JP2011169179A - Ignition device and ignition method - Google Patents

Ignition device and ignition method Download PDF

Info

Publication number
JP2011169179A
JP2011169179A JP2010031969A JP2010031969A JP2011169179A JP 2011169179 A JP2011169179 A JP 2011169179A JP 2010031969 A JP2010031969 A JP 2010031969A JP 2010031969 A JP2010031969 A JP 2010031969A JP 2011169179 A JP2011169179 A JP 2011169179A
Authority
JP
Japan
Prior art keywords
voltage
frequency voltage
incident
frequency
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010031969A
Other languages
Japanese (ja)
Other versions
JP5430437B2 (en
Inventor
Takashi Iwamoto
貴司 岩本
Takafumi Nagano
隆文 永野
Hideki Koseki
秀規 小関
Masahiro Watanabe
正浩 渡辺
Yasuhiro Shiraki
康博 白木
Hirohisa Kuwano
寛久 桑野
Naoki Aizawa
直喜 合澤
Hiroki Odera
廣樹 大寺
Junichi Nishimae
順一 西前
Masato Kurahashi
正人 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010031969A priority Critical patent/JP5430437B2/en
Publication of JP2011169179A publication Critical patent/JP2011169179A/en
Application granted granted Critical
Publication of JP5430437B2 publication Critical patent/JP5430437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve combustion efficiency of an internal combustion engine, by emitting radio waves at an appropriate frequency according to an operating environment. <P>SOLUTION: The ignition device includes: a high-frequency voltage generator 2 generating high-frequency voltage; an electromagnetic radiator 5 performing electromagnetic radiation into a combustion chamber, based on the high-frequency voltage generated by the high-frequency voltage generator 2; an incident/reflected wave voltage measure 4 disposed between the high-frequency voltage generator 2 and the electromagnetic radiator 5 to measure incident wave voltage to the electromagnetic radiator 5, and the reflected wave voltage therefrom; and a high-frequency voltage controller 1 controlling high-frequency voltage generated by the high-frequency voltage generator 2, based on the incident wave voltage and the reflected wave voltage measured by the incident/reflected wave voltage measure 4. The high-frequency voltage controller 1 controls the high-frequency voltage generated by the high-frequency voltage generator 2, based on a ratio of the reflected wave voltage with respect to the incident wave voltage. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の燃焼室内の混合気に点火する点火装置および点火方法に関する。   The present invention relates to an ignition device and an ignition method for igniting an air-fuel mixture in a combustion chamber of an internal combustion engine.

従来より、内燃機関の効率を向上させるためには、燃料混合気(以下、単に混合気とする)の希薄化が有効であることが広く認識されている。しかし、スパークプラグ(点火プラグ)に実質的に直流の電圧を印加して発生した放電エネルギーによって点火する内燃機関では、スパークプラグによる希薄な混合気への点火・燃焼に限界があり、希薄な混合気を安定して燃焼させることができなかった。   Conventionally, in order to improve the efficiency of an internal combustion engine, it has been widely recognized that dilution of a fuel mixture (hereinafter simply referred to as an air-fuel mixture) is effective. However, in an internal combustion engine that ignites by the discharge energy generated by applying a substantially DC voltage to the spark plug (ignition plug), there is a limit to the ignition and combustion of the lean air-fuel mixture by the spark plug, and the lean mixture I couldn't combust stably.

このような問題の対策として、混合気に対して高周波の電磁波を放射して電磁エネルギーを供給することによって、希薄な混合気の燃焼を可能にする点火装置が開示されている(例えば、特許文献1参照)。   As a countermeasure against such a problem, an ignition device that enables combustion of a lean air-fuel mixture by radiating high-frequency electromagnetic waves to the air-fuel mixture and supplying electromagnetic energy is disclosed (for example, Patent Documents). 1).

特開昭51−77719号公報JP 51-77719 A

混合気に対して放射する電磁波の周波数は適切にする必要があるが、当該周波数は混合気の燃焼状態や燃焼室の状態など動作環境によって変化する。従って、動作環境の変化に応じて適切な周波数の電磁波を放射する必要がある。従来の点火装置では、動作環境に応じて適切な周波数の電磁波を放射する方法について開示されてなかった。   The frequency of the electromagnetic wave radiated to the mixture needs to be appropriate, but the frequency varies depending on the operating environment such as the combustion state of the mixture and the state of the combustion chamber. Therefore, it is necessary to radiate electromagnetic waves having an appropriate frequency according to changes in the operating environment. In the conventional ignition device, a method for emitting an electromagnetic wave having an appropriate frequency according to the operating environment has not been disclosed.

本発明は、これらの問題を解決するためになされたものであり、動作環境に応じた適切な周波数の電磁波を放射して内燃機関の燃焼効率を向上させることを目的とする。   The present invention has been made to solve these problems, and an object thereof is to improve the combustion efficiency of an internal combustion engine by radiating electromagnetic waves having an appropriate frequency according to the operating environment.

上記の課題を解決するために、本発明による点火装置は、内燃機関の燃焼室の混合気に点火する点火装置であって、直流パルスを発生する直流パルス発生手段と、直流パルス発生手段で発生した直流パルスに基づき、燃焼室内に直流パルス放電を行う直流パルス放電手段と、高周波電圧を発生する高周波電圧発生手段と、高周波電圧発生手段で発生した高周波電圧に基づき、燃焼室内に電磁波放射を行う電磁波放射手段と、高周波電圧発生手段と電磁波放射手段との間に設けられ、電磁波放射手段に入射する入射電圧と、反射された反射電圧とを計測する入反射電圧計測手段と、入反射電圧計測手段で計測された入射電圧および反射電圧に基づき、高周波電圧発生手段で発生する高周波電圧を制御する高周波電圧制御手段とを備え、高周波電圧制御手段は、入射電圧に対する反射電圧の比に基づき、高周波電圧発生手段で発生する高周波電圧を制御することを特徴とする。   In order to solve the above problems, an ignition device according to the present invention is an ignition device for igniting an air-fuel mixture in a combustion chamber of an internal combustion engine, which is generated by a DC pulse generating means for generating a DC pulse and a DC pulse generating means. DC pulse discharge means for performing DC pulse discharge in the combustion chamber based on the direct current pulse, high-frequency voltage generation means for generating high-frequency voltage, and electromagnetic wave radiation in the combustion chamber based on the high-frequency voltage generated by the high-frequency voltage generation means An electromagnetic wave radiating means, an incident / reflected voltage measuring means provided between the high frequency voltage generating means and the electromagnetic wave radiating means, for measuring the incident voltage incident on the electromagnetic wave radiating means and the reflected reflected voltage, and incident / reflected voltage measurement High-frequency voltage control means for controlling the high-frequency voltage generated by the high-frequency voltage generation means based on the incident voltage and the reflected voltage measured by the means. Control means, based on the ratio of reflected voltage to incident voltage, and controlling the high-frequency voltage generated by the high-frequency voltage generating means.

本発明によると、高周波電圧発生手段と電磁波放射手段との間に設けられ、電磁波放射手段に入射する入射電圧と、反射された反射電圧とを計測する入反射電圧計測手段と、入反射電圧計測手段で計測された入射電圧および反射電圧に基づき、高周波電圧発生手段で発生する高周波電圧を制御する高周波電圧制御手段とを備え、高周波電圧制御手段は、入射電圧に対する反射電圧の比に基づき、高周波電圧発生手段で発生する高周波電圧を制御するため、動作環境に応じた適切な周波数の電磁波を放射して内燃機関の燃焼効率を向上させることが可能となる。   According to the present invention, the incident / reflected voltage measuring means, which is provided between the high-frequency voltage generating means and the electromagnetic wave radiating means, measures the incident voltage incident on the electromagnetic wave radiating means and the reflected reflected voltage, and the incident / reflected voltage measurement. High-frequency voltage control means for controlling the high-frequency voltage generated by the high-frequency voltage generation means based on the incident voltage and the reflected voltage measured by the means, the high-frequency voltage control means based on the ratio of the reflected voltage to the incident voltage Since the high frequency voltage generated by the voltage generating means is controlled, it is possible to improve the combustion efficiency of the internal combustion engine by radiating electromagnetic waves having an appropriate frequency according to the operating environment.

本発明の実施形態による点火装置のブロック図である。1 is a block diagram of an ignition device according to an embodiment of the present invention. 本発明の実施形態による入反射電圧計測手段の説明図である。It is explanatory drawing of the incident / reflection voltage measuring means by embodiment of this invention. 本発明の実施形態による高周波電圧制御手段のブロック図である。It is a block diagram of the high frequency voltage control means by embodiment of this invention. 本発明の実施形態による点火装置をエンジンに取り付ける一例を示した図である。It is the figure which showed an example which attaches the ignition device by embodiment of this invention to an engine. 前提技術による点火装置の構成図である。It is a block diagram of the ignition device by a base technology. 一般的なスパークプラグの反射電力比の一例を示すグラフである。It is a graph which shows an example of the reflected power ratio of a general spark plug.

本発明の実施形態について、図面を用いて以下に説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず初めに、本発明の前提となる技術について説明する。   First, the technology that is the premise of the present invention will be described.

図5は、前提技術(特許文献1)による点火装置の構成図であり、4気筒の内燃機関に設置された点火装置の具体例を示している。図5に示すように、オツシレータ17は、電池15および発電機16から制御ボックス21を経由して供給された電力を用いて高周波電圧を発生させている。発生した高周波電圧は、同軸ケーブル18、同軸リレースイッチ24、高電圧直流阻止装置20.1〜20.4を経由してスパークプラグ22.1〜22.4に供給される。一方、直流高電圧は、分配器25にて分配された後、端子23.3、同軸ケーブル18a、低域フィルタ19.1〜19.4を経由してスパークプラグ22.1〜22.4に供給される。高周波電圧および直流高電圧は、スパークプラグ22.1〜22.4のいずれかに順次供給される。   FIG. 5 is a configuration diagram of an ignition device according to the base technology (Patent Document 1), and shows a specific example of an ignition device installed in a four-cylinder internal combustion engine. As shown in FIG. 5, the oscillator 17 generates a high-frequency voltage using electric power supplied from the battery 15 and the generator 16 via the control box 21. The generated high frequency voltage is supplied to the spark plugs 22.1 to 22.4 via the coaxial cable 18, the coaxial relay switch 24, and the high voltage DC blocking devices 20.1 to 20.4. On the other hand, after the DC high voltage is distributed by the distributor 25, it is supplied to the spark plugs 22.1 to 22.4 via the terminal 23.3, the coaxial cable 18a, and the low-pass filters 19.1 to 19.4. Supplied. The high-frequency voltage and the DC high voltage are sequentially supplied to any one of the spark plugs 22.1 to 22.4.

オツシレータ17が発生させる高周波電圧(動作周波数)は、燃焼室内に供給される混合気中の空気−燃料混合物の荷電粒子種のほぼプラズマ周波数fpsの動作周波数、または、約106Hz以上約1012Hz以下の周波数としている。ここで、プラズマ周波数fpsは、以下の式(1)として示される。 The high-frequency voltage (operating frequency) generated by the oscillator 17 is approximately the operating frequency of the plasma frequency f ps of the charged particle species of the air-fuel mixture in the air-fuel mixture supplied into the combustion chamber, or about 10 6 Hz to about 10 The frequency is 12 Hz or less. Here, the plasma frequency f ps is expressed as the following equation (1).

Figure 2011169179
Figure 2011169179

ここで、nは荷電粒子種の数密度、eは電子の電荷量、mは荷電粒子種の質量、ε0は自由空間の誘電率とする。 Here, n is the number density of charged particle species, e is the amount of charge of electrons, m is the mass of the charged particle species, and ε 0 is the permittivity of free space.

式(1)から明らかなように、荷電粒子種のプラズマ周波数fpsは、荷電粒子種の数密度nに依存している。荷電粒子種の数密度nは混合気の燃焼状態に応じて大きく変化するため、それに伴ってプラズマ周波数fpsも大きく変化する。従って、オツシレータ17が発生させる高周波電圧(動作周波数)は、変化するプラズマ周波数fpsに対応させて調整する必要があるが、そのような方法は開示されていなかった。また、約106Hz以上約1012Hz以下の周波数は、周波数帯域が非常に広いため、必ずしも適切な周波数の電磁波を放射しているとは限らない。このように、従来の点火装置では、内燃機関の燃焼効率を向上させることが難しいという問題があった。 As is clear from equation (1), the plasma frequency f ps of the charged particle species depends on the number density n of the charged particle species. Since the number density n of the charged particle species varies greatly according to the combustion state of the air-fuel mixture, the plasma frequency f ps also varies greatly accordingly. Therefore, the high-frequency voltage (operating frequency) generated by the oscillator 17 needs to be adjusted in accordance with the changing plasma frequency f ps , but such a method has not been disclosed. Moreover, since the frequency band of about 10 6 Hz or more and about 10 12 Hz or less is very wide, it does not always radiate electromagnetic waves having an appropriate frequency. Thus, the conventional ignition device has a problem that it is difficult to improve the combustion efficiency of the internal combustion engine.

また、一般的な高周波電磁波放射回路において、入射高周波(放射手段に入射される高周波)の周波数に応じて反射波が形成される場合がある。このような反射波は、回路に発熱等を生じさせ、増幅器などの回路要素を破損させるなどの問題がある。内燃機関の燃焼室内に電磁波を放射させるスパークプラグなどの放射手段を含む回路では、放射手段や燃焼室の物理的な寸法や、燃焼室内の気体状態の影響を受けて反射波が大きく変化する。   Moreover, in a general high frequency electromagnetic wave radiation circuit, a reflected wave may be formed according to the frequency of incident high frequency (high frequency incident on the radiation means). Such a reflected wave causes problems such as generation of heat in the circuit and damage of circuit elements such as an amplifier. In a circuit including radiation means such as a spark plug that radiates electromagnetic waves into the combustion chamber of an internal combustion engine, the reflected wave changes greatly due to the physical dimensions of the radiation means and the combustion chamber and the influence of the gas state in the combustion chamber.

一般的なスパークプラグを放射手段としても用いる場合、スパークプラグは直流パルス印加時に効率的な放電を行うことを目的として設計されているため、印加した高周波電圧を効率的に放射する電磁波の周波数の範囲は非常に狭くなる。このような周波数の範囲以外の周波数で電磁波を放射すると反射波が形成され、高周波電圧の供給側に戻ってしまい上述の問題を生じてしまう。従って、入射高周波の周波数の精密な制御が必要となる。   When a general spark plug is also used as a radiation means, the spark plug is designed for efficient discharge when a DC pulse is applied. Therefore, the frequency of the electromagnetic wave that efficiently radiates the applied high-frequency voltage is reduced. The range becomes very narrow. When electromagnetic waves are radiated at a frequency outside such a frequency range, a reflected wave is formed, returning to the high-frequency voltage supply side, causing the above-described problems. Therefore, precise control of the frequency of the incident high frequency is required.

スパークプラグに高周波信号を入射するとき、スパークプラグへの入射電圧に対する反射電圧の比(以下、反射電圧比とする)や、入射電力に対する反射電力の比(以下、反射電力比とする)を計測することが可能である。図6は、一般的なスパークプラグの反射電力比の一例を示すグラフであり、当該スパークプラグは効率的な電磁波を放射するものとする(以下、特に断りがない限り、スパークプラグは効率的な電磁波を放射する放射手段としても用いられるものとする)。図6に示すように、反射電力比は特定の周波数でのみ減少し、その他の周波数では大きくなっている。また、周波数が約1%変化するだけで反射電力比が10倍以上増加するスパークプラグもある。反射電力比が減少する周波数は、同一種類のスパークプラグでも個々で異なり、同一のスパークプラグでも時間変動(動作環境の変化による変動)を示す。   When a high frequency signal is incident on the spark plug, the ratio of the reflected voltage to the incident voltage to the spark plug (hereinafter referred to as the reflected voltage ratio) and the ratio of the reflected power to the incident power (hereinafter referred to as the reflected power ratio) are measured. Is possible. FIG. 6 is a graph showing an example of a reflected power ratio of a general spark plug. The spark plug radiates efficient electromagnetic waves (hereinafter, unless otherwise specified, the spark plug is efficient). It shall also be used as a radiation means for radiating electromagnetic waves). As shown in FIG. 6, the reflected power ratio decreases only at a specific frequency, and increases at other frequencies. In addition, there is a spark plug in which the reflected power ratio increases by 10 times or more only by changing the frequency by about 1%. The frequency at which the reflected power ratio decreases is different for each of the same type of spark plugs, and shows time variations (variations due to changes in the operating environment) even for the same spark plugs.

上記のことから、同一種類の個々のスパークプラグや同一のスパークプラグにおける動作環境の変化に対応して入射高周波信号(入射高周波電圧)を制御することができれば、たとえ高周波電磁波放射用のアンテナとしての性能が十分ではないスパークプラグを利用したとしても、電磁波を効率的に放射して混合気の燃焼効率を向上させることが可能となる。本発明は、動作環境に応じた適切な周波数の電波を放射して内燃機関の燃焼効率を向上させることを目的としており、以下に詳細を説明する。   From the above, if the incident high-frequency signal (incident high-frequency voltage) can be controlled in response to changes in the operating environment of the same type of individual spark plug or the same spark plug, even if it is used as an antenna for high-frequency electromagnetic wave radiation Even if a spark plug with insufficient performance is used, it is possible to efficiently radiate electromagnetic waves and improve the combustion efficiency of the air-fuel mixture. An object of the present invention is to improve the combustion efficiency of an internal combustion engine by radiating radio waves having an appropriate frequency according to the operating environment, which will be described in detail below.

〈実施形態1〉
図1は、本発明の実施形態による点火装置のブロック図である。図1に示すように、本実施形態による点火装置は、内燃機関の燃焼室の混合気に点火する点火装置であって、直流パルスを発生する直流パルス発生手段3と、直流パルス発生手段3で発生した直流パルスに基づき、燃焼室内に直流パルス放電を行う直流パルス放電手段6と、高周波電圧を発生する高周波電圧発生手段2と、高周波電圧発生手段2で発生した高周波電圧に基づき、燃焼室内に電磁波放射をおこなう電磁波放射手段5(スパークプラグ)と、高周波電圧発生手段2と電磁波放射手段5との間に設けられ、電磁波放射手段5に入射する入射電圧と、反射された反射電圧とを計測する入反射電圧計測手段4と、入反射電圧計測手段4で計測された入射電圧および反射電圧に基づき、高周波電圧発生手段2で発生する高周波電圧を制御する高周波電圧制御手段1とを備え、高周波電圧制御手段1は、入射電圧に対する反射電圧の比に基づき、高周波電圧発生手段2で発生する高周波電圧を制御することを特徴としている。図1に示す点火装置は、図4に示すようなエンジンに取り付けてもよい。なお、図4において、71はプラグホール、72は電磁波放射手段5および直流パルス放電手段6の機能を実現するスパークプラグ、73は燃焼室、74はピストン、75は燃焼室壁、76は吸気バルブ、77は排気バルブ、78は吸気通路、79は排気通路を示している。
<Embodiment 1>
FIG. 1 is a block diagram of an ignition device according to an embodiment of the present invention. As shown in FIG. 1, the ignition device according to the present embodiment is an ignition device that ignites an air-fuel mixture in a combustion chamber of an internal combustion engine, and includes a DC pulse generating means 3 that generates DC pulses and a DC pulse generating means 3. Based on the generated direct current pulse, direct current pulse discharge means 6 for performing direct current pulse discharge in the combustion chamber, high frequency voltage generation means 2 for generating high frequency voltage, and high frequency voltage generated by the high frequency voltage generation means 2, An electromagnetic wave radiating means 5 (spark plug) that radiates electromagnetic waves, and is provided between the high frequency voltage generating means 2 and the electromagnetic wave radiating means 5, and measures an incident voltage incident on the electromagnetic wave radiating means 5 and a reflected voltage reflected. The high-frequency voltage generated by the high-frequency voltage generating means 2 is controlled based on the incident-reflected voltage measuring means 4 and the incident voltage and reflected voltage measured by the incident-reflected voltage measuring means That a high frequency voltage control means 1, the high-frequency voltage control means 1, based on the ratio of reflected voltage to incident voltage is characterized by controlling the high-frequency voltage generated by the high-frequency voltage generating means 2. The ignition device shown in FIG. 1 may be attached to an engine as shown in FIG. 4, 71 is a plug hole, 72 is a spark plug for realizing the functions of the electromagnetic wave radiation means 5 and the DC pulse discharge means 6, 73 is a combustion chamber, 74 is a piston, 75 is a combustion chamber wall, and 76 is an intake valve. , 77 are exhaust valves, 78 is an intake passage, and 79 is an exhaust passage.

高周波電圧発生手段2は、標準状態の電磁波放射手段5に対して適切な周波数の範囲となるように電圧を発生させる。具体例としては、公知の水晶発信器が生成した電圧を公知の増幅器によって増幅することによって高周波電圧を生成してもよい。このように発生させた高周波電圧は、電磁波放射手段5に伝達した後に放射される。高周波放射手段5への伝達は、通常の高周波用同軸ケーブル、または、他の公知の手段を用いてもよい。   The high frequency voltage generating means 2 generates a voltage so as to be in an appropriate frequency range with respect to the electromagnetic wave radiating means 5 in the standard state. As a specific example, a high frequency voltage may be generated by amplifying a voltage generated by a known crystal oscillator using a known amplifier. The high-frequency voltage thus generated is radiated after being transmitted to the electromagnetic wave radiation means 5. For transmission to the high-frequency radiation means 5, a normal high-frequency coaxial cable or other known means may be used.

図2は、本発明の実施形態による入反射電圧計測手段4の説明図である。図2に示すように、入反射電圧計測手段4は、方向性結合器41,42を備えている。方向性結合器41は、電磁波放射手段5に入射する入射高周波が一定の結合で誘導して入射電圧を発生させる。また、方向性結合器42は、電磁波放射手段5から反射された反射高周波が一定の結合で誘導して反射電圧を発生させる。なお、方向性結合器41,42は、公知の方向性結合器を用いてよい。このように発生した入射電圧および反射電圧は、公知のアナログ−デジタル変換器でそれぞれ標本化される。   FIG. 2 is an explanatory diagram of the incident / reflected voltage measuring means 4 according to the embodiment of the present invention. As shown in FIG. 2, the incident / reflected voltage measuring means 4 includes directional couplers 41 and 42. The directional coupler 41 generates an incident voltage by inducing an incident high frequency incident on the electromagnetic wave radiating means 5 with a constant coupling. Further, the directional coupler 42 generates a reflected voltage by inducing the reflected high frequency reflected from the electromagnetic wave radiation means 5 with a constant coupling. The directional couplers 41 and 42 may be known directional couplers. The incident voltage and the reflected voltage generated in this way are each sampled by a known analog-digital converter.

電磁波放射手段5は、一般的なスパークプラグ、特許文献1の図1〜図7に示すスパークプラグ、または、他の公知の手段を用いてよい。   The electromagnetic wave radiating means 5 may be a general spark plug, a spark plug shown in FIGS. 1 to 7 of Patent Document 1, or other known means.

直流パルス発生手段3は、公知の点火コイルを用いて構成してもよい。また、直流パルス放電手段6は、電磁波放射手段5と同一の装置としてもよく、異なる装置としてもよい。なお、同一の装置として用いる場合は、前述の一般的なスパークプラグ、または、特許文献1の図1〜図7に示すスパークプラグを用いてもよい。   The DC pulse generating means 3 may be configured using a known ignition coil. The direct current pulse discharge means 6 may be the same device as the electromagnetic wave radiation means 5 or may be a different device. In addition, when using as the same apparatus, you may use the above-mentioned general spark plug or the spark plug shown in FIGS.

図3は、本発明の実施形態による高周波電圧制御手段1のブロック図である。図3に示すように、高周波電圧制御手段1は、高周波電圧制御手段1における入出力関係を実現するためにプロセッサ11を備えている。プロセッサ11は、公知のマイコンを用いて構成してもよい。   FIG. 3 is a block diagram of the high-frequency voltage control means 1 according to the embodiment of the present invention. As shown in FIG. 3, the high frequency voltage control unit 1 includes a processor 11 in order to realize the input / output relationship in the high frequency voltage control unit 1. The processor 11 may be configured using a known microcomputer.

また、高周波電圧制御手段1は、高周波電圧を制御するために必要となる内燃機関のクランク角度、回転数、燃料噴射量、空気燃料費、点火時期の状態信号のうちの一部または全部を入力する状態信号入力ポート12と、入反射電圧計測手段4での標本化を制御する制御信号を入反射電圧計測手段4に対して出力する標本化制御信号出力ポート13と、入反射電圧計測手段4にて採取した標本値を入力する標本値入力ポート14と、高周波電圧の発生を制御するために、周波数、電圧、タイミング信号のうちの一部または全部の制御信号を高周波電圧発生手段2に対して出力する高周波電圧制御信号出力ポート15とを備えている。なお、入反射電圧計測手段4で計測された入射電圧および反射電圧の標本化は、プロセッサ11を構成するマイコンが搭載するアナログ−デジタル変換器を用いて行ってもよい。さらに、高周波電圧制御手段1は記憶装置16を備えており、複数の標本値、予め定められたパラメータ値、標準制御プログラムの一部または全部を記録する。   The high-frequency voltage control means 1 inputs a part or all of the crank angle, the rotational speed, the fuel injection amount, the air fuel cost, and the ignition timing state signal necessary for controlling the high-frequency voltage. A state signal input port 12 for performing sampling, a sampling control signal output port 13 for outputting a control signal for controlling sampling at the incident / reflected voltage measuring means 4 to the incident / reflected voltage measuring means 4, and an incident / reflected voltage measuring means 4 In order to control the generation of the high-frequency voltage and the sample-value input port 14 for inputting the sample value collected at, a part or all of the control signals of the frequency, voltage and timing signal are sent to the high-frequency voltage generating means 2. And a high-frequency voltage control signal output port 15 for output. The incident voltage and the reflected voltage measured by the incident / reflected voltage measuring means 4 may be sampled using an analog-digital converter installed in a microcomputer constituting the processor 11. Further, the high-frequency voltage control means 1 includes a storage device 16 and records a plurality of sample values, predetermined parameter values, and part or all of the standard control program.

なお、高周波電圧制御手段1は、予め標準的な標準制御を記憶装置16に記憶しておいてもよい。当該標準制御は、内燃機関の状態信号と高周波電圧発生信号との関係を表の形態として記憶しておいてもよい。   The high-frequency voltage control means 1 may store standard standard control in the storage device 16 in advance. In the standard control, the relationship between the state signal of the internal combustion engine and the high-frequency voltage generation signal may be stored in the form of a table.

次に、入反射電圧計測手段4で計測される入射電圧および反射電圧を標本化する方法について説明する。   Next, a method for sampling the incident voltage and the reflected voltage measured by the incident / reflected voltage measuring means 4 will be described.

入反射電圧計測手段4は、入射電圧および反射電圧の標本化を、好ましくは内燃機関の排気−吸気工程にて行っている。すなわち、高周波電圧制御手段1は、標本化の制御を、内燃機関の排気−吸気工程にて行っている。なお、標本化は複数回行ってもよく、高周波電圧制御手段1によって任意に制御される。   The incident / reflected voltage measuring means 4 samples the incident voltage and the reflected voltage, preferably in the exhaust-intake process of the internal combustion engine. That is, the high-frequency voltage control means 1 performs sampling control in the exhaust-intake process of the internal combustion engine. Sampling may be performed a plurality of times, and is arbitrarily controlled by the high-frequency voltage control means 1.

排気−吸気工程におけるピストン位置は、圧縮−爆発工程におけるピストン位置と対応し(すなわち、燃焼室の物理的な寸法が同じ)、混合気の状態を除いては、圧縮−爆発工程における内燃機関の燃焼室内(気筒内)の電磁特性を再現している。このように、排気−吸気工程にて電磁波を放射して入射電圧および反射電圧を計測し標本化を行うことによって、圧縮−爆発工程にて放射される電磁波に必要な電力よりも小さな電力で電磁波を放射することができ、省電力化を図ることが可能となる。また、電磁相互作用は線形であるため、排気−吸気工程にて小電力で入射電圧および反射電圧を計測した後に、大電力で電磁波の放射を行なう圧縮−爆発工程にて計測される入射電圧および反射電圧を推定することが可能となる。   The piston position in the exhaust-intake process corresponds to the piston position in the compression-explosion process (that is, the physical dimensions of the combustion chamber are the same), and the internal combustion engine in the compression-explosion process is the same except for the mixture state. The electromagnetic characteristics in the combustion chamber (cylinder) are reproduced. In this way, by radiating electromagnetic waves in the exhaust-intake process, measuring the incident voltage and the reflected voltage, and performing sampling, the electromagnetic waves are smaller than the power required for the electromagnetic waves radiated in the compression-explosion process. Can be radiated to save power. In addition, since the electromagnetic interaction is linear, after measuring the incident voltage and the reflected voltage with low power in the exhaust-intake process, the incident voltage measured in the compression-explosion process in which electromagnetic waves are emitted with high power and The reflected voltage can be estimated.

なお、本実施形態による点火装置は、高周波電圧発生手段2で発生した高周波電圧と、当該高周波電圧が電磁波放射手段5に入射するときの入射電圧とを、予め定めたパラメータと比較して点火装置の動作の正常性を確認する手段をさらに備えてもよい。また、排気−吸気工程において、高周波電圧制御手段1は、標準制御時および/またはその近傍の電磁波放射に用いられる高周波電圧を信号雑音比が確保可能な最小電圧として電磁波を発生させるように制御し、入反射電圧計測手段4で計測した入射電圧および反射電圧を標本化してもよい。このとき、発生させる電磁波は、標準制御時およびその近傍の複数の周波数で標本化を行ってもよい。また、採取した標本値は、パラメータと併せて記憶装置16に記憶してもよい。   The ignition device according to the present embodiment compares the high-frequency voltage generated by the high-frequency voltage generation means 2 and the incident voltage when the high-frequency voltage enters the electromagnetic wave radiation means 5 with a predetermined parameter. Means for confirming the normality of the operation may be further provided. In the exhaust-intake process, the high-frequency voltage control means 1 controls the high-frequency voltage used for electromagnetic wave radiation at the time of standard control and / or in the vicinity thereof to generate an electromagnetic wave as a minimum voltage that can ensure a signal-to-noise ratio. The incident voltage and reflected voltage measured by the incident / reflected voltage measuring means 4 may be sampled. At this time, the generated electromagnetic wave may be sampled at the time of standard control and at a plurality of frequencies in the vicinity thereof. The collected sample values may be stored in the storage device 16 together with the parameters.

また、高周波電圧制御手段1によって適切に制御される高周波電圧発生手段2で発生する高周波電圧の周波数は、入射電圧および反射電圧の標本値に対して欲張り法やタブーリサーチ法を用いて探索を行ってもよい。また、複数の標本値を用いて、高周波電圧発生手段2で発生した高周波電圧の周波数が適切であるか否かを統計的検定してもよい。検定の結果、周波数が適切であると判断されると、当該周波数を圧縮−爆発工程における適切な高周波電圧の周波数として用いてよい。   The frequency of the high-frequency voltage generated by the high-frequency voltage generation means 2 appropriately controlled by the high-frequency voltage control means 1 is searched using the greedy method or the tabu research method for the sample values of the incident voltage and the reflected voltage. May be. Alternatively, a statistical test may be performed to determine whether the frequency of the high-frequency voltage generated by the high-frequency voltage generation means 2 is appropriate using a plurality of sample values. If the frequency is determined to be appropriate as a result of the test, the frequency may be used as the frequency of an appropriate high-frequency voltage in the compression-explosion process.

以上のことから、高周波電圧制御手段1は、入反射電圧計測手段4で計測された入射電圧および反射電圧を標本化し、入射電圧に対する反射電圧の比に基づき高周波電圧発生手段2で発生する高周波電圧を制御するため、動作環境に応じた適切な周波数の電磁波を放射して内燃機関の燃焼効率を向上させることが可能となる。また、高周波電圧制御手段1は、入射電圧および反射電圧の標本化の制御を排気−吸気工程にて行うため、圧縮−爆発工程にて放射される電磁波に必要な電力よりも小さな電力で電磁波を放射すればよく、標本化制御時の省電力化を図ることが可能となる。   From the above, the high-frequency voltage control means 1 samples the incident voltage and the reflected voltage measured by the incoming / reflected voltage measuring means 4, and the high-frequency voltage generated by the high-frequency voltage generating means 2 based on the ratio of the reflected voltage to the incident voltage. Therefore, it is possible to improve the combustion efficiency of the internal combustion engine by emitting electromagnetic waves having an appropriate frequency according to the operating environment. Moreover, since the high frequency voltage control means 1 controls the sampling of the incident voltage and the reflected voltage in the exhaust-intake process, the high-frequency voltage control means 1 generates an electromagnetic wave with a power smaller than that required for the electromagnetic wave radiated in the compression-explosion process. It suffices to radiate, and power saving can be achieved during sampling control.

〈実施形態2〉
本発明の実施形態2では、入反射電圧計測手段4は、入射電圧および反射電圧の計測を内燃機関の圧縮−爆発工程にて行っており、高周波電圧制御手段1は、入射電圧および反射電圧の標本化の制御を、内燃機関の同一運転条件下において同一タイミングで複数点火サイクル行うことを特徴としている。その他の構成および動作は、実施形態1と同様であるため、ここでは説明を省略する。
<Embodiment 2>
In the second embodiment of the present invention, the incident / reflected voltage measuring means 4 measures the incident voltage and the reflected voltage in the compression-explosion process of the internal combustion engine, and the high-frequency voltage control means 1 determines the incident voltage and the reflected voltage. Sampling control is performed by performing a plurality of ignition cycles at the same timing under the same operating conditions of the internal combustion engine. Other configurations and operations are the same as those in the first embodiment, and thus description thereof is omitted here.

圧縮−爆発工程にて混合気が受容する周波数の電磁波を電磁波放射手段5から放射する場合において、当該周波数では混合気は他の周波数の電磁波よりも電磁波エネルギー(電力)を多く受容するため、電磁波放射手段5から放射された電磁波が燃焼室を反射して戻ってくる電力が減少する(すなわち、反射電力比が減少する)。混合気が受容する周波数は一般的に混合気の状態に依存して変化するが、高周波電圧制御手段1による入射電圧および反射電圧の標本化の制御を内燃機関の同一運転条件下において同一タイミングで複数点火サイクル行った後、統計的検定を適用することによって、混合気が受容する電磁波の周波数を信頼度の範囲で推定することが可能となる。なお、推定した電磁波の周波数は、高周波電圧制御手段1の記憶装置16に記憶してもよい。   When electromagnetic waves having a frequency that is accepted by the air-fuel mixture in the compression-explosion process are radiated from the electromagnetic wave radiation means 5, the air-fuel mixture receives more electromagnetic energy (electric power) than electromagnetic waves of other frequencies at that frequency. The electric power that the electromagnetic wave radiated from the radiating means 5 reflects back from the combustion chamber decreases (that is, the reflected power ratio decreases). The frequency that the air-fuel mixture accepts generally varies depending on the state of the air-fuel mixture, but the high-frequency voltage control means 1 controls the sampling of the incident voltage and the reflected voltage at the same timing under the same operating conditions of the internal combustion engine. By applying a statistical test after performing multiple ignition cycles, it is possible to estimate the frequency of the electromagnetic wave received by the mixture within a range of reliability. Note that the estimated frequency of the electromagnetic wave may be stored in the storage device 16 of the high-frequency voltage control means 1.

以上のことから、高周波電圧制御手段1が、混合気が受容する電磁波の周波数で高周波電圧を発生させるように高周波電圧発生手段2を制御することによって、内燃機関の燃焼効率を向上させることが可能となる。   From the above, it is possible for the high frequency voltage control means 1 to improve the combustion efficiency of the internal combustion engine by controlling the high frequency voltage generation means 2 so as to generate a high frequency voltage at the frequency of the electromagnetic wave received by the air-fuel mixture. It becomes.

〈実施形態3〉
本発明の実施形態3では、入反射電圧計測手段4は、入射電圧および反射電圧の計測を内燃機関の圧縮−爆発工程にて行っており、高周波電圧制御手段1は、入射電圧および反射電圧の標本化の制御を、内燃機関の1点火サイクルあたり複数回行うことを特徴としている。その他の構成および動作は、実施形態1と同様であるため、ここでは説明を省略する。
<Embodiment 3>
In Embodiment 3 of the present invention, the incoming / reflected voltage measuring means 4 measures the incident voltage and the reflected voltage in the compression-explosion process of the internal combustion engine, and the high-frequency voltage control means 1 Sampling control is performed a plurality of times per ignition cycle of the internal combustion engine. Other configurations and operations are the same as those in the first embodiment, and thus description thereof is omitted here.

圧縮−爆発工程にて電磁波放射手段5から電磁波を放射する場合において、混合気中にプラズマが発生すると新たな伝導体が出現することになり、このようなプラズマの出現は反射電力比の増大として観測することができる。   When electromagnetic waves are radiated from the electromagnetic wave radiation means 5 in the compression-explosion process, a new conductor appears when plasma is generated in the air-fuel mixture, and the appearance of such plasma is an increase in the reflected power ratio. It can be observed.

発生したプラズマを維持するために必要な電磁波の電力は、プラズマを発生させるために必要な電磁波の電力よりも小さい場合があり、その場合は高周波電圧発生手段2で発生させる高周波電圧を下げることによって放射させる電磁波の電力(入射電力)を抑制することが可能となる。高周波電圧発生手段2で発生させる高周波電圧の制御は、高周波電圧制御手段1が行う。   The power of the electromagnetic wave necessary for maintaining the generated plasma may be smaller than the power of the electromagnetic wave necessary for generating the plasma. In this case, by reducing the high-frequency voltage generated by the high-frequency voltage generating means 2 It is possible to suppress the power of electromagnetic waves to be radiated (incident power). The high frequency voltage control means 1 controls the high frequency voltage generated by the high frequency voltage generation means 2.

以上のことから、電磁波を放射して混合気中にプラズマが発生した場合において、高周波電圧発生手段2で発生させる高周波電圧を下げることによって放射させる電磁波の電力(入射電力)を抑制することが可能となる。   From the above, when plasma is generated in the air-fuel mixture by radiating electromagnetic waves, it is possible to suppress the power (incident power) of the electromagnetic waves to be radiated by lowering the high frequency voltage generated by the high frequency voltage generating means 2 It becomes.

1 高周波電圧制御手段、2 高周波電圧発生手段、3 直流パルス発生手段、4 入反射電圧計測手段、5 電磁波放射手段、11 プロセッサ、12 状態信号入力ポート、13 標本化制御信号出力ポート、14 標本値入力ポート、15 高周波電圧制御信号出力ポート、16 記憶装置、41,42 方向性結合器、71 プラグホール、72 スパークプラグ、73 燃焼室、74 ピストン、75 燃焼室壁、76 吸気バルブ、77 排気バルブ、78 吸気通路、79 排気通路。   DESCRIPTION OF SYMBOLS 1 High frequency voltage control means, 2 High frequency voltage generation means, 3 DC pulse generation means, 4 Incidence reflection voltage measurement means, 5 Electromagnetic radiation means, 11 Processor, 12 State signal input port, 13 Sampling control signal output port, 14 Sampling value Input port, 15 High frequency voltage control signal output port, 16 Storage device, 41, 42 Directional coupler, 71 Plug hole, 72 Spark plug, 73 Combustion chamber, 74 Piston, 75 Combustion chamber wall, 76 Intake valve, 77 Exhaust valve 78 Intake passage, 79 Exhaust passage.

Claims (12)

内燃機関の燃焼室の混合気に点火する点火装置であって、
直流パルスを発生する直流パルス発生手段と、
前記直流パルス発生手段で発生した前記直流パルスに基づき、前記燃焼室内に直流パルス放電を行う直流パルス放電手段と、
高周波電圧を発生する高周波電圧発生手段と、
前記高周波電圧発生手段で発生した前記高周波電圧に基づき、前記燃焼室内に電磁波放射を行う電磁波放射手段と、
前記高周波電圧発生手段と前記電磁波放射手段との間に設けられ、前記電磁波放射手段に入射する入射電圧と、反射された反射電圧とを計測する入反射電圧計測手段と、
前記入反射電圧計測手段で計測された前記入射電圧および前記反射電圧に基づき、前記高周波電圧発生手段で発生する前記高周波電圧を制御する高周波電圧制御手段と、
を備え、
前記高周波電圧制御手段は、前記入射電圧に対する前記反射電圧の比に基づき、前記高周波電圧発生手段で発生する前記高周波電圧を制御することを特徴とする、点火装置。
An ignition device for igniting an air-fuel mixture in a combustion chamber of an internal combustion engine,
DC pulse generating means for generating a DC pulse;
DC pulse discharge means for performing DC pulse discharge in the combustion chamber based on the DC pulse generated by the DC pulse generation means;
High-frequency voltage generating means for generating a high-frequency voltage;
Based on the high-frequency voltage generated by the high-frequency voltage generation means, electromagnetic wave radiation means for radiating electromagnetic waves in the combustion chamber;
Incident reflection voltage measuring means provided between the high frequency voltage generating means and the electromagnetic wave radiating means, and measuring an incident voltage incident on the electromagnetic wave radiating means and a reflected reflected voltage;
High-frequency voltage control means for controlling the high-frequency voltage generated by the high-frequency voltage generation means based on the incident voltage and the reflected voltage measured by the incident-reflection voltage measurement means;
With
The ignition device according to claim 1, wherein the high-frequency voltage control means controls the high-frequency voltage generated by the high-frequency voltage generation means based on a ratio of the reflected voltage to the incident voltage.
前記高周波電圧制御手段は、前記入反射電圧計測手段で計測された前記入射電圧および前記反射電圧の標本化を制御することを特徴とする、請求項1に記載の点火装置。   2. The ignition device according to claim 1, wherein the high-frequency voltage control unit controls sampling of the incident voltage and the reflected voltage measured by the incident / reflected voltage measuring unit. 前記高周波電圧制御手段は、前記標本化の制御を、前記内燃機関の排気−吸気工程にて行うことを特徴とする、請求項2に記載の点火装置。   The ignition apparatus according to claim 2, wherein the high-frequency voltage control means performs the sampling control in an exhaust-intake process of the internal combustion engine. 前記高周波電圧制御手段は、前記標本化の制御を、前記内燃機関の圧縮−爆発工程にて行うことを特徴とする、請求項2に記載の点火装置。   The ignition device according to claim 2, wherein the high-frequency voltage control unit performs the sampling control in a compression-explosion process of the internal combustion engine. 前記高周波電圧制御手段は、前記標本化の制御を、前記内燃機関の同一運転条件下において同一タイミングで複数点火サイクル行うことを特徴とする、請求項4に記載の点火装置。   5. The ignition device according to claim 4, wherein the high-frequency voltage control means performs the sampling control a plurality of ignition cycles at the same timing under the same operating condition of the internal combustion engine. 前記高周波電圧制御手段は、前記標本化の制御を、前記内燃機関の1点火サイクルあたり複数回行うことを特徴とする、請求項4に記載の点火装置。   The ignition device according to claim 4, wherein the high-frequency voltage control means performs the sampling control a plurality of times per ignition cycle of the internal combustion engine. 内燃機関の燃焼室内の混合気に点火する点火方法であって、
(a)直流パルスを発生する工程と、
(b)前記工程(a)で発生した前記直流パルスに基づき、前記燃焼室内に直流パルス放電を行う工程と、
(c)高周波電圧を発生する工程と、
(d)前記工程(c)で発生した前記高周波電圧に基づき、前記燃焼室内に電磁波放射を行う工程と、
(e)前記工程(d)において入射する入射電圧と、反射された反射電圧とを計測する工程と、
(f)前記工程(e)で計測された前記入射電圧および前記反射電圧に基づき、前記工程(c)で発生する前記高周波電圧を制御する工程と、
を備え、
前記工程(f)は、前記入射電圧に対する前記反射電圧の比に基づき、前記工程(c)で発生する前記高周波電圧を制御することを特徴とする、点火方法。
An ignition method for igniting an air-fuel mixture in a combustion chamber of an internal combustion engine,
(A) generating a DC pulse;
(B) performing a DC pulse discharge in the combustion chamber based on the DC pulse generated in the step (a);
(C) generating a high frequency voltage;
(D) performing electromagnetic wave radiation in the combustion chamber based on the high-frequency voltage generated in the step (c);
(E) measuring the incident voltage and the reflected reflected voltage incident in the step (d);
(F) controlling the high-frequency voltage generated in the step (c) based on the incident voltage and the reflected voltage measured in the step (e);
With
In the ignition method, the step (f) controls the high-frequency voltage generated in the step (c) based on a ratio of the reflected voltage to the incident voltage.
前記工程(f)は、前記工程(e)で計測された前記入射電圧および前記反射電圧の標本化を制御することを特徴とする、請求項7に記載の点火方法。   The ignition method according to claim 7, wherein the step (f) controls sampling of the incident voltage and the reflected voltage measured in the step (e). 前記工程(f)は、前記標本化の制御を、前記内燃機関の排気−吸気工程にて行うことを特徴とする、請求項8に記載の点火方法。   9. The ignition method according to claim 8, wherein the step (f) performs the sampling control in an exhaust-intake step of the internal combustion engine. 前記工程(f)は、前記標本化の制御を、前記内燃機関の圧縮−爆発工程にて行うことを特徴とする、請求項8に記載の点火方法。   The ignition method according to claim 8, wherein in the step (f), the sampling is controlled in a compression-explosion step of the internal combustion engine. 前記工程(f)は、前記標本化の制御を、前記内燃機関の同一運転条件下において同一タイミングで複数点火サイクル行うことを特徴とする、請求項10に記載の点火方法。   11. The ignition method according to claim 10, wherein the step (f) performs a plurality of ignition cycles at the same timing under the same operation conditions of the internal combustion engine in the step (f). 前記工程(f)は、前記標本化の制御を、前記内燃機関の1点火サイクルあたり複数回行うことを特徴とする、請求項10に記載の点火方法。   The ignition method according to claim 10, wherein the step (f) performs the sampling control a plurality of times per one ignition cycle of the internal combustion engine.
JP2010031969A 2010-02-17 2010-02-17 Ignition device and ignition method Active JP5430437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010031969A JP5430437B2 (en) 2010-02-17 2010-02-17 Ignition device and ignition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031969A JP5430437B2 (en) 2010-02-17 2010-02-17 Ignition device and ignition method

Publications (2)

Publication Number Publication Date
JP2011169179A true JP2011169179A (en) 2011-09-01
JP5430437B2 JP5430437B2 (en) 2014-02-26

Family

ID=44683556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010031969A Active JP5430437B2 (en) 2010-02-17 2010-02-17 Ignition device and ignition method

Country Status (1)

Country Link
JP (1) JP5430437B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080873A1 (en) * 2011-11-28 2013-06-06 ダイハツ工業株式会社 Combustion state determination device for internal combustion engine
WO2014084341A1 (en) * 2012-11-30 2014-06-05 イマジニアリング株式会社 Plasma generating device
WO2014087504A1 (en) * 2012-12-05 2014-06-12 トヨタ自動車株式会社 Control device of internal combustion engine
WO2014115707A1 (en) * 2013-01-22 2014-07-31 イマジニアリング株式会社 Plasma generating device, and internal combustion engine
JP2014185536A (en) * 2013-03-22 2014-10-02 Daihatsu Motor Co Ltd Control device of spark ignition type internal combustion engine
WO2018084250A1 (en) * 2016-11-07 2018-05-11 イマジニアリング株式会社 Ignition system
JP7030445B2 (en) 2017-08-09 2022-03-07 ゼネラルソリューションズ株式会社 Electromagnetic wave oscillator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299282A (en) * 1991-03-28 1992-10-22 Japan Atom Energy Res Inst High-frequency heating equipment
JPH06302399A (en) * 1993-04-14 1994-10-28 Kaku Yuugou Kagaku Kenkyusho Plasma generation and heating device
JP2006286254A (en) * 2005-03-31 2006-10-19 Daihen Corp High-frequency power supply device
JP2007336148A (en) * 2006-06-14 2007-12-27 Daihen Corp Electrical property adjusting device
JP2008181846A (en) * 2006-12-29 2008-08-07 Daihen Corp High frequency device
JP2009036198A (en) * 2007-07-12 2009-02-19 Imagineering Kk Ignition or plasma generation device
JP2009508045A (en) * 2005-09-09 2009-02-26 ビーティーユー インターナショナル インコーポレイテッド Microwave combustion system for internal combustion engines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299282A (en) * 1991-03-28 1992-10-22 Japan Atom Energy Res Inst High-frequency heating equipment
JPH06302399A (en) * 1993-04-14 1994-10-28 Kaku Yuugou Kagaku Kenkyusho Plasma generation and heating device
JP2006286254A (en) * 2005-03-31 2006-10-19 Daihen Corp High-frequency power supply device
JP2009508045A (en) * 2005-09-09 2009-02-26 ビーティーユー インターナショナル インコーポレイテッド Microwave combustion system for internal combustion engines
JP2007336148A (en) * 2006-06-14 2007-12-27 Daihen Corp Electrical property adjusting device
JP2008181846A (en) * 2006-12-29 2008-08-07 Daihen Corp High frequency device
JP2009036198A (en) * 2007-07-12 2009-02-19 Imagineering Kk Ignition or plasma generation device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080873A1 (en) * 2011-11-28 2013-06-06 ダイハツ工業株式会社 Combustion state determination device for internal combustion engine
JP2013113184A (en) * 2011-11-28 2013-06-10 Daihatsu Motor Co Ltd Combustion state determination device for internal combustion engine
WO2014084341A1 (en) * 2012-11-30 2014-06-05 イマジニアリング株式会社 Plasma generating device
JPWO2014084341A1 (en) * 2012-11-30 2017-01-05 イマジニアリング株式会社 Plasma generator
US9741542B2 (en) 2012-11-30 2017-08-22 Imagineering, Inc. Plasma generation device
WO2014087504A1 (en) * 2012-12-05 2014-06-12 トヨタ自動車株式会社 Control device of internal combustion engine
WO2014115707A1 (en) * 2013-01-22 2014-07-31 イマジニアリング株式会社 Plasma generating device, and internal combustion engine
JPWO2014115707A1 (en) * 2013-01-22 2017-01-26 イマジニアリング株式会社 Plasma generator and internal combustion engine
JP2014185536A (en) * 2013-03-22 2014-10-02 Daihatsu Motor Co Ltd Control device of spark ignition type internal combustion engine
WO2018084250A1 (en) * 2016-11-07 2018-05-11 イマジニアリング株式会社 Ignition system
JP7030445B2 (en) 2017-08-09 2022-03-07 ゼネラルソリューションズ株式会社 Electromagnetic wave oscillator

Also Published As

Publication number Publication date
JP5430437B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5430437B2 (en) Ignition device and ignition method
Tsuboi et al. Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine
Nishiyama et al. Improvement of lean limit and fuel consumption using microwave plasma ignition technology
Mariani et al. Radio frequency spark plug: An ignition system for modern internal combustion engines
CN104791171B (en) Light flammable mixture
KR101548728B1 (en) Optimum control of the resonant frequency of a resonator in a radio frequency ignition system
KR101233735B1 (en) Method for igniting combustion of fuel in a combustion chamber of an engine, associated device and engine
US20120249163A1 (en) System and method for detecting arc formation in a corona discharge ignition system
JP2009508045A (en) Microwave combustion system for internal combustion engines
Ikeda et al. Development of innovative microwave plasma ignition system with compact microwave discharge igniter
Ikeda et al. Research and development of microwave plasma combustion engine (Part II: engine performance of plasma combustion engine)
JP5888948B2 (en) Combustion state determination device for internal combustion engine
Heise et al. High frequency ignition system for gasoline direct injection engines
EP2919556B1 (en) Electromagnetic wave emission device
US10677456B2 (en) Waveguide antenna for microwave enhanced combustion
Mariani et al. The effects of a radio frequency ignition system on the efficiency and the exhaust emissions of a spark-ignition engine
JP2011132900A (en) Ignition device
JP5295013B2 (en) Operation control method for spark ignition internal combustion engine
JP2014088778A (en) Internal combustion engine
Luo et al. Microwave Enhancement of Lean/Dilute Combustion in a Constant-Volume Chamber
JP2014043841A (en) Control device of spark ignition-type internal combustion engine
JP5584484B2 (en) Control method for spark ignition internal combustion engine
JP6080638B2 (en) Control device for spark ignition internal combustion engine
JP5289213B2 (en) Operation control method for spark ignition internal combustion engine
JP5973956B2 (en) Ignition device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5430437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250