JP2009074878A - Method for confirming integrity of drier of boiling water reactor - Google Patents

Method for confirming integrity of drier of boiling water reactor Download PDF

Info

Publication number
JP2009074878A
JP2009074878A JP2007243208A JP2007243208A JP2009074878A JP 2009074878 A JP2009074878 A JP 2009074878A JP 2007243208 A JP2007243208 A JP 2007243208A JP 2007243208 A JP2007243208 A JP 2007243208A JP 2009074878 A JP2009074878 A JP 2009074878A
Authority
JP
Japan
Prior art keywords
pressure
pipe
dryer
pressure pulsation
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007243208A
Other languages
Japanese (ja)
Other versions
JP4834633B2 (en
Inventor
Shiro Takahashi
志郎 高橋
Masaya Otsuka
雅哉 大塚
Koji Nishida
浩二 西田
Takashi Ito
敬 伊東
Toshiji Hiratsuka
利治 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2007243208A priority Critical patent/JP4834633B2/en
Publication of JP2009074878A publication Critical patent/JP2009074878A/en
Application granted granted Critical
Publication of JP4834633B2 publication Critical patent/JP4834633B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate highly accurately pressure pulsation in a steam dome of a pressure vessel of a nuclear power plant, to confirm accurately the integrity of a drier in the pressure vessel, and to improve the safety of the nuclear power plant. <P>SOLUTION: Pressure sensors 7 are installed at a plurality of spots at each distance in the length direction of a pipe 5, on the pipe 5, for example, a pipe for measurement having no flow and connected to the steam dome 1 provided at an upper part of the pressure vessel of a boiling water reactor, and the pressure pulsation in the steam dome 1 is evaluated accurately through the pipe 5 without being influenced by a steam flow based on sensor results from the pressure sensors 7, and the evaluation result is used as a base for evaluating the integrity of the drier. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、沸騰水型原子炉の蒸気乾燥器であるドライヤの振動健全性の確認方法に関する。   The present invention relates to a method for confirming vibration health of a dryer which is a steam dryer of a boiling water reactor.

沸騰水型原子炉の圧力容器内に納まる蒸気乾燥器であるドライヤの健全性を評価確認する従来の手法としては、ドライヤの外面にセンサを直接貼り付けて、ドライヤの健全性を評価する方法がある。ドライヤ表面に、ひずみゲージ,圧力計及び加速度計等のセンサを設置して、ドライヤに発生する振動応力を評価することにより、ドライヤの健全性を直接評価していた。この手法では、ドライヤに発生する応力を直接測定できるため、評価精度が高いと考えられる。この手法は主に、放射線を受けていない、新しく製作したドライヤに適用されている。   As a conventional method for evaluating and confirming the soundness of a dryer, which is a steam dryer contained in a pressure vessel of a boiling water reactor, a method of evaluating the soundness of the dryer by directly attaching a sensor to the outer surface of the dryer is available. is there. Sensors such as strain gauges, pressure gauges, and accelerometers were installed on the dryer surface, and the soundness of the dryer was directly evaluated by evaluating the vibration stress generated in the dryer. In this method, since the stress generated in the dryer can be directly measured, it is considered that the evaluation accuracy is high. This technique is mainly applied to newly manufactured dryers that do not receive radiation.

また、他の従来手法として、主蒸気配管にセンサを設置してドライヤの健全性を確認する方法がある。この場合は、主蒸気配管の外表面にひずみゲージを設置して、その配管のフープ方向のひずみ量の振動より、主蒸気配管内の圧力脈動を評価している。そして、解析等を用いて、蒸気ドーム内の圧力脈動(ドライヤに作用する応力)と主蒸気配管内圧力脈動の関連を評価して、主蒸気配管の圧力脈動測定結果をもとに蒸気ドーム内の圧力脈動を算出し、ドライヤの健全性を確認する手法である。   As another conventional method, there is a method of checking the soundness of the dryer by installing a sensor in the main steam pipe. In this case, a strain gauge is installed on the outer surface of the main steam pipe, and the pressure pulsation in the main steam pipe is evaluated from the vibration of the strain amount in the hoop direction of the pipe. Then, using analysis, etc., the relationship between the pressure pulsation in the steam dome (stress acting on the dryer) and the pressure pulsation in the main steam pipe is evaluated, and the inside of the steam dome This is a method to check the soundness of the dryer by calculating the pressure pulsation.

従来の手法で、ドライヤ表面にセンサを設置する方法では、新しく製作して放射線を受けていないドライヤには適用し易いが、既に運転中のドライヤに対しては、センサを設置する作業が困難である。既に運転しているドライヤは定期検査中においても、水中に保存されており、ドライヤにセンサを設置するためには、水中溶接等の特殊な作業が必要となる。そのため、センサの設置には作業が困難であり、コストが比較的高く、より合理的な手法が望まれると考える。   The conventional method of installing a sensor on the surface of a dryer is easy to apply to a newly manufactured dryer that has not received radiation, but it is difficult to install a sensor for a dryer that is already in operation. is there. The drier that is already in operation is stored in the water even during regular inspections, and special work such as underwater welding is required to install the sensor in the drier. Therefore, it is difficult to install the sensor, the cost is relatively high, and a more rational method is desired.

一方、主蒸気配管にセンサを設置する方法では、主蒸気配管の圧力脈動をもとに、蒸気ドーム内の圧力脈動を解析等で評価する必要があり、直接的にドーム内の圧力脈動を評価することは菌難である。また、主蒸気配管のように流れが存在すると、流れにより発生する圧力脈動の影響により圧力センサの計測精度が低下する可能性がある。   On the other hand, in the method of installing a sensor in the main steam pipe, it is necessary to evaluate the pressure pulsation in the steam dome based on the pressure pulsation in the main steam pipe, and the pressure pulsation in the dome is directly evaluated. To do is fungi. In addition, when there is a flow like the main steam pipe, there is a possibility that the measurement accuracy of the pressure sensor is lowered due to the influence of pressure pulsation generated by the flow.

さらに、流れがあると、圧力センサ自身が圧力脈動の発生原因、もしくは共鳴箇所となる可能性がある。また、主蒸気配管の圧力センサ取り付け工事は配管サイズが大きいため、作業が困難である。   Furthermore, if there is a flow, the pressure sensor itself may be a cause of pressure pulsation or a resonance point. Moreover, the pressure sensor installation work for the main steam pipe is difficult because the pipe size is large.

そのため、ここでは圧力センサを使用しないで、配管内の圧力脈動を配管外表面に貼り付けたひずみゲージで測定している。主蒸気配管の外表面にひずみゲージを取り付けて計測した場合、内部圧力脈動が小さく計測できるひずみが微小な場合、内部の圧力脈動測定精度が課題になる可能性がある。   Therefore, here, the pressure pulsation in the pipe is measured with a strain gauge attached to the outer surface of the pipe without using a pressure sensor. When measurement is performed with a strain gauge attached to the outer surface of the main steam pipe, the internal pressure pulsation measurement accuracy may become a problem if the internal pressure pulsation is small and the strain that can be measured is very small.

すなわち、ひずみゲージで測定した場合、圧力脈動の大きさ,周波数に関して、精度良く測定できる範囲が限られてくる。そのため、圧力センサで、微小な内部の圧力脈動を、より高い精度で測定することが望まれている。   That is, when measuring with a strain gauge, the range in which the pressure pulsation can be measured with high accuracy is limited. Therefore, it is desired to measure a minute internal pressure pulsation with higher accuracy using a pressure sensor.

本発明の目的は、圧力センサで圧力脈動をより高い精度で測定して沸騰水型原子炉の圧力容器内に納められたドライヤの健全惟を正確に確認することにある。   An object of the present invention is to measure pressure pulsation with a pressure sensor with higher accuracy and accurately confirm the soundness of a dryer housed in a pressure vessel of a boiling water reactor.

以上のように、蒸気ドーム内の圧力脈動を容易に、かつ精度良く評価するために以下の手段を考案した。蒸気ドームは安全性の観点から、既に運転している原子炉に圧力センサ等のセンサを直接蒸気ドーム外表面に設置することは困難である。   As described above, the following means have been devised to easily and accurately evaluate the pressure pulsation in the steam dome. From the viewpoint of safety, it is difficult to install a sensor such as a pressure sensor directly on the outer surface of the steam dome from the viewpoint of safety.

また、主蒸気配管に圧力センサを設置すると流れの影響により、精度が低下することが懸念される。一方、蒸気ドームには、通常、水位や圧力などを測定するための計装配管等が複数接続されている。   Moreover, if a pressure sensor is installed in the main steam pipe, there is a concern that the accuracy may be lowered due to the influence of the flow. On the other hand, a plurality of instrumentation pipes and the like for measuring the water level and pressure are usually connected to the steam dome.

このような配管では、主蒸気配管と異なり、流れが存在しない。そのため、圧力センサを設置しても流れの影響を受けることがない。また、これらの配管は小口径であり、センサ取り付け工事も比較的容易である。このような、蒸気ドームに連結されていて流れの無い配管に分岐管,管台もしくはボス部を設置し、その各場所の圧力脈動を測定するための圧力センサを設置して、圧力脈動を測定することを考案した。   In such piping, unlike the main steam piping, there is no flow. Therefore, even if a pressure sensor is installed, it is not affected by the flow. In addition, these pipes have a small diameter, and the sensor installation work is relatively easy. Measure the pressure pulsation by installing a branch pipe, nozzle, or boss on a pipe that is connected to the steam dome and has no flow, and install pressure sensors to measure the pressure pulsation at each location. Devised to do.

しかしながら、放射空間で圧力脈動を直接測定する場合と異なり、密閉された配管内では音の反射,減衰等により、圧力脈動は位置と時間の関数となって複雑に変化しており、圧力脈動の再現は困難である。   However, unlike direct measurement of pressure pulsation in the radiation space, pressure pulsation changes in a complex manner as a function of position and time due to reflection and attenuation of sound in a sealed pipe. It is difficult to reproduce.

そこで、配管内の圧力脈動を再現するため、蒸気ドームに接続する流れの無い配管において、分岐管もしくはボス部を複数個設置し、その各分岐管もしくはボス部に内部圧力を評価できるセンサを設置して、配管内の圧力脈動を評価することを考案した。すなわち、複数点で測定した圧力脈動波形をもとに、配管内の圧力脈動の位置と時間の波形形状を把握して、蒸気ドーム内の圧力脈動を精度良く予測してドライヤの健全性を正確に確認する。   Therefore, in order to reproduce the pressure pulsation in the pipe, multiple pipes or bosses are installed in the pipe without flow connected to the steam dome, and a sensor that can evaluate the internal pressure is installed in each branch pipe or boss. Then, it was devised to evaluate the pressure pulsation in the pipe. That is, based on the pressure pulsation waveforms measured at multiple points, the position of the pressure pulsation in the pipe and the shape of the time waveform are grasped, and the pressure pulsation in the steam dome is accurately predicted to accurately determine the health of the dryer. Check with.

本発明の適用により、蒸気ドーム内の圧力脈動を予測することができ、圧力脈動に起因するドライヤの振動健全性を確認でき、ドライヤの高サイクル疲労による損傷を未然に防止することが実現できる。その結果、原子力プラントの安全性及び信頼性を向上することが可能となる。   By applying the present invention, it is possible to predict the pressure pulsation in the steam dome, to confirm the vibration soundness of the dryer due to the pressure pulsation, and to prevent damage due to high cycle fatigue of the dryer. As a result, the safety and reliability of the nuclear power plant can be improved.

沸騰水型原子炉(BWRと略称することもある。)に本発明を適用した場合について、図1を用いて説明する。図1では本発明に関連する、原子炉圧力容器内の原子炉上部に位置する蒸気ドーム1,蒸気ドーム内に設置されているドライヤ2,主蒸気ノズル3及び主蒸気配管4を記載している。ドライヤ2は下部からきた蒸気に含まれる水滴を、ドライヤ2内部に設置した波板で分離して、蒸気を乾燥(水滴を分離)させる装置であるドライヤを通過した流れは、蒸気ドーム1内を対流して、主蒸気ノズル3を通じて、主蒸気配管4に流入する。蒸気ドーム1には、通常、圧力容器内の原子炉水位や圧力などを測定するための配管5が複数接続されている。   The case where the present invention is applied to a boiling water reactor (sometimes abbreviated as BWR) will be described with reference to FIG. FIG. 1 shows a steam dome 1, a dryer 2, a main steam nozzle 3 and a main steam pipe 4 installed in the upper part of the reactor in the reactor pressure vessel, which are related to the present invention. . The dryer 2 separates water droplets contained in the steam coming from the lower part with a corrugated plate installed inside the dryer 2, and the flow that has passed through the dryer, which is a device for drying the steam (separating the water droplets), passes through the steam dome 1. It convects and flows into the main steam pipe 4 through the main steam nozzle 3. Normally, a plurality of pipes 5 for measuring the reactor water level and pressure in the pressure vessel are connected to the steam dome 1.

なお、これらの配管には、蒸気ドーム内の圧力を測定する圧力計や差圧計等が通常設置されているが、測定精度や配管内圧力脈動の減衰により、蒸気ドーム内における高周波数の圧力脈動を測定,評価することはできない。また、圧力容器内の諸状態を測定するために装備された配管5では、主蒸気配管4内とは異なり、蒸気の流れが存在しない。もっとも、僅かな対流が存在している可能性はある。配管5は、新たに蒸気ドーム内に連通するように圧力容器の上部、即ち蒸気ドームの壁に設置した新たな配管であっても良く、新たな配管を用いる場合には、蒸気ドーム内の蒸気が通り抜けないように新たな配管の開口部を蒸気ドーム側だけとする。   These pipes are usually equipped with pressure gauges or differential pressure gauges that measure the pressure in the steam dome, but due to the measurement accuracy and attenuation of pressure pulsations in the pipes, high-frequency pressure pulsations in the steam dome Cannot be measured or evaluated. Further, unlike the main steam pipe 4, there is no steam flow in the pipe 5 equipped for measuring various states in the pressure vessel. However, there may be slight convection. The pipe 5 may be a new pipe installed on the upper portion of the pressure vessel, that is, on the wall of the steam dome so as to communicate with the inside of the steam dome. When a new pipe is used, the steam in the steam dome is used. The opening of the new piping is made only on the steam dome side so that the air does not pass through.

本発明では、蒸気ドームに連結されていて、流れの無い配管5にボス部6を複数体設置し、その各場所に圧力脈動を測定することが可能な圧力センサ7を複数個、設置する。ボス部の代わりに分岐管もしくは管台等でも良い。この圧力センサ7は、高温,高圧下において微小な変動圧力を測定できる、特殊な動圧力センサを用いる。なお、圧力脈動の減衰を考慮すると、圧力センサの設置場所は蒸気ドーム1に近いほうが望ましい。   In the present invention, a plurality of bosses 6 are installed in a pipe 5 that is connected to a steam dome and has no flow, and a plurality of pressure sensors 7 that can measure pressure pulsation are installed at each location. A branch pipe or a nozzle may be used instead of the boss. The pressure sensor 7 uses a special dynamic pressure sensor that can measure a minute fluctuating pressure under high temperature and high pressure. In consideration of the attenuation of pressure pulsation, it is desirable that the installation location of the pressure sensor is close to the steam dome 1.

圧力脈動の反射を考慮して、極力曲がり部のある部分を避けて圧力センサを設置し、曲がり部が存在する場合は、曲がり部より、蒸気ドーム側に圧力センサを設置したほうが望ましい。また、各センサの設置場所は想定できる測定周波数範囲を考慮して決められる。   In consideration of reflection of pressure pulsation, a pressure sensor is installed avoiding a bent portion as much as possible, and when a bent portion exists, it is desirable to install a pressure sensor on the steam dome side from the bent portion. Further, the installation location of each sensor is determined in consideration of an assumed measurement frequency range.

圧力センサ7はケーブル8により、圧力計測器9と接続されており、圧力計測器9により配管内の圧力脈動を評価できる。計測した圧力脈動は計算機10に取り込まれる。ここで、各場所で測定した圧力脈動の相関関係を把握するため、各圧力センサ7による計測は同期して計測する必要がある。   The pressure sensor 7 is connected to a pressure measuring device 9 by a cable 8, and the pressure measuring device 9 can evaluate pressure pulsation in the pipe. The measured pressure pulsation is taken into the computer 10. Here, in order to grasp the correlation between the pressure pulsations measured at each location, it is necessary to measure the pressure sensors 7 synchronously.

圧力計測器9で得られた複数点の圧力脈動波形をもとに、位置と時間の関数である配管内の圧力脈動を再現する。ここで、各場所で同期して測定した圧力脈動波形はそれぞれ異なっており、この相違より位置と時間の関数である配管内の圧力脈動を再現できる。   Based on the pressure pulsation waveforms at a plurality of points obtained by the pressure measuring device 9, the pressure pulsation in the pipe, which is a function of position and time, is reproduced. Here, the pressure pulsation waveforms measured in synchronism with each place are different, and the pressure pulsation in the pipe, which is a function of position and time, can be reproduced from this difference.

そして、再現された配管内の圧力脈動波形をもとに、蒸気ドーム内に発生している圧力脈動を評価することが可能となる。この圧力脈動をドライヤに作用する荷重として、構造解析等により、ドライヤに働く応力を計算し、ドライヤの振動に対する健全性を評価することができる。   Then, based on the reproduced pressure pulsation waveform in the pipe, it is possible to evaluate the pressure pulsation generated in the steam dome. By using this pressure pulsation as a load acting on the dryer, the stress acting on the dryer can be calculated by structural analysis or the like to evaluate the soundness of the dryer against vibrations.

図3に本発明のBWRドライヤ健全性評価手順を示す。まず、図1に示す本計測系の設置により、配管5内の圧力脈動波形を測定評価することが可能となる。圧力センサ7及び圧力計測器9で計測して計算機10に取り込まれた圧力脈動は時系列の圧力波形及び周波数に対する圧力強度等を評価できる。   FIG. 3 shows the BWR dryer soundness evaluation procedure of the present invention. First, the installation of this measurement system shown in FIG. 1 makes it possible to measure and evaluate the pressure pulsation waveform in the pipe 5. The pressure pulsation measured by the pressure sensor 7 and the pressure measuring instrument 9 and taken into the computer 10 can evaluate the time-series pressure waveform and the pressure intensity with respect to the frequency.

圧力センサ1点で測定した圧力脈動は時系列の圧力波形及び周波数に対する圧力強度の評価が可能であるが、空間的な圧力脈動の分布を評価することができない。しかしながら、複数の場所で圧力脈動を同期して計測し、各複数の圧力脈動を連立して評価したり、各複数の圧力脈動のクロススペクトル,相関を評価することにより、圧力脈動の時間的,空間的な分布を評価することが可能となる。すなわち、配管5内で測定評価した圧力脈動波形から、測定点場所以外の空間における圧力脈動波形を評価できる。   Although the pressure pulsation measured at one pressure sensor can evaluate the pressure intensity with respect to the time-series pressure waveform and frequency, the spatial distribution of pressure pulsation cannot be evaluated. However, by measuring pressure pulsations in multiple locations synchronously and evaluating each of the plurality of pressure pulsations in parallel, or by evaluating the cross spectrum and correlation of each of the plurality of pressure pulsations, It becomes possible to evaluate the spatial distribution. That is, the pressure pulsation waveform in a space other than the measurement point location can be evaluated from the pressure pulsation waveform measured and evaluated in the pipe 5.

ここで、音響解析や縮小試験を実施することにより、あらかじめ配管5内の圧力脈動波形と蒸気ドーム1内の圧力脈動特性の関係を求めておく。配管5内に流れが無いため、この関係は比較的、求めやすい。そして、原子力プラント内で実際に計測した配管5内の圧力脈動より、配管5と蒸気ドーム1内の圧力脈動の関係をもとに、蒸気ドーム1内の圧力脈動を予測する。蒸気ドーム1内の圧力脈動特性をもとに、ドライヤに作用する荷重を予測評価する。   Here, the relationship between the pressure pulsation waveform in the pipe 5 and the pressure pulsation characteristic in the steam dome 1 is obtained in advance by performing an acoustic analysis and a reduction test. Since there is no flow in the pipe 5, this relationship is relatively easy to obtain. The pressure pulsation in the steam dome 1 is predicted based on the relationship between the pressure pulsation in the pipe 5 and the steam dome 1 from the pressure pulsation in the pipe 5 actually measured in the nuclear power plant. The load acting on the dryer is predicted and evaluated based on the pressure pulsation characteristics in the steam dome 1.

そして、算出した荷重を、ドライヤを模擬した構造解析モデルに入力する。算出した荷重を入力して構造解析を実施し、ドライヤ各部分に働く応力を計算する。最終的には、計算した応力と、材料の疲労限を比較して、ドライヤの健全性を確認する。   Then, the calculated load is input to a structural analysis model simulating a dryer. A structural analysis is performed by inputting the calculated load, and the stress acting on each part of the dryer is calculated. Finally, the soundness of the dryer is confirmed by comparing the calculated stress with the fatigue limit of the material.

本発明のBWRドーム内の圧力脈動評価方法の実施設備の概略図である。It is the schematic of the implementation equipment of the pressure pulsation evaluation method in the BWR dome of this invention. 本発明のBWRドーム内の圧力脈動評価方法の他の実施設備の概略図である。It is the schematic of the other implementation equipment of the pressure pulsation evaluation method in the BWR dome of this invention. 本発明のBWRドライヤ健全性評価手順の概略図である。It is the schematic of the BWR dryer soundness evaluation procedure of this invention.

符号の説明Explanation of symbols

1 蒸気ドーム
2 ドライヤ
3 主蒸気ノズル
4 主蒸気配管
5 配管
6 ボス部(或いは分岐管)
7 圧力センサ
8 ケーブル
9 圧力計測器
10 計算機
1 Steam Dome 2 Dryer 3 Main Steam Nozzle 4 Main Steam Pipe 5 Pipe 6 Boss (or Branch Pipe)
7 Pressure sensor 8 Cable 9 Pressure measuring instrument 10 Computer

Claims (4)

沸騰水型原子炉の圧力容器の蒸気ドームに接続する流れの無い配管内の圧力脈動を評価することにより、前記圧力容器内のドライヤの振動健全性を確認する方法。   A method for confirming the vibration soundness of a dryer in a pressure vessel by evaluating pressure pulsations in a non-flow pipe connected to the steam dome of the pressure vessel of a boiling water reactor. 請求項1において、前記蒸気ドームに接続する流れの無い配管に、前記配管内部の圧力脈動を測定できる圧力センサを設置して、前記配管内の圧力脈動を評価することにより、ドライヤの振動健全性を確認する方法。   The vibration soundness of the dryer according to claim 1, wherein a pressure sensor capable of measuring a pressure pulsation in the pipe is installed in a pipe without a flow connected to the steam dome, and the pressure pulsation in the pipe is evaluated. How to check. 請求項2において、前記蒸気ドームに接続する流れの無い配管に、分岐管もしくはボス部を複数個設置し、その各分岐管もしくはボス部に、前記配管内部の圧力脈動を測定できる圧力センサを複数個設置して、前記配管内の圧力脈動を評価することにより、ドライヤの健全性を確認する方法。   In Claim 2, a plurality of branch pipes or bosses are installed in a pipe having no flow connected to the steam dome, and a plurality of pressure sensors capable of measuring pressure pulsation inside the pipe are provided in each of the branch pipes or bosses. A method of confirming the soundness of the dryer by installing a piece and evaluating the pressure pulsation in the pipe. 請求項3において、前記蒸気ドームに接続する流れの無い配管に、分岐管もしくはボス部を複数個設置し、その各分岐管もしくはボス部に、前記配管内部の圧力脈動を測定できる圧力センサを複数個設置して、前記配管内の圧力脈動を同期して測定し、前記配管内の圧力脈動を評価することにより、ドライヤの健全性を確認する方法。   4. A plurality of branch pipes or boss portions are installed in a pipe having no flow connected to the steam dome, and a plurality of pressure sensors capable of measuring pressure pulsation inside the pipe are provided in each branch pipe or boss portion. A method of confirming the soundness of a dryer by installing a single unit, measuring pressure pulsations in the pipes in synchronization, and evaluating the pressure pulsations in the pipes.
JP2007243208A 2007-09-20 2007-09-20 How to check the soundness of a boiling water reactor dryer Expired - Fee Related JP4834633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243208A JP4834633B2 (en) 2007-09-20 2007-09-20 How to check the soundness of a boiling water reactor dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243208A JP4834633B2 (en) 2007-09-20 2007-09-20 How to check the soundness of a boiling water reactor dryer

Publications (2)

Publication Number Publication Date
JP2009074878A true JP2009074878A (en) 2009-04-09
JP4834633B2 JP4834633B2 (en) 2011-12-14

Family

ID=40610003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243208A Expired - Fee Related JP4834633B2 (en) 2007-09-20 2007-09-20 How to check the soundness of a boiling water reactor dryer

Country Status (1)

Country Link
JP (1) JP4834633B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169612A (en) * 2010-02-16 2011-09-01 Hitachi-Ge Nuclear Energy Ltd Pressure pulsation measuring method of main steam pipework
CN103017970A (en) * 2012-11-30 2013-04-03 合肥工业大学 Balanced type water pressure sensor and testing method thereof
CN113593736A (en) * 2021-07-23 2021-11-02 中国核动力研究设计院 Pulsating pressure measuring device and using method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153869A (en) * 2004-11-05 2006-06-15 Hitachi Ltd Boiling water reactor and its acoustic vibration suppression method
JP2007155361A (en) * 2005-11-30 2007-06-21 Continuum Dynamics Inc System and method for determining fluctuating pressure load on component of reactor steam dome
JP2007218659A (en) * 2006-02-15 2007-08-30 Toshiba Corp Main steam pipe and method for operating nuclear power generation plant with boiling water reactor
JP2007232537A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Boiling water reactor and method for suppressing acoustic vibration of steam piping in boiling water reactor
JP2007232430A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Monitoring method of boiling water reactor and its monitoring program
JP2007232502A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Boiling water reactor and method for suppressing acoustic vibration of steam piping in boiling water reactor
JP2007232440A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Boiling water reactor, and acoustic vibration suppression method in boiling water reactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153869A (en) * 2004-11-05 2006-06-15 Hitachi Ltd Boiling water reactor and its acoustic vibration suppression method
JP2007155361A (en) * 2005-11-30 2007-06-21 Continuum Dynamics Inc System and method for determining fluctuating pressure load on component of reactor steam dome
JP2007218659A (en) * 2006-02-15 2007-08-30 Toshiba Corp Main steam pipe and method for operating nuclear power generation plant with boiling water reactor
JP2007232537A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Boiling water reactor and method for suppressing acoustic vibration of steam piping in boiling water reactor
JP2007232430A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Monitoring method of boiling water reactor and its monitoring program
JP2007232502A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Boiling water reactor and method for suppressing acoustic vibration of steam piping in boiling water reactor
JP2007232440A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Boiling water reactor, and acoustic vibration suppression method in boiling water reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169612A (en) * 2010-02-16 2011-09-01 Hitachi-Ge Nuclear Energy Ltd Pressure pulsation measuring method of main steam pipework
CN103017970A (en) * 2012-11-30 2013-04-03 合肥工业大学 Balanced type water pressure sensor and testing method thereof
CN113593736A (en) * 2021-07-23 2021-11-02 中国核动力研究设计院 Pulsating pressure measuring device and using method thereof
CN113593736B (en) * 2021-07-23 2024-01-23 中国核动力研究设计院 Pulsation pressure measuring device and application method thereof

Also Published As

Publication number Publication date
JP4834633B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
US20090031813A1 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
US20200402679A1 (en) Online Sensor and Process Monitoring System
KR20150078894A (en) Apparatus for detectng the tube wall thinning and method thereof
KR20100117524A (en) Structural integrity monitoring system
Galbally et al. Analysis of pressure oscillations and safety relief valve vibrations in the main steam system of a Boiling Water Reactor
JP4834633B2 (en) How to check the soundness of a boiling water reactor dryer
JP2008157945A (en) Frequency measurement of reactor jet pump sensing line
Camussi et al. Wind tunnel measurements of the surface pressure fluctuations on the new VEGA-C space launcher
JP5306561B1 (en) Tube leak detection device and tube leak detection method
JP6075543B2 (en) Nonlinear response diagnostic apparatus and diagnostic method
JP6364742B2 (en) Structure diagnosis apparatus, structure diagnosis method, and program
JP5435847B2 (en) A method for predicting stresses related to steam systems in boiling water reactors.
Zhang et al. Flow induced vibration measurement for a 4× 4 rod bundle with spacer grids by the Laser Doppler Vibrometer
CN111222277A (en) Vibration evaluation method for inlet and outlet pipelines of booster pump of gas transmission station
KR101108306B1 (en) vibrometer of suddenpressure relay in power transformer and controlling method thereof
KR101297534B1 (en) System and method for testing the steam system of a boiling water reactor
WO2016095236A1 (en) Pipeline structure stress and fatigue monitoring method
JP2016527470A (en) Anti-vibration bar for steam generator mounted on equipment
JP2016024023A (en) Method of identifying abnormal sound generation position
JP2010256342A (en) Method for evaluating integrity of vibration of steam dryer and steam dryer testing device
Urthaler et al. A methodology for assessment of internal flow-induced vibration (FIV) in subsea piping systems
Yuan et al. An approach to optimal sensor placement for vibration tests on large structures
CN102997041A (en) Online monitoring device for structural damage of high temperature pressure pipeline
JPS6128097B2 (en)
RU2379676C2 (en) Method for detection of defects in pipeline (versions)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

R150 Certificate of patent or registration of utility model

Ref document number: 4834633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees