JP2011171366A - Uv-led light source for nanoimprint - Google Patents

Uv-led light source for nanoimprint Download PDF

Info

Publication number
JP2011171366A
JP2011171366A JP2010031442A JP2010031442A JP2011171366A JP 2011171366 A JP2011171366 A JP 2011171366A JP 2010031442 A JP2010031442 A JP 2010031442A JP 2010031442 A JP2010031442 A JP 2010031442A JP 2011171366 A JP2011171366 A JP 2011171366A
Authority
JP
Japan
Prior art keywords
scattering plate
light source
light
led
led light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010031442A
Other languages
Japanese (ja)
Inventor
Jun Furuike
潤 古池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2010031442A priority Critical patent/JP2011171366A/en
Publication of JP2011171366A publication Critical patent/JP2011171366A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a UV-LED light source improving transfer of a fine uneven structure from a die in forming the fine uneven structure using a UV-LED light source as a light source for a nanoimprint method. <P>SOLUTION: A UV-LED light source for nanoimprint includes a UV light irradiation section having an LED and a UV scattering plate allowing UV light emitted from the UV light irradiation section to pass and scatter, wherein the UV scattering plate is arranged between the UV light irradiation section and an object to be exposed. It is preferable that the UV scattering plate has a base material allowing the UV light emitted from the UV light irradiation section to pass, and also has a dispersant having a size 1/10 or less time a central wavelength of the UV light emitted from the UV light irradiation section and/or a dispersant having a size equal to or more than the central wavelength in the base material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ナノインプリント法により微細凹凸構造を作製する際のUV−LED光源及び当該UV−LED光源を用いた構造体の製造方法に関する。   The present invention relates to a UV-LED light source for producing a fine concavo-convex structure by a nanoimprint method and a method for producing a structure using the UV-LED light source.

ナノインプリント技術は、生産性が低い電子ビームリソグラフィや高価な光学リソグラフィに代わる技術として注目されている。特に、UV光を利用するUVナノインプリント技術はその生産性の高さから近年注目を浴びている(特許文献1)。   Nanoimprint technology has attracted attention as a technology that replaces electron beam lithography and expensive optical lithography, which have low productivity. In particular, the UV nanoimprint technology using UV light has recently attracted attention due to its high productivity (Patent Document 1).

上記ナノインプリント技術の特徴は、電子ビームリソグラフィ等の生産性問題を克服しようとすることであり、ナノスケールの構造を有する金型を製作して、前記製作された金型を基材上のUV硬化性樹脂膜に押し付けた後に、当該UV硬化性樹脂膜を硬化させることでナノスケールの構造を転写する。前記操作を複数回繰り返すことで、一つの基材上に金型が有する微細凹凸構造とは反対の微細凹凸構造を容易に作製することが可能である(例えば、特許文献2)。特に、UVナノインプリント法を使用することで、数十ナノメートルから数百ナノメートルの微細構造を容易に形成することができる。例えば、10Gbit/cmに相当する50nmハーフピッチで34×34マスの網目構造(例えば、非特許文献1)や、456nmの直径を有し深さが350nmの円筒状の溝が周期748nmで並んだ構造(例えば、非特許文献2)等が挙げられる。 The feature of the nanoimprint technology is to overcome productivity problems such as electron beam lithography. A mold having a nanoscale structure is manufactured, and the manufactured mold is UV-cured on a substrate. After pressing against the curable resin film, the nano-scale structure is transferred by curing the UV curable resin film. By repeating the above operation a plurality of times, it is possible to easily produce a fine concavo-convex structure opposite to the fine concavo-convex structure of the mold on one substrate (for example, Patent Document 2). In particular, by using the UV nanoimprint method, a fine structure of several tens of nanometers to several hundreds of nanometers can be easily formed. For example, a 34 × 34 mesh network structure (for example, Non-Patent Document 1) with a 50 nm half pitch corresponding to 10 Gbit / cm 2 and a cylindrical groove having a diameter of 456 nm and a depth of 350 nm are arranged at a period of 748 nm. The structure (for example, nonpatent literature 2) etc. are mentioned.

UVナノインプリント法では、金型にUV硬化性樹脂を充填した状態でUV光を照射しUV硬化性樹脂を硬化させる必要があるため、微細凹凸構造の転写にはUV光を照射するUV光源が重要となる。ナノインプリント法に使用されるUV光源としては、発光管内に水銀の他に金属ハロゲン化物を封入したメタルハライドランプや石英ガラス性の発光管内に高純度の水銀と少量の希ガスを封入した高圧水銀灯、直進性の高いUV光を発する発光ダイオードであるUV−LED等が用いられている。特に、UV−LED光源は長寿命であり省エネ効果が見込めるため注目されている。   In the UV nanoimprint method, it is necessary to cure the UV curable resin by irradiating the mold with the UV curable resin, so that the UV light source that irradiates the UV light is important for the transfer of the fine uneven structure. It becomes. The UV light source used in the nanoimprint method includes a metal halide lamp in which metal halide is sealed in addition to mercury in the arc tube, a high-pressure mercury lamp in which high purity mercury and a small amount of rare gas are sealed in a quartz glass arc tube, and straight ahead UV-LED etc. which are the light emitting diodes which emit highly efficient UV light are used. In particular, the UV-LED light source has been attracting attention because it has a long life and an energy saving effect is expected.

このように、環境負荷と生産の観点から、ナノインプリント法の光源としてUV−LED光源を使用することが望ましい。しかし、ナノインプリント法の光源としてUV−LED光源を用いた場合、UV光の直進性の高さから、露光対象に近接して照射する場合UV−LED光源を構成するLEDのほぼ直下の部分しか露光されず、また露光対象から遠ざけて露光した場合、UV光強度が著しく低下する為、ナノスケールの微細凹凸構造をナノインプリント法で転写できないという問題がある。特に、微細凹凸の凸部の大きさが、使用するUV−LED光源の照射波長よりも小さくなると、ナノインプリント法による微細凹凸の転写に不良が生じるという問題を発明者は見出してきた。   Thus, it is desirable to use a UV-LED light source as the light source of the nanoimprint method from the viewpoint of environmental load and production. However, when a UV-LED light source is used as the light source for the nanoimprint method, only the portion immediately below the LED constituting the UV-LED light source is exposed due to the high linearity of the UV light. In addition, when the exposure is performed away from the object to be exposed, the intensity of the UV light is remarkably lowered, so that there is a problem that the nanoscale fine uneven structure cannot be transferred by the nanoimprint method. In particular, the inventors have found a problem that if the size of the convex portion of the fine unevenness is smaller than the irradiation wavelength of the UV-LED light source to be used, a defect occurs in the transfer of the fine unevenness by the nanoimprint method.

特表2002−539604号公報Special Table 2002-539604 特開2005−203797号公報JP 2005-203797 A

NANO LETTERS Vol.4, No.7, (2004)1225-1229NANO LETTERS Vol.4, No.7, (2004) 1225-1229 J. Phys. Chem. C Vol.113, No.24 (2009)10493-10499J. Phys. Chem. C Vol.113, No.24 (2009) 10493-10499

本発明は、かかる点に鑑みてなされたものであり、ナノインプリント法の光源としてUV−LED光源を用いて微細凹凸構造を作製する際に、金型からの微細凹凸構造の転写が良好になるようなUV−LED光源を提供することを目的とする。   The present invention has been made in view of such a point, and when a fine concavo-convex structure is produced using a UV-LED light source as a light source of the nanoimprint method, the transfer of the fine concavo-convex structure from a mold is improved. An object is to provide a UV-LED light source.

本発明者は上記課題を鋭意検討した結果、UV−LED光源が、露光対象物との間に特定の構造を有する散乱板を有することで、顕著な効果を奏することを見出し、本発明を完成させた。   As a result of earnestly examining the above problems, the present inventors have found that the UV-LED light source has a remarkable effect by having a scattering plate having a specific structure between the exposure object and the present invention is completed. I let you.

本発明のナノインプリント用UV−LED光源の一態様は、LEDを有するUV光照射部と、UV光照射部から射出されたUV光を透過して散乱するUV散乱板とを具備し、UV散乱板がUV光照射部と露光対象との間に配置されることを特徴としている。   One aspect of the UV-LED light source for nanoimprinting of the present invention comprises a UV light irradiation part having an LED, and a UV scattering plate that transmits and scatters UV light emitted from the UV light irradiation part. Is arranged between the UV light irradiation unit and the exposure target.

本発明のナノインプリント用UV−LED光源の一態様において、UV散乱板は、UV光照射部から射出されるUV光を透過する基材を有し、且つ、基材の片側表面又は両側表面に、UV光照射部から射出されるUV光の中心波長の1/10倍以下の凹凸形状及び/又は中心波長以上の大きさを有する凹凸形状を有することが好ましい。   In one aspect of the UV-LED light source for nanoimprinting of the present invention, the UV scattering plate has a base material that transmits UV light emitted from the UV light irradiation section, and on one or both surfaces of the base material, It is preferable to have a concavo-convex shape not more than 1/10 times the center wavelength of UV light emitted from the UV light irradiation section and / or a concavo-convex shape having a size not less than the center wavelength.

本発明のナノインプリント用UV−LED光源の一態様において、UV散乱板は、UV光照射部から射出されるUV光を透過する基材を有し、且つ、基材中に、UV光照射部から射出されるUV光の中心波長の1/10倍以下の分散剤及び/又は中心波長以上の大きさを有する分散剤を有することが好ましい。   In one aspect of the UV-LED light source for nanoimprinting of the present invention, the UV scattering plate has a base material that transmits UV light emitted from the UV light irradiation section, and the UV light irradiation section is provided in the base material from the UV light irradiation section. It is preferable to have a dispersant that is 1/10 times or less of the central wavelength of the emitted UV light and / or a dispersant that has a size that is greater than or equal to the central wavelength.

本発明のナノインプリント用UV−LED光源の一態様において、UV光照射部から射出されるUV光の中心波長が、355nm以上385nm以下であることが好ましい。   In one aspect of the UV-LED light source for nanoimprinting of the present invention, the center wavelength of the UV light emitted from the UV light irradiation section is preferably 355 nm or more and 385 nm or less.

本発明の凹凸構造を有する構造体の製造方法は、上記ナノインプリント用UV−LED光源を用いて、40nm以上380nm以下の凹凸ピッチを有する構造体をナノインプリント法で作製することを特徴としている。   The method for producing a structure having a concavo-convex structure according to the present invention is characterized in that a structure having a concavo-convex pitch of 40 nm or more and 380 nm or less is produced by a nanoimprint method using the UV-LED light source for nanoimprint.

本発明によれば、ナノインプリント法の光源としてUV−LED光源を用いて微細凹凸構造を作製する場合であっても、金型からの微細凹凸構造の転写を良好に行うことが可能となる。   According to the present invention, even when a fine concavo-convex structure is produced using a UV-LED light source as a light source for the nanoimprint method, it is possible to transfer the fine concavo-convex structure from a mold satisfactorily.

散乱板の設置位置の範囲を示す模式図である。It is a schematic diagram which shows the range of the installation position of a scattering plate. 散乱板によるUV光の進行方向を模式的に示す図である。It is a figure which shows typically the advancing direction of UV light by a scattering plate. 散乱板の構造を示す模式図である。It is a schematic diagram which shows the structure of a scattering plate. 散乱板の設置位置の変形例を示す模式図である。It is a schematic diagram which shows the modification of the installation position of a scattering plate. 実施例及び比較例に係る微細凹凸構造のAFM像である。It is an AFM image of the fine uneven structure concerning an Example and a comparative example.

以下では、本発明の実施の方法について添付図面を参照して説明する。   Hereinafter, a method for carrying out the present invention will be described with reference to the accompanying drawings.

図1は、本実施の形態に係るUV−LED光源と露光対象を基準にした散乱板の設置位置を模式的に示した図である。図2は、本実施の形態に係るUV−LED光源から照射されたUV光の進行方向を模式的に示した図である。図3は、本発明の形態に係るUV−LED光源の散乱板の構造を模式的に示した図である。なお、図1、図2及び図3におけるUV光源や散乱板、散乱板の構造等の各部の数、形状、寸法比等はこれに限定されない。また、図1、図2及び図3は本発明に係るUV−LED光源の一使用態様を示す図である。   FIG. 1 is a diagram schematically showing the installation position of the scattering plate based on the UV-LED light source and the exposure target according to the present embodiment. FIG. 2 is a diagram schematically showing the traveling direction of the UV light emitted from the UV-LED light source according to the present embodiment. FIG. 3 is a diagram schematically showing the structure of the scattering plate of the UV-LED light source according to the embodiment of the present invention. Note that the number, shape, dimensional ratio, and the like of each part of the UV light source, the scattering plate, and the structure of the scattering plate in FIGS. 1, 2, and 3 are not limited thereto. Moreover, FIG.1, FIG2 and FIG.3 is a figure which shows the usage condition of the UV-LED light source which concerns on this invention.

図1に示すように、本発明に係るUV−LED光源10は、LEDを有するUV光照射部(UV−LED11)と、UV−LED11から射出されたUV光を透過して散乱するUV散乱板15を有している。UV散乱板15は、UV−LED11のUV照射面12と露光する対象物(露光対象14)の露光面13との間16に設けられる。   As shown in FIG. 1, a UV-LED light source 10 according to the present invention includes a UV light irradiation unit (UV-LED 11) having an LED and a UV scattering plate that transmits and scatters UV light emitted from the UV-LED 11. 15. The UV scattering plate 15 is provided between the UV irradiation surface 12 of the UV-LED 11 and the exposure surface 13 of the object to be exposed (exposure target 14).

UV散乱板15の設置位置は、UV−LED11のUV照射面12と露光対象14の露光面13との間16にあれば特に限定されるものではなく、UV散乱板15のUV−LED11側の面15aがUV照射面12と接している状態(図4(A)参照)や、或いはUV散乱板15の露光対象14側の面15bが露光対象14の露光面13と接している状態(図4(B)参照)や、UV散乱板15の各面15a及び15bがUV照射面12と露光対象面13の双方と接している状態(図4(C)参照)や、UV散乱板15の各面15a及び15bがUV照射面12と露光対象面13の双方とも接してない状態であり且つ露光対象面13とUV照射面12の間に位置する状態(図1参照)が挙げられる。   The installation position of the UV scattering plate 15 is not particularly limited as long as it is 16 between the UV irradiation surface 12 of the UV-LED 11 and the exposure surface 13 of the exposure target 14, and is not limited to the UV-LED 11 side of the UV scattering plate 15. The surface 15a is in contact with the UV irradiation surface 12 (see FIG. 4A), or the surface 15b on the exposure target 14 side of the UV scattering plate 15 is in contact with the exposure surface 13 of the exposure target 14 (FIG. 4 (B)), the state in which the surfaces 15a and 15b of the UV scattering plate 15 are in contact with both the UV irradiation surface 12 and the exposure target surface 13 (see FIG. 4C), and the UV scattering plate 15 Examples include a state in which each of the surfaces 15a and 15b is not in contact with both the UV irradiation surface 12 and the exposure target surface 13 and is positioned between the exposure target surface 13 and the UV irradiation surface 12 (see FIG. 1).

効率的にUV光を利用し、効果的にナノインプリント法により微細凹凸構造を転写する観点からは、UV散乱板15のUV−LED11側の面15aとUV照射面12との距離が10cm以下であると既存のUV−LED光源に容易に設置できる為好ましく、0cm(図4(A)参照)であると照射されるUV光を効果的に利用できる為好ましい。また、UV−LED11と露光対象14との距離は特に限定されるものではないが、効率的にUV光を利用し、効果的にナノインプリント法により微細凹凸構造を転写する観点からは30cm以下であることが好ましく、20cm以下であると照射されるUV光を効率的に利用できるためより好ましい。   From the viewpoint of efficiently using UV light and effectively transferring the fine uneven structure by the nanoimprint method, the distance between the UV-LED 11 side surface 15a of the UV scattering plate 15 and the UV irradiation surface 12 is 10 cm or less. It is preferable because it can be easily installed in an existing UV-LED light source, and is preferably 0 cm (see FIG. 4A), since the irradiated UV light can be effectively used. Further, the distance between the UV-LED 11 and the exposure target 14 is not particularly limited, but is 30 cm or less from the viewpoint of efficiently using UV light and effectively transferring the fine concavo-convex structure by the nanoimprint method. It is more preferable that it is 20 cm or less because the irradiated UV light can be used efficiently.

次に、UV散乱板15の有無によるUV−LEDからの照射光について、図2を参照して説明する。UV散乱板がない場合(図2(A)参照)は、UV−LED21から照射されたUV光23は露光対象22へと直進性高く進行するが、UV散乱板25を設置した場合(図2(B)参照)は、UV−LED21から照射されたUV光24はUV散乱板25に入射するまでは直進性を保つが、UV散乱板25を透過した後は散乱により照射方向に対してランダムな方向性を有するUV光26となる。すなわち、露光対象22からみれば、UV散乱板25がない場合はほぼ一定の入射角を有するUV光23が入射するのに対し、UV散乱板25を設置した場合は、様々な入射角を有するUV光26が入射することになる。   Next, irradiation light from the UV-LED with or without the UV scattering plate 15 will be described with reference to FIG. When there is no UV scattering plate (see FIG. 2 (A)), the UV light 23 irradiated from the UV-LED 21 travels straight toward the exposure target 22, but when the UV scattering plate 25 is installed (FIG. 2). (See (B)), the UV light 24 irradiated from the UV-LED 21 maintains straightness until it enters the UV scattering plate 25, but after passing through the UV scattering plate 25, it is random in the irradiation direction by scattering. It becomes the UV light 26 having a good directionality. That is, when viewed from the exposure target 22, UV light 23 having a substantially constant incident angle is incident when there is no UV scattering plate 25, whereas when the UV scattering plate 25 is installed, it has various incident angles. The UV light 26 is incident.

このように、UV−LEDからの射出光を、UV散乱板を介して露光対象へ照射することにより、露光対象に照射光を均一に照射することができる。したがって、本実施の形態で示したUV−LED光源を用いることにより、露光対象が照射光の波長より小さいナノスケールの微細凹凸構造を有する場合であっても、ナノインプリントを良好に行うことができる。   Thus, the irradiation light can be uniformly irradiated to the exposure target by irradiating the exposure target with the light emitted from the UV-LED via the UV scattering plate. Therefore, by using the UV-LED light source shown in this embodiment mode, nanoimprinting can be satisfactorily performed even when the exposure target has a nanoscale fine uneven structure smaller than the wavelength of irradiation light.

なお、本発明におけるUV−LED光源においてUVを露光対象に照射する角度は特に限定されるものではないが、効果的にナノインプリント法により微細凹凸構造を転写する為に、入射角が45°以下であることが好ましい。より好ましくは、照射されるUV光を効率的に利用する為に入射角が0°であることが好ましい。ここで入射角とは、露光対象面の法線に対して作られる角度であり、露光対象に垂直にUV光を照射する場合が入射角0°を意味し、水平に入射する場合が入射角90°を意味する。   In the UV-LED light source according to the present invention, the angle at which UV is irradiated onto the object to be exposed is not particularly limited. However, in order to effectively transfer the fine concavo-convex structure by the nanoimprint method, the incident angle is 45 ° or less. Preferably there is. More preferably, the incident angle is preferably 0 ° in order to efficiently use the irradiated UV light. Here, the incident angle is an angle formed with respect to the normal of the exposure target surface. When the UV light is irradiated perpendicularly to the exposure target, the incident angle is 0 °, and when the incident light is horizontal, the incident angle. It means 90 °.

本発明におけるUV−LED光源から照射されるUV光の中心波長の範囲はナノインプリント法により微細凹凸構造を転写する際に使用するUV硬化性樹脂の種類によって変わるが、UV硬化性樹脂を硬化させるための開始剤の吸収波長から概ね355nm〜385nmであることが好ましい。特に、UV硬化性樹脂の硬化速度が良好になる為、355nm〜380nmであることがより好ましい。   The range of the central wavelength of the UV light emitted from the UV-LED light source in the present invention varies depending on the type of the UV curable resin used when transferring the fine concavo-convex structure by the nanoimprint method, but in order to cure the UV curable resin. From the absorption wavelength of the initiator, it is preferably about 355 nm to 385 nm. In particular, since the curing rate of the UV curable resin becomes good, it is more preferably 355 nm to 380 nm.

次に本発明におけるUV−LED光源において使用されるUV散乱板について説明する。   Next, the UV scattering plate used in the UV-LED light source according to the present invention will be described.

図3に示すように、本発明に係るUV−LED光源として設置されるUV散乱板は、基材31cの片側表面31aにUV−LEDの中心波長の1/10倍以下の凹凸形状、又は、中心波長以上、好ましくは2倍以上の大きさの凹凸形状が形成された散乱板31とすることができる(図3(A)参照)。あるいは、基材31cの片側表面31aにUV−LED光源の中心波長の1/10以下の凹凸形状と、中心波長以上、好ましくは中心波長の2倍以上の凹凸形状が混合した凹凸が形成された散乱板31とすることができる。更には、上記のいずれかの凹凸形状が基材32cの両側表面32a、32bに形成された散乱板32であっても構わない(図3(B)参照)。尚、散乱板の凹凸形状が形成された面は、UV−LEDの照射面側にしてもよく、或いは該表面を露光対象側に向けてもよい。なお、凹凸形状の大きさとは、凸部の大きさをいう。   As shown in FIG. 3, the UV scattering plate installed as the UV-LED light source according to the present invention has an uneven shape that is 1/10 times or less the center wavelength of the UV-LED on one side surface 31a of the substrate 31c, or The scattering plate 31 can be formed with a concavo-convex shape with a center wavelength or more, preferably twice or more (see FIG. 3A). Or the unevenness | corrugation in which the uneven | corrugated shape below 1/10 of the center wavelength of UV-LED light source and the uneven | corrugated shape more than a center wavelength, Preferably twice or more of a center wavelength was formed in the one side surface 31a of the base material 31c. The scattering plate 31 can be obtained. Furthermore, the scattering plate 32 in which any one of the above-described uneven shapes is formed on both side surfaces 32a and 32b of the base material 32c may be used (see FIG. 3B). The surface on which the uneven shape of the scattering plate is formed may be on the irradiation surface side of the UV-LED, or the surface may be directed to the exposure target side. The size of the concavo-convex shape means the size of the convex portion.

また、UV散乱板を構成する母材(基材33b)中にUV−LED光源の中心波長の1/10倍以下、又は、中心波長以上、好ましくは2倍以上の大きさを有する分散材33aが形成されたUV散乱板33を用いることができる(図3(C)参照)。或いは、UV散乱板を構成する母材(基材33b)中にUV−LED光源の中心波長の1/10倍以下の大きさの分散材と、中心波長以上、好ましくは2倍以上の大きさを有する分散材との双方が混合分散されたUV散乱板であっても構わない。また、分散剤としては、屈折率が母材と0.1以上異なる構造とすることが好ましい。   Further, a dispersion material 33a having a size of 1/10 times or less of the center wavelength of the UV-LED light source in the base material (base material 33b) constituting the UV scattering plate, or more than the center wavelength, preferably 2 times or more. Can be used (see FIG. 3C). Alternatively, in the base material (base material 33b) constituting the UV scattering plate, a dispersion material having a size not more than 1/10 times the center wavelength of the UV-LED light source and a size not less than the center wavelength, preferably not less than 2 times. It is also possible to use a UV scattering plate in which both of the dispersion material and the dispersion material are mixed and dispersed. Further, the dispersant preferably has a structure having a refractive index different from that of the base material by 0.1 or more.

更には、上記図3(A)〜(C)の構成を組み合わせて、基材34bの表面(34c、34d)に凹凸形状を有し且つ基材34b中に分散材(34a)を分散させたUV散乱板34(図3(D)参照)としてもよい。   Further, by combining the configurations shown in FIGS. 3A to 3C, the surface (34c, 34d) of the base material 34b has an uneven shape, and the dispersion material (34a) is dispersed in the base material 34b. A UV scattering plate 34 (see FIG. 3D) may be used.

尚、UV散乱板自体の外形は特に限定されるものではなく、板状や湾曲状や筒状等が挙げられる。効率的にUV光を利用する為に、UV光照射面が平らな場合は平板状のUV散乱板を用いることが好ましく、UV光照射面が湾曲している場合は、照射面と同様の曲率を有するUV散乱板を用いることが好ましい。   The outer shape of the UV scattering plate itself is not particularly limited, and examples thereof include a plate shape, a curved shape, and a cylindrical shape. In order to use UV light efficiently, it is preferable to use a flat UV scattering plate when the UV light irradiation surface is flat, and when the UV light irradiation surface is curved, the curvature is the same as that of the irradiation surface. It is preferable to use a UV scattering plate having

以下、表面に凹凸を持つUV散乱板について説明し、続いて内部に屈折率の異なる構造を持つUV散乱板について説明する。   Hereinafter, a UV scattering plate having irregularities on the surface will be described, and subsequently, a UV scattering plate having a structure with a different refractive index inside will be described.

UV散乱板表面に形成される凹凸形状は、UV散乱板全てに渡り形成されても良いし、UV光が透過する部分のみに形成されてもよい。該凹凸形状は、UV光を効果的に散乱させ且つナノインプリント法により微細凹凸構造を効果的に転写する為に、UV−LEDから照射されるUV光の中心波長の1/10倍以下及び/又は1〜2倍以上の大きさであることが好ましい。波長の1/10倍以下の微細凹凸構造に対しては主にレイリー散乱による散乱が生じ、波長の1〜2倍以上の微細凹凸構造に対しては主にミー散乱による散乱が生じる。   The concavo-convex shape formed on the surface of the UV scattering plate may be formed over the entire UV scattering plate, or may be formed only in a portion through which the UV light is transmitted. The concavo-convex shape is less than 1/10 times the center wavelength of the UV light emitted from the UV-LED and / or in order to effectively scatter UV light and effectively transfer the fine concavo-convex structure by the nanoimprint method. The size is preferably 1 to 2 times or more. Scattering mainly due to Rayleigh scattering occurs for a fine uneven structure having a wavelength of 1/10 or less of the wavelength, and scattering mainly due to Mie scattering occurs for a fine uneven structure having a wavelength of 1 to 2 times or more of the wavelength.

UV散乱板表面に形成される凹凸形状の分布や規則性は特に限定されるものでなく、例えば単一の大きさを有する凹凸が不規則に形成されている状態や単一の大きさを有する凹凸が規則的に形成されている状態や、或いは複数の大きさの凹凸が規則的に形成されている状態や複数の大きさの凹凸が不規則に形成されている状態等が挙げられる。より好ましくは、UV−LEDから照射されるUV光は波長に分布を有する為、照射されるUV光を効果的に散乱させる為に、複数の大きさの凹凸形状がUV散乱板表面に形成されていることが好ましい。   The distribution and regularity of the uneven shape formed on the surface of the UV scattering plate is not particularly limited. For example, the unevenness having a single size is irregularly formed or has a single size. Examples include a state where irregularities are regularly formed, a state where irregularities with a plurality of sizes are regularly formed, and a state where irregularities with a plurality of sizes are irregularly formed. More preferably, since the UV light emitted from the UV-LED has a distribution in wavelength, a plurality of uneven shapes are formed on the surface of the UV scattering plate in order to effectively scatter the irradiated UV light. It is preferable.

UV散乱板表面に形成される凹凸形状の形成方法は特に限定されるものではないが、例えば、微細凹凸構造を有する鑢等でUV散乱板となる基材表面を擦る方法や、切削等により凹凸を形成する方法や、インプリント法により散乱板となる基材表面に凹凸を転写する方法や、溶剤により散乱板となる基材表面を溶解させ凹凸を形成する方法や、化学溶液析出法やsol−gel法等で散乱板となる基材表面に凹凸を形成する方法や、スパッタや蒸着等で散乱板となる基材表面に凹凸を形成する方法や、ガラスやポリスチレンスルホン酸、フッ化ビニリデン、ポリカーボネート、アクリル樹脂、メタアクリル樹脂等の微粒子を散乱板となる基材表面にスピンコーティング法やグラビアメッシュによる塗布やディップ法やスプレー法や交互積層法等を利用し添着する方法や、エレクトロスピニング法等によりファイバーを基材表面に添着し散乱板となる基材表面に凹凸を形成する方法や、プラズマやコロナ放電等で散乱板となる基材表面に凹凸を形成する方法や、押し出し成型時に散乱板となる基材表面に凹凸を形成する方法等が挙げられる。   The method for forming the uneven shape formed on the surface of the UV scattering plate is not particularly limited. For example, the method for rubbing the surface of the substrate serving as the UV scattering plate with a wrinkle or the like having a fine uneven structure, or unevenness by cutting or the like. , A method of transferring irregularities on the surface of the base material to be a scattering plate by an imprint method, a method of forming irregularities by dissolving the base material surface to be a scattering plate with a solvent, a chemical solution deposition method and a sol A method of forming irregularities on the surface of the base material that becomes the scattering plate by the -gel method, a method of forming irregularities on the surface of the base material that becomes the scattering plate by sputtering or vapor deposition, glass, polystyrene sulfonic acid, vinylidene fluoride, Applying fine particles such as polycarbonate, acrylic resin, methacrylic resin, etc. to the surface of the base material that serves as a scattering plate by spin coating, gravure mesh, dipping, spraying, or alternating lamination A method of attaching using fibers, a method of attaching fibers to the surface of a substrate by electrospinning or the like, and forming irregularities on the surface of the substrate that becomes a scattering plate, or a surface of a substrate that becomes a scattering plate by plasma or corona discharge Examples thereof include a method for forming irregularities and a method for forming irregularities on the surface of a base material that becomes a scattering plate during extrusion molding.

UV散乱板を構成する基材の材質としては、UV−LEDから射出されるUV光を透過すれば特に限定されるものではなく、例えば、ポリエチレンテレフタレート、ポリカーボネート、アクリル樹脂、メタアクリル樹脂、石英、ガラス等が挙げられる。   The material of the base material constituting the UV scattering plate is not particularly limited as long as it transmits UV light emitted from the UV-LED. For example, polyethylene terephthalate, polycarbonate, acrylic resin, methacrylic resin, quartz, Glass etc. are mentioned.

UV散乱板を構成する基材の内部に形成される屈折率が母材とは0.1以上異なる構造(分散剤)は、基材内部全てに渡り形成されても良いし、UV光が透過する部分のみに形成されてもよい。該構造は、UV光を効果的に散乱させ且つナノインプリント法により微細凹凸構造を効果的に転写する為に、UV−LED光源から照射されるUV光の散乱板の母材中での光学的中心波長の1/10倍以下及び/又は1〜2倍以上の大きさであることが好ましい。波長の1/10倍以下の微細凹凸構造に対しては主にレイリー散乱による散乱が、波長の1〜2倍以上の微細凹凸構造に対しては主にミー散乱による散乱が生じる。   A structure (dispersant) having a refractive index different from that of the base material by 0.1 or more formed in the base material constituting the UV scattering plate may be formed over the entire base material, or transmits UV light. You may form only in the part to do. The structure has an optical center in a base material of a UV light scattering plate irradiated from a UV-LED light source in order to effectively scatter UV light and effectively transfer a fine uneven structure by a nanoimprint method. The size is preferably 1/10 or less and / or 1 to 2 or more times the wavelength. Scattering mainly due to Rayleigh scattering occurs for fine uneven structures having a wavelength of 1/10 or less of the wavelength, and scattering mainly due to Mie scattering occurs for fine uneven structures having a wavelength of 1 to 2 times or more of the wavelength.

これらの屈折率が母材とは0.1以上異なる構造(分散剤)の分布や規則性は特に限定されるものではないが、例えば単一の大きさを有する分散剤が不規則に形成されている状態や、単一の大きさを有する分散剤が規則的に形成されている状態や、或いは複数の大きさの分散剤が規則的に形成されている状態や、複数の大きさの分散剤が不規則に形成されている状態等が挙げられる。より好ましくは、UV−LED光源から照射されるUV光は波長が分布を有す為、効果的に照射されるUV光を散乱させる為に、複数の大きさの分散剤が散乱板内部に形成されることが好ましい。   The distribution and regularity of the structure (dispersant) whose refractive index is 0.1 or more different from that of the base material is not particularly limited, but for example, a dispersant having a single size is irregularly formed. A state in which a dispersant having a single size is regularly formed, a state in which a dispersant having a plurality of sizes is regularly formed, and a dispersion having a plurality of sizes. The state etc. in which the agent is irregularly formed are mentioned. More preferably, since the UV light emitted from the UV-LED light source has a wavelength distribution, a plurality of sizes of dispersing agents are formed inside the scattering plate in order to effectively scatter the irradiated UV light. It is preferred that

分散剤を散乱板内部に形成する方法は特に限定されるものではないが、例えば、散乱板となる基材を製造する際に、2種類以上の樹脂を混合した原料を利用する方法やポリエチレンテレフタレート、ポリカーボネート、アクリル樹脂、メタアクリル樹脂、ポリスチレンスルホン酸、フッ化ビニリデン、石英、ガラス等の微粒子を主成分となる樹脂中に混合した原料を利用する方法や原料となる樹脂の中に気泡や溶剤泡を混入する方法や、2種類以上の樹脂を混合した原料やポリエチレンテレフタレート、ポリカーボネート、アクリル樹脂、メタアクリル樹脂、ポリスチレンスルホン酸、フッ化ビニリデン、石英、ガラス等の微粒子を主成分となる樹脂中に混合した原料を利用し基材を製造した後にこれらの添加物を溶剤や加熱や酸等により溶解させる方法等が挙げられる。なお、分散剤の形状としては、球状、楕円状、迷路状(複数ポリマを混合したときに自発的に形成される構造)等様々な形状とすることができる。   The method for forming the dispersing agent inside the scattering plate is not particularly limited. For example, when producing a base material to be a scattering plate, a method using a raw material in which two or more kinds of resins are mixed, or polyethylene terephthalate , Polycarbonate, acrylic resin, methacrylic resin, polystyrene sulfonic acid, vinylidene fluoride, quartz, glass, etc. In a resin containing mainly fine particles such as foam mixing method, raw materials mixed with two or more kinds of resins, polyethylene terephthalate, polycarbonate, acrylic resin, methacrylic resin, polystyrene sulfonic acid, vinylidene fluoride, quartz, glass, etc. After manufacturing the base material using the raw materials mixed in, these additives are dissolved by solvent, heating, acid, etc. And a method such as to. In addition, as a shape of a dispersing agent, it can be set as various shapes, such as spherical shape, an ellipse shape, and a maze shape (structure formed spontaneously when a several polymer is mixed).

散乱板の材質としては、UV光を透過すれば特に限定されるものではなく、例えば、ポリエチレンテレフタレート、ポリカーボネート、アクリル樹脂、メタアクリル樹脂、石英、ガラス等が挙げられる。   The material of the scattering plate is not particularly limited as long as it transmits UV light, and examples thereof include polyethylene terephthalate, polycarbonate, acrylic resin, methacrylic resin, quartz, and glass.

ナノインプリント法において、本発明に係るUV−LED光源を適用することにより著しい効果を得ることができる微細凹凸として、凹凸の大きさが40nm〜380nmであり且つピッチが386nm以下の微細凹凸構造がある。これは、散乱板がない場合、UV−LED光源から照射されるUV光は直進性高く露光対象へと照射される。該露光対象の微細凹凸構造が、凹凸の大きさが40nm〜380nmであり且つピッチが386nm以下で形成されている場合は、照射されるUV光は該微細凹凸に対して散乱及び回折を伴わない為、直進性の高いUV光が照射される部分以外のUV硬化性樹脂は硬化せず、それによりナノインプリント法による転写が不完全になると推定される。例えば、波長が355nmのUV光に対して、微細凹凸のピッチが356nm以下になると回折光はゼロ次の回折光のみとなり、波長385nmのUV光に対して、微細凹凸のピッチが386nm以下になると回折光はゼロ次の回折光のみとなる。一方で、本発明に係るUV−LED光源に散乱板が存在することで、露光対象の微細凹凸による散乱及び回折が生じなくとも、散乱板を透過したUV光は露光対象に対して様々な入射角を持って照射されるため、ナノインプリント法による転写が良好に行われるものと推定される。   In the nanoimprint method, as a fine unevenness that can obtain a remarkable effect by applying the UV-LED light source according to the present invention, there is a fine uneven structure having an unevenness of 40 nm to 380 nm and a pitch of 386 nm or less. This is because, when there is no scattering plate, UV light emitted from the UV-LED light source is irradiated straight onto the exposure target with high straightness. When the fine concavo-convex structure to be exposed is formed with a concavo-convex size of 40 nm to 380 nm and a pitch of 386 nm or less, the irradiated UV light is not scattered and diffracted with respect to the fine concavo-convex structure. Therefore, it is presumed that the UV curable resin other than the portion irradiated with the UV light having high straightness does not cure, and that the transfer by the nanoimprint method is incomplete. For example, when the pitch of fine irregularities is 356 nm or less for UV light with a wavelength of 355 nm, the diffracted light is only zero-order diffracted light, and when the pitch of fine irregularities is 386 nm or less for UV light with a wavelength of 385 nm. Diffracted light is only zero-order diffracted light. On the other hand, the presence of the scattering plate in the UV-LED light source according to the present invention allows the UV light transmitted through the scattering plate to be incident on the exposure target in various ways, even if scattering and diffraction due to fine unevenness of the exposure target do not occur. Since it is irradiated with an angle, it is presumed that transfer by the nanoimprint method is performed well.

次に、本発明の効果を明確にするために行った実施例について説明する。なお、本発明は、以下の実施例によって何ら限定されるものではない。   Next, examples performed for clarifying the effects of the present invention will be described. In addition, this invention is not limited at all by the following examples.

(実施例1)
微細凹凸の大きさが150nm且つピッチが140nmの微細凹凸構造を表面に有するニッケル製の金型に株式会社ハーベスのDurasurf 2101Zを用い離型処理を施し、トリメチロールプロパントリアクリレート(東亞合成株式会社 M350)を主成分とするUV硬化性樹脂を前記金型の微細凹凸構造面上に滴下し、100μm厚のポリエチレンテレフタレート(PET)フィルムを貼り合わせると同時にハンドローラーを用いUV硬化性樹脂を引き延ばし、露光対象を作製した。続いて、鑢により1〜100μm程度の大きさを有する凹凸形状をPETフィルム表面に形成し、中心波長が375±5nmであり且つ出力が2.6WのUV−LEDハンドライトのUV照射面に固定し、UV散乱板を有するUV−LED光源を作製した。その後、前記露光対象に該UV−LED光源を用いUV光を3分間照射した。照射後、露光対象の金型とPETフィルムを剥離した。
Example 1
A nickel mold having a fine concavo-convex structure with a fine concavo-convex size of 150 nm and a pitch of 140 nm on the surface was subjected to mold release using Durasurf 2101Z from Harves Co., Ltd., and trimethylolpropane triacrylate (Toagosei Co., Ltd. M350 ) As a main component is dripped onto the fine concavo-convex structure surface of the mold, a polyethylene terephthalate (PET) film having a thickness of 100 μm is bonded, and at the same time, the UV curable resin is stretched using a hand roller, and exposed. A subject was created. Subsequently, a concavo-convex shape having a size of about 1 to 100 μm is formed on the PET film surface with a scissors, and fixed to the UV irradiation surface of a UV-LED handlight having a center wavelength of 375 ± 5 nm and an output of 2.6 W. Then, a UV-LED light source having a UV scattering plate was produced. Then, UV light was irradiated to the said exposure object for 3 minutes using this UV-LED light source. After the irradiation, the mold to be exposed and the PET film were peeled off.

得られたPETフィルムのUV硬化性樹脂と接していた面を、原子間力顕微鏡を用いて評価した。その結果、フィルム全面に渡り微細凹凸構造が形成されていた(図5(A)参照)。   The surface of the obtained PET film that was in contact with the UV curable resin was evaluated using an atomic force microscope. As a result, a fine concavo-convex structure was formed over the entire film surface (see FIG. 5A).

(実施例2)
微細凹凸の大きさが150nm且つピッチが140nmの微細凹凸構造を表面に有するニッケル製の金型に株式会社ハーベスのDurasurf 2101Zを用い離型処理を施し、トリメチロールプロパントリアクリレート(東亞合成株式会社 M350)を主成分とするUV硬化性樹脂を前記金型の微細凹凸構造面上に滴下し、100μm厚のポリエチレンテレフタレート(PET)フィルムを貼り合わせると同時にハンドローラーを用いUV硬化性樹脂を引き延ばし、露光対象を作製した。続いて、平均粒径2μmのポリメチルメタクリレート微粒子を分散させた1−ヒドロキシシクロヘキシルフェニルケトンを含有するトリメチロールプロパントリアクリレート溶液を、PETフィルム上に製膜し、UV光により硬化させることで散乱板を作製した。続いて該散乱板を中心波長が375±5nmであり且つ出力が2.6WのUV−LEDハンドライトのUV照射面に固定し、散乱板を有するUV−LED光源を作製した。その後、前記露光対象に該UV−LED光源を用いUV光を3分間照射した。照射後、露光対象の金型とPETフィルムを剥離した。
(Example 2)
A mold made of nickel having a fine concavo-convex structure with a fine concavo-convex size of 150 nm and a pitch of 140 nm on the surface was subjected to mold release treatment using Durasurf 2101Z of Harves Co., Ltd., and trimethylolpropane triacrylate (Toagosei Co., Ltd. M350 ) As a main component is dripped onto the fine concavo-convex structure surface of the mold, a polyethylene terephthalate (PET) film having a thickness of 100 μm is bonded, and at the same time, the UV curable resin is stretched using a hand roller, and exposed. A subject was created. Subsequently, a trimethylolpropane triacrylate solution containing 1-hydroxycyclohexyl phenyl ketone in which polymethyl methacrylate fine particles having an average particle diameter of 2 μm are dispersed is formed on a PET film and cured by UV light, thereby scattering plates. Was made. Subsequently, the scattering plate was fixed to the UV irradiation surface of a UV-LED handlight having a center wavelength of 375 ± 5 nm and an output of 2.6 W, thereby producing a UV-LED light source having a scattering plate. Then, UV light was irradiated to the said exposure object for 3 minutes using this UV-LED light source. After the irradiation, the mold to be exposed and the PET film were peeled off.

得られたPETフィルムのUV硬化性樹脂と接していた面を、原子間力顕微鏡を用いて評価した。その結果、フィルム全面に渡り微細凹凸構造が形成されていた(図5(B)参照)。   The surface of the obtained PET film that was in contact with the UV curable resin was evaluated using an atomic force microscope. As a result, a fine concavo-convex structure was formed over the entire film surface (see FIG. 5B).

(比較例1)
微細凹凸の大きさが150nm且つピッチが140nmの微細凹凸構造を表面に有するニッケル製の金型に株式会社ハーベスのDurasurf 2101Zを用い離型処理を施し、トリメチロールプロパントリアクリレート(東亞合成株式会社 M350)を主成分とするUV硬化性樹脂を前記金型の微細凹凸構造面上に滴下し、100μm厚のポリエチレンテレフタレート(PET)フィルムを貼り合わせると同時にハンドローラーを用いUV硬化性樹脂を引き延ばし、露光対象を作製した。続いて、該露光対象に中心波長が375±5nmであり且つ出力が2.6WのUV−LED光源を用いUV光を3分間照射した。照射後、露光対象の金型とPETフィルムを剥離した。
(Comparative Example 1)
A nickel mold having a fine concavo-convex structure with a fine concavo-convex size of 150 nm and a pitch of 140 nm on the surface was subjected to mold release using Durasurf 2101Z from Harves Co., Ltd., and trimethylolpropane triacrylate (Toagosei Co., Ltd. M350 ) As a main component is dripped onto the fine concavo-convex structure surface of the mold, a polyethylene terephthalate (PET) film having a thickness of 100 μm is bonded, and at the same time, the UV curable resin is stretched using a hand roller, and exposed. A subject was created. Subsequently, the exposure object was irradiated with UV light for 3 minutes using a UV-LED light source having a center wavelength of 375 ± 5 nm and an output of 2.6 W. After the irradiation, the mold to be exposed and the PET film were peeled off.

得られたPETフィルムのUV硬化性樹脂と接していた面を、原子間力顕微鏡を用いて評価した。その結果、微細凹凸構造の転写は確認できなかった(図5(C)参照)。   The surface of the obtained PET film that was in contact with the UV curable resin was evaluated using an atomic force microscope. As a result, transfer of the fine uneven structure could not be confirmed (see FIG. 5C).

本発明のナノインプリント用のUV−LED光源によれば、低寿命且つ高消費電力の高圧水銀等のようなUV光源を使用することなく、高寿命且つ低消費電力のUV−LED光源からナノインプリント法により効果的に微細凹凸構造を転写できる点で有用である。   According to the UV-LED light source for nanoimprinting of the present invention, a UV-LED light source having a long life and a low power consumption can be obtained by a nanoimprint method without using a UV light source such as a high-pressure mercury having a low life and a high power consumption. This is useful in that the fine uneven structure can be effectively transferred.

10 UV−LED光源
11 UV−LED
12 UV−LEDの照射面
13 露光対象の照射面
14 露光対象
15 散乱板
16 露光対象の露光面との間
21 UV−LED
22 露光対象
23 散乱板がない場合のUV光の進行
24 散乱板までのUV光の進行
25 散乱板
26 散乱板通過後のUV光の進行
31 片側表面にのみ微細凹凸が形成された散乱板
32 両側表面に微細凹凸が形成された散乱板
33 屈折率の異なる構造を内部に含む散乱板
34 屈折率の異なる構造を内部に含み且つ表面に微細凹凸が形成された散乱板
10 UV-LED light source 11 UV-LED
12 UV-LED irradiation surface 13 Exposure target irradiation surface 14 Exposure target 15 Scattering plate 16 Between exposure target exposure surface 21 UV-LED
22 Exposure object 23 Progression of UV light when there is no scattering plate 24 Progression of UV light to the scattering plate 25 Scattering plate 26 Progression of UV light after passing through the scattering plate 31 Scattering plate with fine irregularities formed only on one side surface 32 Scattering plate with fine irregularities formed on both surface surfaces 33 Scattering plate containing structures with different refractive indices inside 34 Scattering plate containing structures with different refractive indexes inside and fine irregularities formed on the surface

Claims (5)

LEDを有するUV光照射部と、前記UV光照射部から射出されたUV光を透過して散乱するUV散乱板とを具備し、前記UV散乱板が前記UV光照射部と露光対象との間に配置されることを特徴とするナノインプリント用UV−LED光源。   A UV light irradiating unit having an LED; and a UV scattering plate that transmits and scatters UV light emitted from the UV light irradiating unit, and the UV scattering plate is disposed between the UV light irradiating unit and an exposure target. A UV-LED light source for nanoimprinting, wherein 前記UV散乱板は、前記UV光照射部から射出されるUV光を透過する基材を有し、且つ、前記基材の片側表面又は両側表面に、前記UV光照射部から射出されるUV光の中心波長の1/10倍以下の大きさを有する凹凸形状及び/又は前記中心波長以上の大きさを有する凹凸形状を有することを特徴とする請求項1に記載のナノインプリント用UV−LED光源。   The UV scattering plate has a base material that transmits UV light emitted from the UV light irradiation unit, and UV light emitted from the UV light irradiation unit on one or both surfaces of the base material. The UV-LED light source for nanoimprints according to claim 1, wherein the UV-LED light source for nanoimprinting has a concavo-convex shape having a size of 1/10 times or less of the center wavelength and / or a concavo-convex shape having a size equal to or greater than the center wavelength. 前記UV散乱板は、前記UV光照射部から射出されるUV光を透過する基材を有し、且つ、前記基材中に、前記UV光照射部から射出されるUV光の中心波長の1/10倍以下の大きさを有する分散剤及び/又は前記中心波長以上の大きさを有する分散剤を有することを特徴とする請求項1又は請求項2に記載のナノインプリント用UV−LED光源。   The UV scattering plate has a base material that transmits UV light emitted from the UV light irradiation unit, and has a central wavelength of 1 UV light emitted from the UV light irradiation unit in the base material. 3. The nanoimprint UV-LED light source according to claim 1, comprising a dispersant having a size of / 10 times or less and / or a dispersant having a size equal to or greater than the center wavelength. 4. 前記UV光照射部から射出されるUV光の中心波長が、355nm以上385nm以下であることを特徴とする請求項1から請求項3のいずれかに記載のナノインプリント用UV−LED光源。   4. The nanoimprint UV-LED light source according to claim 1, wherein a center wavelength of UV light emitted from the UV light irradiation unit is 355 nm or more and 385 nm or less. 請求項1から請求項4のいずれかのナノインプリント用UV−LED光源を用いて、40nm以上380nm以下の凹凸ピッチを有する構造体をナノインプリント法で作製することを特徴とする構造体の製造方法。
A structure having a concavo-convex pitch of 40 nm or more and 380 nm or less is produced by the nanoimprint method using the nanoimprint UV-LED light source according to any one of claims 1 to 4.
JP2010031442A 2010-02-16 2010-02-16 Uv-led light source for nanoimprint Withdrawn JP2011171366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010031442A JP2011171366A (en) 2010-02-16 2010-02-16 Uv-led light source for nanoimprint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031442A JP2011171366A (en) 2010-02-16 2010-02-16 Uv-led light source for nanoimprint

Publications (1)

Publication Number Publication Date
JP2011171366A true JP2011171366A (en) 2011-09-01

Family

ID=44685202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010031442A Withdrawn JP2011171366A (en) 2010-02-16 2010-02-16 Uv-led light source for nanoimprint

Country Status (1)

Country Link
JP (1) JP2011171366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021068890A (en) * 2019-10-23 2021-04-30 キヤノン株式会社 System and method for curing imprint film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021068890A (en) * 2019-10-23 2021-04-30 キヤノン株式会社 System and method for curing imprint film

Similar Documents

Publication Publication Date Title
JP4986138B2 (en) Method for manufacturing mold for optical element having antireflection structure
US20120070623A1 (en) Manufacturing method of laminated body, stamper, transfer device, laminated body, molding element, and optical element
JP7282496B2 (en) OPTICAL BODY, OPTICAL BODY MANUFACTURING METHOD, LIGHT EMITTING DEVICE, AND DISPLAY DEVICE FOR Amusement equipment
Khokhar et al. Nanofabrication of gallium nitride photonic crystal light-emitting diodes
KR101990722B1 (en) Method of manufacturing disc, disc and optical body
JP7237040B2 (en) Embossed film, sheet-fed film, transfer, and method for producing embossed film
JP2011171366A (en) Uv-led light source for nanoimprint
JP2010082832A (en) Mold for nano-imprinting by cutting
CN111511516A (en) Master disk, transfer material, and method for manufacturing master disk
JP2022060301A (en) Filler-filled film, sheet film, laminate film, bonded body and method for producing filler-filled film
Lee et al. Improving the light-emitting efficiency of GaN LEDs using nanoimprint lithography
JPWO2017126589A1 (en) Cell culture substrate and method for manufacturing the same
JP2008076571A (en) Hologram substrate, method for manufacturing hologram substrate, and image projector
CN111168984B (en) Filler-filled film, sheet-like film, laminated film, bonded body, and method for producing filler-filled film
Zhang RETRACTED CHAPTER: Fabrication Techniques
Motogaito et al. Fabrication of a binary diffractive lens for controlling the luminous intensity distribution of LED light
JP2015005696A (en) Wafer for semiconductor light-emitting device, epitaxial wafer, and semiconductor light-emitting device
JP2010149492A (en) Method for manufacturing optical sheet and optical sheet
Talip et al. Fabrication of antireflection-structured film by ultraviolet nanoimprint lithography and its mold lifetime amelioration

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507