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010040826A
Other languages
Japanese (ja)
Inventor
Tomoya Togame
知也 十亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010040826A priority Critical patent/JP2011173390A/en
Publication of JP2011173390A publication Critical patent/JP2011173390A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To preheat a vulcanization mold 37 quickly while controlling waste of energy. <P>SOLUTION: The opening is reduced by throttling a control valve 43 through a control unit 54 until the temperature of the vulcanization mold 37 reaches a preheating target temperature R1 after the temperature of the vulcanization mold 37, detected by a detection sensor 47, reaches a predetermined temperature R2, leading to a reduction of the heating heat consumption for the vulcanization mold 37 immediately before the temperature of the vulcanization mold 37 reaches the preheating target temperature R1 and thus a reduction of the overshooting amount from the preheating target temperature R1. The time from gradual lowering through heat dissipation to settling at the preheating target temperature R1 is thereby reduced, allowing the temperature of the vulcanization mold 37 to reach the preheating target temperature R1 quickly. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、被加硫物を加硫する加硫金型の予熱方法および装置に関する。     The present invention relates to a vulcanization mold preheating method and apparatus for vulcanizing a material to be vulcanized.

一般に、タイヤやゴムブロック等の被加硫物を加硫する加硫金型は連続使用されるため、ほぼ常時、加硫金型には高温、高圧の加硫媒体が供給され、加硫温度に保持されている。しかしながら、被加硫物の種類の変更に伴う加硫金型の交換時等にはある程度の時間加硫媒体が供給されないことがあり、このような場合には、加硫金型の温度が常温程度まで低下するので、以下の特許文献1に記載のように、被加硫物の加硫に先立って加硫金型を加硫温度と同等の予熱目標温度まで予熱することが行われている。     In general, a vulcanizing mold for vulcanizing a vulcanized material such as a tire or a rubber block is continuously used. Therefore, a vulcanizing mold is almost always supplied with a high-temperature and high-pressure vulcanizing medium. Is held in. However, the vulcanization medium may not be supplied for a certain period of time when the vulcanization mold is changed due to the change of the type of vulcanized material. In such a case, the temperature of the vulcanization mold is normal temperature. Therefore, the vulcanization mold is preheated to a preheating target temperature equivalent to the vulcanization temperature prior to vulcanization of the vulcanized material, as described in Patent Document 1 below. .

特開平9−193160号公報JP-A-9-193160

このものは、加硫金型を加熱するためのスチーム配管ラインの途中に、加硫金型の温度をコントロールするための流量調整弁を設けるとともに、加硫金型の温度を検出する温度計を加硫金型に設け、当初は流量調整弁の開度を全開にして大量のスチームを一気に供給し、前記温度計により測定した加硫金型の温度が予熱目標温度に達した時点で、流量調整弁の開度を調整する方法に切換えて加硫金型の温度をコントロールするようにしたもので、前述のように大量のスチームを一気に供給することで、加硫金型を急速に加熱し加硫金型の予熱時間を短縮するようにしている。   This product is provided with a flow rate adjustment valve for controlling the temperature of the vulcanization mold in the middle of the steam piping line for heating the vulcanization mold, and a thermometer for detecting the temperature of the vulcanization mold. A vulcanization mold is provided, and initially the flow rate adjustment valve is fully opened and a large amount of steam is supplied at once.When the temperature of the vulcanization mold measured by the thermometer reaches the preheating target temperature, the flow rate The temperature of the vulcanization mold is controlled by switching to a method that adjusts the opening of the regulating valve. By supplying a large amount of steam at once as described above, the vulcanization mold is heated rapidly. The preheating time of the vulcanizing mold is shortened.

しかしながら、このような従来の加硫金型の予熱方法・装置にあっては、加硫金型が予熱目標温度に達する時点まで大量のスチームを継続して供給するようにしているため、加硫金型の温度は、図2に破線で示すように一旦予熱目標温度R1より大きくオーバーシュートし、その後、放熱により徐々に温度が低下して予熱目標温度R1に落ち着くが、前述のようにオーバーシュート量が大きいため、予熱目標温度R1となるまでに多くの時間が必要となるとともに、多くのスチームを浪費してしまうという課題があった。     However, in such a conventional vulcanization mold preheating method and apparatus, a large amount of steam is continuously supplied until the vulcanization mold reaches the preheating target temperature. The mold temperature once overshoots larger than the preheating target temperature R1, as shown by the broken line in FIG. 2, and then gradually decreases due to heat dissipation and settles to the preheating target temperature R1, but as described above, the overshooting occurs. Since the amount is large, a large amount of time is required to reach the preheating target temperature R1, and a lot of steam is wasted.

この発明は、エネルギーの浪費を抑制しつつ迅速に加硫金型を予熱することができる加硫金型の予熱方法および装置を提供することを目的とする。   An object of the present invention is to provide a vulcanization mold preheating method and apparatus capable of quickly preheating a vulcanization mold while suppressing waste of energy.

このような目的は、第1に、加硫金型を加熱する加熱体に加熱源からの加熱媒体を供給通路を通じて供給する一方、供給通路の途中に介装された制御弁の開度を、加硫金型の温度を検出する検出センサの検出温度に基づき制御部により制御して、加熱体に対する加熱媒体の供給量を制御することで、加硫金型を予熱目標温度まで加熱するようにした加硫金型の予熱方法において、検出センサの検出温度が予熱目標温度より若干低温の所定温度に到達するまで、制御弁の開度を制御部によって大とする一方、該所定温度から予熱目標温度に到達するまでの間、制御部により制御弁を絞ってその開度を前記大開度より小とした加硫金型の予熱方法により、達成することができる。     The purpose of this is to firstly supply the heating medium from the heating source to the heating body for heating the vulcanizing mold through the supply passage, while the opening degree of the control valve interposed in the middle of the supply passage is The vulcanization mold is heated to the preheating target temperature by controlling by the control unit based on the detection temperature of the detection sensor for detecting the temperature of the vulcanization mold and controlling the supply amount of the heating medium to the heating element. In the vulcanization mold preheating method, the control unit increases the opening of the control valve until the detection temperature of the detection sensor reaches a predetermined temperature slightly lower than the preheating target temperature, while the preheating target is increased from the predetermined temperature. Until the temperature is reached, this can be achieved by a vulcanization mold preheating method in which the control valve is throttled by the control unit so that the opening degree is smaller than the large opening degree.

第2に、 加硫金型を加熱する加熱体に加熱源からの加熱媒体を供給する供給通路と、供給通路の途中に介装され、加熱体に対する加熱媒体の供給量を制御する制御弁と、加硫金型の温度を検出する検出センサと、検出センサの検出温度に基づき制御弁の開度を制御する制御部とを備え、前記加熱体により加硫金型を予熱目標温度まで加熱するようにした加硫金型の予熱装置において、検出センサの検出温度が予熱目標温度より若干低温の所定温度に到達するまで、制御弁の開度を制御部によって大とする一方、該所定温度から予熱目標温度に到達するまでの間、制御部により制御弁を絞ってその開度を前記大開度より小とした加硫金型の予熱装置により、達成することができる。   Second, a supply passage that supplies a heating medium from a heating source to a heating body that heats the vulcanization mold, a control valve that is interposed in the middle of the supply passage, and controls the supply amount of the heating medium to the heating body; And a detection sensor for detecting the temperature of the vulcanization mold and a control unit for controlling the opening of the control valve based on the detection temperature of the detection sensor, and the vulcanization mold is heated to the preheating target temperature by the heating element. In the vulcanization mold preheating device, the opening of the control valve is increased by the control unit until the detected temperature of the detection sensor reaches a predetermined temperature slightly lower than the preheating target temperature. Until reaching the preheating target temperature, this can be achieved by the preheating device of the vulcanization mold in which the control valve is throttled by the control unit so that the opening degree is smaller than the large opening degree.

この発明においては、検出センサによって検出された加硫金型の温度が、予熱目標温度より若干低温の所定温度に到達した後、予熱目標温度に到達するまでの間、制御部により制御弁を絞って開度を小としたので、予熱目標温度に到達する直前における加硫金型に対する加熱熱量が少なくなって、予熱目標温度からのオーバーシュート量が小さくなる。この結果、放熱により徐々に温度が低下して予熱目標温度に落ち着くまでの時間が短縮され、加硫金型を迅速に予熱目標温度とすることができる。しかも、前述のように制御弁を絞るようにしたので、加熱媒体の供給量を減少することでき、エネルギーの浪費を効果的に抑制することもできる。   In this invention, after the temperature of the vulcanization mold detected by the detection sensor reaches a predetermined temperature slightly lower than the preheating target temperature, the control valve throttles the control valve until it reaches the preheating target temperature. Therefore, the amount of heating to the vulcanization mold immediately before reaching the preheating target temperature is reduced, and the amount of overshoot from the preheating target temperature is reduced. As a result, the time until the temperature gradually decreases due to heat radiation and settles to the preheating target temperature is shortened, and the vulcanization mold can be quickly set to the preheating target temperature. Moreover, since the control valve is throttled as described above, the supply amount of the heating medium can be reduced, and waste of energy can be effectively suppressed.

また、請求項2に記載のように構成すれば、前述のオーバーシュート量を確実に小さくすることができ、さらに、請求項3に記載のように構成すれば、エネルギーの浪費を強力に抑制することができる。また、請求項5に記載のように構成すれば、加硫空間の温度と検出センサによる検出温度との乖離を効果的に小さくすることができ、さらに、請求項6に記載のように構成すれば、検出センサを加硫金型に容易かつ安価に設置することができる。   In addition, if configured as described in claim 2, the above-described overshoot amount can be surely reduced, and if configured as described in claim 3, energy waste is strongly suppressed. be able to. Further, if configured as described in claim 5, the difference between the temperature of the vulcanization space and the temperature detected by the detection sensor can be effectively reduced, and further, configured as described in claim 6. For example, the detection sensor can be easily and inexpensively installed in the vulcanization mold.

この発明の実施形態1を示す一部がブロックで示された正面断面図である。It is the front sectional view in which a part which shows Embodiment 1 of this invention was shown with the block. 加硫金型の温度と時間との関係を表すグラフである。It is a graph showing the relationship between the temperature of a vulcanization mold, and time.

以下、この発明の実施形態1を図面に基づいて説明する。
図1において、11は加硫装置であり、この加硫装置11は静置された下基台12を有し、この下基台12の上面には内部に加熱室13が形成された下プラテン14が取り付けられている。この下プラテン14の上面には図示していない被加硫物としての未加硫タイヤの下側サイドウォール部を主に型付けする下モールド15が固定されている。なお、この発明においては、ゴムブロック等の被加硫物を加硫装置により加硫するようにしてもよい。
Embodiment 1 of the present invention will be described below with reference to the drawings.
In FIG. 1, reference numeral 11 denotes a vulcanizing device. The vulcanizing device 11 has a stationary lower base 12, and a lower platen having a heating chamber 13 formed on the upper surface of the lower base 12. 14 is installed. A lower mold 15 that mainly molds a lower sidewall portion of an unvulcanized tire as a vulcanized material (not shown) is fixed to the upper surface of the lower platen 14. In the present invention, a vulcanized material such as a rubber block may be vulcanized by a vulcanizer.

18は前記下基台12の上方に設置された上基台であり、この上基台18は図示していない昇降手段から付与された昇降力により昇降することで、下基台12に対し離隔、接近することができる。19は上基台18の直下に設置された上部プレートであり、この上部プレート19は上基台18と一体的に昇降することができるとともに、図示していない移動機構により上基台18と個別に昇降することもできる。   Reference numeral 18 denotes an upper base installed above the lower base 12, and the upper base 18 is separated from the lower base 12 by moving up and down by a lifting force applied from a lifting means (not shown). Can approach. Reference numeral 19 denotes an upper plate installed directly below the upper base 18. The upper plate 19 can be moved up and down integrally with the upper base 18, and is individually separated from the upper base 18 by a moving mechanism (not shown). You can also go up and down.

この上部プレート19の下面には内部に加熱室22が形成された上プラテン23が取り付けられ、この上プラテン23の下面には前記未加硫タイヤの上側サイドウォール部を主に型付けする上モールド24が固定されている。25は上部プレート19の半径方向外側に設置され、内部に加熱室27が形成されたアウターリングであり、このアウターリング25の上端は前記上基台18の半径方向外端部に固定されている。また、このアウターリング25は前記上部プレート19と同軸で、その下部内周には上方に向かうに従い半径方向内側に傾斜した傾斜面26が形成されている。   An upper platen 23 having a heating chamber 22 formed therein is attached to the lower surface of the upper plate 19, and an upper mold 24 mainly molds the upper sidewall portion of the unvulcanized tire on the lower surface of the upper platen 23. Is fixed. 25 is an outer ring that is installed on the outer side in the radial direction of the upper plate 19 and in which a heating chamber 27 is formed. The upper end of the outer ring 25 is fixed to the outer end of the upper base 18 in the radial direction. . Further, the outer ring 25 is coaxial with the upper plate 19, and an inclined surface 26 is formed on the inner circumference of the lower portion thereof.

29は周方向に並べて配置された複数、例えば9個のスライダであり、これらスライダ29の上端は上モールド24より半径方向外側の上プラテン23の下面に半径方向に移動可能に支持されている。また、前記スライダ29の外周には前記アウターリング25の傾斜面26と同一勾配の傾斜面30が形成され、これらの傾斜面30と前記傾斜面26とはあり継手によって連結されながら摺動可能に係合している。前記スライダ29の内周にはセクターモールド33がそれぞれ固定され、これらセクターモールド33は未加硫タイヤのトレッド部を主に型付けすることができる。   Reference numeral 29 denotes a plurality of, for example, nine sliders arranged side by side in the circumferential direction. The upper ends of these sliders 29 are supported on the lower surface of the upper platen 23 radially outward from the upper mold 24 so as to be movable in the radial direction. An inclined surface 30 having the same gradient as the inclined surface 26 of the outer ring 25 is formed on the outer periphery of the slider 29. The inclined surface 30 and the inclined surface 26 are slidable while being connected by a joint. Is engaged. Sector molds 33 are respectively fixed to the inner periphery of the slider 29, and these sector molds 33 can mainly mold a tread portion of an unvulcanized tire.

そして、スライダ29の下端が下プラテン14の上面に当接するまで上基台18、上部プレート19等が一体的に下降した後、上基台18がさらに下降して上部プレート19に接近すると、スライダ29、セクターモールド33は上プラテン23に支持されながら前記傾斜面26、30の楔作用により半径方向内側に同期移動する。そして、全てのセクターモールド33が半径方向内側限まで移動すると、これらセクターモールド33の周方向両端同士は密着して連続したリング状を呈する。   Then, after the upper base 18 and the upper plate 19 are lowered integrally until the lower end of the slider 29 comes into contact with the upper surface of the lower platen 14, when the upper base 18 is further lowered and approaches the upper plate 19, the slider 29. While being supported by the upper platen 23, the sector mold 33 is synchronously moved radially inward by the wedge action of the inclined surfaces 26, 30. When all the sector molds 33 move to the inner limit in the radial direction, both ends in the circumferential direction of the sector molds 33 are in close contact with each other and form a continuous ring shape.

このとき、セクターモールド33は下降限に位置する上モールド24および下モールド15に密着するため、これら下、上モールド15、24およびセクターモールド33からなる加硫金型37は閉止し、内部に未加硫タイヤを収納するドーナツ状の加硫空間39を形成する。また、前述した加熱室13が形成された下プラテン14、加熱室22が形成された上プラテン23および加熱室27が形成されたアウターリング25は全体として、前記加硫金型37を加熱する加熱体38を構成する。   At this time, since the sector mold 33 is in close contact with the upper mold 24 and the lower mold 15 positioned at the lower limit, the vulcanizing mold 37 composed of the upper molds 15 and 24 and the sector mold 33 is closed and not inside. A donut-shaped vulcanization space 39 for accommodating the vulcanized tire is formed. Further, the lower platen 14 in which the heating chamber 13 is formed, the upper platen 23 in which the heating chamber 22 is formed, and the outer ring 25 in which the heating chamber 27 is formed are heated as a whole to heat the vulcanization mold 37. The body 38 is configured.

41はスチームあるいは高温に加熱された空気、不活性ガス等の加熱媒体が貯蔵された加熱源であり、この加熱源41と前記加熱体38の加熱室13、22、27とは前記加熱源41からの加熱媒体を加熱体38に供給する供給通路42により接続されている。ここで、前記供給通路42は加硫装置11側において二股に分岐しているが、これら供給通路42の二股分岐部の途中には流量調整を行う制御弁43がそれぞれ介装されており、この結果、これら制御弁43により加熱体38の加熱室13、22、27に対する加熱媒体の供給量が制御される。   41 is a heating source in which a heating medium such as steam or air heated to a high temperature or an inert gas is stored. The heating source 41 and the heating chambers 13, 22, and 27 of the heating body 38 are the heating source 41. Are connected by a supply passage 42 for supplying the heating medium from Here, the supply passage 42 is bifurcated on the side of the vulcanizer 11, but a control valve 43 for adjusting the flow rate is interposed in the middle of the bifurcated branch portion of the supply passage 42, respectively. As a result, the supply amount of the heating medium to the heating chambers 13, 22, and 27 of the heating body 38 is controlled by these control valves 43.

46は前記加硫金型37、ここでは下モールド15に形成され、その外面から内面(加硫空間39)に向かって延びる有底の穴であり、この穴46に加硫金型37の温度を検出する、例えばサーミスタ、熱電対、測温抵抗体等の検出センサ47を収納することで、該検出センサ47を加硫金型47に取付けている。このように検出センサ47を加硫金型37に取付け、加硫空間39に近接した位置で加硫金型37の温度を検出するようにすれば、加硫空間39の温度と検出センサ47による検出温度との乖離を効果的に小さくすることができる。   46 is a bottomed hole formed in the vulcanizing mold 37, here the lower mold 15 and extending from the outer surface toward the inner surface (vulcanizing space 39). For example, a detection sensor 47 such as a thermistor, a thermocouple, or a resistance temperature detector is housed to attach the detection sensor 47 to the vulcanization mold 47. Thus, if the detection sensor 47 is attached to the vulcanization mold 37 and the temperature of the vulcanization mold 37 is detected at a position close to the vulcanization space 39, the temperature of the vulcanization space 39 and the detection sensor 47 Deviation from the detected temperature can be effectively reduced.

なお、この発明においては、検出センサを加硫金型の外面に耐熱用テープにより貼付けることで取り付けるようにしてもよく、この場合には、検出センサを加硫金型に容易かつ安価に設置することができる。50はパソコン等からなる制御手段であり、この制御手段50には前記検出センサ47が検出した加硫金型37の検出温度が検出信号として該検出センサ47から入力される。   In the present invention, the detection sensor may be attached by sticking to the outer surface of the vulcanization mold with heat-resistant tape. In this case, the detection sensor is easily and inexpensively installed on the vulcanization mold. can do. Reference numeral 50 denotes control means composed of a personal computer or the like. The detected temperature of the vulcanization mold 37 detected by the detection sensor 47 is input from the detection sensor 47 to the control means 50 as a detection signal.

53は制御弁43と同数の電空変換器であり、これらの電空変換器53に前記制御手段50から検出センサ47の検出温度に応じた制御信号が出力されると、これら電空変換器53は前記制御信号を空気圧力信号に変換して制御弁43の開度をそれぞれ変化させる。前述した制御手段50、電空変換器53は全体として、検出センサ47の検出温度に基づき制御弁43の開度を制御して加硫金型37の温度を制御する制御部54を構成する。   53 is the same number of electropneumatic converters as the control valves 43. When a control signal corresponding to the detected temperature of the detection sensor 47 is output from the control means 50 to these electropneumatic converters 53, these electropneumatic converters 53 converts the control signal into an air pressure signal to change the opening of the control valve 43, respectively. The control means 50 and the electropneumatic converter 53 described above constitute a control unit 54 that controls the temperature of the vulcanization mold 37 by controlling the opening of the control valve 43 based on the temperature detected by the detection sensor 47.

また、前述した加熱源41、供給通路42、制御弁43、検出センサ47、制御部54は全体として、加熱体38に供給される加熱媒体量を制御することで、例えば、常温程度の低温まで温度が低下している閉止状態の加硫金型37を予熱目標温度R1、例えば加硫温度と同等の 170度Cまで加熱する予熱装置55を構成する。ここで、前記加硫金型37の温度が低温まで低下する場合としては、タイヤの種類の変更に伴って加硫金型37の交換を行う場合や、休暇、生産ラインのトラブル等により加硫作業を中断する場合を挙げることができ、これらの場合には、ある程度の時間加硫媒体が加硫装置11に供給されなくなり加硫金型37の温度が低下してしまうのである。   Further, the heating source 41, the supply passage 42, the control valve 43, the detection sensor 47, and the control unit 54 described above control the amount of the heating medium supplied to the heating body 38 as a whole, for example, to a low temperature of about room temperature. A preheating device 55 is configured to heat the vulcanization mold 37 in a closed state in which the temperature is lowered to a preheating target temperature R1, for example, 170 ° C. equivalent to the vulcanization temperature. Here, when the temperature of the vulcanization mold 37 is lowered to a low temperature, the vulcanization mold 37 is replaced with a change in the tire type, vulcanization is performed due to a vacation, a production line trouble or the like. There are cases where the operation is interrupted. In these cases, the vulcanization medium is not supplied to the vulcanizer 11 for a certain period of time, and the temperature of the vulcanization mold 37 is lowered.

そして、このように温度が低下した加硫金型37を加熱体38によって前述の予熱目標温度R1まで加熱する場合には、まず、検出センサ47による検出温度が低温であるので、制御部54を構成する制御手段50によって制御弁43の開度を大と、ここでは最大開度とする。この結果、加熱源41から加熱媒体が供給通路42を通じて加熱体38に大量に供給され、加硫金型37は加熱体38により急速に加熱される。このとき、検出センサ47が加硫金型37の温度を常時検出しているが、この検出センサ47が検出した加硫金型37の検出温度が、前述の低温から前記予熱目標温度R1より若干低温の所定温度R2(図2参照)に到達するまでの間においては、前記制御手段50は制御弁43の開度を大に保持する。なお、このとき、前記加硫空間39には図示していないブラダが収納されているが、このブラダに対し同様に加熱媒体を供給してもよい。   Then, when heating the vulcanization mold 37 whose temperature has been lowered to the above-described preheating target temperature R1 by the heating body 38, first, since the detection temperature by the detection sensor 47 is low, the control unit 54 is If the opening degree of the control valve 43 is large by the control means 50 to be configured, the maximum opening degree is assumed here. As a result, a large amount of heating medium is supplied from the heating source 41 to the heating body 38 through the supply passage 42, and the vulcanizing mold 37 is rapidly heated by the heating body 38. At this time, the detection sensor 47 constantly detects the temperature of the vulcanization mold 37, but the detection temperature of the vulcanization mold 37 detected by the detection sensor 47 is slightly lower than the above-mentioned preheating target temperature R1 from the low temperature. Until the temperature reaches a predetermined low temperature R2 (see FIG. 2), the control means 50 keeps the opening degree of the control valve 43 large. At this time, a bladder (not shown) is accommodated in the vulcanization space 39, but a heating medium may be similarly supplied to this bladder.

そして、検出センサ47が検出した加硫金型37の検出温度が前述の所定温度R2に達すると、制御手段50は電空変換器53に制御信号を出力して該電空変換器53により制御弁43を絞り、その開度を前述した大開度より小さな小開度とする。この結果、加熱源41から加熱体38に供給される加熱媒体量が減少して、加熱体38による加硫金型37の加熱速度が低下する。そして、検出センサ47が検出した加硫金型37の検出温度が予熱目標温度R1に到達すると、制御手段50は通常の温度制御を開始する。   When the detected temperature of the vulcanization mold 37 detected by the detection sensor 47 reaches the predetermined temperature R2, the control means 50 outputs a control signal to the electropneumatic converter 53 and is controlled by the electropneumatic converter 53. The valve 43 is throttled and its opening is set to a small opening smaller than the large opening described above. As a result, the amount of the heating medium supplied from the heating source 41 to the heating body 38 decreases, and the heating speed of the vulcanization mold 37 by the heating body 38 decreases. When the detected temperature of the vulcanization mold 37 detected by the detection sensor 47 reaches the preheating target temperature R1, the control means 50 starts normal temperature control.

このように検出センサ47によって検出された加硫金型37の温度が所定温度R2に到達した後、予熱目標温度R1に到達するまでの間、制御部54により制御弁43を絞って開度を小としたので、予熱目標温度R1に到達する直前における加硫金型37に対する加熱熱量が少なくなって、予熱目標温度R1からのオーバーシュート量が、図2に実線で示すように従来技術(破線)より小さくなる。この結果、放熱により加硫金型37の温度が徐々に低下して予熱目標温度R1に落ち着くまでの時間が短縮され、加硫金型37を迅速に予熱目標温度R1とすることができる。しかも、前述のように制御弁43を絞るようにしたので、加熱媒体の供給量を減少することでき、エネルギーの浪費を効果的に抑制することもできる。   Thus, after the temperature of the vulcanization mold 37 detected by the detection sensor 47 reaches the predetermined temperature R2, until the preheating target temperature R1 is reached, the controller 54 throttles the control valve 43 to increase the opening degree. The amount of heat applied to the vulcanization mold 37 immediately before reaching the preheating target temperature R1 is reduced, and the amount of overshoot from the preheating target temperature R1 is as shown by the solid line in FIG. ) Smaller. As a result, the time until the temperature of the vulcanization mold 37 gradually decreases due to heat dissipation and settles to the preheating target temperature R1 is shortened, and the vulcanization mold 37 can be quickly set to the preheating target temperature R1. Moreover, since the control valve 43 is throttled as described above, the supply amount of the heating medium can be reduced, and waste of energy can be effectively suppressed.

ここで、この実施形態では、加硫金型37の温度が所定温度R2から予熱目標温度R1に到達するまでの間、前述のオーバーシュート量を確実に小さくするために、制御部54によって制御弁43を連続的に絞りその開度を徐々に小としている。なお、この発明においては、加硫金型37の温度が所定温度R2になったときの1回だけ制御弁43を絞ってその開度を、例えば全開の 1/まで小とし、その後、予熱目標温度R1に到達するまで制御弁43の開度を前記 1/2開度に保持してもよく、あるいは、所定温度R2から予熱目標温度R1に到達するまでの間、段階的に制御弁43を絞り、その開度を階段状に小としてもよい。   Here, in this embodiment, the control valve 54 controls the control valve 54 to reliably reduce the amount of overshoot until the temperature of the vulcanization mold 37 reaches the preheating target temperature R1 from the predetermined temperature R2. 43 is squeezed continuously and the opening is gradually reduced. In the present invention, when the temperature of the vulcanizing mold 37 reaches the predetermined temperature R2, the control valve 43 is throttled only once to reduce its opening to, for example, 1 / full open, and then the preheating target The opening degree of the control valve 43 may be held at the above-mentioned half opening degree until the temperature R1 is reached, or the control valve 43 is gradually changed from the predetermined temperature R2 to the preheating target temperature R1. It is good also as restrict | squeezing and opening the opening small.

前述のように加熱体38の加熱による加硫金型37の温度上昇を検出センサ47によって連続的に検出すれば、加硫金型37が現在の温度から予熱目標温度R1に到達するまでの時間を予め高精度で推測することができる。このため、この実施形態では前記制御手段50に未加硫タイヤの生産ライン58からの生産信号(生産指令)を入力し、該生産信号に基づき制御弁43の開度を大とする始期を制御部54(制御手段50)により決定、例えば、前記生産信号を基に未加硫タイヤが加硫装置11に供給される時期を求め、この供給時期と加硫金型37の予熱目標温度R1への到達時期とが合致するよう、前記供給時期から逆算して制御弁43の開度を大に切換えるスタート時期を決定するようにしている。   As described above, if the temperature rise of the vulcanization mold 37 due to the heating of the heating body 38 is continuously detected by the detection sensor 47, the time until the vulcanization mold 37 reaches the preheating target temperature R1 from the current temperature. Can be estimated with high accuracy in advance. For this reason, in this embodiment, a production signal (production command) from the production line 58 of the unvulcanized tire is input to the control means 50, and the starting stage for increasing the opening of the control valve 43 is controlled based on the production signal. Determined by the unit 54 (control means 50), for example, the time when the unvulcanized tire is supplied to the vulcanizing device 11 is obtained based on the production signal, and this supply time and the preheating target temperature R1 of the vulcanizing mold 37 are obtained The start time for switching the opening degree of the control valve 43 to a large value is determined by calculating backward from the supply time so that the arrival time of the control valve is matched.

このようにすれば加硫金型37が予熱目標温度R1に到達後、未加硫タイヤが加硫装置11に供給されるまでの間、加硫金型37を予熱目標温度R1に保持しておくために供給される加熱媒体を確実に低減させることができ、エネルギーの浪費を強力に抑制することができる。なお、60は制御弁43と加熱体38との間の二股に分岐した供給通路42にそれぞれ介装されている圧力センサであり、これらの圧力センサ60は供給通路42を通過する加熱媒体の圧力を検出し、その結果を検出信号として制御手段50に出力する。   In this way, after the vulcanization mold 37 reaches the preheating target temperature R1, the vulcanization mold 37 is held at the preheating target temperature R1 until the unvulcanized tire is supplied to the vulcanizer 11. Therefore, it is possible to reliably reduce the heating medium supplied to save the energy, and to strongly suppress the waste of energy. Reference numeral 60 denotes a pressure sensor interposed in a bifurcated supply passage 42 between the control valve 43 and the heating body 38. These pressure sensors 60 are pressures of the heating medium passing through the supply passage 42. And the result is output to the control means 50 as a detection signal.

次に、前記実施形態1の作用について説明する。
加硫を施す未加硫タイヤの種類に変更が生じた場合には、この変更に応じて加硫装置11の加硫金型37を対応する加硫金型37に交換するが、このような交換作業が終了した時点では加硫金型37は常温程度の低温である。そして、前述のように交換の終了した加硫金型37を加硫作業に先立ち前述した予熱装置55を用いて予熱目標温度R1まで加熱(予熱)しておけば、加硫作業を迅速に開始ることができ極めて有用である。
Next, the operation of the first embodiment will be described.
When a change occurs in the type of unvulcanized tire to be vulcanized, the vulcanization mold 37 of the vulcanizer 11 is replaced with a corresponding vulcanization mold 37 in accordance with this change. When the replacement operation is completed, the vulcanizing mold 37 is at a low temperature of about room temperature. Then, if the vulcanization mold 37 that has been replaced as described above is heated (preheating) to the preheating target temperature R1 using the preheating device 55 described above prior to the vulcanization operation, the vulcanization operation can be started quickly. It is extremely useful.

このため、低温の加硫金型37に対し以下のようにして予熱を行う。即ち、生産ライン58からの生産信号(生産指令)が制御手段50に入力されると、該制御手段50は前記生産信号に基づき制御弁43の開度を大とする始期を決定するとともに、前述の始期となったとき、電空変換器53に制御信号を出力する。このとき、検出センサ47により検出される加硫金型37の温度は低温であるため、電空変換器53は前記制御信号を空気圧力信号に変換して制御弁43を操作し、該制御弁43の開度を大(最大開度)とする。   For this reason, preheating is performed on the low-temperature vulcanization mold 37 as follows. That is, when a production signal (production command) from the production line 58 is input to the control means 50, the control means 50 determines the start period for increasing the opening of the control valve 43 based on the production signal, and At the beginning of the operation, a control signal is output to the electropneumatic converter 53. At this time, since the temperature of the vulcanization mold 37 detected by the detection sensor 47 is a low temperature, the electropneumatic converter 53 operates the control valve 43 by converting the control signal into an air pressure signal, The opening of 43 is large (maximum opening).

この結果、加熱源41から加熱媒体が供給通路42を通じて加熱体38に大量に供給され、加硫金型37は加熱体38により急速に加熱される。このとき、検出センサ47が加硫金型37の温度を常時検出しているが、この検出センサ47が検出した加硫金型37の検出温度が、前述の低温から所定温度R2に到達するまでの間においては、前記制御手段50は前記検出温度に基づき制御弁43の開度を制御し、その開度を大に保持する。   As a result, a large amount of heating medium is supplied from the heating source 41 to the heating body 38 through the supply passage 42, and the vulcanizing mold 37 is rapidly heated by the heating body 38. At this time, the detection sensor 47 constantly detects the temperature of the vulcanization mold 37, but until the detection temperature of the vulcanization mold 37 detected by the detection sensor 47 reaches the predetermined temperature R2 from the low temperature described above. In the meantime, the control means 50 controls the opening degree of the control valve 43 based on the detected temperature, and keeps the opening degree large.

そして、検出センサ47が検出した加硫金型37の検出温度が所定温度R2に達すると、制御手段50は電空変換器53に制御信号を出力して該電空変換器53により制御弁43を絞り、その開度を前述した大開度より小さな小開度とする。この結果、加熱源41から加熱体38に供給される加熱媒体量が減少して、加熱体38による加硫金型37の加熱速度が低下する。そして、検出センサ47が検出した加硫金型37の検出温度が予熱目標温度R1に到達すると、制御手段50は通常の温度制御を開始する。このように制御手段50は、加硫金型37が所定温度R2から予熱目標温度R1に到達するまでの間、制御弁43を絞ってその開度を小開度とするのである。このようにして加硫金型37は予熱目標温度R1まで加熱(予熱)される。   When the detected temperature of the vulcanization mold 37 detected by the detection sensor 47 reaches a predetermined temperature R2, the control means 50 outputs a control signal to the electropneumatic converter 53, and the electropneumatic converter 53 controls the control valve 43. The opening is set to a small opening smaller than the large opening described above. As a result, the amount of the heating medium supplied from the heating source 41 to the heating body 38 decreases, and the heating speed of the vulcanization mold 37 by the heating body 38 decreases. When the detected temperature of the vulcanization mold 37 detected by the detection sensor 47 reaches the preheating target temperature R1, the control means 50 starts normal temperature control. In this manner, the control means 50 throttles the control valve 43 until the vulcanization mold 37 reaches the preheating target temperature R1 from the predetermined temperature R2 to reduce the opening degree. In this way, the vulcanization mold 37 is heated (preheated) to the preheat target temperature R1.

このとき、予熱目標温度R1に到達する直前における加硫金型37に対する加熱熱量が少なくなるため、予熱目標温度R1からのオーバーシュート量が小さくなり、この結果、予熱目標温度R1に落ち着くまでの時間が短縮され、加硫金型37を迅速に予熱目標温度R1とすることができる。しかも、前述のように制御弁43を絞るようにしたので、加熱媒体の供給量を減少することでき、エネルギーの浪費を効果的に抑制することもできる。   At this time, since the amount of heating heat to the vulcanization mold 37 immediately before reaching the preheating target temperature R1 is reduced, the amount of overshoot from the preheating target temperature R1 is reduced, and as a result, the time until the temperature reaches the preheating target temperature R1. And the vulcanization mold 37 can be quickly set to the preheating target temperature R1. Moreover, since the control valve 43 is throttled as described above, the supply amount of the heating medium can be reduced, and waste of energy can be effectively suppressed.

そして、加硫金型37の予熱目標温度R1への到達と同時あるいは若干の時間差で未加硫タイヤが加硫装置11に供給されると、上基台18、上部プレート19、上モールド24等を上昇させるとともに、スライダ29、セクターモールド33を半径方向外側に移動させて加硫金型37を開放した後、前記未加硫タイヤを下モールド15上に載置する。その後、上基台18、上部プレート19、上モールド24等を下降させるとともに、スライダ29、セクターモールド33を半径方向内側に移動させて加硫金型37を閉止し、該加硫金型37の加硫空間39に未加硫タイヤを収納する。次に、加熱体38およびブラダに高温、高圧の加硫媒体を供給して未加硫タイヤを加硫する。ここで、前述した予熱装置55は前記加硫媒体を供給する供給装置をそのまま使用してもよいが、加硫媒体供給装置と別個に設置するようにしてもよい。   When the unvulcanized tire is supplied to the vulcanizer 11 at the same time as the vulcanization mold 37 reaches the preheating target temperature R1 or with a slight time difference, the upper base 18, the upper plate 19, the upper mold 24, etc. The slider 29 and the sector mold 33 are moved radially outward to open the vulcanization mold 37, and then the unvulcanized tire is placed on the lower mold 15. Thereafter, the upper base 18, the upper plate 19, the upper mold 24 and the like are lowered, and the slider 29 and the sector mold 33 are moved inward in the radial direction to close the vulcanizing mold 37. An unvulcanized tire is stored in the vulcanization space 39. Next, a high-temperature and high-pressure vulcanization medium is supplied to the heating body 38 and the bladder to vulcanize the unvulcanized tire. Here, the above-mentioned preheating device 55 may use the supply device for supplying the vulcanization medium as it is, but may be installed separately from the vulcanization medium supply device.

この発明は、被加硫物を加硫する加硫金型を予熱する産業分野に適用できる。   The present invention can be applied to the industrial field of preheating a vulcanization mold for vulcanizing a material to be vulcanized.

37…加硫金型 38…加熱体
39…加硫空間 41…加熱源
42…供給通路 43…制御弁
46…穴 47…検出センサ
54…制御部 55…予熱装置
58…生産ライン
37 ... Vulcanization mold 38 ... Heating body
39 ... Vulcanization space 41 ... Heat source
42 ... Supply passage 43 ... Control valve
46… Hole 47… Detection sensor
54 ... Control unit 55 ... Preheating device
58 ... Production line

Claims (6)

加硫金型を加熱する加熱体に加熱源からの加熱媒体を供給通路を通じて供給する一方、供給通路の途中に介装された制御弁の開度を、加硫金型の温度を検出する検出センサの検出温度に基づき制御部により制御して、加熱体に対する加熱媒体の供給量を制御することで、加硫金型を予熱目標温度まで加熱するようにした加硫金型の予熱方法において、検出センサの検出温度が予熱目標温度より若干低温の所定温度に到達するまで、制御弁の開度を制御部によって大とする一方、該所定温度から予熱目標温度に到達するまでの間、制御部により制御弁を絞ってその開度を前記大開度より小としたことを特徴とする加硫金型の予熱方法。     Detection of detecting the temperature of the vulcanization mold by supplying the heating medium from the heating source to the heating element for heating the vulcanization mold through the supply path, and detecting the opening degree of the control valve interposed in the supply path. In the preheating method of the vulcanization mold in which the vulcanization mold is heated to the preheating target temperature by controlling the supply amount of the heating medium to the heating body by controlling by the control unit based on the detection temperature of the sensor, While the opening of the control valve is increased by the control unit until the detection temperature of the detection sensor reaches a predetermined temperature slightly lower than the preheating target temperature, the control unit continues until the preheating target temperature is reached from the predetermined temperature. A preheating method for a vulcanization mold, wherein the control valve is throttled to make its opening smaller than the large opening. 前記制御部により制御弁を連続的に絞ってその開度を徐々に小とした請求項1記載の加硫金型の予熱方法。     The vulcanization mold preheating method according to claim 1, wherein the control valve is continuously throttled by the controller to gradually reduce the opening degree. 前記制御部に被加硫物の生産ラインからの制御信号を入力し、該制御信号に基づき制御弁の開度を大とする始期を制御部により決定するようにした請求項1記載の加硫金型の予熱方法。     The vulcanization according to claim 1, wherein a control signal from a production line for a vulcanized material is input to the control unit, and the start time for increasing the opening of the control valve is determined by the control unit based on the control signal. Mold preheating method. 加硫金型を加熱する加熱体に加熱源からの加熱媒体を供給する供給通路と、供給通路の途中に介装され、加熱体に対する加熱媒体の供給量を制御する制御弁と、加硫金型の温度を検出する検出センサと、検出センサの検出温度に基づき制御弁の開度を制御する制御部とを備え、前記加熱体により加硫金型を予熱目標温度まで加熱するようにした加硫金型の予熱装置において、検出センサの検出温度が予熱目標温度より若干低温の所定温度に到達するまで、制御弁の開度を制御部によって大とする一方、該所定温度から予熱目標温度に到達するまでの間、制御部により制御弁を絞ってその開度を前記大開度より小としたことを特徴とする加硫金型の予熱装置。     A supply passage for supplying a heating medium from a heating source to a heating body for heating the vulcanization mold, a control valve interposed in the supply passage for controlling the supply amount of the heating medium to the heating body, and a vulcanization gold A detection sensor for detecting the temperature of the mold, and a control unit for controlling the opening of the control valve based on the detection temperature of the detection sensor, and the heating body is used to heat the vulcanization mold to the preheating target temperature. In the preheating device of the metal mold, the opening of the control valve is increased by the control unit until the detected temperature of the detection sensor reaches a predetermined temperature slightly lower than the preheating target temperature, while the predetermined temperature is changed from the predetermined temperature to the preheating target temperature. Until reaching, a control valve is throttled by the control unit so that the opening degree is smaller than the large opening degree. 前記検出センサを加硫金型に取付け、加硫空間に近接した位置で加硫金型の温度を検出するようにした請求項4記載の加硫金型の予熱装置。     The vulcanization mold preheating device according to claim 4, wherein the detection sensor is attached to the vulcanization mold and the temperature of the vulcanization mold is detected at a position close to the vulcanization space. 前記検出センサを加硫金型の外面に耐熱用テープにより貼付けることで取り付けるようにした請求項4記載の加硫金型の予熱装置。     The vulcanization mold preheating device according to claim 4, wherein the detection sensor is attached to the outer surface of the vulcanization mold by affixing with a heat-resistant tape.
JP2010040826A 2010-02-25 2010-02-25 Method and apparatus for preheating vulcanization mold Pending JP2011173390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010040826A JP2011173390A (en) 2010-02-25 2010-02-25 Method and apparatus for preheating vulcanization mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040826A JP2011173390A (en) 2010-02-25 2010-02-25 Method and apparatus for preheating vulcanization mold

Publications (1)

Publication Number Publication Date
JP2011173390A true JP2011173390A (en) 2011-09-08

Family

ID=44686723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040826A Pending JP2011173390A (en) 2010-02-25 2010-02-25 Method and apparatus for preheating vulcanization mold

Country Status (1)

Country Link
JP (1) JP2011173390A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195640A (en) * 1981-05-28 1982-12-01 Shinko Electric Co Ltd Control system for tire press
JPH03279736A (en) * 1990-03-26 1991-12-10 Harman Co Ltd Temperature controller
JPH04201523A (en) * 1990-11-30 1992-07-22 Sumitomo Rubber Ind Ltd Vulcanizing method for elastomer product and its device
JPH06207702A (en) * 1993-01-07 1994-07-26 Miyawaki:Kk Steam supply device
JPH09173940A (en) * 1995-12-27 1997-07-08 Trinity Ind Corp Drying furnace for coating
JPH09193160A (en) * 1996-01-19 1997-07-29 Bridgestone Corp Preheating of tire mold within short time
JPH10124104A (en) * 1996-10-22 1998-05-15 Kokusai Electric Co Ltd Control method for semiconductor manufacturing equipment
JP2006240203A (en) * 2005-03-07 2006-09-14 Japan Steel Works Ltd:The Temperature control method of injection molding machine, and its temperature controller
JP2009000857A (en) * 2007-06-20 2009-01-08 Bridgestone Corp Preheater for tire vulcanization mold and apparatus and method for manufacture of tire

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195640A (en) * 1981-05-28 1982-12-01 Shinko Electric Co Ltd Control system for tire press
JPH03279736A (en) * 1990-03-26 1991-12-10 Harman Co Ltd Temperature controller
JPH04201523A (en) * 1990-11-30 1992-07-22 Sumitomo Rubber Ind Ltd Vulcanizing method for elastomer product and its device
JPH06207702A (en) * 1993-01-07 1994-07-26 Miyawaki:Kk Steam supply device
JPH09173940A (en) * 1995-12-27 1997-07-08 Trinity Ind Corp Drying furnace for coating
JPH09193160A (en) * 1996-01-19 1997-07-29 Bridgestone Corp Preheating of tire mold within short time
JPH10124104A (en) * 1996-10-22 1998-05-15 Kokusai Electric Co Ltd Control method for semiconductor manufacturing equipment
JP2006240203A (en) * 2005-03-07 2006-09-14 Japan Steel Works Ltd:The Temperature control method of injection molding machine, and its temperature controller
JP2009000857A (en) * 2007-06-20 2009-01-08 Bridgestone Corp Preheater for tire vulcanization mold and apparatus and method for manufacture of tire

Similar Documents

Publication Publication Date Title
JP4772027B2 (en) Tire vulcanizer
JP4884934B2 (en) Tire vulcanizer
US20120319330A1 (en) Tire vulcanizer and tire vulcanizing method
JP5631107B2 (en) Tire vulcanization system
JP2011506813A5 (en)
JP5106782B2 (en) Tire vulcanizer
TW200804075A (en) Apparatus and method for press forming
CN108778701A (en) Temperature is adjusted in tire vulcanization process
WO2011136097A1 (en) Tire vulcanization device
JP2011173390A (en) Method and apparatus for preheating vulcanization mold
EP2349668B1 (en) Apparatus for curing a ring-like article
JP5368884B2 (en) Heating / cooling control method and apparatus for transfer section in precision hot press apparatus
JP6336783B2 (en) Rubber injection molding machine
WO2009031493A1 (en) Method and device for vulcanizing tire
KR100876437B1 (en) Vulcanizing apparatus and method of green tire
US9738043B2 (en) Tire vulcanizing apparatus
JP2019025780A (en) Tire vulcanization method and tire vulcanization apparatus
JP6880655B2 (en) Tire vulcanization system and vulcanization method
JP6935700B2 (en) Tire vulcanization method
JP6935701B2 (en) Tire vulcanization method
JP6939208B2 (en) Tire vulcanization method
JP4246357B2 (en) Tire vulcanization method
US20160354985A1 (en) Tire preheating apparatus, tire vulcanizing system, tire preheating method, and tire manufacturing method
JP2015193502A (en) Optical glass element manufacturing apparatus and manufacturing method using hydraulic press apparatus
US9415553B2 (en) Apparatus and method for curing a rubber like article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Effective date: 20131125

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819