JP2011170982A - Fuel cell separator, its manufacturing method, and its member - Google Patents

Fuel cell separator, its manufacturing method, and its member Download PDF

Info

Publication number
JP2011170982A
JP2011170982A JP2010030943A JP2010030943A JP2011170982A JP 2011170982 A JP2011170982 A JP 2011170982A JP 2010030943 A JP2010030943 A JP 2010030943A JP 2010030943 A JP2010030943 A JP 2010030943A JP 2011170982 A JP2011170982 A JP 2011170982A
Authority
JP
Japan
Prior art keywords
powder
metal
fuel cell
separator
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010030943A
Other languages
Japanese (ja)
Other versions
JP5456506B2 (en
Inventor
Tetsuro Kariya
哲朗 仮屋
Masaru Yanagimoto
勝 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2010030943A priority Critical patent/JP5456506B2/en
Publication of JP2011170982A publication Critical patent/JP2011170982A/en
Application granted granted Critical
Publication of JP5456506B2 publication Critical patent/JP5456506B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a separator having an excellent mass-productivity, capable of improving supply characteristics of a hydrogen source such as hydrogen gas, methanol, ethanol or the like and an oxygen source such as air or the like, and improving exhausting characteristics of moisture content, and reducing contact resistance, in which a slurry containing metal powder or a compound are laminated on a metal plate before being sintered to make powder filling work efficient as well as to make possible a thickness control, and moreover, spherical metal powders between themselves, and the spherical metal powder and the metal plate, can be metallic-bonded by sintering. <P>SOLUTION: In the manufacturing method of a separator for a fuel cell, a slurry containing a metallic powder or a compound containing a metallic powder is laminated in a sheet shape on a metal plate, and then the metallic powder itself, and the metallic powder and the metal plate are mutually metallic-bonded by sintering to integrally form a porous body of a sheet shape made of the metallic powder on the metal plate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料電池セパレータおよびその製造方法並びにその部材に関するものである。   The present invention relates to a fuel cell separator, a manufacturing method thereof, and a member thereof.

近年、水の生成反応を用いる燃料電池は地球環境に優しいクリーンエネルギー源として注目されている。その燃料電池の構造は、通常、電解質膜を両側から挟み込むように触媒層があり、その外側に同じく両側から挟み込むように、必要に応じて順に、マイクロポーラス層、拡散層、セパレータ流路、又は、流路を備えたセパレータが位置するように構成されている。   In recent years, a fuel cell using a water generation reaction has attracted attention as a clean energy source friendly to the global environment. The structure of the fuel cell usually has a catalyst layer so that the electrolyte membrane is sandwiched from both sides, and the microporous layer, the diffusion layer, the separator channel, or The separator including the flow path is positioned.

これらの内、マイクロポーラス層、拡散層、セパレータ流路、又はセパレータに備えられた流路に共通する重要な役割として、水素ガス、メタノール、エタノール等の水素源、及び、空気等の酸素源を、反応場である触媒層に供給する機能、及び、生成される水成分を排出する機能がある。さらに、化学反応によって生じる電子を、出来るだけ効率良く出力用の外部回路に取り出すという重要な機能がある。従って、反応場である触媒層に対する密着性、及び、マイクロポーラス層、拡散層、セパレータ流路どうしの互いの密着性を良好に保つことで接触抵抗を低減することが大変重要となる。   Among these, as an important role common to the microporous layer, the diffusion layer, the separator channel, or the channel provided in the separator, a hydrogen source such as hydrogen gas, methanol, and ethanol, and an oxygen source such as air are used. There is a function of supplying the catalyst layer as a reaction field and a function of discharging the generated water component. Furthermore, there is an important function of taking out the electrons generated by the chemical reaction to the external circuit for output as efficiently as possible. Therefore, it is very important to reduce the contact resistance by maintaining good adhesion to the catalyst layer, which is a reaction field, and good adhesion between the microporous layer, the diffusion layer, and the separator flow path.

上記のマイクロポーラス層、拡散層に関しては、一般には、多孔性カーボン素材が用いられている。またセパレータ流路に関しては、切削加工やプレス加工等によって成形されるカーボンや金属製の溝型流路が一般的である。しかしながら、これらに関してはいずれも、水素源や酸素源の供給性、水の排出性、及び、接触抵抗増大等の問題があり、これらを改善することが求められている。   For the above microporous layer and diffusion layer, a porous carbon material is generally used. As for the separator channel, a carbon or metal channel channel formed by cutting or pressing is generally used. However, all of these have problems such as supply of a hydrogen source and oxygen source, discharge of water, and increased contact resistance, and there is a need to improve them.

例えば、特開2004−186116号公報(特許文献1)に開示されているように、電気抵抗の低減を狙った燃料電池の拡散層の製造方法に関するものだが、発泡性スラリーの使用と、それによって空孔が環状口に成形される発泡金属多孔体を用いる手法を特徴とし本発明とは大きく異なる。本発明では上記文献の環状口に相当する部分が球状金属粉末となり、環状口以外の発泡金属多孔体の骨格部に相当する部分が、球状金属粉末に囲まれた空孔となることを特徴とした全く逆の構造をとる。これによって、供給特性・排出特性の改善、接触抵抗の低減が可能となる。   For example, as disclosed in Japanese Patent Application Laid-Open No. 2004-186116 (Patent Document 1), it relates to a method for manufacturing a diffusion layer of a fuel cell aimed at reducing electric resistance. It is characterized by a technique using a foam metal porous body in which pores are formed in an annular mouth, and is greatly different from the present invention. In the present invention, the portion corresponding to the annular port in the above document is a spherical metal powder, and the portion corresponding to the skeleton of the foam metal porous body other than the annular port is a pore surrounded by the spherical metal powder. It takes the exact opposite structure. This makes it possible to improve supply characteristics / discharge characteristics and reduce contact resistance.

また、一般に発泡金属は、(1)溶湯金属中に気体を吹き込み気泡の形成と同時に凝固する方法、または、(2)溶湯金属中に発泡剤を加え、発泡剤の分解による気体発生を利用した製造法、のため実際には気孔がセル壁に仕切られており、互いに分離独立した閉気孔型が基本の構造となるため内部の物質移動性に一般に劣る。また、製造法の制御によって連結孔を得る場合には、空孔率が大きなものとなり易いため、構造体としての強度に劣るため、部材として組み込まれる際の圧力等によって、実使用においては、空孔部分が圧縮変形され易く、十分な物質移動性が得られないという問題がある。さらに、圧延や圧縮等の2次的な作用によってセル壁に連通孔を開ける場合でも、完全な開気孔型とは異なるため、気体や液体等の物質移動性に劣るという問題がある。   In general, foam metal uses (1) a method in which a gas is blown into a molten metal to solidify at the same time as formation of bubbles, or (2) a foaming agent is added to the molten metal and gas generation by decomposition of the foaming agent is utilized. Because of the manufacturing method, the pores are actually partitioned by the cell walls, and the closed pore type that is separated and independent from each other has a basic structure, so that the internal mass mobility is generally inferior. In addition, when connecting holes are obtained by controlling the manufacturing method, the porosity tends to be large, so the strength as a structure is inferior. There is a problem that the hole portion is easily compressed and deformed, and sufficient mass mobility cannot be obtained. Furthermore, even when the communication hole is formed in the cell wall by a secondary action such as rolling or compression, there is a problem in that it is inferior in mass mobility such as gas or liquid because it is different from the complete open pore type.

上記問題に対して、例えば、特開2009−252399号公報(特許文献2)に開示されているように、この特許文献2は発明者等がこれまでに検討を進めているものであって、水素源や酸素源の供給特性、水の排出特性、接触抵抗の低減を狙い、球状の金属粉末を用いた多孔体をセパレータ流路構造、及び、拡散層の機能を備えたセパレータ流路構造に関するものであるが、この特許文献2には、量産性の改善を狙った製造方法については触れていない。
特開2004−186116号公報 特開2009−252399号公報
For example, as disclosed in Japanese Patent Application Laid-Open No. 2009-252399 (Patent Document 2), the Patent Document 2 has been studied by the inventors so far. A porous body using spherical metal powder with a separator channel structure and a separator channel structure having a function of a diffusion layer aiming to reduce supply characteristics of hydrogen source and oxygen source, water discharge characteristics and contact resistance However, this Patent Document 2 does not mention a manufacturing method aimed at improving mass productivity.
JP 2004-186116 A JP 2009-252399 A

上述のように、引用文献1の場合は、供給特性・排出特性の改善、接触抵抗の低減が不十分である。また、引用文献2は、水素源や酸素源の供給特性、水の排出特性、接触抵抗の低減を狙い、球状の金属粉末を用いた多孔体をセパレータ流路構造、及び、拡散層の機能を備えたセパレータ流路構造であるが、生産性向上の点の解決が不明である。   As described above, in the case of the cited document 1, improvement of supply characteristics / discharge characteristics and reduction of contact resistance are insufficient. Also, cited document 2 aims to reduce the supply characteristics of hydrogen source and oxygen source, the discharge characteristics of water, and the contact resistance, and the function of the separator channel structure and the diffusion layer with a porous body using spherical metal powder. Although it is the separator channel structure provided, the solution of the point of productivity improvement is unknown.

上述のような問題を解消するために鋭意開発を進めた結果、水素ガス、メタノール、エタノール等の水素源、及び、空気等の酸素源の供給特性向上、及び、水成分の排出特性向上、及び、接触抵抗の低減を可能とする、燃料電池用セパレータの製造に際して、金属粉末を含むスラリー、又は、コンパウンドを、焼結前に金属板上へ積層することで、粉末充填作業を効率化し、同時に厚み制御も可能となり、さらに、焼結によって球状金属粉末同士、及び、球状金属粉末と金属板を互いに金属結合させる量産性に優れた燃料電池用セパレータの製造方法を提供するものである。   As a result of diligent development to solve the above problems, the supply characteristics of hydrogen sources such as hydrogen gas, methanol and ethanol, and oxygen sources such as air, and the discharge characteristics of water components are improved, and When manufacturing a separator for a fuel cell that enables reduction of contact resistance, a slurry or compound containing metal powder is laminated on a metal plate before sintering to improve the efficiency of powder filling, The present invention also provides a method for producing a separator for a fuel cell that is excellent in mass productivity, in which spherical metal powders and spherical metal powders and metal plates are bonded to each other by sintering.

その発明の要旨とするところは、
(1)燃料電池用セパレータの製造に際し、金属粉末を含むスラリー、又は、金属粉末を含むコンパウンドを、金属板の上にシート状に積層した後、焼結によって金属粉末同士、及び、金属粉末と金属板を互いに金属結合させることで、金属粉末からなるシート状の多孔体を金属板上に一体形成することを特徴とする製造方法。
The gist of the invention is that
(1) In manufacturing a fuel cell separator, a slurry containing a metal powder or a compound containing a metal powder is laminated in a sheet form on a metal plate, and then sintered with metal powders and a metal powder. A manufacturing method characterized in that a sheet-like porous body made of metal powder is integrally formed on a metal plate by metal bonding of the metal plates to each other.

(2)前記(1)において、含まれる金属粉末の粉末粒径範囲が異なる、2つ以上の複数のスラリー、又は、コンパウンドを、金属板の上に積層することを特徴とする燃料電池用セパレータの製造方法。
(3)前記(1)または(2)において、金属板の両面に、金属粉末を含むスラリー、又はコンパウンドを積層することを特徴とする燃料電池用セパレータの製造方法。
(2) The fuel cell separator according to (1), wherein two or more slurries or compounds having different powder particle size ranges of the metal powder are laminated on a metal plate. Manufacturing method.
(3) The method for producing a fuel cell separator according to (1) or (2), wherein a slurry containing a metal powder or a compound is laminated on both surfaces of a metal plate.

(4)前記(1)〜(3)のいずれか1に記載の粉末が球状粉末であることを特徴とする燃料電池用セパレータの製造方法。
(5)前記(1)〜(4)のいずれか1に記載の金属粉末がアトマイズ法により製造されることを特徴とする燃料電池用セパレータの製造方法。
(4) A method for producing a fuel cell separator, wherein the powder according to any one of (1) to (3) is a spherical powder.
(5) A method for producing a fuel cell separator, wherein the metal powder according to any one of (1) to (4) is produced by an atomizing method.

(6)前記(1)〜(5)のいずれか1に記載の方法により得られる、焼結後の金属板上の多孔体部に関して、厚み方向に垂直なシート面の任意の1mm2 中に、断面積0.001mm2 以上で厚み方向に多孔体部を貫通した空孔を少なくとも一つ以上持つことを特徴とする燃料電池用セパレータ。
(7)前記(1)〜(5)のいずれか1に記載の方法により得られる燃料電池用セパレータが、セパレータ及びセパレータ流路の機能に加えて、拡散層、マイクロポーラス層、並びに、これらの内、1または2以上の複数の機能を有する燃料電池セパレータ部材にある。
(6) With respect to the porous body portion on the sintered metal plate obtained by the method according to any one of (1) to (5), in any 1 mm 2 on the sheet surface perpendicular to the thickness direction A fuel cell separator characterized by having at least one hole having a cross-sectional area of 0.001 mm 2 or more and penetrating the porous body portion in the thickness direction.
(7) The separator for a fuel cell obtained by the method according to any one of (1) to (5) above has a diffusion layer, a microporous layer, and these in addition to the functions of the separator and the separator channel. Among them, the fuel cell separator member has one or more functions.

以上述べたように、本発明により、球状金属粉末を用いた、燃料電池用セパレータの製造性を高めることが可能となる。また、得られる燃料電池セパレータの流路は、球状金属粉末同士が、球の接点近傍を主とした金属結合で接合され、他の表面では互いに結合しない多孔体から構成され、球同士で囲まれた空間からなる連結空孔を十分に確保出来るため、水素源、酸素源の供給特性、水成分の排出特性に優れる。   As described above, according to the present invention, it becomes possible to improve the manufacturability of the separator for a fuel cell using the spherical metal powder. Further, the flow path of the obtained fuel cell separator is composed of porous bodies in which spherical metal powders are joined by metal bonds mainly in the vicinity of the contact points of the spheres and are not bonded to each other on the other surface, and are surrounded by the spheres. As a result, it is possible to secure a sufficient number of connected pores, so that the hydrogen source and oxygen source supply characteristics and the water component discharge characteristics are excellent.

また、球状金属粉末同士が3次元的に金属結合されセパレータ流路の骨格部を形成するため、応力の均一分散性にも優れ高い強度が得られるとともに、触媒層、マイクロポーラス層、拡散層等の他部材に対するセパレータの接触において、球状を特徴とした3次元的な優れた密着性を示し接触抵抗を低減することが可能となる。   In addition, since the spherical metal powders are three-dimensionally metal-bonded to form the skeleton of the separator channel, it is excellent in uniform stress dispersibility and high strength, and the catalyst layer, microporous layer, diffusion layer, etc. In contact of the separator with other members, it exhibits excellent three-dimensional adhesion characterized by a spherical shape, and it is possible to reduce contact resistance.

以下本発明について詳細に説明する。
本発明において、スラリーは、水系溶媒、又は、アルコール、ケトン、飽和脂肪酸、クロロエチレン等の有機溶媒を用いた非水系溶媒でもよく、さらに、分散剤、バインダー、可塑剤等を必要に応じて含むものである。また、本発明に係る球状金属粉末を含むコンバインドとしては、例えば、ポリマーやワックス等を用いるものをいう。
The present invention will be described in detail below.
In the present invention, the slurry may be an aqueous solvent or a non-aqueous solvent using an organic solvent such as alcohol, ketone, saturated fatty acid, chloroethylene, and further contains a dispersant, a binder, a plasticizer, and the like as necessary. It is a waste. Moreover, as a combined containing the spherical metal powder which concerns on this invention, the thing using a polymer, wax, etc. is said, for example.

焼結については、真空焼結の他に、水素等の還元性雰囲気中での焼結、アルゴン、窒素等の不活性ガス中での焼結、大気焼結の適用も可能である。また、焼結によって、スラリーやコンバインドに含まれる球状金属以外の成分は、基本的には大半が除去され、残ったものがある場合は、その後の洗浄等を行ってもよい。また、焼結前、又は、焼結後に全体の厚みや形状制御を目的としたロール加工、焼結時のプレス制御、プレス加工、切削加工、研磨加工等を必要に応じて行ってもよい。   In addition to vacuum sintering, sintering in a reducing atmosphere such as hydrogen, sintering in an inert gas such as argon or nitrogen, and atmospheric sintering can be applied. In addition, most of the components other than the spherical metal contained in the slurry or combined are basically removed by sintering, and if there are any remaining components, subsequent cleaning or the like may be performed. Moreover, you may perform roll processing for the purpose of whole thickness and shape control before sintering, or after sintering, press control at the time of sintering, press processing, cutting processing, grinding | polishing processing, etc. as needed.

また、焼結後の金属板上の多孔体部について、厚み方向に垂直な多孔体面上の任意の1mm2 中に、断面積0.001mm2 以上で厚み方向に多孔体部を貫通した空孔を少なくとも一つ以上持つことにより、水成分の排出特性を改善することが可能となる。また、望ましくは、厚み方向に垂直な多孔体面の任意の0.5mm2 中に、断面積0.002mm2 以上で厚み方向に多孔体部を貫通した空孔を少なくとも一つ以上持つものであり、水成分の排出特性をさらに高めることが可能となる。 Moreover, about the porous body part on the metal plate after sintering, in any 1 mm 2 on the porous body surface perpendicular to the thickness direction, pores having a cross-sectional area of 0.001 mm 2 or more and penetrating the porous body part in the thickness direction By having at least one or more, it becomes possible to improve the discharge characteristics of the water component. Desirably, at least one hole having a cross-sectional area of 0.002 mm 2 or more and penetrating the porous body portion in the thickness direction in an arbitrary 0.5 mm 2 of the porous body surface perpendicular to the thickness direction. Further, it becomes possible to further enhance the discharge characteristics of the water component.

また、球状金属粉末の球状とは完全な球を意味するものでなく、溶融状態から固化する際に表面張力等の作用によって自然に得られる球状である。又、機械加工等によって類似の球状が得られればそれも適用可能でありこの限りではない。また、溶融状態からの粉末成形する際に、主たる球状金属粉末に、微小な金属粉末、又は、扁平型の微小金属粉末等が結合付着しているものも含むものとし、これらは使用用途によっては多孔構造体と他部材との密着性を向上させる等の効果も有する。   Further, the spherical shape of the spherical metal powder does not mean a perfect sphere, but is a sphere that is naturally obtained by an action such as surface tension when solidified from a molten state. Further, if a similar spherical shape is obtained by machining or the like, it is applicable and not limited thereto. In addition, when powder molding is performed from a molten state, the main spherical metal powder includes those in which a fine metal powder, a flat-type fine metal powder, or the like is bonded and adhered. It also has an effect of improving the adhesion between the structure and other members.

上記、球状金属粉末の製造にはアトマイズ法が適し、特にガスアトマイズ法によって製造された球状の金属粉末を用いる場合、金属粉末同士が主に点接触した状態で焼結されるため、互いに連結した十分な空孔部を確保でき、空孔部分を流れる液体や気体の優れた物質移動を保てる。また、他部材との接触時に密着性が向上し接触抵抗の低減が可能となる。なお、ガスアトマイズ法についての説明をしたが、必ずしもガスアトマイズ法に限定することなく、球状や球に類似の形状が得られる手法であればこの限りではない。   The above atomizing method is suitable for the production of the spherical metal powder, and particularly when the spherical metal powder produced by the gas atomization method is used, the metal powders are sintered mainly in a point contact state, so that they are sufficiently connected to each other. A large pore portion, and excellent mass transfer of liquid and gas flowing through the pore portion can be maintained. Further, the adhesion is improved at the time of contact with other members, and the contact resistance can be reduced. Although the gas atomizing method has been described, the present invention is not necessarily limited to the gas atomizing method, and the present invention is not limited to this as long as the method can obtain a spherical shape or a similar shape to a sphere.

最適な焼結温度の適用によって、球状金属粉末の球同士の接点近傍に限った金属結合を行うことが可能となり、焼結後も十分な連結空孔を確保することが可能となる。この時の最適な焼結温度は、球状金属粉末の粒径によって変わり、基本的には、粒径の小さい球状金属粉末を用いる場合には、低めの温度を適用する必要が生じる。この温度が高すぎる場合には、球状金属粉末の焼結が進み過ぎて、連結空孔が得られなくなる。   By applying the optimum sintering temperature, it is possible to perform metal bonding limited to the vicinity of the contact point between the spheres of the spherical metal powder, and it is possible to secure sufficient connection holes after sintering. The optimum sintering temperature at this time varies depending on the particle size of the spherical metal powder. Basically, when a spherical metal powder having a small particle size is used, it is necessary to apply a lower temperature. When this temperature is too high, the sintering of the spherical metal powder proceeds too much, so that the connection holes cannot be obtained.

さらに、焼結に関しては、応力をかけるプレス焼結を適用することも可能であるが、過度のプレス応力をかけた場合、連結空孔が十分に得られない場合があるので注意が必要である。また、焼結後、必要に応じて、酸化膜の除去等を行うために、洗浄、酸洗等を行うことも可能である。さらに、用途に応じて、焼結後、耐食コーティング、高伝導膜コーティング、撥水処理、疎水処理、新水性処理等を適用することも可能である。   Furthermore, with regard to sintering, it is possible to apply stressed press sintering, but when excessive press stress is applied, it is necessary to be careful because there are cases where sufficient connected pores may not be obtained. . In addition, after sintering, if necessary, washing, pickling, etc. can be performed in order to remove the oxide film or the like. Furthermore, after the sintering, it is possible to apply a corrosion-resistant coating, a highly conductive film coating, a water-repellent treatment, a hydrophobic treatment, a new aqueous treatment, or the like after the sintering.

本発明で得られる多孔体部の空孔率が20%未満の場合、気体や液体の十分な物質移動性が得られにくい場合がある、また、空孔率が60%を超えると構造体としての強度が不十分となる場合がある。従って、空孔率は20%〜60%程度が好ましいが、各用途で実際に求められる物質移動性や強度を十分に満足できる場合には、この限りではない。
なお、この場合の空孔率とは、多孔体部の一定体積中に空孔が占める平均の体積率のことを言い、断面の顕微鏡観察等を用いた計算、および、水銀圧入法等によって測定が可能である。
When the porosity of the porous body portion obtained by the present invention is less than 20%, it may be difficult to obtain a sufficient mass mobility of gas or liquid. When the porosity exceeds 60%, the structure is obtained. May be insufficient. Therefore, the porosity is preferably about 20% to 60%, but this is not the case when the substance mobility and strength actually required for each application can be sufficiently satisfied.
The porosity in this case refers to the average volume ratio occupied by the pores in the constant volume of the porous body portion, and is measured by a calculation using a microscopic observation of a cross section, a mercury intrusion method, or the like. Is possible.

各空孔の大きさは使用する球状金属粉末の粒径によって制御可能であり、用途によっては、この空孔の大きさが多孔構造体中の位置によって異なるものでも構わない。具体的には空孔の大きさが位置によって2段階に分かれるもの、または、順に傾斜分布するもの等が考えられる。   The size of each hole can be controlled by the particle size of the spherical metal powder to be used. Depending on the application, the size of the hole may be different depending on the position in the porous structure. Specifically, it is conceivable that the size of the holes is divided into two stages depending on the position, or that the slopes are distributed in order.

球状金属粉末の化学成分は、要求される耐食性、耐酸化性、熱膨張特性、熱伝導性、電気伝導性等に応じて様々な選択が可能である。例えば、ステンレス鋼、Ni基耐食超合金、Ni−Cu系耐食合金、耐酸化合金等の適用が考えられる。   Various chemical components of the spherical metal powder can be selected according to required corrosion resistance, oxidation resistance, thermal expansion characteristics, thermal conductivity, electrical conductivity, and the like. For example, application of stainless steel, Ni-based corrosion-resistant superalloy, Ni—Cu-based corrosion-resistant alloy, oxidation-resistant alloy, etc. can be considered.

以下、本発明について、実施例によって具体的に説明する。
(実施例1)
ガスアトマイズ法にて球状のSUS316L粉末を製造した後、分級によって、粒径30〜100μmの球状粉末を採取し、この球状粉末に、分散媒、分散剤、バインダー、可塑剤を混合してスラリーを作製した。燃料供給口、排出口、締結ボルト用穴等を形成する必要な機械加工を行った厚さ0.2mm、縦横140mm×140mmのSUS316L製金属板上の所定の位置に、得られたスラリーを、縦横100mm×100mm、厚み0.2mmのシート状にスクリーン印刷法にて積層した後、70℃×60分の乾燥工程を経て仮成形体を作製した。ついで、得られた仮成形体を水素還元雰囲気炉において、1150℃で焼結を行うことで、金属板上に球状金属粉末から構成される多孔体が金属結合によって一体化した燃料電池用セパレータを得た。得られた部材をSEM観察した結果、多孔体部の空孔率が約40%であることを確認した。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
After producing a spherical SUS316L powder by gas atomization method, a spherical powder with a particle size of 30-100 μm is collected by classification, and a slurry is prepared by mixing the spherical powder with a dispersion medium, a dispersant, a binder, and a plasticizer. did. The slurry obtained at a predetermined position on a metal plate made of SUS316L having a thickness of 0.2 mm and a length and width of 140 mm × 140 mm subjected to necessary machining to form a fuel supply port, a discharge port, a fastening bolt hole, etc. After being laminated on a sheet having a length and width of 100 mm × 100 mm and a thickness of 0.2 mm by a screen printing method, a temporary molded body was produced through a drying process at 70 ° C. × 60 minutes. Subsequently, the obtained temporary molded body is sintered at 1150 ° C. in a hydrogen reduction atmosphere furnace, thereby obtaining a fuel cell separator in which a porous body made of spherical metal powder is integrated on a metal plate by metal bonding. Obtained. As a result of SEM observation of the obtained member, it was confirmed that the porosity of the porous body portion was about 40%.

(実施例2)
ガスアトマイズ法にて球状のFe−26Cr−1Mo(以下、重量%)粉末を製造した後、分級によって、粒径35〜90μmの球状粉末を採取し、この球状粉末に、分散媒、分散剤、バインダー、可塑剤を混合してスラリーを作製した。両面に燃料供給口、排出口、締結ボルト用穴等を形成する必要な機械加工を行った厚さ0.2mm、縦横130mm×150mmのSUS316L製金属板両面の所定の位置に、それぞれ、得られたスラリーを、縦横90mm×120mm、厚み0.25mmのシート状にスクリーン印刷法にて積層した後、50℃×60分の乾燥工程を経て仮成形体を作製した。ついで、得られた仮成形体を水素還元雰囲気の連続炉に導入し、1100℃で焼結を行い、金属板の両面に球状金属粉末から構成される多孔体が一体化した燃料電池用セパレータを得た。得られた部材を顕微鏡観察した結果、粉末粒が相互に結合した状態の骨格部と、連結空孔とからなる多孔構造体であり、厚み方向に垂直なシート面上の任意の1mm2 中に、断面積0.001mm2 以上で厚み方向に貫通した空孔が7つ確認された。
(Example 2)
After producing a spherical Fe-26Cr-1Mo (hereinafter, weight%) powder by gas atomization method, a spherical powder having a particle size of 35 to 90 μm is collected by classification, and a dispersion medium, a dispersant, a binder are collected into the spherical powder. Then, a plasticizer was mixed to prepare a slurry. Obtained at predetermined positions on both sides of a SUS316L metal plate with a thickness of 0.2 mm and length and width of 130 mm x 150 mm, which have been machined to form fuel supply ports, discharge ports, fastening bolt holes, etc. on both sides. The obtained slurry was laminated on a sheet having a length and width of 90 mm × 120 mm and a thickness of 0.25 mm by a screen printing method, and then a temporary molded body was produced through a drying process at 50 ° C. × 60 minutes. Next, the obtained temporary molded body was introduced into a continuous furnace in a hydrogen reduction atmosphere, sintered at 1100 ° C., and a separator for a fuel cell in which a porous body composed of spherical metal powders was integrated on both surfaces of a metal plate. Obtained. As a result of observing the obtained member under a microscope, it is a porous structure composed of a skeleton part in which powder particles are bonded to each other and a connecting hole, and in any 1 mm 2 on the sheet surface perpendicular to the thickness direction Seven holes having a cross-sectional area of 0.001 mm 2 or more and penetrating in the thickness direction were confirmed.

(実施例3)
ガスアトマイズ法にて球状のFe−35Cr粉末を製造した後、分級によって、粒径20〜70μm、及び、100〜200μmの粒径範囲が異なる2種類の球状粉末を採取し、それぞれの球状粉末に、分散媒、分散剤、バインダー、可塑剤を混合して含まれる粉末粒径が異なる2種類のスラリーを作製した。燃料供給口、排出口、締結ボルト用穴等を形成する必要な機械加工を行った厚さ0.2mm、縦横200mm×250mmのSUS316L製金属板の両面の所定の位置に、得られたスラリーの内、粒径100〜200μmの粉末を含むスラリーを、縦横150mm×200mm、厚み0.25mmのシート状に積層した後、70℃×30分の乾燥工程を経て仮成形体を作製した。ついで、粒径20〜70μmの粉末を含む別のスラリーを、得られた仮成形体の両面の所定の位置に、縦横150mm×200mm、厚み0.1mmのシート状に積層し、70℃×30分の乾燥工程を経て複数のスラリーが両面に積層された仮成形体を作製した。得られた仮成形体を水素還元雰囲気炉に導入し、1100℃で焼結を行うことで、金属板の両面に異なる粒径の球状金属粉末から構成される複数の積層した多孔体が金属板と金属結合によって一体化した燃料電池用セパレータを得た。
(Example 3)
After producing spherical Fe-35Cr powder by the gas atomization method, two types of spherical powders having different particle size ranges of 20 to 70 μm and 100 to 200 μm are collected by classification, Two kinds of slurries with different powder particle sizes were prepared by mixing a dispersion medium, a dispersant, a binder, and a plasticizer. The slurry obtained was placed at predetermined positions on both sides of a SUS316L metal plate having a thickness of 0.2 mm and a length and width of 200 mm × 250 mm, which had been machined to form fuel supply ports, discharge ports, fastening bolt holes, and the like. Among them, a slurry containing powder having a particle size of 100 to 200 μm was laminated in a sheet shape having a length and width of 150 mm × 200 mm and a thickness of 0.25 mm, and then a temporary molded body was produced through a drying process at 70 ° C. × 30 minutes. Next, another slurry containing a powder having a particle size of 20 to 70 μm was laminated in a sheet shape having a length and width of 150 mm × 200 mm and a thickness of 0.1 mm at predetermined positions on both sides of the obtained temporary molded body, and 70 ° C. × 30 A temporary molded body in which a plurality of slurries were laminated on both surfaces was prepared through a drying process for 1 minute. The obtained temporary molded body is introduced into a hydrogen reducing atmosphere furnace and sintered at 1100 ° C., whereby a plurality of laminated porous bodies composed of spherical metal powders having different particle sizes are formed on both sides of the metal plate. And a fuel cell separator integrated by metal bonding.

(実施例4)
水アトマイズ法にて球状のFe−25Cr−20Ni粉末を製造した後、分級によって、粒径150〜250μmの球状粉末を採取し、この球状粉末に、ワックスを用いてコンバインドを作製した。燃料供給口、排出口、締結ボルト用穴等を形成する必要な機械加工を行った厚さ0.3mm、縦横160mm×260mmのSUS310製金属板上の所定の位置に、得られたコンバインドを、縦横120mm×220mm、厚み0.5mmのシート状に積層した後、乾燥工程を経て仮成形体を作製した。ついで、得られた仮成形体を水素還元雰囲気炉に導入し、1200℃で焼結を行うことで、金属板上に球状金属粉末から構成される多孔体が金属結合によって一体化した燃料電池用セパレータを得た。得られた部材の多孔体部を顕微鏡観察した結果、粉末粒が相互に結合した状態の骨格部と、連結空孔からなる多孔構造体が確認された。
Example 4
After producing a spherical Fe-25Cr-20Ni powder by the water atomization method, a spherical powder having a particle size of 150 to 250 μm was collected by classification, and a composite was prepared by using wax for this spherical powder. At a predetermined position on a metal plate made of SUS310 having a thickness of 0.3 mm and a length and width of 160 mm × 260 mm that have been subjected to necessary machining to form a fuel supply port, a discharge port, a fastening bolt hole, etc., After laminating into a sheet shape having a length and width of 120 mm × 220 mm and a thickness of 0.5 mm, a temporary molded body was produced through a drying process. Next, the obtained temporary molded body is introduced into a hydrogen reduction atmosphere furnace and sintered at 1200 ° C. so that a porous body made of spherical metal powder is integrated on a metal plate by metal bonding. A separator was obtained. As a result of microscopic observation of the porous body portion of the obtained member, a porous structure composed of a skeleton portion in a state where powder particles were bonded to each other and a connected hole was confirmed.

(実施例5)
ガスアトマイズ法にて球状のFe−33Cu粉末を製造した後、分級によって、粒径20〜60μmの球状粉末を採取し、この球状粉末に、分散媒、分散剤、バインダー、可塑剤を混合してスラリー作製した。燃料供給口、排出口、締結ボルト用穴等を形成する必要な機械加工を行った厚さ0.2mm、縦横70mm×70mmのFe−33Cu製金属板上の所定の位置に、得られたスラリーを、縦横50mm×50mm、厚み0.2mmのシート状にドクターブレード法によって積層した後、乾燥工程を経て仮成形体を作製した。ついで、得られた仮成形体を真空雰囲気炉に導入し、1070℃で焼結を行うことで、金属板上に球状金属粉末から構成される多孔体が金属結合によって一体化した燃料電池用セパレータを得た。得られた部材の多孔体部を顕微鏡観察した結果、粉末粒が相互に結合した状態の骨格部と、連結空孔からなる多孔構造体であり、厚み方向に垂直なシート面上の任意の1mm2 中に、断面積0.001mm2 以上で厚み方向に多孔体部を貫通した空孔が5つ確認された。
(Example 5)
After producing a spherical Fe-33Cu powder by the gas atomization method, a spherical powder having a particle size of 20 to 60 μm is collected by classification, and a dispersion medium, a dispersant, a binder, and a plasticizer are mixed with this spherical powder to form a slurry. Produced. Slurry obtained at a predetermined position on a metal plate made of Fe-33Cu having a thickness of 0.2 mm and a length and width of 70 mm × 70 mm subjected to necessary machining to form a fuel supply port, a discharge port, a fastening bolt hole, etc. Were laminated by a doctor blade method in a sheet shape of 50 mm × 50 mm in length and width of 0.2 mm, and then a temporary molded body was produced through a drying process. Next, the obtained temporary molded body is introduced into a vacuum atmosphere furnace and sintered at 1070 ° C., so that a porous body made of spherical metal powder is integrated on the metal plate by metal bonding. Got. As a result of observing the porous body portion of the obtained member under a microscope, it is a porous structure composed of a skeleton portion in which powder particles are bonded to each other and connected pores, and an arbitrary 1 mm on the sheet surface perpendicular to the thickness direction. 2 , 5 holes having a cross-sectional area of 0.001 mm 2 or more and penetrating the porous body portion in the thickness direction were confirmed.

(実施例6)
ガスアトマイズ法にて球状のNi−16Cr−16Mo−6Fe−3W粉末を製造した後、分級によって、粒径150〜300μmの球状粉末を採取し、この球状粉末に、分散媒、分散剤、バインダー、可塑剤を混合してスラリー作製した。燃料供給口、排出口、締結ボルト用穴等を形成する必要な機械加工を行った厚さ0.2mmのSUS316L製金属板両面の所定の位置に、得られたスラリーを、スクリーン印刷法により、縦横180mm×90mm、厚み0.5mmのシート状に積層した後、80℃×40分の乾燥工程を経て仮成形体を作製した。ついで、得られた仮成形体を水素還元雰囲気の連続炉に導入し、1100℃で焼結を行うことで、金属板の両面に球状金属粉末から構成される多孔体が金属結合によって一体化した燃料電池用セパレータを得た。得られた部材の多孔体部を顕微鏡観察した結果、粉末粒が相互に結合した状態の骨格部と、連結空孔からなる多孔構造体であることが確認された。
(Example 6)
After producing a spherical Ni-16Cr-16Mo-6Fe-3W powder by gas atomization method, a spherical powder having a particle size of 150 to 300 μm is collected by classification, and this spherical powder is dispersed into a dispersion medium, a dispersant, a binder, a plastic. The agent was mixed to prepare a slurry. The slurry obtained was screen-printed at a predetermined position on both surfaces of a 0.2 mm thick SUS316L metal plate subjected to necessary machining to form a fuel supply port, a discharge port, a fastening bolt hole, etc. After laminating into a sheet shape having a length and width of 180 mm × 90 mm and a thickness of 0.5 mm, a temporary molded body was prepared through a drying process at 80 ° C. × 40 minutes. Next, the obtained temporary molded body was introduced into a continuous furnace in a hydrogen reduction atmosphere and sintered at 1100 ° C., so that the porous body composed of spherical metal powder was integrated by metal bonding on both surfaces of the metal plate. A fuel cell separator was obtained. As a result of observing the porous body portion of the obtained member under a microscope, it was confirmed that the porous body was composed of a skeleton portion in which powder particles were bonded to each other and connected pores.

(実施例7)
ガスアトマイズ法にて球状のFe−24Cr−1.5Al−1.3Si粉末を製造した後、分級によって、粒径150〜250μmの球状粉末を採取し、この球状粉末にワックスを用いてコンバインドを作製した。必要な機械加工を行った厚さ0.2mmのSUS430製金属板上の所定の位置に、ロール形成にて、得られたコンバインドを、縦横50mm×100mm、厚み0.4mmのシート状に積層した後、100℃×20分の乾燥工程を経て仮成形体を作製した。ついで、得られた仮成形体を水素還元雰囲気炉に導入し、1150℃で焼結を行うことで、金属板上に球状金属粉末から構成される多孔体が金属結合によって一体化した燃料電池用セパレータを得た。得られた部材の多孔体部を顕微鏡観察した結果、粉末粒が相互に結合した状態の骨格部と、空孔率約40%の連結空孔とからなる多孔構造体であることが確認された。
(Example 7)
After producing a spherical Fe-24Cr-1.5Al-1.3Si powder by the gas atomization method, a spherical powder having a particle size of 150 to 250 μm was collected by classification, and a composite was produced using wax for this spherical powder. . The obtained composite was laminated in a sheet shape having a length and width of 50 mm × 100 mm and a thickness of 0.4 mm at a predetermined position on a SUS430 metal plate having a thickness of 0.2 mm subjected to necessary machining. Thereafter, a temporary molded body was produced through a drying step at 100 ° C. for 20 minutes. Next, the obtained temporary molded body is introduced into a hydrogen reduction atmosphere furnace and sintered at 1150 ° C., so that a porous body made of spherical metal powder is integrated on a metal plate by metal bonding. A separator was obtained. As a result of microscopic observation of the porous body portion of the obtained member, it was confirmed that the porous body was composed of a skeleton portion in which powder particles were bonded to each other and a connected pore having a porosity of about 40%. .

以上のように、本発明により得られる燃料電池用セパレータは、球状金属粉末同士が、球の接点近傍を主とした金属結合で接合され、他の表面では互いに結合しないため、球同士で囲まれた空間から構成される連結空孔を十分に確保出来るため、水素源、酸素源の供給特性、水成分の排出特性に優れる。また、球状金属粉末同士が3次元的に金属結合されるため、応力の均一分散性にも優れ高い強度が得られるとともに、3次元的な優れた密着性を示し接触抵抗を低減することが可能となる等優れた効果を奏するものである。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, the separator for a fuel cell obtained by the present invention is surrounded by spheres because spherical metal powders are joined by metal bonds mainly in the vicinity of the contact points of the spheres and are not bonded to each other on the other surface. As a result, it is possible to secure a sufficient number of connected vacancies composed of open spaces. In addition, since spherical metal powders are three-dimensionally metal-bonded, it is excellent in uniform dispersibility of stress and high strength is obtained, and it is possible to exhibit excellent three-dimensional adhesion and reduce contact resistance. It has excellent effects such as.


Patent applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (7)

燃料電池用セパレータの製造に際し、金属粉末を含むスラリー、又は、金属粉末を含むコンパウンドを、金属板の上にシート状に積層した後、焼結によって金属粉末同士、及び、金属粉末と金属板を互いに金属結合させることで、金属粉末からなるシート状の多孔体を金属板上に一体形成することを特徴とする製造方法。 When manufacturing a separator for a fuel cell, a metal powder-containing slurry or a metal powder-containing compound is laminated in a sheet form on a metal plate, and then the metal powders and metal powder and metal plate are sintered together. A manufacturing method comprising integrally forming a sheet-like porous body made of metal powder on a metal plate by metal bonding to each other. 請求項1において、含まれる金属粉末の粉末粒径範囲が異なる、2つ以上の複数のスラリー、又は、コンパウンドを、金属板の上に積層することを特徴とする燃料電池用セパレータの製造方法。 2. The method for producing a fuel cell separator according to claim 1, wherein two or more slurries or compounds having different powder particle size ranges of the metal powder are laminated on a metal plate. 請求項1または2において、金属板の両面に、金属粉末を含むスラリー、又はコンパウンドを積層することを特徴とする燃料電池用セパレータの製造方法。 3. The method for producing a fuel cell separator according to claim 1, wherein a slurry containing a metal powder or a compound is laminated on both surfaces of the metal plate. 請求項1〜3のいずれか1項に記載の粉末が球状粉末であることを特徴とする燃料電池用セパレータの製造方法。 A method for producing a separator for a fuel cell, wherein the powder according to any one of claims 1 to 3 is a spherical powder. 請求項1〜4いずれか1項に記載の金属粉末がアトマイズ法により製造されることを特徴とする燃料電池用セパレータの製造方法。 A method for producing a fuel cell separator, wherein the metal powder according to any one of claims 1 to 4 is produced by an atomizing method. 請求項1〜5のいずれか1項に記載の方法により得られる、焼結後の金属板上の多孔体部に関して、厚み方向に垂直なシート面の任意の1mm2 中に、断面積0.001mm2 以上で厚み方向に多孔体部を貫通した空孔を少なくとも一つ以上持つことを特徴とする燃料電池用セパレータ。 Regarding the porous body portion on the sintered metal plate obtained by the method according to any one of claims 1 to 5, the cross-sectional area of 0.1 mm 2 in an arbitrary 1 mm 2 of the sheet surface perpendicular to the thickness direction. A fuel cell separator characterized by having at least one hole having a diameter of 001 mm 2 or more and penetrating the porous body portion in the thickness direction. 請求項1〜5のいずれか1項に記載の方法により得られる燃料電池用セパレータが、セパレータ及びセパレータ流路の機能に加えて、拡散層、マイクロポーラス層、並びに、これらの内、1または2以上の複数の機能を有する燃料電池セパレータ部材。 The fuel cell separator obtained by the method according to any one of claims 1 to 5, in addition to the function of the separator and the separator flow path, the diffusion layer, the microporous layer, and one or two of them A fuel cell separator member having the plurality of functions described above.
JP2010030943A 2010-02-16 2010-02-16 Manufacturing method of fuel cell separator Expired - Fee Related JP5456506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010030943A JP5456506B2 (en) 2010-02-16 2010-02-16 Manufacturing method of fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010030943A JP5456506B2 (en) 2010-02-16 2010-02-16 Manufacturing method of fuel cell separator

Publications (2)

Publication Number Publication Date
JP2011170982A true JP2011170982A (en) 2011-09-01
JP5456506B2 JP5456506B2 (en) 2014-04-02

Family

ID=44684926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010030943A Expired - Fee Related JP5456506B2 (en) 2010-02-16 2010-02-16 Manufacturing method of fuel cell separator

Country Status (1)

Country Link
JP (1) JP5456506B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020519768A (en) * 2017-05-16 2020-07-02 エルジー・ケム・リミテッド Metal foam manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266913A (en) * 2000-01-14 2001-09-28 Toyota Motor Corp Separator for fuel cell and its manufacturing method
JP2002280022A (en) * 2001-03-16 2002-09-27 Mitsubishi Materials Corp Gas guide structure for fuel cell
WO2003026052A1 (en) * 2001-09-18 2003-03-27 Furuya Metal Co., Ltd. Bipolar plate for fuel cell and method for production thereof
JP2004186116A (en) * 2002-12-06 2004-07-02 Mitsubishi Materials Corp Separator of solid polymer fuel cell and method for manufacturing the separator
JP2006331670A (en) * 2005-05-23 2006-12-07 Toyota Motor Corp Manufacturing method of fuel cell separator and fuel cell using the fuel cell separator
JP2007265824A (en) * 2006-03-29 2007-10-11 Hitachi Ltd Separator for fuel cell and fuel cell
JP2009252399A (en) * 2008-04-02 2009-10-29 Sanyo Special Steel Co Ltd Metallic porous separator for fuel, cell and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266913A (en) * 2000-01-14 2001-09-28 Toyota Motor Corp Separator for fuel cell and its manufacturing method
JP2002280022A (en) * 2001-03-16 2002-09-27 Mitsubishi Materials Corp Gas guide structure for fuel cell
WO2003026052A1 (en) * 2001-09-18 2003-03-27 Furuya Metal Co., Ltd. Bipolar plate for fuel cell and method for production thereof
JP2004186116A (en) * 2002-12-06 2004-07-02 Mitsubishi Materials Corp Separator of solid polymer fuel cell and method for manufacturing the separator
JP2006331670A (en) * 2005-05-23 2006-12-07 Toyota Motor Corp Manufacturing method of fuel cell separator and fuel cell using the fuel cell separator
JP2007265824A (en) * 2006-03-29 2007-10-11 Hitachi Ltd Separator for fuel cell and fuel cell
JP2009252399A (en) * 2008-04-02 2009-10-29 Sanyo Special Steel Co Ltd Metallic porous separator for fuel, cell and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020519768A (en) * 2017-05-16 2020-07-02 エルジー・ケム・リミテッド Metal foam manufacturing method
JP7191390B2 (en) 2017-05-16 2022-12-19 エルジー・ケム・リミテッド METHOD OF MANUFACTURING METAL FOAM

Also Published As

Publication number Publication date
JP5456506B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
CN101358304B (en) Nial intermetallic compound porous material and preparation method thereof
JP2009252399A (en) Metallic porous separator for fuel, cell and manufacturing method therefor
JP5463639B2 (en) Method for producing metal porous plate
JP2008055310A (en) Supporting body for hydrogen-permeable membrane and its manufacturing method
JP5456506B2 (en) Manufacturing method of fuel cell separator
JP4066154B2 (en) Porous metal gas diffusion sheet for polymer electrolyte fuel cell that exhibits excellent contact surface conductivity over a long period of time
CN102810680A (en) Porous metal-ceramic composite material gas spreading layer used for hydrogen fuel cell and preparation method thereof
TW201205949A (en) A porous metal substrate structure for a solid oxide fuel cell and the production method thereo0f
JP2012052202A (en) Member for electrolysis cell and hydrogen production device using the same
JP5431182B2 (en) Method for producing sheet-like porous metal member and member thereof
JP2011170989A (en) Separator for fuel cell
WO2011010612A1 (en) Conductive porous body using spherical metal powder and method for producing the same
JP2011249146A (en) Method of manufacturing fuel cell separator
JP2007317673A (en) Method for manufacturing current-collecting board of proton-exchange membrane fuel cell
JP4892873B2 (en) Conductive porous body and fuel cell used in fuel cell
JP5944771B2 (en) Fuel cell separator
JP2006032251A (en) Manufacturing method of metal porous body
JP2004047125A (en) Porous metal gas diffusing sheet for solid high polymer fuel cell exhibiting superior contact surface conductivity for long period
JP2009231209A (en) Method of manufacturing fuel cell
JP5272787B2 (en) Fuel cell separator and method for producing the same
JP2012043688A (en) Porous body passage type fuel cell separator using low-temperature diffusion bonding and method for manufacturing the same
JP2008052991A (en) Manufacturing method of metallic porous body electrode
JP2012043574A (en) Fuel cell separator
JP2010238517A (en) Solid polymer fuel cell using porous metal gas diffusion sheet performing outstanding contact surface conductivity for long period of time as structural member
JP5389417B2 (en) Metal separator for fuel cell using metal sphere and fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5456506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees