JP2011169612A - Pressure pulsation measuring method of main steam pipework - Google Patents

Pressure pulsation measuring method of main steam pipework Download PDF

Info

Publication number
JP2011169612A
JP2011169612A JP2010031094A JP2010031094A JP2011169612A JP 2011169612 A JP2011169612 A JP 2011169612A JP 2010031094 A JP2010031094 A JP 2010031094A JP 2010031094 A JP2010031094 A JP 2010031094A JP 2011169612 A JP2011169612 A JP 2011169612A
Authority
JP
Japan
Prior art keywords
pipe
strain
main steam
pressure pulsation
steam pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010031094A
Other languages
Japanese (ja)
Other versions
JP5462654B2 (en
Inventor
Teppei Kubota
哲平 久保田
Shiro Takahashi
志郎 高橋
Yasuhiro Mabuchi
靖宏 馬渕
Masaaki Tsubaki
椿  正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010031094A priority Critical patent/JP5462654B2/en
Publication of JP2011169612A publication Critical patent/JP2011169612A/en
Application granted granted Critical
Publication of JP5462654B2 publication Critical patent/JP5462654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure strain in a pipework circumferential direction of main steam pipework caused by pressure pulsation by using strain gauges having a smallest possible number of sheets, and to achieve an improvement of the reliability of measured data collection in pressure pulsation measurement of the main steam pipework for transporting steam for driving turbines of an atomic power plant facility. <P>SOLUTION: The strain gauges for measuring the strain in the circumferential direction of the pipework of the main steam pipework are disposed in a plurality of pairs, a pair of the strain gauges being 2 leaves disposed in point symmetrical positions each other to the center of the cross section in the radial direction of the pipework of the main steam pipework. Thereby, the reliability of the measured data collection is improved while the strain component generated by bending is eliminated, and the strain component generated by the external force in the axis direction of the pipework is eliminated by disposing the strain gauge for measuring the strain in the pipework axis direction of the main steam pipework. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、原子力発電施設の主蒸気配管内の圧力脈動を、ひずみゲージを用いて測定する方法に関する。   The present invention relates to a method for measuring pressure pulsation in a main steam pipe of a nuclear power generation facility using a strain gauge.

沸騰水型原子炉の圧力容器内に設置される蒸気乾燥器であるドライヤの健全性を評価確認する従来技術として、ドライヤの外表面にひずみゲージ、加速度計、圧力センサ等のセンサを直接貼り付けて、ドライヤに発生する応力を計測する方法がある。この方法では、ドライヤに発生する応力を精度良く計測できるが、稼動中の原子炉ではドライヤは定期検査中においても水中に保持されているので、新たにセンサを設置したりセンサを交換したりするときに、水中溶接等の特殊作業が必要となる。   As a conventional technique for evaluating and confirming the soundness of a dryer, a steam dryer installed in a pressure vessel of a boiling water reactor, sensors such as strain gauges, accelerometers, and pressure sensors are directly attached to the outer surface of the dryer. There is a method for measuring the stress generated in the dryer. With this method, the stress generated in the dryer can be measured with high accuracy, but in a reactor that is in operation, the dryer is held in the water even during periodic inspections, so a new sensor can be installed or replaced. Sometimes special work such as underwater welding is required.

そこで、ドライヤの健全性を評価確認する他の従来技術として、主蒸気配管の複数箇所にひずみゲージまたは圧力センサを設置し、その配管の周方向の振動を計測することで主蒸気配管内の圧力脈動を算出して、解析等を用いて蒸気ドーム内の圧力脈動(ドライヤに作用する応力)を推定する方法が開示されている(例えば、特許文献1)。   Therefore, as another conventional technique for evaluating and confirming the soundness of the dryer, pressure gauges in the main steam pipe are installed by installing strain gauges or pressure sensors at multiple locations on the main steam pipe and measuring the vibration in the circumferential direction of the pipe. A method of calculating pulsation and estimating pressure pulsation (stress acting on a dryer) in a steam dome using analysis or the like is disclosed (for example, Patent Document 1).

主蒸気配管の内部に圧力センサを設置して主蒸気配管内の圧力脈動を直接計測する方法は、蒸気の流れに発生する渦の影響により圧力センサの計測精度が低下する可能性がある。また、流れがあると、圧力センサ自身が圧力脈動の発生原因、もしくは共鳴箇所となる可能性がある。さらに、配管サイズが大きいため、主蒸気配管の内部への圧力センサ取付け工事は、作業が困難である。そこで、圧力センサを使用せずに、主蒸気配管の外壁面にひずみゲージを貼り付けて、配管内の圧力脈動を測定することが提案されている(特許文献1参照)。   In the method of directly measuring the pressure pulsation in the main steam pipe by installing the pressure sensor inside the main steam pipe, there is a possibility that the measurement accuracy of the pressure sensor is lowered due to the influence of the vortex generated in the steam flow. Also, if there is a flow, the pressure sensor itself may cause pressure pulsation or a resonance point. Furthermore, since the pipe size is large, the work for mounting the pressure sensor inside the main steam pipe is difficult. Therefore, it has been proposed to measure a pressure pulsation in the pipe by attaching a strain gauge to the outer wall surface of the main steam pipe without using a pressure sensor (see Patent Document 1).

特開2007−155361号公報JP 2007-155361 A

主蒸気配管の外壁面にひずみゲージを取り付けて配管内の圧力脈動を計測するときには、圧力脈動が小さく、生じる配管周方向のひずみが微小な場合、主蒸気配管全体に内部の圧力脈動とは別に作用する曲げや軸方向の外力によって生じるひずみ成分の影響が大きくなり、圧力脈動の計測精度を低下させてしまう。そのため、これらのひずみ成分の影響を除外できるように、主蒸気配管の一つの測定箇所に対して複数枚のひずみゲージを工夫して設置する必要がある。   When measuring the pressure pulsation in the pipe with a strain gauge attached to the outer wall surface of the main steam pipe, if the pressure pulsation is small and the generated pipe circumferential strain is very small, the main steam pipe is separated from the internal pressure pulsation. The influence of the strain component generated by the acting bending and the external force in the axial direction becomes large, and the measurement accuracy of the pressure pulsation is lowered. Therefore, it is necessary to devise and install a plurality of strain gauges for one measurement location of the main steam pipe so that the influence of these strain components can be excluded.

また、ひずみゲージの故障を考慮して、それぞれの測定箇所についての計測データ収集の信頼性を確保するためにも、一つの測定箇所に対して複数枚のひずみゲージを設置しておくことが望ましい。   In addition, considering the failure of the strain gauge, it is desirable to install multiple strain gauges for one measurement location in order to ensure the reliability of measurement data collection for each measurement location. .

しかしながら、原子炉格納容器の内部と外部との間で信号を伝達する電気ペネトレーションの使用可能数には上限が存在するため、原子炉格納容器内の主蒸気配管に設置したひずみゲージから原子炉格納容器の外部のオペレーションフロアに計測データを伝達するために使用できる電気ペネトレーションの数が限られ、ひずみゲージの使用可能個数には上限が存在する。また、主蒸気配管には多数の配管サポートが取り付けられること等により、ひずみゲージを設置可能な位置が制限されるという問題がある。   However, since there is an upper limit on the number of electrical penetrations that can transmit signals between the inside and outside of the containment vessel, the containment of the reactor from the strain gauges installed in the main steam piping inside the containment vessel There are a limited number of electrical penetrations that can be used to transmit measurement data to the operation floor outside the vessel, and there is an upper limit on the number of strain gauges that can be used. Moreover, there is a problem that the position where the strain gauge can be installed is limited due to the fact that a large number of pipe supports are attached to the main steam pipe.

すなわち、主蒸気配管の外壁面にひずみゲージを取り付けて配管内の圧力脈動を測定する場合、限られた使用個数の中で、精度良く配管周方向のひずみ成分を測定でき、また、計測データ収集の信頼性を高めることができる、効率の良いひずみゲージの配置位置を決定することが望まれる。   In other words, when a strain gauge is attached to the outer wall surface of the main steam pipe to measure pressure pulsations in the pipe, the strain component in the pipe circumferential direction can be measured with high accuracy within a limited number of pipes, and measurement data can be collected. It is desirable to determine an efficient placement position of the strain gauge that can improve the reliability of the strain gauge.

本発明の目的は、このような効率の良いひずみゲージの配置位置を決定することにより、精度良く配管周方向のひずみ成分を測定でき、また、計測データ収集の信頼性を向上させることができる、主蒸気配管の圧力脈動測定方法を提供することにある。   The purpose of the present invention is to determine the placement position of such an efficient strain gauge so that the strain component in the pipe circumferential direction can be accurately measured, and the reliability of measurement data collection can be improved. The object is to provide a method for measuring pressure pulsation in a main steam pipe.

前記の課題を達成するために、本発明では、ひずみゲージの配置位置について、以下の手段を考案した。   In order to achieve the above object, the present invention has devised the following means for the position of the strain gauge.

主蒸気配管に作用する曲げ方向の外力によって生じるひずみ成分を除外するために、主蒸気配管の一つの測定箇所に対して、配管径方向断面図心に対して点対称となる外壁面上の二点の位置を一組として、配管周方向のひずみを計測するひずみゲージを二枚単位で設置する。   In order to eliminate the strain component caused by the external force in the bending direction acting on the main steam pipe, two points on the outer wall surface that are point-symmetric with respect to the pipe radial direction centroid are measured for one measurement point of the main steam pipe. A set of point positions is used to install two strain gauges that measure strain in the pipe circumferential direction.

また、主蒸気配管に作用する軸方向外力によって生じるひずみ成分を除外するために、主蒸気配管の一つの測定箇所に対して、前記の配管周方向のひずみを計測するひずみゲージに加えて、配管軸方向のひずみを計測するひずみゲージを少なくとも一枚設置する。   In addition to the strain gauge that measures the strain in the circumferential direction of the pipe, in addition to the strain gauge that measures the strain in the circumferential direction of the pipe for one measurement location of the main steam pipe, in order to exclude the strain component generated by the axial external force acting on the main steam pipe Install at least one strain gauge to measure axial strain.

また、計測データ収集の信頼性を向上させるために、複数枚のひずみゲージを主蒸気配管の配管径方向断面において、配管外周に均等に配置するのではなく、配管径方向断面図心に対して点対称となる外壁面上の二点の位置に互いに近接させて設置する。   Also, in order to improve the reliability of measurement data collection, multiple strain gauges are not evenly arranged on the outer circumference of the pipe in the pipe radial direction cross section of the main steam pipe. It is installed close to each other at two points on the outer wall surface that are point-symmetric.

本発明によれば、主蒸気配管の圧力脈動によって生じるひずみが微小な場合においても、ひずみゲージが計測するデータから主蒸気配管に作用する曲げおよび軸方向の外力によるひずみ成分を除外し、圧力脈動によって生じる配管周方向のみのひずみを精度良く求めることができる。   According to the present invention, even when the strain caused by the pressure pulsation of the main steam pipe is small, the strain component due to the bending and the axial external force acting on the main steam pipe is excluded from the data measured by the strain gauge, and the pressure pulsation It is possible to accurately obtain the strain only in the circumferential direction of the pipe caused by.

また、ひずみゲージの故障が発生した場合でも、その故障したひずみゲージと対をなすひずみゲージの計測データを利用することができ、計測データ収集の信頼性を向上させることができる。   Even when a strain gauge failure occurs, the measurement data of the strain gauge paired with the failed strain gauge can be used, and the reliability of measurement data collection can be improved.

本発明が適用される沸騰水型原子炉の概略図である。1 is a schematic view of a boiling water reactor to which the present invention is applied. 本発明におけるひずみゲージの基本的な配置形態を示す説明図である。It is explanatory drawing which shows the basic arrangement | positioning form of the strain gauge in this invention. 実施形態1におけるひずみゲージの配管径方向の配置例を示す説明図である。3 is an explanatory diagram illustrating an arrangement example of strain gauges in the pipe radial direction according to Embodiment 1. FIG. 実施形態2におけるひずみゲージの配管軸方向の配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning of the strain gauge in Embodiment 2 in the pipe-axis direction. 実施形態2におけるひずみゲージの配管径方向の配置例を示す説明図である。10 is an explanatory diagram illustrating an arrangement example of strain gauges in a pipe radial direction according to Embodiment 2. FIG. ひずみゲージが故障したときの計測データ収集可能数の比較表である。It is a comparison table of the number of measurement data that can be collected when a strain gauge fails. 実施形態3におけるひずみゲージの配管軸方向の配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning of the strain gauge in Embodiment 3 in the piping-axis direction. 配管軸方向における同一平面内にひずみゲージを配置した例を示す説明図である。It is explanatory drawing which shows the example which has arrange | positioned the strain gauge in the same plane in a piping axis direction. 実施形態4におけるひずみゲージの配管軸方向の配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning of the strain gauge in Embodiment 4 in the pipe-axis direction. 実施形態5におけるひずみゲージの配管径方向の配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning of the strain gauge in Embodiment 5 in the pipe radial direction. 実施形態5におけるひずみゲージの配管軸方向の配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning of the strain gauge in Embodiment 5 in the pipe-axis direction.

以下、本発明を実施するための形態を、図面を参照して詳細に説明する。
図1は、本発明が適用される原子力発電施設の沸騰水型原子炉(BWR(Boiling Water Reactor)と称することもある。)の概略図である。図1に示すように、沸騰水型原子炉は、原子炉圧力容器(RPV(Reactor Pressure Vessel))1と、原子炉圧力容器1とつながれた主蒸気配管2と、原子炉圧力容器1の上部に位置する蒸気ドーム3と、原子炉圧力容器1内に設置されたドライヤ4と、主蒸気配管2とつながれた複数の安全逃がし弁(SRV(Safety Relief Valve))5とを備えて構成される。なお、図1(a)は沸騰水型原子炉上部の縦断面模式図、図1(b)は同じく横断面模式図である。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view of a boiling water reactor (also referred to as BWR (Boiling Water Reactor)) of a nuclear power generation facility to which the present invention is applied. As shown in FIG. 1, a boiling water reactor includes a reactor pressure vessel (RPV (Reactor Pressure Vessel)) 1, a main steam pipe 2 connected to the reactor pressure vessel 1, and an upper portion of the reactor pressure vessel 1. A steam dome 3 located in the reactor, a dryer 4 installed in the reactor pressure vessel 1, and a plurality of safety relief valves (SRVs) 5 connected to the main steam pipe 2. . FIG. 1A is a schematic vertical sectional view of the upper part of the boiling water reactor, and FIG. 1B is a schematic horizontal sectional view.

図1(b)に示すように、通常、主蒸気配管2は、原子炉圧力容器1に四本設置される。図1(a)には、このうち二本の主蒸気配管2が示されており、その一方に、ひずみゲージによって圧力脈動の測定を行う圧力脈動測定箇所6が二箇所設けられている。   As shown in FIG. 1 (b), four main steam pipes 2 are usually installed in the reactor pressure vessel 1. FIG. 1A shows two of the main steam pipes 2, and two pressure pulsation measurement points 6 for measuring pressure pulsation with a strain gauge are provided on one of them.

ドライヤ4の健全性を評価するために、いずれかの主蒸気配管2の配管内の圧力脈動を測定する場合は、配管内の圧力脈動波形を求めるための波動方程式を解く必要があり、この波動方程式の未知数として、振幅と位相との二つが存在する。したがって、主蒸気配管2の配管軸方向において、二箇所以上の圧力脈動測定箇所6を設置する必要がある。通常は、圧力脈動の減衰の影響を正確に把握して蒸気ドーム3の圧力脈動を推定するために、圧力脈動測定箇所6の位置としては、図1(a)に示すように、蒸気ドーム3の出口付近と、圧力脈動の音源となる下流のSRV5の付近との二箇所が選択される。   In order to evaluate the soundness of the dryer 4, when measuring the pressure pulsation in one of the main steam pipes 2, it is necessary to solve the wave equation for obtaining the pressure pulsation waveform in the pipe. There are two unknowns in the equation: amplitude and phase. Therefore, it is necessary to install two or more pressure pulsation measurement points 6 in the pipe axis direction of the main steam pipe 2. Normally, in order to accurately grasp the influence of the attenuation of pressure pulsation and estimate the pressure pulsation of the steam dome 3, the position of the pressure pulsation measurement point 6 is as shown in FIG. And two locations near the downstream SRV 5 that serves as a pressure pulsation sound source.

主蒸気配管2の配管内の圧力脈動は、主蒸気配管2を配管周方向に変形させるため、この変形量(ひずみ量)を計測することによって、圧力脈動の大きさを測定することができる。一般に、ひずみ量の計測に用いられる貼付け型のひずみゲージは、所定の計測方向を有するので、圧力脈動によって生じる配管周方向のひずみを測定するために、ひずみゲージの計測方向を配管周方向に一致させる。   Since the pressure pulsation in the main steam pipe 2 deforms the main steam pipe 2 in the pipe circumferential direction, the magnitude of the pressure pulsation can be measured by measuring the deformation amount (strain amount). In general, affixed strain gauges used for strain measurement have a predetermined measurement direction, so the strain gauge measurement direction matches the pipe circumferential direction in order to measure strain in the pipe circumferential direction caused by pressure pulsation. Let

実働環境下の主蒸気配管2は、配管全体に作用する振動等の影響によって、曲げや軸方向の外力を受ける。これら外力の作用によっても配管周方向の変形が生じることから、計測される配管周方向のひずみ量には、圧力脈動によって生じるひずみ成分の他に、曲げや軸方向の外力によって生じるひずみ成分も含まれる。主蒸気配管2の配管内の圧力脈動は微小で圧力脈動により生じる配管周方向のひずみも微小なので、圧力脈動を精度良く測定するためには、これら外力により生じるひずみ成分を除外する必要がある。ここでは、主蒸気配管2の配管周方向のひずみ量は、主として配管内の圧力脈動に起因するひずみ成分と、主蒸気配管2に作用する曲げおよび軸方向の外力に起因するひずみ成分との和で構成されているものと考え、ひずみゲージの計測データから理論解析的に圧力脈動のみによって生じる配管周方向のひずみ成分を求めるものとする。   The main steam pipe 2 in an actual working environment is subjected to bending and an external force in the axial direction due to vibrations and the like acting on the entire pipe. Since the deformation in the pipe circumferential direction also occurs due to the action of these external forces, the measured strain in the pipe circumferential direction includes not only the strain component caused by pressure pulsation but also the strain component caused by bending and axial external force. It is. Since the pressure pulsation in the pipe of the main steam pipe 2 is minute and the distortion in the pipe circumferential direction caused by the pressure pulsation is also minute, in order to accurately measure the pressure pulsation, it is necessary to exclude the distortion component caused by these external forces. Here, the amount of strain in the pipe circumferential direction of the main steam pipe 2 is the sum of the strain component mainly caused by pressure pulsation in the pipe and the strain component caused by bending and axial external force acting on the main steam pipe 2. The strain component in the pipe circumferential direction, which is theoretically analyzed only by pressure pulsation, is obtained from the strain gauge measurement data.

主蒸気配管2の配管周方向のひずみ量から曲げおよび軸方向の外力に起因するひずみ成分を除外するための基本的なひずみゲージ配置形態を図2に示す。曲げ方向の外力によって生じるひずみのひずみ量は、配管径方向断面図心に対して点対称となる二点において、絶対値が等しく符号が逆となる。よって、配管径方向断面図心に対して点対称な二点を一組として、計測方向を配管周方向に合わせて配管周方向のひずみ量を計測する二枚の周方向計測用ひずみゲージ71を設置すれば、その両者の計測値の平均値を算出することによって、曲げ方向の外力に起因するひずみ成分を除外することができる。   FIG. 2 shows a basic strain gauge arrangement for excluding strain components caused by bending and axial external force from the amount of strain in the pipe circumferential direction of the main steam pipe 2. The amount of strain generated by the external force in the bending direction has the same absolute value and the opposite sign at two points that are point-symmetric with respect to the pipe radial direction centroid. Therefore, two circumferential measuring strain gauges 71 for measuring the amount of strain in the circumferential direction of the pipe by measuring two points symmetrical with respect to the pipe radial direction centroid and matching the measurement direction with the circumferential direction of the pipe. If installed, the strain component caused by the external force in the bending direction can be excluded by calculating the average value of the measured values of both.

また、計測方向を配管軸方向に合わせて配管軸方向のひずみ量を計測する軸方向計測用ひずみゲージ72を、少なくとも一枚設置することにより、配管に作用する軸方向の外力を求めることができ、理論式から軸方向外力に起因する配管周方向のひずみ成分を求めることによって、その影響を除外することができる。なお、配管軸方向のひずみ成分には、圧力脈動によって生じるひずみ成分と配管に作用する外力によって生じるひずみ成分とが含まれるが、圧力脈動の影響は微小であるため無視するものとする。   In addition, by installing at least one axial measurement strain gauge 72 that measures the amount of strain in the pipe axis direction by adjusting the measurement direction to the pipe axis direction, the axial external force acting on the pipe can be obtained. By obtaining the strain component in the pipe circumferential direction caused by the axial external force from the theoretical formula, the influence can be excluded. The strain component in the pipe axis direction includes a strain component caused by pressure pulsation and a strain component caused by external force acting on the pipe, but the influence of the pressure pulsation is negligible and is ignored.

また、配管内の圧力脈動に起因する配管周方向のひずみ成分をより精度良く求めるためには、配管径方向断面図心に対して点対称な二点を一組として、二枚の軸方向計測用ひずみゲージ72を設置し、前記と同様にして、軸方向計測用ひずみゲージ72によって計測される配管軸方向のひずみ量からも、曲げ方向の外力に起因する配管軸方向のひずみ成分を除外して、軸方向の外力によって生じるひずみ成分を求めるようにするとよい。   In addition, in order to obtain more accurately the strain component in the pipe circumferential direction caused by pressure pulsation in the pipe, two axially measuring points are set with two points symmetrical about the pipe radial cross-section centroid. In the same manner as described above, the strain component in the pipe axis direction due to the external force in the bending direction is also excluded from the strain amount in the pipe axis direction measured by the strain gauge 72 for axial measurement. Thus, it is preferable to obtain a strain component generated by an external force in the axial direction.

<実施形態1>
まず、実施形態1として、計測データ収集の信頼性を向上させるための第一の形態として、周方向計測用ひずみゲージ71を配管周方向に均等に複数組設置する場合を説明する。図3に示す例では、配管周方向に周方向計測用ひずみゲージ71が均等に四組(八枚)、配管軸方向に軸方向計測用ひずみゲージ72が一組(二枚)、設置されている。この場合の配管内の圧力脈動に起因するひずみ成分の具体的な算出手順について説明する。
<Embodiment 1>
First, as Embodiment 1, as a first embodiment for improving the reliability of measurement data collection, a case where a plurality of circumferential measurement strain gauges 71 are equally installed in the circumferential direction of the pipe will be described. In the example shown in FIG. 3, four sets (eight pieces) of circumferential measurement strain gauges 71 are equally installed in the pipe circumferential direction, and one set (two pieces) of axial measurement strain gauges 72 are installed in the pipe axial direction. Yes. A specific procedure for calculating a strain component caused by pressure pulsation in the pipe in this case will be described.

ここでは、周方向計測用ひずみゲージ71によって計測されるひずみ量を、ε1〜ε8、軸方向計測用ひずみゲージ72によって計測されるひずみ量をε9,ε10とし、配管内圧力脈動に起因する配管周方向のひずみ量をεh、配管軸方向の曲げひずみ量をεM、配管軸方向の伸縮ひずみ量をεcとする。また、t(i)をi番目の圧力脈動測定箇所6の配管厚とし、ヤング率Eやポワソン比νを既知の材料定数とする。   Here, the strain amounts measured by the circumferential direction measurement strain gauge 71 are ε1 to ε8, the strain amounts measured by the axial direction measurement strain gauge 72 are ε9, ε10, and the pipe circumference caused by the pressure pulsation in the pipe. The strain amount in the direction is εh, the bending strain amount in the pipe axis direction is εM, and the expansion / contraction strain amount in the pipe axis direction is εc. Also, t (i) is the pipe thickness of the i-th pressure pulsation measurement point 6 and Young's modulus E and Poisson's ratio ν are known material constants.

配管軸方向の曲げによって生じるひずみのひずみ量は、配管径方向断面図心に対して点対称の二点において絶対値が等しく符号が逆となるため、未知数である配管内圧力Ph、軸方向外力Fc、曲げモーメントMに対して、弾性の基礎方程式(参考:日本機械学会編 (新版)機械工学便覧 A4 材料力学,ページ:A4-6)を導くことができ、計測されるひずみ量を用いてこれらを解くことができる。   The amount of strain caused by bending in the pipe axial direction is the same in absolute value and opposite in sign at two points that are point-symmetric with respect to the pipe radial cross-sectional centroid. Therefore, the pipe internal pressure Ph and the axial external force are unknown. For Fc and bending moment M, the basic equation of elasticity can be derived (reference: Japan Society of Mechanical Engineers (new edition) Mechanical Engineering Handbook, A4 Material Mechanics, page: A4-6). These can be solved.

計算手順としては、まず曲げに起因するひずみ成分を取り除くため、配管径方向断面図心に対して点対称の位置にある二枚の周方向計測用ひずみゲージ71を一組として、ε1〜ε8を平均化する。このとき、例えば、図3の下部の×印が付された周方向計測用ひずみゲージ73(71)が故障しているときには、周方向計測用ひずみゲージ73(71)と対をなす周方向計測用ひずみゲージ74(71)の計測データは計算から除外し、残る三組の計測データ(図3の○印)を用いる。   As a calculation procedure, first, in order to remove a strain component caused by bending, ε1 to ε8 are set as a set of two circumferential measuring strain gauges 71 at a point-symmetrical position with respect to the pipe radial direction centroid. Average. At this time, for example, when the circumferential measurement strain gauge 73 (71) marked with an X in the lower part of FIG. 3 is out of order, the circumferential measurement is paired with the circumferential measurement strain gauge 73 (71). The measurement data of the strain gauge 74 (71) for use is excluded from the calculation, and the remaining three sets of measurement data (circles in FIG. 3) are used.

平均化して得られる値は、圧力脈動に起因する配管周方向のひずみ量εhの他に、配管軸方向の伸縮ひずみ量εcによるポワソン収縮変形の成分を含むため、このポワソン収縮変形の成分を前記の平均化して得られた値から差し引くことによって、配管周方向のひずみ量εhを求めることができる。なお、配管軸方向の伸縮ひずみ量εcは、軸方向計測用ひずみゲージ72によって計測されるひずみ量ε9,ε10の平均値を用いる。   The value obtained by averaging includes, in addition to the strain εh in the pipe circumferential direction caused by pressure pulsation, the component of Poisson contraction deformation due to the amount of expansion strain εc in the pipe axis direction. The amount of strain εh in the pipe circumferential direction can be obtained by subtracting from the value obtained by averaging. Note that the average value of the strain amounts ε9 and ε10 measured by the axial direction measuring strain gauge 72 is used as the expansion and contraction strain amount εc in the pipe axis direction.

<実施形態2>
次に、実施形態2として、計測データ収集の信頼性をより向上させるための第二の形態として、周方向計測用ひずみゲージ71を配管周方向に互いに近接させて複数組設置する場合を説明する。図4は、図1の主蒸気配管2のX部における軸方向についてのひずみゲージの配置の詳細を示し、図5は、同じく配管周方向についてのひずみゲージの配置の詳細を示している。
<Embodiment 2>
Next, as a second embodiment, a case where a plurality of sets of circumferential measurement strain gauges 71 are arranged close to each other in the pipe circumferential direction will be described as a second embodiment for further improving the reliability of measurement data collection. . FIG. 4 shows details of the arrangement of strain gauges in the axial direction in the X part of the main steam pipe 2 of FIG. 1, and FIG. 5 shows details of the arrangement of strain gauges in the same circumferential direction of the pipe.

実施形態2では、図4および図5の例に示すように、配管周方向に複数設置する周方向計測用ひずみゲージ71の各組を、配管周方向に互いに近接させて設置する。また、一組(二枚)の軸方向計測用ひずみゲージ72を配管径方向断面図心に対して点対称な位置に、互いに近接させて設置する周方向計測用ひずみゲージ71の近傍に設置している。   In the second embodiment, as shown in the examples of FIGS. 4 and 5, a plurality of circumferential direction measuring strain gauges 71 installed in the circumferential direction of the pipe are installed close to each other in the circumferential direction of the pipe. Also, a set (two) of strain gauges 72 for axial measurement is installed in the vicinity of the circumferential measurement strain gauge 71 installed close to each other at a point-symmetrical position with respect to the pipe radial direction centroid. ing.

周方向計測用ひずみゲージ71によって計測される配管周方向のひずみ量のうち、曲げ方向の外力に起因する周方向のひずみ成分は、前記のように、配管径方向断面図心に対して点対称な位置を一組としてひずみゲージを設置し、両者の計測値を平均化することによって除外することができる。   Of the amount of strain in the circumferential direction of the pipe measured by the strain gauge 71 for circumferential direction measurement, the strain component in the circumferential direction caused by the external force in the bending direction is point-symmetric with respect to the pipe radial direction centroid as described above. It can be excluded by installing a strain gauge with a set of different positions and averaging the measured values of both.

また、軸方向外力に起因する周方向のひずみ成分は、前記のように、軸方向計測用ひずみゲージ72を設置し、その測定値からポワソン収縮変形の成分を求めて差し引くことによって除外することができる。なお、本実施形態2では、配管径方向断面図心に対して点対称な位置に、一組(二枚)の軸方向の軸方向計測用ひずみゲージ72を設置し、両者の計測値を平均化することによって、曲げ方向の外力に起因する配管軸方向のひずみ成分を除外することができるので、圧力脈動に起因する周方向のひずみ成分をより精度良く求めることができる。   Further, as described above, the strain component in the circumferential direction due to the external force in the axial direction may be excluded by installing the strain gauge 72 for axial measurement and obtaining and subtracting the Poisson contraction deformation component from the measured value. it can. In the second embodiment, a set (two) of axial strain gauges 72 for axial measurement are installed at point symmetric with respect to the pipe radial direction centroid, and the measured values of both are averaged. Since the strain component in the pipe axis direction caused by the external force in the bending direction can be excluded, the circumferential strain component caused by the pressure pulsation can be obtained with higher accuracy.

続いて、本実施形態2による、計測データ収集の信頼性向上効果を実施形態1(図3)との比較によって説明する。図4および図5に示した本実施形態2と、図3に示した実施形態1においては、いずれも配管周方向に四組(八枚)の周方向計測用ひずみゲージ71が設置されている。   Next, the effect of improving the reliability of measurement data collection according to the second embodiment will be described by comparison with the first embodiment (FIG. 3). In the second embodiment shown in FIGS. 4 and 5 and the first embodiment shown in FIG. 3, four sets (eight pieces) of circumferential direction measuring strain gauges 71 are installed in the circumferential direction of the pipe. .

ところで、前記のように曲げ方向の外力による影響を除外するためには、配管径断面図心に対して点対称な位置に設置される二枚を一組として計測データを収集する必要がある。そのため、これらすべての周方向計測用ひずみゲージ71が正常に動作しているときに収集可能な計測データの組数、つまり計測データ収集可能数は、どちらも四つである。   By the way, in order to exclude the influence of the external force in the bending direction as described above, it is necessary to collect measurement data for a set of two sheets installed at point symmetric positions with respect to the pipe diameter sectional centroid. Therefore, the number of sets of measurement data that can be collected when all of these circumferential direction strain gauges 71 are operating normally, that is, the number of measurement data that can be collected is four.

まず、実施形態1(図3)のように、均等にひずみゲージを配置した場合について考える。この場合、周方向計測用ひずみゲージ71が一つ故障すると、計測データ収集可能数は一つ減って三つとなる。また、二つの周方向計測用ひずみゲージ71が故障すると、故障した二つのひずみゲージが互いに対をなす一組である場合には、計測データ収集可能数は三つとなり、それ以外の場合には、計測データ収集可能数は二つ減って二つとなる。   First, consider the case where the strain gauges are equally arranged as in the first embodiment (FIG. 3). In this case, if one circumferential direction measuring strain gauge 71 breaks down, the number of pieces of measurement data that can be collected decreases by one and becomes three. In addition, when two circumferential measurement strain gauges 71 fail, the number of measurement data that can be collected is three when the two failed strain gauges are paired with each other, and in other cases The number of measurement data that can be collected is reduced by two to two.

これに対して、本実施形態2では、周方向計測用ひずみゲージ71を互いに近接して配置しているので、故障したひずみゲージの代わりに近接する他のひずみゲージの計測データを用いても、曲げによって生じる配管周方向のひずみ成分を十分に除外することができる。そこで、例えば、図5の下部の×印が付された周方向計測用ひずみゲージ73(71)が故障したときにも、それに近接する他のひずみゲージ71の計測データを用いることで、周方向計測用ひずみゲージ73(71)と対をなす周方向計測用ひずみゲージ74(71)の計測データを用いることができる(図5の太い破線)。したがって、周方向計測用ひずみゲージ71が一つ故障した場合であっても、計測データ収集可能数は四つのままとなる(図5の○印)。   On the other hand, in the second embodiment, since the circumferential direction measurement strain gauges 71 are arranged close to each other, even if measurement data of other strain gauges adjacent to each other are used instead of the failed strain gauge, Strain components in the circumferential direction of the pipe caused by bending can be sufficiently excluded. Therefore, for example, even when the circumferential measurement strain gauge 73 (71) marked with a cross in the lower part of FIG. 5 fails, the measurement data of the other strain gauges 71 adjacent thereto is used to obtain the circumferential direction. The measurement data of the circumferential measurement strain gauge 74 (71) paired with the measurement strain gauge 73 (71) can be used (thick broken line in FIG. 5). Therefore, even if one circumferential direction measurement strain gauge 71 fails, the number of measurement data that can be collected remains four (circles in FIG. 5).

図6に、周方向計測用ひずみゲージ71の故障個数に対する計測データ収集可能数の発生確率を、本実施形態2のように配管周方向にゲージを近接配置した場合と、実施形態1のように配管周方向にゲージを均等配列した場合とについて、比較して示す。図6は、各段ごとにひずみゲージの故障個数をとり、各列に計測データ収集可能数ごとの発生確率を示している。この発生確率は、あるゲージ故障個数において、値が大きいほど、その計測データ収集可能数になりやすいことを示している。つまり、計測データ収集可能数が多いときの発生確率が大きく、計測データ収集数が少ないときの発生確率が小さいほど、ひずみゲージの故障に対する計測データ収集の信頼性が高いと言える。   FIG. 6 shows the occurrence probability of the number of measurement data that can be collected with respect to the number of failures in the circumferential direction measurement strain gauge 71 when the gauges are arranged close to each other in the pipe circumferential direction as in the second embodiment and as in the first embodiment. A comparison is made with respect to a case where gauges are evenly arranged in the pipe circumferential direction. FIG. 6 shows the number of strain gauge failures for each stage, and the occurrence probability for each number of measurement data collections is shown in each column. The probability of occurrence indicates that the number of measurement data that can be collected tends to increase as the value increases for a certain number of gauge failures. That is, it can be said that the higher the probability of occurrence when the number of measurement data collections is large and the smaller the probability of occurrence when the number of measurement data collections is small, the higher the reliability of measurement data collection for strain gauge failure.

本実施形態2においてゲージ故障個数が「3」の場合を例に、発生確率の算出方法を説明する。まず、八個のひずみゲージの中から故障の三つのゲージを選ぶ組合せの数は、8=56通りである。互いに近接する四個のひずみゲージのなかに、故障の三つのゲージをすべて含む組合せの数は、四個の中から三つを選ぶ組合せ数の二倍であり、2×=8通りである。この場合、故障したゲージが含まれる側に対向する四個のひずみゲージはすべて正常であるため、計測データ収集可能数は四つとなり、その発生確率は8/56となる。また、それ以外の場合は、近接する四個のゲージのなかの正常なゲージの個数は、一方が三個、もう一方が二個となるので、計測データ収集可能数は三つとなり、その発生確率は1-8/56=48/56となる。なお、対称性から、故障個数が「1」の場合は故障個数が「7」の場合と、故障個数が「2」の場合は故障個数が「6」場合と、故障個数が「3」の場合は故障個数が「5」場合と、それぞれ発生確率が対称となる。 The method for calculating the occurrence probability will be described by taking as an example the case where the number of gauge failures is “3” in the second embodiment. First, the number of combinations for selecting three gauges of failure from eight strain gauges is 8 C 3 = 56. The number of combinations including all three failure gauges among the four strain gauges close to each other is twice the number of combinations selected from the four, and 2 × 4 C 3 = 8 ways It is. In this case, since the four strain gauges facing the side including the failed gauge are all normal, the number of measurement data that can be collected is four, and the probability of occurrence is 8/56. In other cases, the number of normal gauges in the four adjacent gauges is one for three and the other for two, so the number of measurement data that can be collected is three. The probability is 1-8 / 56 = 48/56. From the symmetry, when the number of failures is “1”, the number of failures is “7”, when the number of failures is “2”, the number of failures is “6”, and the number of failures is “3”. In this case, the occurrence probability is symmetric with respect to the case where the number of failures is “5”.

次に、配管周方向にゲージを均等配列した場合(実施形態1)における、ゲージ個数が「3」のときの発生確率の算出方法を説明する。まず、八個のひずみゲージの中から故障の三つのゲージを選ぶ組合せの数は、=56通りである。故障の三個のひずみゲージのうちの、二個が互いに対をなす場合には、計測データ収集可能数は二つとなる。対をなす二個のゲージの組合せの数が=4通りであり、残りの1個の選び方は=6通りであることから、この場合の組合せの数は4×6=24通りとなる。よって、計測データ収集可能数が二つとなる発生確率は24/56となる。それ以外の場合には、故障のゲージを含む3つの組すべての計測データが無効となることから、計測データ収集可能数は一つであり、その発生確率は1-24/56=32/56となる。 Next, a method of calculating the probability of occurrence when the number of gauges is “3” in the case where gauges are evenly arranged in the pipe circumferential direction (Embodiment 1) will be described. First, the number of combinations for selecting three gauges of failure from eight strain gauges is 8 C 3 = 56. If two of the three strain gauges in failure are paired with each other, the number of measurement data that can be collected is two. Since the number of combinations of two gauges forming a pair is 4 C 1 = 4, and the method of selecting the remaining one is 6 C 1 = 6, the number of combinations in this case is 4 × 6 = There are 24 streets. Therefore, the occurrence probability that the number of measurement data that can be collected is two is 24/56. In other cases, the measurement data of all three sets including the failure gauge is invalid, so the number of measurement data that can be collected is one, and the probability of occurrence is 1-24 / 56 = 32/56 It becomes.

以上説明したように、ひずみゲージの故障確率が同じであっても、複数組の周方向計測用ひずみゲージ71を配管径方向断面図心に対して点対称な二つの位置に互いに近接配置することによって、計測データ収集可能を、複数組の周方向計測用ひずみゲージ71を配管周方向に均等配置した場合よりも大きくでき、計測データ収集の信頼性を向上させることができる。   As described above, even if the failure probability of strain gauges is the same, a plurality of sets of circumferential measurement strain gauges 71 are arranged close to each other at two points symmetrical with respect to the pipe radial direction centroid. Therefore, the measurement data can be collected more than when a plurality of sets of circumferential direction measurement strain gauges 71 are evenly arranged in the circumferential direction of the pipe, and the reliability of measurement data collection can be improved.

さらに、他の効果として、配管周方向におけるひずみゲージの設置位置が二つの位置に集約されるため、ひずみゲージの設置作業や保守作業の時間を短縮することができ、作業員の被爆量の低減が可能となる。   As another effect, the strain gauge installation position in the circumferential direction of the pipe is consolidated into two positions, so the time required for strain gauge installation work and maintenance work can be shortened, and the amount of exposure to workers can be reduced. Is possible.

<実施形態3>
次に、実施形態3として、圧力脈動の測定において、圧力脈動測定箇所間の距離が圧力脈動波の波長または波長の整数倍と一致した場合に圧力脈動波の位相が特定できなくなる問題を回避するために、周方向計測用ひずみゲージ71の各組を、互いに配管軸方向における異なる位置に複数組設置する場合を説明する。
<Embodiment 3>
Next, as a third embodiment, in the measurement of pressure pulsation, the problem that the phase of the pressure pulsation wave cannot be specified when the distance between the pressure pulsation measurement points coincides with the wavelength of the pressure pulsation wave or an integral multiple of the wavelength is avoided. Therefore, a case where a plurality of sets of circumferential measurement strain gauges 71 are installed at different positions in the pipe axis direction will be described.

ドライヤ4の健全性を評価するために、いずれかの主蒸気配管2の配管内の圧力脈動を測定する場合は、配管内の圧力脈動波形を求めるための振幅と位相との二つを未知数とする波動方程式を解く必要がある。測定すべき圧力脈動の周波数帯域は複数存在するので、各周波数帯域について波動方程式を解く必要があるが、配管軸方向に設置される二つの圧力脈動測定箇所6(図1参照)間の距離が圧力脈動波の波長または波長の整数倍と一致した場合は、波動方程式を解くことができなくなる。   In order to evaluate the soundness of the dryer 4, when measuring the pressure pulsation in one of the main steam pipes 2, the amplitude and phase for obtaining the pressure pulsation waveform in the pipe are defined as unknowns. It is necessary to solve the wave equation. Since there are a plurality of pressure pulsation frequency bands to be measured, it is necessary to solve the wave equation for each frequency band, but the distance between two pressure pulsation measurement points 6 (see FIG. 1) installed in the pipe axis direction is If the pressure pulsation wave coincides with the wavelength or an integral multiple of the wavelength, the wave equation cannot be solved.

そこで、圧力脈動測定箇所間の距離が圧力脈動波の波長または波長の整数倍と一致する問題を回避するために、主蒸気配管2の一つの圧力脈動測定箇所6(図1参照)に対して、配管周方向のひずみを計測する周方向計測用ひずみゲージ71を、配管軸方向における異なる位置に複数組設置する。   Therefore, in order to avoid the problem that the distance between the pressure pulsation measurement points coincides with the wavelength of the pressure pulsation wave or an integral multiple of the wavelength, one pressure pulsation measurement point 6 (see FIG. 1) of the main steam pipe 2 is used. A plurality of circumferential measurement strain gauges 71 for measuring strain in the pipe circumferential direction are installed at different positions in the pipe axis direction.

図7は、図1の主蒸気配管2の配管軸方向についてのひずみゲージの配置の詳細を示している。図7の例では、周方向計測用ひずみゲージ71は、配管径方向断面図心を中心として対となる二枚のひずみゲージを一組として、配管周方向に均等に四組(八枚)配置されており、各組の配管軸方向における位置がそれぞれ異なっている。なお、軸方向計測用ひずみゲージ72は、それら各組の配管軸方向における中心付近に、配管径方向断面図心に対して点対称な位置に二枚を一組として設置されている。   FIG. 7 shows details of the arrangement of strain gauges in the pipe axis direction of the main steam pipe 2 of FIG. In the example of FIG. 7, the circumferential direction measuring strain gauges 71 are arranged in four pairs (eight) equally in the circumferential direction of the pipe, with a pair of two strain gauges centered on the pipe radial direction centroid. The positions of each set in the pipe axis direction are different from each other. In addition, two strain gauges 72 for axial measurement are installed as a set in the vicinity of the center in the pipe axial direction of each set at a point symmetric with respect to the pipe radial direction centroid.

周方向計測用ひずみゲージ71によって計測される配管周方向のひずみ量のうち、曲げ方向の外力に起因する配管周方向のひずみ成分と、軸方向外力に起因する配管周方向のひずみ成分とは、実施形態1と同様な方法によって、除外することができる。なお、配管全長に対して、周方向計測用ひずみゲージ71の各組の配管軸方向における位置の違いは十分小さいので、軸方向計測用ひずみゲージ72によって計測される軸方向外力によって生じる配管軸方向のひずみ量は、周方向計測用ひずみゲージ71の各組の位置でも同一とみなすものとする。   Of the amount of strain in the pipe circumferential direction measured by the circumferential direction measurement strain gauge 71, the strain component in the pipe circumferential direction due to the external force in the bending direction and the strain component in the pipe circumferential direction due to the axial external force are: It can be excluded by the same method as in the first embodiment. In addition, since the difference in the position in the pipe axis direction of each set of the circumferential measurement strain gauges 71 is sufficiently small with respect to the total length of the pipe, the pipe axis direction caused by the axial external force measured by the axial measurement strain gauge 72 Are assumed to be the same at the positions of each set of the circumferential measurement strain gauges 71.

本実施形態3との比較のため、図8のように、八枚の周方向計測用ひずみゲージ71を配管軸方向における同一平面内に設置した場合について説明する。前記のように、配管内の圧力脈動の波動方程式を解くためには、振幅と位相との二つの未知数が存在するので、配管軸方向における二箇所以上で圧力脈動を測定する必要がある。しかし、図8に示すように、圧力脈動測定箇所6間の距離が圧力脈動波8の波長または波長の整数倍と一致した場合には、位相差を求めることができず、前記の波動方程式を解くことができない。このように、周方向計測用ひずみゲージ71を配管軸方向の同一平面内に設置した場合、圧力脈動測定箇所6間の距離が圧力脈動波8の波長または波長の整数倍と一致する周波数成分の圧力脈動を求めることができなくなる(図8の×印)。   For comparison with the third embodiment, a case where eight circumferential direction measurement strain gauges 71 are installed in the same plane in the pipe axis direction as shown in FIG. 8 will be described. As described above, in order to solve the wave equation of the pressure pulsation in the pipe, there are two unknowns, the amplitude and the phase. Therefore, it is necessary to measure the pressure pulsation at two or more places in the pipe axis direction. However, as shown in FIG. 8, when the distance between the pressure pulsation measurement points 6 coincides with the wavelength of the pressure pulsation wave 8 or an integral multiple of the wavelength, the phase difference cannot be obtained, and the wave equation is I can't solve it. Thus, when the circumferential direction measurement strain gauge 71 is installed in the same plane in the pipe axis direction, the distance between the pressure pulsation measurement points 6 is equal to the wavelength of the pressure pulsation wave 8 or an integer multiple of the wavelength. Pressure pulsation cannot be obtained (marked with x in FIG. 8).

これに対して、本実施形態3では、一つの測定箇所における周方向計測用ひずみゲージ71の各組を、互いに配管軸方向における位置が異なるように設置させているので、仮にそのいずれか一組の距離が、求めたい圧力脈動波8の波長または波長の整数倍と一致することになったとしても、他の組についての計測データを得ることができる。したがって、いずれの周波数成分についても圧力脈動測定箇所6間の距離が圧力脈動波8の波長または波長の整数倍と一致する問題を回避することができ、測定可能な圧力脈動の周波数帯域を広げることができる(図7の○印)。   On the other hand, in the third embodiment, each set of circumferential measurement strain gauges 71 at one measurement location is installed so that the positions in the pipe axis direction are different from each other. Is equal to the wavelength of the pressure pulsation wave 8 to be obtained or an integral multiple of the wavelength, measurement data for other sets can be obtained. Therefore, the problem that the distance between the pressure pulsation measurement points 6 matches the wavelength of the pressure pulsation wave 8 or an integral multiple of the wavelength can be avoided for any frequency component, and the frequency band of the pressure pulsation that can be measured is widened. (Circles in FIG. 7).

<実施形態4>
実施形態3では、周方向計測用ひずみゲージ71を、配管径方向断面図心を中心として対となる二枚のひずみゲージを一組として、配管周方向に均等に配置したが、図9に示すように、周方向計測用ひずみゲージ71の各組を、配管周方向における同一の位置に配置するようにしてもよい。また、周方向計測用ひずみゲージ71の各組を配管周方向における互いに近接した位置に配置するようにしてもよい。このとき、周方向計測用ひずみゲージ71の各組を、配管軸方向における少なくとも二つの異なる位置に配置することで、実施形態3と同様に、圧力脈動測定箇所6間の距離が圧力脈動波8の波長または波長の整数倍と一致する問題を回避することができる。
<Embodiment 4>
In the third embodiment, the circumferential direction measurement strain gauges 71 are arranged equally in the pipe circumferential direction with a pair of two strain gauges paired around the pipe radial direction sectional centroid as shown in FIG. In this way, each set of circumferential direction measuring strain gauges 71 may be arranged at the same position in the circumferential direction of the pipe. Further, each set of circumferential direction measuring strain gauges 71 may be arranged at positions close to each other in the pipe circumferential direction. At this time, by disposing each set of the circumferential direction measurement strain gauges 71 at at least two different positions in the pipe axis direction, the distance between the pressure pulsation measurement points 6 is changed to the pressure pulsation wave 8 as in the third embodiment. The problem of coincidence with the wavelength or an integral multiple of the wavelength can be avoided.

<実施形態5>
主蒸気配管2に作用する軸方向外力の影響が小さいことが明らかな場合は、例えば、図10および図11に示すように、実施形態2および実施形態3において、配管軸方向のひずみを計測する軸方向計測用ひずみゲージ72の設置を省いてもよい。
<Embodiment 5>
When it is clear that the influence of the axial external force acting on the main steam pipe 2 is small, for example, as shown in FIGS. 10 and 11, the strain in the pipe axis direction is measured in the second and third embodiments. The installation of the strain gauge 72 for axial measurement may be omitted.

以上にて実施形態の説明を終えるが、本発明の実施の態様は、これに限らず、本発明の趣旨を逸脱しない範囲で、各種変更が可能である。例えば、配管軸方向および配管周方向に設置するひずみゲージの個数は状況に応じて変更しても良い。また、配管周方向の配置形態は、均等や近接以外であってもよく、配管周方向の配置と配管軸方向の配置との組合せはいずれであってもよい。   Although the description of the embodiment has been completed above, the embodiment of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the present invention. For example, the number of strain gauges installed in the pipe axis direction and the pipe circumferential direction may be changed according to the situation. Further, the arrangement form in the pipe circumferential direction may be other than equal or close, and the combination of the arrangement in the pipe circumferential direction and the arrangement in the pipe axial direction may be any.

本発明は、主蒸気配管の圧力脈動を測定する国内および国外の沸騰水型原子炉に適用可能である。また、加圧水型原子炉(PWR(Pressurized Water Reactor))の二次系統設備である湿分分離機の健全性評価を主蒸気配管内の圧力脈動の測定により行う場合にも、本発明の適用が可能である。   The present invention is applicable to domestic and foreign boiling water reactors that measure pressure pulsations in main steam piping. The present invention can also be applied to the case where the soundness evaluation of a moisture separator, which is a secondary system facility of a pressurized water reactor (PWR (Pressurized Water Reactor)), is performed by measuring the pressure pulsation in the main steam pipe. Is possible.

1 原子炉圧力容器(RPV)
2 主蒸気配管
3 蒸気ドーム
4 ドライヤ
5 安全逃がし弁(SRV)
6 圧力脈動測定箇所
8 圧力脈動波
71 周方向計測用ひずみゲージ
72 軸方向計測用ひずみゲージ
73 故障したひずみゲージ
74 故障したひずみゲージと対をなすひずみゲージ
1 Reactor pressure vessel (RPV)
2 Main steam piping 3 Steam dome 4 Dryer 5 Safety relief valve (SRV)
6 Pressure pulsation measurement location 8 Pressure pulsation wave 71 Strain gauge for circumferential measurement 72 Strain gauge for axial measurement 73 Faulty strain gauge 74 Strain gauge paired with faulty strain gauge

Claims (7)

原子力発電施設のタービンを駆動させる蒸気を輸送する主蒸気配管の圧力脈動を、前記主蒸気配管の外壁面上に設置したひずみゲージを用いて測定する方法であって、
前記主蒸気配管の配管軸方向における一つの測定箇所に対して、前記主蒸気配管の配管周方向のひずみ量を計測するひずみゲージを、前記主蒸気配管の配管径方向断面図心に対して互いに点対称となる位置に設置される二枚を一組として、少なくとも一組設置し、
前記主蒸気配管の配管周方向のひずみ量を計測する前記ひずみゲージに近接して、前記主蒸気配管の配管軸方向のひずみ量を計測するひずみゲージを少なくとも一枚設置し、
それら複数枚のひずみゲージによって計測されるひずみ量から、前記主蒸気配管の圧力脈動に起因する配管周方向のひずみ成分を求める
ことを特徴とする主蒸気配管の圧力脈動測定方法。
A method for measuring pressure pulsation of a main steam pipe for transporting steam for driving a turbine of a nuclear power generation facility using a strain gauge installed on an outer wall surface of the main steam pipe,
A strain gauge for measuring the amount of strain in the pipe circumferential direction of the main steam pipe with respect to one measurement point in the pipe axis direction of the main steam pipe is mutually connected with respect to the pipe radial direction sectional centroid of the main steam pipe. At least one set is installed as a set of two pieces installed at a point symmetrical position,
Close to the strain gauge that measures the strain amount in the pipe circumferential direction of the main steam pipe, at least one strain gauge that measures the strain amount in the pipe axis direction of the main steam pipe is installed,
A pressure pulsation measurement method for a main steam pipe, wherein a strain component in a pipe circumferential direction caused by the pressure pulsation of the main steam pipe is obtained from a strain amount measured by the plurality of strain gauges.
請求項1に記載の主蒸気配管の圧力脈動測定方法において、
前記主蒸気配管の配管周方向のひずみ量を計測する前記二枚一組のひずみゲージの各組を、互いに近接させて複数組設置する
ことを特徴とする主蒸気配管の圧力脈動測定方法。
In the pressure pulsation measuring method of the main steam piping according to claim 1,
A method for measuring pressure pulsations in a main steam pipe, wherein a plurality of sets of the two pairs of strain gauges for measuring the amount of strain in the pipe circumferential direction of the main steam pipe are installed close to each other.
請求項1に記載の主蒸気配管の圧力脈動測定方法において、
前記主蒸気配管の配管周方向のひずみ量を計測する前記二枚一組のひずみゲージの各組を、前記蒸気配管の配管軸方向における互いに異なる位置に複数組設置する
ことを特徴とする主蒸気配管の圧力脈動測定方法。
In the pressure pulsation measuring method of the main steam piping according to claim 1,
A main steam characterized in that a plurality of sets of the two pairs of strain gauges for measuring the strain amount in the pipe circumferential direction of the main steam pipe are installed at different positions in the pipe axis direction of the steam pipe. Method for measuring pressure pulsation in piping.
請求項2に記載の主蒸気配管の圧力脈動測定方法において、
互いに近接させて複数組設置する前記二枚一組のひずみゲージの各組を、前記蒸気配管の配管軸方向における少なくとも二つの異なる位置に設置する
ことを特徴とする主蒸気配管の圧力脈動測定方法。
In the main steam piping pressure pulsation measuring method according to claim 2,
A method for measuring the pressure pulsation of a main steam pipe, wherein each set of the two strain gauges installed in a plurality of groups close to each other is installed at at least two different positions in the pipe axial direction of the steam pipe. .
原子力発電施設のタービンを駆動させる蒸気を輸送する主蒸気配管の圧力脈動を、前記主蒸気配管の外壁面上に設置したひずみゲージを用いて測定する方法であって、
前記主蒸気配管の配管軸方向における一つの測定箇所に対して、前記主蒸気配管の配管周方向のひずみ量を計測するひずみゲージを、前記主蒸気配管の径方向断面図心に対して互いに点対称となる位置に設置される二枚を一組として、その各組を互いに近接させて複数組設置し、
それら複数枚のひずみゲージによって計測されるひずみ量から、前記主蒸気配管の圧力脈動に起因する配管周方向のひずみ成分を求める
ことを特徴とする主蒸気配管の圧力脈動測定方法。
A method for measuring pressure pulsation of a main steam pipe for transporting steam for driving a turbine of a nuclear power generation facility using a strain gauge installed on an outer wall surface of the main steam pipe,
A strain gauge that measures the amount of strain in the pipe circumferential direction of the main steam pipe is connected to one measurement point in the pipe axial direction of the main steam pipe with respect to the radial sectional centroid of the main steam pipe. Two sets installed at symmetrical positions are taken as one set, and each set is placed close to each other, and multiple sets are installed.
A pressure pulsation measurement method for a main steam pipe, wherein a strain component in a pipe circumferential direction caused by the pressure pulsation of the main steam pipe is obtained from a strain amount measured by the plurality of strain gauges.
原子力発電施設のタービンを駆動させる蒸気を輸送する主蒸気配管の圧力脈動を、前記主蒸気配管の外壁面上に設置したひずみゲージを用いて測定する方法であって、
前記主蒸気配管の配管軸方向における一つの測定箇所に対して、前記主蒸気配管の配管周方向のひずみ量を計測するひずみゲージを、前記主蒸気配管の配管径方向断面図心に対して互いに点対称となる位置に設置される二枚を一組として、その各組を前記蒸気配管の配管軸方向における互いに異なる位置に複数組設置し、
それら複数枚のひずみゲージによって計測されるひずみ量から、前記主蒸気配管の圧力脈動に起因する配管周方向のひずみ成分を求める
ことを特徴とする主蒸気配管の圧力脈動測定方法。
A method for measuring pressure pulsation of a main steam pipe for transporting steam for driving a turbine of a nuclear power generation facility using a strain gauge installed on an outer wall surface of the main steam pipe,
A strain gauge for measuring the amount of strain in the pipe circumferential direction of the main steam pipe with respect to one measurement point in the pipe axis direction of the main steam pipe is mutually connected with respect to the pipe radial direction sectional centroid of the main steam pipe. Two sets installed at a point-symmetrical position as a set, a plurality of sets are installed at different positions in the pipe axis direction of the steam pipe,
A pressure pulsation measurement method for a main steam pipe, wherein a strain component in a pipe circumferential direction caused by the pressure pulsation of the main steam pipe is obtained from a strain amount measured by the plurality of strain gauges.
請求項5に記載の主蒸気配管の圧力脈動測定方法において、
互いに近接させて複数組設置する前記二枚一組のひずみゲージの各組を、前記蒸気配管の配管軸方向における少なくとも二つの異なる位置に設置する
ことを特徴とする主蒸気配管の圧力脈動測定方法。
In the pressure pulsation measurement method of the main steam piping according to claim 5,
A method for measuring the pressure pulsation of a main steam pipe, wherein each set of the two strain gauges installed in a plurality of groups close to each other is installed at at least two different positions in the pipe axial direction of the steam pipe. .
JP2010031094A 2010-02-16 2010-02-16 Pressure pulsation measurement method for main steam piping Active JP5462654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010031094A JP5462654B2 (en) 2010-02-16 2010-02-16 Pressure pulsation measurement method for main steam piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031094A JP5462654B2 (en) 2010-02-16 2010-02-16 Pressure pulsation measurement method for main steam piping

Publications (2)

Publication Number Publication Date
JP2011169612A true JP2011169612A (en) 2011-09-01
JP5462654B2 JP5462654B2 (en) 2014-04-02

Family

ID=44683905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010031094A Active JP5462654B2 (en) 2010-02-16 2010-02-16 Pressure pulsation measurement method for main steam piping

Country Status (1)

Country Link
JP (1) JP5462654B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509234A (en) * 2013-03-05 2016-03-24 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシーGe−Hitachi Nuclear Energy Americas, Llc Method and apparatus for measuring tube pressure
JP2016217792A (en) * 2015-05-16 2016-12-22 株式会社大林組 Evaluation method for striking number of hydraulic hammer and investigation method for front natural ground using the same, and investigation system for front natural ground

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305140A (en) * 1990-09-19 1992-10-28 Rem Technol Inc Method for detecting crack in shaft system in operation
JPH1164210A (en) * 1997-08-27 1999-03-05 Toshiba Corp Method for inspecting system piping
JP2008256681A (en) * 2007-03-14 2008-10-23 Toshiba Corp System for monitoring pressure fluctuations in nuclear power plant
JP2009074878A (en) * 2007-09-20 2009-04-09 Hitachi-Ge Nuclear Energy Ltd Method for confirming integrity of drier of boiling water reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305140A (en) * 1990-09-19 1992-10-28 Rem Technol Inc Method for detecting crack in shaft system in operation
JPH1164210A (en) * 1997-08-27 1999-03-05 Toshiba Corp Method for inspecting system piping
JP2008256681A (en) * 2007-03-14 2008-10-23 Toshiba Corp System for monitoring pressure fluctuations in nuclear power plant
JP2009074878A (en) * 2007-09-20 2009-04-09 Hitachi-Ge Nuclear Energy Ltd Method for confirming integrity of drier of boiling water reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509234A (en) * 2013-03-05 2016-03-24 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシーGe−Hitachi Nuclear Energy Americas, Llc Method and apparatus for measuring tube pressure
JP2016217792A (en) * 2015-05-16 2016-12-22 株式会社大林組 Evaluation method for striking number of hydraulic hammer and investigation method for front natural ground using the same, and investigation system for front natural ground

Also Published As

Publication number Publication date
JP5462654B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
US20080069290A1 (en) Integrated monitoring method for nuclear device and system using the same
CN110108455B (en) Method for measuring vibration stress and evaluating fatigue life of small pipeline of nuclear power plant
Thie Core motion monitoring
JP5462654B2 (en) Pressure pulsation measurement method for main steam piping
Tewolde et al. Validated model based development of damage index for Structural Health Monitoring of offshore wind turbine support structures
JP4808110B2 (en) Damage assessment method
JP2016509234A (en) Method and apparatus for measuring tube pressure
US20150027663A1 (en) Instrumented Steam Generator Anti-Vibration Bar
JP5784279B2 (en) Seismic scrum method and apparatus
Ko et al. Design of a vibration and stress measurement system for an advanced power reactor 1400 reactor vessel internals comprehensive vibration assessment program
Sinha Vibration-based diagnosis techniques used in nuclear power plants: An overview of experiences
US20220246319A1 (en) Supports with integrated sensors for nuclear reactor steam generators, and associated systems and methods
JP2986964B2 (en) Piping member damage detection method
KR100956650B1 (en) Measurement method of nuclear reactor concrete containment structure using optical fiber sensor
Hashemian Predictive maintenance in nuclear power plants through online monitoring
Bastl et al. The influence of noise diagnostic techniques on the safety and availability of nuclear power plants
RU2543677C1 (en) Meter of tubular channel bending
Kim et al. Top-mounted in-core instrumentation: current status and technical issues
Kim et al. An Analysis on Comprehensive Vibration Assessment Program for APR1400 Reactor Vessel Internals
Ansari et al. Measurement and analysis of structural integrity of reactor core support structure in pressurized water reactor (PWR) plant
Basavaraju et al. BWR Steam Dryer Issues and Lessons Learned Related to Flow Induced Vibration
Basavaraju et al. FIV Considerations for BWR Steam Dryers for EPU Operation
Morante et al. BWR Steam Dryer Alternating Stress Assessment Procedures
Frick et al. PWR steam generator sleeving assessment document. Final report
Gao et al. Flow-induced Vibration Scale Testing of ACP100 Reactor Internals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5462654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150