JP2011168695A - Polypropylene resin composition for inorganic physical expansion molding, and foamed article thereof - Google Patents

Polypropylene resin composition for inorganic physical expansion molding, and foamed article thereof Download PDF

Info

Publication number
JP2011168695A
JP2011168695A JP2010033804A JP2010033804A JP2011168695A JP 2011168695 A JP2011168695 A JP 2011168695A JP 2010033804 A JP2010033804 A JP 2010033804A JP 2010033804 A JP2010033804 A JP 2010033804A JP 2011168695 A JP2011168695 A JP 2011168695A
Authority
JP
Japan
Prior art keywords
polypropylene resin
resin composition
unsaturated monomer
ethylenically unsaturated
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010033804A
Other languages
Japanese (ja)
Other versions
JP5418282B2 (en
Inventor
Masumi Takamura
真澄 高村
Kazuaki Mima
和晃 美馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2010033804A priority Critical patent/JP5418282B2/en
Publication of JP2011168695A publication Critical patent/JP2011168695A/en
Application granted granted Critical
Publication of JP5418282B2 publication Critical patent/JP5418282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polypropylene resin composition for inorganic physical expansion molding capable of obtaining a fine foamed article having fine and uniform bubbles having, for example, an average cell diameter of 1,000 nm or less, and a foamed article thereof. <P>SOLUTION: The polypropylene resin composition for the inorganic physical expansion molding contains a graft copolymer comprising a polymer of an ethylenic unsaturated monomer (b) having a polypropylene resin (a) as a main chain component and a (meth)acrylate or vinyl carboxylate as a side chain component. The polymer of the ethylenic unsaturated monomer (b) constituting the graft copolymer is a crosslinked product in which a number average dispersed particle diameter is 100-1,000 nm and standard deviation relative to the average dispersed particle diameter is 5-20%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、気泡径が小さくかつ均一な気泡を有する微細気泡発泡体を得ることができる無機系物理発泡成形用ポリプロピレン樹脂組成物およびその発泡体に関する。   TECHNICAL FIELD The present invention relates to an inorganic physical foam molding polypropylene resin composition capable of obtaining a fine cell foam having a small cell diameter and uniform cells, and the foam.

従来、熱可塑性樹脂からなる発泡体は、その優れた断熱性や衝撃吸収性等により食品容器や建築材料等の分野で広く用いられている。熱可塑性樹脂発泡体の代表的な製造法としては、大きく分けて化学発泡法と物理発泡法の2種類がある。化学発泡法は、熱可塑性樹脂にアゾ化合物等の低分子量化学発泡剤を混合し、化学発泡剤の分解温度以上に加熱することによって発泡させる方法である。しかし、化学発泡剤の分解残留物が、得られる発泡体の変色や食品衛生上の問題を生じるといった問題や、化学発泡剤自体が粒度分布を持っているため、得られる発泡体の厚みや密度が不均一になるといった問題がある。   Conventionally, a foam made of a thermoplastic resin has been widely used in the fields of food containers, building materials, and the like due to its excellent heat insulation and shock absorption. As a typical manufacturing method of a thermoplastic resin foam, there are roughly two types, a chemical foaming method and a physical foaming method. The chemical foaming method is a method of foaming by mixing a thermoplastic resin with a low molecular weight chemical foaming agent such as an azo compound and heating it to a temperature equal to or higher than the decomposition temperature of the chemical foaming agent. However, the decomposition residue of the chemical foaming agent causes problems such as discoloration of the resulting foam and food hygiene problems, and the chemical foaming agent itself has a particle size distribution, so the thickness and density of the resulting foam There is a problem of non-uniformity.

一方、物理発泡法は、熱可塑性樹脂にブタン等の低沸点有機系物理発泡剤を供給して混練した後、低圧域に押出すことにより発泡させる方法である。この方法は、熱可塑性樹脂中への発泡剤添加量を調整すれば、低倍率から高倍率まで幅広い発泡体を容易に製造できるという特徴を持っている。しかし、ブタン等の発泡剤は、可燃性や毒性を有しているため、発泡成形体に残存する発泡剤の濃度が下がるまで養生しなければならないという問題がある。   On the other hand, the physical foaming method is a method in which a low-boiling organic physical foaming agent such as butane is supplied to a thermoplastic resin, kneaded, and then foamed by extrusion into a low pressure region. This method has a feature that a wide range of foams from a low magnification to a high magnification can be easily produced by adjusting the amount of foaming agent added to the thermoplastic resin. However, since a foaming agent such as butane has flammability and toxicity, there is a problem that it must be cured until the concentration of the foaming agent remaining in the foamed molded product is lowered.

近年、二酸化炭素や窒素などの無機系物理発泡剤を用いる無機系物理発泡成形法が提案されている。これら無機系物理発泡剤は、無害で環境負荷の懸念がないため、発泡体製造後の養生期間が不要であるといった特徴を有している。しかも、この方法で得られる発泡体の気泡径は、従来の発泡体の気泡径(約100μm以上)よりも微細(10μm以下)なため、機械的特性や光学的特性に優れるといった特徴を有し、現在注目されている発泡剤である。   In recent years, an inorganic physical foam molding method using an inorganic physical foaming agent such as carbon dioxide or nitrogen has been proposed. Since these inorganic physical foaming agents are harmless and have no concern about environmental burden, they have a feature that a curing period after foam production is unnecessary. Moreover, since the foam diameter of the foam obtained by this method is finer (less than 10 μm) than the foam diameter of conventional foams (about 100 μm or more), it has the characteristics of excellent mechanical characteristics and optical characteristics. This is a foaming agent that is currently attracting attention.

しかしながら、熱可塑性樹脂としてポリプロピレン樹脂を用いた場合、結晶性を有するために、溶融時の粘度及びメルトテンションが低く、この樹脂を発泡させる場合、発泡時に気泡が破壊されやすいという問題があった。このため、ポリプロピレン系樹脂を発泡させた場合、無機系物理発泡成形法の利点である微細な(10μm以下)気泡径が得られ難く、外観や二次加工性に優れた、低密度の発泡体を得ることが困難であるといった欠点を有している。   However, when a polypropylene resin is used as the thermoplastic resin, since it has crystallinity, the viscosity and melt tension at the time of melting are low, and when this resin is foamed, there is a problem that bubbles are easily broken at the time of foaming. For this reason, when polypropylene resin is foamed, it is difficult to obtain a fine (10 μm or less) cell diameter, which is an advantage of an inorganic physical foam molding method, and a low-density foam excellent in appearance and secondary workability. It is difficult to obtain

この問題を解決する方法としては、発泡成形用樹脂組成物として、ポリプロピレン樹脂に特殊な構造の有機過酸化物を混合して架橋反応を起こさせることで、ポリプロピレン樹脂の溶融張力を向上させる方法が提案されている(例えば、特許文献1を参照)。この樹脂組成物を発泡させることにより、外観や二次加工性に優れた発泡体が得られる。   As a method for solving this problem, there is a method for improving the melt tension of a polypropylene resin by mixing a polypropylene resin with an organic peroxide having a special structure to cause a crosslinking reaction as a foam molding resin composition. It has been proposed (see, for example, Patent Document 1). By foaming this resin composition, a foam excellent in appearance and secondary processability can be obtained.

また、二酸化炭素を用いた物理発泡成形用樹脂組成物として、二酸化炭素の溶解度が低い熱可塑性樹脂(例えばポリプロピレン樹脂)とポリプロピレン樹脂と相溶せずかつ二酸化炭素の溶解度が高い熱可塑性樹脂(例えばポリエチレングリコール)とからなるポリマーアロイを用いる方法が提案されている(例えば、特許文献2を参照)。この樹脂組成物を二酸化炭素で発泡させることにより、気泡が二酸化炭素の溶解度が高い熱可塑性樹脂内でのみ発泡することから、均一かつ微細な気泡径を有する発泡体が得られる。   In addition, as a physical foam molding resin composition using carbon dioxide, a thermoplastic resin having low carbon dioxide solubility (for example, polypropylene resin) and a thermoplastic resin incompatible with polypropylene resin and having high carbon dioxide solubility (for example, A method using a polymer alloy comprising (polyethylene glycol) has been proposed (see, for example, Patent Document 2). By foaming this resin composition with carbon dioxide, bubbles are foamed only in a thermoplastic resin having a high solubility of carbon dioxide, so that a foam having a uniform and fine cell diameter can be obtained.

さらに、結晶性を有する熱可塑性樹脂(例えばポリプロピレン樹脂)中に非晶性を有する熱可塑性樹脂(例えばポリメタクリル酸メチル樹脂)が5μm以下の分散粒径となるように制御したポリマーアロイ材料として、結晶性を有する熱可塑性樹脂と非晶性を有する熱可塑性樹脂とのグラフト共重合体が提案されている(例えば、特許文献3を参照)。この樹脂組成物を、樹脂組成物の弾性率が5.0×10Pa以下となる温度域で発泡させると、あらかじめ分散した非晶性熱可塑性樹脂のみから発泡するため、得られる発泡体の気泡径が5μm以下と微細になり、軽量、高強度、断熱性および光学特性に優れる発泡体が得られる。 Furthermore, as a polymer alloy material in which a thermoplastic resin having an amorphous property (for example, polymethyl methacrylate resin) is controlled to have a dispersed particle size of 5 μm or less in a thermoplastic resin having crystallinity (for example, a polypropylene resin), A graft copolymer of a thermoplastic resin having crystallinity and an amorphous thermoplastic resin has been proposed (see, for example, Patent Document 3). When this resin composition is foamed in a temperature range where the elastic modulus of the resin composition is 5.0 × 10 8 Pa or less, foaming is performed only from the amorphous thermoplastic resin dispersed in advance. The bubble diameter becomes as fine as 5 μm or less, and a foam excellent in light weight, high strength, heat insulation and optical properties can be obtained.

一方、ポリプロピレン樹脂とエチレン性不飽和単量体の重合体(例えば、ポリメタクリル酸メチル)とのグラフト共重合体を得る方法が提案されている(例えば、特許文献4を参照)。即ち、ポリプロピレン樹脂中にエチレン性不飽和単量体(例えばメタクリル酸メチル)と有機過酸化物基を有するエチレン性不飽和単量体とを含浸させた後、該エチレン性不飽和単量体の混合物を有機過酸化物基を有するエチレン性不飽和単量体中の有機過酸化物の分解が実質的に起こらない条件でラジカル重合させた原料を溶融混練する方法である。   On the other hand, a method for obtaining a graft copolymer of a polypropylene resin and a polymer of an ethylenically unsaturated monomer (for example, polymethyl methacrylate) has been proposed (for example, see Patent Document 4). That is, after impregnating an ethylenically unsaturated monomer (for example, methyl methacrylate) and an ethylenically unsaturated monomer having an organic peroxide group in a polypropylene resin, the ethylenically unsaturated monomer This is a method of melt-kneading a raw material obtained by radical polymerization of a mixture under conditions in which decomposition of the organic peroxide in the ethylenically unsaturated monomer having an organic peroxide group does not substantially occur.

特開2004−339365号公報JP 2004-339365 A 特開2005−271504号公報JP 2005-271504 A 特開2008−303236号公報JP 2008-303236 A 特公平4−76383号公報Japanese Examined Patent Publication No. 4-76383

ところが、特許文献1に記載されている材料では、外観や二次加工性に優れた発泡体を得るための発泡成形条件範囲が著しく狭いため、品質の安定した発泡体を得ることが困難であった。また、特許文献2〜4に記載されている材料では、材料を成形加工する際の条件(成形機や成形型の種類、可塑化条件、熱履歴等)が変わると分散粒径が異なるため、恒常的に安定した気泡径を有する発泡体を得ることが困難であった。   However, in the material described in Patent Document 1, the foam molding condition range for obtaining a foam excellent in appearance and secondary workability is extremely narrow, and thus it is difficult to obtain a foam having a stable quality. It was. In addition, in the materials described in Patent Documents 2 to 4, the dispersion particle size is different when the conditions (the type of molding machine and molding die, plasticizing conditions, thermal history, etc.) at the time of molding the material are changed. It was difficult to obtain a foam having a constantly stable cell diameter.

そこで本発明の目的とするところは、発泡成形する際の条件を選ぶことなく、例えば平均気泡径が1000nm以下の微細でかつ均一な気泡を有する微細気泡発泡体を得ることができる無機系物理発泡成形用ポリプロピレン樹脂組成物およびその発泡体を提供することにある。   Accordingly, an object of the present invention is to provide an inorganic physical foam capable of obtaining a fine cell foam having fine and uniform cells with an average cell diameter of 1000 nm or less, for example, without selecting conditions for foam molding. It is providing the polypropylene resin composition for shaping | molding and its foam.

前記の目的を達成するために、第1の発明の無機系物理発泡成形用ポリプロピレン樹脂組成物は、主鎖成分がポリプロピレン樹脂(a)、側鎖成分が下記化学式(1)で示される(メタ)アクリル酸エステルまたは下記化学式(2)で示されるカルボン酸ビニルであるエチレン性不飽和単量体(b)の重合体からなるグラフト共重合体を含有するポリプロピレン樹脂組成物において、前記グラフト共重合体を構成するエチレン性不飽和単量体(b)の重合体は、その数平均粒径が100〜1000nmで数平均粒径に対する標準偏差が5〜20%で分散した架橋体であることを特徴とする。   In order to achieve the above object, the polypropylene resin composition for inorganic physical foam molding according to the first invention has a main chain component represented by a polypropylene resin (a) and a side chain component represented by the following chemical formula (1) (meta In the polypropylene resin composition containing a graft copolymer composed of a polymer of ethylenically unsaturated monomer (b) which is an acrylate ester or vinyl carboxylate represented by the following chemical formula (2), the graft copolymer The polymer of the ethylenically unsaturated monomer (b) constituting the coalescence is a crosslinked product having a number average particle diameter of 100 to 1000 nm and a standard deviation with respect to the number average particle diameter of 5 to 20%. Features.

Figure 2011168695
(Rは水素またはメチル基を示す。RはCm+1、m=1〜4の整数を示す。)
Figure 2011168695
(R 1 represents hydrogen or a methyl group. R 2 represents an integer of C m H m + 1 and m = 1 to 4.)

Figure 2011168695
(RはCn+1、n=1〜4の整数を示す。)
第2の発明の無機系物理発泡成形用ポリプロピレン樹脂組成物は、第1の発明において、前記エチレン性不飽和単量体(b)が、メタクリル酸メチルであることを特徴とする。
Figure 2011168695
(R 3 represents an integer of C n H n + 1, n = 1~4.)
The polypropylene resin composition for inorganic physical foam molding of the second invention is characterized in that, in the first invention, the ethylenically unsaturated monomer (b) is methyl methacrylate.

第3の発明の無機系物理発泡成形用ポリプロピレン樹脂組成物は、第1又は第2の発明において、前記エチレン性不飽和単量体(b)が、酢酸ビニルであることを特徴とする。
第4の発明の無機系物理発泡成形用ポリプロピレン樹脂組成物は、第1から第3のいずれか1項に係る発明において、前記グラフト共重合体は、ポリプロピレン樹脂(a)中でエチレン性不飽和単量体(b)と有機過酸化物基を有するエチレン性不飽和単量体(c)とトルエン(d)とを含浸重合させて得られるポリプロピレン樹脂組成物前駆体を、前記有機過酸化物基を有するエチレン性不飽和単量体(c)の走査型示差熱量計を用いた10℃/minの昇温過程での分解開始温度よりも65〜120℃高い温度で溶融混練してなるものであることを特徴とする。
The polypropylene resin composition for inorganic physical foam molding of the third invention is characterized in that, in the first or second invention, the ethylenically unsaturated monomer (b) is vinyl acetate.
The polypropylene resin composition for inorganic physical foam molding according to a fourth aspect of the invention is the invention according to any one of the first to third aspects, wherein the graft copolymer is ethylenically unsaturated in the polypropylene resin (a). A polypropylene resin composition precursor obtained by impregnating and polymerizing a monomer (b), an ethylenically unsaturated monomer (c) having an organic peroxide group, and toluene (d) is used as the organic peroxide. What is obtained by melt kneading at a temperature 65 to 120 ° C. higher than the decomposition start temperature in the temperature rising process of 10 ° C./min using a scanning differential calorimeter of the ethylenically unsaturated monomer (c) having a group It is characterized by being.

第5の発明の無機系物理発泡成形用ポリプロピレン樹脂組成物は、第4の発明において、前記有機過酸化物基を有するエチレン性不飽和単量体(c)が、t−ブチルペルオキシメタクリロイルオキシエチルカーボネートまたはt−ブチルペルオキシアリルカーボネートであることを特徴とする。   The polypropylene resin composition for inorganic physical foam molding of the fifth invention is the polypropylene resin composition for inorganic physical foam molding of the fourth invention, wherein the ethylenically unsaturated monomer (c) having an organic peroxide group is t-butylperoxymethacryloyloxyethyl. It is carbonate or t-butylperoxyallyl carbonate.

第6の発明の発泡体は、第1から第5のいずれか1項に記載の発明の無機系物理発泡成形用プロピレン樹脂組成物を無機系物理発泡剤により発泡させてなることを特徴とする。   The foam of the sixth invention is obtained by foaming the propylene resin composition for inorganic physical foam molding according to any one of the first to fifth inventions with an inorganic physical foaming agent. .

本発明によれば、次のような効果を発揮することができる。
第1の発明における無機系物理発泡成形用ポリプロピレン樹脂組成物は、主鎖成分がポリプロピレン樹脂(a)、側鎖成分が前記化学式(1)または化学式(2)で示される特定のエチレン性不飽和単量体(b)の重合体からなるグラフト共重合体を含有している。さらに、前記エチレン性不飽和単量体(b)の重合体は、その数平均粒径が100〜1000nmでかつその数平均粒径に対する標準偏差が5〜20%という微細かつ均一に分散した架橋体である。
According to the present invention, the following effects can be exhibited.
The polypropylene resin composition for inorganic physical foam molding according to the first invention is a specific ethylenic unsaturation wherein the main chain component is a polypropylene resin (a) and the side chain component is represented by the chemical formula (1) or (2). It contains a graft copolymer comprising a polymer of monomer (b). Further, the polymer of the ethylenically unsaturated monomer (b) has a number average particle size of 100 to 1000 nm and a standard deviation of 5 to 20% with respect to the number average particle size is finely and uniformly dispersed cross-linked. Is the body.

従って、特定のエチレン性不飽和単量体(b)が架橋していないグラフト共重合体を含有する無機系物理発泡成形用ポリプロピレン樹脂組成物と比較して、樹脂組成物を発泡成形する際の条件に依存することなく、微細でかつ均一な気泡径を有する微細気泡発泡体が得られる。   Therefore, in comparison with the polypropylene resin composition for inorganic physical foam molding containing a graft copolymer in which the specific ethylenically unsaturated monomer (b) is not crosslinked, the resin composition is subjected to foam molding. A fine cell foam having a fine and uniform cell diameter can be obtained without depending on conditions.

第2の発明における無機系物理発泡成形用ポリプロピレン樹脂組成物では、第1の発明における特定のエチレン性不飽和単量(b)がメタクリル酸メチルである。このため、第1の発明の効果に加えて、メタクリル酸メチルが二酸化炭素ガス等の無機系物理発泡剤との親和性に優れ、一層微細でかつ均一な気泡径を有する微細気泡発泡体が得られる。   In the polypropylene resin composition for inorganic physical foam molding in the second invention, the specific ethylenically unsaturated monomer (b) in the first invention is methyl methacrylate. For this reason, in addition to the effects of the first invention, methyl methacrylate is excellent in affinity with inorganic physical foaming agents such as carbon dioxide gas, and a fine cell foam having a finer and uniform cell diameter is obtained. It is done.

第3の発明における無機系物理発泡成形用ポリプロピレン樹脂組成物では、第1または第2の発明における前記特定のエチレン性不飽和単量(b)が酢酸ビニルである。このため、第1または第2の発明の効果に加えて、酢酸ビニルが二酸化炭素ガス等の無機系物理発泡剤との親和性に優れ、一層微細でかつ均一な気泡径を有する微細気泡発泡体が得られる。   In the polypropylene resin composition for inorganic physical foam molding in the third invention, the specific ethylenically unsaturated monomer (b) in the first or second invention is vinyl acetate. For this reason, in addition to the effects of the first or second invention, the fine cell foam has a finer and more uniform cell diameter in which vinyl acetate is excellent in affinity with an inorganic physical foaming agent such as carbon dioxide gas. Is obtained.

第4の発明における無機系物理発泡成形用ポリプロピレン樹脂組成物では、前記グラフト共重合体が、ポリプロピレン樹脂(a)中でエチレン性不飽和単量体(b)と有機過酸化物基を有するエチレン性不飽和単量体(c)とトルエン(d)とを含浸重合させて得られるポリプロピレン樹脂組成物前駆体を、有機過酸化物基を有するエチレン性不飽和単量体(c)の走査型示差熱量計を用いた10℃/minの昇温過程での分解開始温度よりも65〜120℃高い温度で溶融混練して形成される。   In the polypropylene resin composition for inorganic physical foam molding in the fourth invention, the graft copolymer is an ethylene having an ethylenically unsaturated monomer (b) and an organic peroxide group in the polypropylene resin (a). A polypropylene resin composition precursor obtained by impregnating and polymerizing a polymerizable unsaturated monomer (c) and toluene (d), and a scanning type of an ethylenically unsaturated monomer (c) having an organic peroxide group It is formed by melt-kneading at a temperature 65 to 120 ° C. higher than the decomposition start temperature in the temperature rising process of 10 ° C./min using a differential calorimeter.

従って、有機過酸化物基を有するエチレン性不飽和単量体(c)を用いない方法や、溶融混練温度が該有機過酸化物基を有するエチレン性不飽和単量体の分解開始温度よりも65℃未満または120℃を超える方法で得られた無機系物理発泡成形用ポリプロピレン樹脂組成物と比較して、樹脂組成物を発泡成形する際の条件に依存することなく、微細でかつ均一な気泡径を有する微細気泡発泡体が得られる。   Therefore, a method in which the ethylenically unsaturated monomer (c) having an organic peroxide group is not used, or the melt kneading temperature is higher than the decomposition start temperature of the ethylenically unsaturated monomer having an organic peroxide group. Compared with a polypropylene resin composition for inorganic physical foam molding obtained by a method of less than 65 ° C. or more than 120 ° C., fine and uniform air bubbles without depending on the conditions for foam molding of the resin composition A fine cell foam having a diameter is obtained.

第5の発明における無機系物理発泡成形用ポリプロピレン樹脂組成物では、第4の発明における有機過酸化物基を有するエチレン性不飽和単量体(c)がt−ブチルペルオキシメタクリロイルオキシエチルカーボネートまたはt−ブチルペルオキシアリルカーボネートである。このため、第4の発明の効果に加えて、エチレン性不飽和単量体(b)のグラフト反応と架橋反応とが円滑に進行するとともに、微細でかつ均一な気泡径を有する微細気泡発泡体が得られる。   In the polypropylene resin composition for inorganic physical foam molding in the fifth invention, the ethylenically unsaturated monomer (c) having an organic peroxide group in the fourth invention is t-butylperoxymethacryloyloxyethyl carbonate or t. -Butylperoxyallyl carbonate. For this reason, in addition to the effect of 4th invention, while the graft reaction and crosslinking reaction of ethylenically unsaturated monomer (b) advance smoothly, the fine bubble foam which has a fine and uniform bubble diameter Is obtained.

第6の発明における発泡体は、第1〜第5の発明によって得られたポリプロピレン樹脂組成物を無機系物理発泡剤で発泡させて得られる。従って、その発泡体は微細かつ均一な気泡を有しており、従来の方法で得られた発泡体と比較して、軽量性、機械的特性、耐熱性、断熱性、光学的特性などの品質が良好で安定した性能を発揮することができる。   The foam in the sixth invention is obtained by foaming the polypropylene resin composition obtained by the first to fifth inventions with an inorganic physical foaming agent. Therefore, the foam has fine and uniform air bubbles, and quality such as lightness, mechanical properties, heat resistance, heat insulation, optical properties, etc., compared with the foam obtained by the conventional method. Can exhibit good and stable performance.

以下、本発明を具体化した実施形態について詳細に説明する。
本実施形態の無機系物理発泡成形用ポリプロピレン樹脂組成物は、主鎖成分がポリプロピレン樹脂(a)、側鎖成分が下記化学式(1)で示される(メタ)アクリル酸エステルまたは下記化学式(2)で示されるカルボン酸ビニルであるエチレン性不飽和単量体(b)の重合体からなるグラフト共重合体を含有するものである。そして、前記グラフト共重合体を構成するエチレン性不飽和単量体(b)の重合体は、その数平均粒径が100〜1000nmで、数平均粒径に対する標準偏差が5〜20%でポリプロピレン樹脂(a)に分散した架橋体である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments embodying the present invention will be described in detail.
In the polypropylene resin composition for inorganic physical foam molding of this embodiment, the main chain component is a polypropylene resin (a), and the side chain component is a (meth) acrylate ester represented by the following chemical formula (1) or the following chemical formula (2). The graft copolymer which consists of a polymer of the ethylenically unsaturated monomer (b) which is vinyl carboxylate shown by these is contained. The polymer of the ethylenically unsaturated monomer (b) constituting the graft copolymer has a number average particle size of 100 to 1000 nm and a standard deviation of 5 to 20% with respect to the number average particle size. It is a crosslinked product dispersed in the resin (a).

Figure 2011168695
(Rは水素またはメチル基を示す。RはCm+1、m=1〜4の整数を示す。)
Figure 2011168695
(R 1 represents hydrogen or a methyl group. R 2 represents an integer of C m H m + 1 and m = 1 to 4.)

Figure 2011168695
(RはCn+1、n=1〜4の整数を示す。)
前記グラフト共重合体の主鎖成分であるポリプロピレン樹脂(a)は、プロピレン単独重合体、またはプロピレンを主体とし他のエチレンおよび炭素数4以上のα−オレフィンからなる群から選ばれた少なくとも一種のオレフィンとの共重合体で、いずれもプロピレンが共重合体中の75重量%以上を占めるものをいう。エチレンおよび炭素数4以上のα−オレフィンからなる群から選ばれた少なくとも一種のオレフィンとプロピレンとの共重合体としては、エチレンおよび炭素数4以上のα−オレフィンからなる群から選ばれた少なくとも一種のオレフィンとプロピレンとからなるプロピレン系ランダム共重合体、または、プロピレン単独重合体部分とプロピレン−エチレンランダム共重合体部分とを含有するプロピレン系ブロック共重合体が挙げられる。ポリプロピレン樹脂(a)の例としては、例えばアイソタクチックポリプロピレン、結晶性プロピレン−エチレンランダム共重合体、結晶性プロピレン−エチレンブロック共重合体、結晶性プロピレン−ブテン−1ランダム共重合体が挙げられる。
Figure 2011168695
(R 3 represents an integer of C n H n + 1, n = 1~4.)
The polypropylene resin (a), which is the main chain component of the graft copolymer, is at least one selected from the group consisting of propylene homopolymers or other ethylene and α-olefins having 4 or more carbon atoms mainly composed of propylene. Copolymers with olefins, all of which propylene accounts for 75% by weight or more of the copolymer. The copolymer of propylene and at least one olefin selected from the group consisting of ethylene and an α-olefin having 4 or more carbon atoms is at least one selected from the group consisting of ethylene and an α-olefin having 4 or more carbon atoms. And a propylene block copolymer containing a propylene homopolymer portion and a propylene-ethylene random copolymer portion. Examples of the polypropylene resin (a) include isotactic polypropylene, crystalline propylene-ethylene random copolymer, crystalline propylene-ethylene block copolymer, and crystalline propylene-butene-1 random copolymer. .

これらの中で、好ましくはアイソタクチックポリプロピレン、結晶性プロピレン−エチレンランダム共重合体、または結晶性プロピレン−エチレンブロック共重合体であり、より好ましくはアイソタクチックポリプロピレンである。これらのプロピレン樹脂は、単独でまたは2種類以上を混合して使用することもできる。   Among these, isotactic polypropylene, crystalline propylene-ethylene random copolymer, or crystalline propylene-ethylene block copolymer is preferable, and isotactic polypropylene is more preferable. These propylene resins can be used alone or in admixture of two or more.

前記ポリプロピレン樹脂(a)は、従来の成形機で成形加工可能な流動性を有するため、具体的には230℃、2.16kg荷重におけるメルトフローレート(MFR)が0.2〜40g/10minであることが好ましく、0.5〜20g/10minであることがより好ましい。このメルトフローレートが0.2g/10min未満の場合にはポリプロピレン樹脂の流動性が不足し、成形が難しくなる。一方、メルトフローレートが40g/10minを超える場合には射出成形体の機械的物性が悪化する。   Since the polypropylene resin (a) has fluidity that can be molded by a conventional molding machine, specifically, the melt flow rate (MFR) at 230 ° C. and a load of 2.16 kg is 0.2 to 40 g / 10 min. It is preferable that it is 0.5 to 20 g / 10 min. When this melt flow rate is less than 0.2 g / 10 min, the flowability of the polypropylene resin is insufficient and molding becomes difficult. On the other hand, when the melt flow rate exceeds 40 g / 10 min, the mechanical properties of the injection molded article deteriorate.

前記グラフト共重合体の側鎖成分である特定のエチレン性不飽和単量体(b)の重合体は、無機系物理発泡剤の代表である二酸化炭素ガスとの親和性に優れるものである。前記重合体の原料として使用されるエチレン性不飽和単量体(b)は、前記化学式(1)又は化学式(2)で示される単量体である。   The polymer of the specific ethylenically unsaturated monomer (b), which is a side chain component of the graft copolymer, is excellent in affinity with carbon dioxide gas, which is a representative inorganic physical foaming agent. The ethylenically unsaturated monomer (b) used as a raw material for the polymer is a monomer represented by the chemical formula (1) or the chemical formula (2).

化学式(1)で示されるエチレン性不飽和単量体(b)としては、例えばアクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸−n−プロピル、メタクリル酸−n−プロピル、アクリル酸イソプロピル、メタクリル酸イソプロピル、アクリル酸−n−ブチル、メタクリル酸−n−ブチル、アクリル酸−sec−ブチル、メタクリル酸−sec−ブチル、アクリル酸−t−ブチル、メタクリル酸−t−ブチル等が挙げられる。これらの中で、好ましくはアクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸−n−プロピル、メタクリル酸−n−プロピル、アクリル酸−n−ブチルまたはメタクリル酸−n−ブチルであり、さらに好ましくはメタクリル酸メチルである。これらのエチレン性不飽和単量体は、単独でまたは2種類以上を混合して使用することもできる。   Examples of the ethylenically unsaturated monomer (b) represented by the chemical formula (1) include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, acrylic acid-n-propyl, and methacrylic acid-n-propyl. , Isopropyl acrylate, isopropyl methacrylate, acrylic acid-n-butyl, methacrylic acid-n-butyl, acrylic acid-sec-butyl, methacrylic acid-sec-butyl, acrylic acid-t-butyl, methacrylic acid-t-butyl Etc. Among these, preferably methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, acrylic acid-n-propyl, methacrylic acid-n-propyl, acrylic acid-n-butyl or methacrylic acid-n-butyl More preferably, it is methyl methacrylate. These ethylenically unsaturated monomers can be used alone or in admixture of two or more.

化学式(2)で示されるエチレン性不飽和単量体(b)としては、例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、吉草酸ビニル、ピバリン酸ビニル等が挙げられる。これらの中で、好ましくは酢酸ビニル、プロピオン酸ビニルまたは酪酸ビニルであり、最も好ましくは酢酸ビニルである。これらのエチレン性不飽和単量体は、単独でまたは2種類以上を混合して使用することもできる。   Examples of the ethylenically unsaturated monomer (b) represented by the chemical formula (2) include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valerate, and vinyl pivalate. Among these, vinyl acetate, vinyl propionate or vinyl butyrate is preferable, and vinyl acetate is most preferable. These ethylenically unsaturated monomers can be used alone or in admixture of two or more.

前記グラフト共重合体の側鎖成分である特定のエチレン性不飽和単量体(b)の重合体は、架橋体であることが必要である。架橋体でない場合、得られたポリプロピレン樹脂組成物を発泡成形する際の条件に依存して、特定のエチレン性不飽和単量対(b)の重合体の分散粒子径や分散粒子の均一性が変化し、微細でかつ均一な気泡径を有し、経時的に安定な微細気泡発泡体が得られない。   The polymer of the specific ethylenically unsaturated monomer (b) that is a side chain component of the graft copolymer needs to be a crosslinked product. If it is not a cross-linked product, depending on the conditions when foam-molding the obtained polypropylene resin composition, the dispersed particle size and the uniformity of the dispersed particles of the polymer of a specific ethylenically unsaturated monomer pair (b) The fine bubble foam which changes and has a fine and uniform bubble diameter and is stable over time cannot be obtained.

前記特定のエチレン性不飽和単量体(b)の重合体が架橋体か否かは、ポリプロピレン樹脂組成物を円筒濾紙に入れ、溶解可能な溶媒(例えばキシレン)を用いて還流下でソックスレー抽出した際に、抽出液中に存在するエチレン性不飽和単量体(b)の重合体の質量を仕込みのエチレン性不飽和単量体(b)の重合体の質量で割った百分率が5%以下であることで確認することができる。   Whether the polymer of the specific ethylenically unsaturated monomer (b) is a cross-linked product is determined by placing the polypropylene resin composition in a cylindrical filter paper and extracting with a soluble solvent (for example, xylene) under reflux with Soxhlet extraction. When the mass of the polymer of the ethylenically unsaturated monomer (b) present in the extract was divided by the mass of the polymer of the ethylenically unsaturated monomer (b) charged, 5% It can be confirmed by the following.

前記架橋体は、軽量性、機械的特性、耐熱性、断熱性および光学的特性に優れかつ品質の安定な発泡体が得られるという点で、数平均粒径が100〜1000nm、その数平均粒径に対する標準偏差が5〜20%で分散されていることが必要である。数平均粒径が1000nmを上回る場合には、発泡成形により平均気泡径が1000nm以下という微細気泡発泡体が得られなくなる。一方、数平均粒径が100nmを下回る場合には、架橋体の分散粒径が微細になり過ぎてその調製に困難を伴う。また、上記標準偏差が20%を超える場合には、架橋体の分散粒子の粒径がばらつき、発泡成形後に所望とする微細気泡発泡体が得られなくなる。一方、標準偏差が5%未満の場合には、架橋体の製造条件が難しくなる。   The crosslinked product has a number average particle size of 100 to 1000 nm, and its number average particle size is excellent in lightness, mechanical properties, heat resistance, heat insulation and optical properties, and a stable quality product is obtained. It is necessary that the standard deviation with respect to the diameter is dispersed at 5 to 20%. When the number average particle diameter exceeds 1000 nm, a fine cell foam having an average cell diameter of 1000 nm or less cannot be obtained by foam molding. On the other hand, when the number average particle diameter is less than 100 nm, the dispersed particle diameter of the crosslinked product becomes too fine, and the preparation thereof is difficult. On the other hand, when the standard deviation exceeds 20%, the particle diameter of the dispersed particles of the crosslinked product varies, and a desired fine cell foam cannot be obtained after foam molding. On the other hand, when the standard deviation is less than 5%, it is difficult to produce the crosslinked product.

架橋体の分散粒子の数平均粒径および数平均粒径に対する標準偏差の測定法は、得られたポリプロピレン樹脂組成物(成形体)から、ウルトラミクロトームで厚み50〜100nmの超薄切片を作製し、透過型電子顕微鏡(TEM)観察により得られるエチレン性不飽和単量体(b)の重合体の分散粒子像から測定される。数平均粒径は、視野内で確認可能な独立した粒子の数を100μm(縦10μm、横10μm)以上の範囲でカウントし、少なくとも合計100個の粒子径を目盛り付き定規で測定し、数平均により算出した数平均粒径を意味する。但し、TEM観察により得られる粒子像が円形でない場合、粒子の占める面積を算出した後、同面積を有する円形に置き換えた時の円の直径を粒子径と称する。記架橋体の分散粒径の均一性を示す数平均粒径に対する標準偏差は、前記数平均粒径を測定するために得られたそれぞれの粒径の標準偏差(σ)を算出し、数平均粒径あたりに直すことで求めた。 The number average particle diameter of the dispersed particles of the crosslinked body and the standard deviation measurement method with respect to the number average particle diameter are obtained by preparing ultrathin sections having a thickness of 50 to 100 nm with an ultramicrotome from the obtained polypropylene resin composition (molded body). It is measured from the dispersed particle image of the polymer of the ethylenically unsaturated monomer (b) obtained by observation with a transmission electron microscope (TEM). The number average particle size is determined by counting the number of independent particles that can be confirmed in the field of view within a range of 100 μm 2 (10 μm length, 10 μm width) or more, and measuring at least a total of 100 particle sizes with a graduated ruler. It means the number average particle size calculated by averaging. However, when the particle image obtained by TEM observation is not circular, the diameter of the circle when the area occupied by the particle is calculated and then replaced with a circle having the same area is referred to as the particle diameter. The standard deviation with respect to the number average particle size indicating the uniformity of the dispersed particle size of the crosslinked product is calculated by calculating the standard deviation (σ) of each particle size obtained for measuring the number average particle size. It calculated | required by correcting per particle size.

前記グラフト共重合体の主鎖成分であるポリプロピレン樹脂(a)と側鎖成分であるエチレン性不飽和単量体(b)の架橋体との質量比率は、好ましくは95/5〜5/95の範囲である。前記グラフト共重合体のポリプロピレン樹脂(a)の質量が95質量%を超えると、発泡が起こらなくなる。一方、ポリプロピレン樹脂(a)の質量が5質量%未満であると、グラフト共重合体にさらにポリプロピレン樹脂(a)を混合した場合、均一な分散性を示さないため、良好な微細気泡発泡体が得られなくなる。   The mass ratio of the polypropylene resin (a) which is the main chain component of the graft copolymer and the crosslinked product of the ethylenically unsaturated monomer (b) which is the side chain component is preferably 95/5 to 5/95. Range. When the mass of the polypropylene resin (a) of the graft copolymer exceeds 95% by mass, foaming does not occur. On the other hand, when the polypropylene resin (a) is less than 5% by mass, when the polypropylene resin (a) is further mixed with the graft copolymer, uniform dispersibility is not exhibited. It can no longer be obtained.

ここで、ポリプロピレン樹脂組成物には、前記グラフト共重合体にポリプロピレン樹脂(a)をさらに添加することも可能である。ポリプロピレン樹脂(a)の添加量は、グラフト共重合しているかいないかにかかわらず、ポリプロピレン樹脂組成物中のポリプロピレン樹脂とエチレン性不飽和単量体(b)の重合体との質量比率が、95/5〜55/45の範囲であれば特に限定されない。この場合、ポリプロピレン樹脂を海とし、エチレン性不飽和単量体(b)の重合体を島とする海島構造を有するポリマーアロイが形成される。ポリプロピレン樹脂組成物中のポリプロピレン樹脂が95質量%を超えると、ポリプロピレン樹脂組成物の発泡が起こり難くなる。一方、ポリプロピレン樹脂組成物中のポリプロピレン樹脂が45質量%未満であると、海島構造を有するポリマーアロイの島を形成するエチレン性不飽和単量体(b)の重合体が海を形成するために、気泡が合一して微細気泡発泡体となり難くなる。   Here, it is also possible to add a polypropylene resin (a) to the graft copolymer to the polypropylene resin composition. The addition amount of the polypropylene resin (a) is such that the mass ratio of the polypropylene resin and the polymer of the ethylenically unsaturated monomer (b) in the polypropylene resin composition is 95 regardless of whether or not graft copolymerization is performed. If it is the range of / 5-55 / 45, it will not specifically limit. In this case, a polymer alloy having a sea-island structure in which the polypropylene resin is the sea and the polymer of the ethylenically unsaturated monomer (b) is an island is formed. When the polypropylene resin in the polypropylene resin composition exceeds 95% by mass, foaming of the polypropylene resin composition hardly occurs. On the other hand, if the polypropylene resin in the polypropylene resin composition is less than 45% by mass, the polymer of the ethylenically unsaturated monomer (b) that forms the island of the polymer alloy having the sea-island structure forms the sea. , It becomes difficult for the bubbles to coalesce into a fine bubble foam.

次に、前記グラフト共重合体の製造方法について説明する。
グラフト共重合体は、ポリプロピレン樹脂(a)中でエチレン性不飽和単量体(b)と有機過酸化物基を有するエチレン性不飽和単量体(c)とトルエン(d)との混合物を共重合体させたポリプロピレン樹脂組成物前駆体を、前記エチレン性不飽和単量体(c)の分解開始温度より65〜120℃高い温度で溶融混練する方法で得られる。
Next, the manufacturing method of the said graft copolymer is demonstrated.
The graft copolymer is a mixture of an ethylenically unsaturated monomer (b), an ethylenically unsaturated monomer having an organic peroxide group (c), and toluene (d) in a polypropylene resin (a). It is obtained by a method of melt-kneading a copolymerized polypropylene resin composition precursor at a temperature 65 to 120 ° C. higher than the decomposition start temperature of the ethylenically unsaturated monomer (c).

このグラフト共重合体の製造方法は、従来公知の方法が採用されるが、中でも以下に示す方法が最も好ましい方法である。この方法は、以下に示す二つの工程からなる。即ち、ポリプロピレン樹脂組成物前駆体を得る含浸重合工程と、グラフト共重合体を含有するポリプロピレン樹脂組成物を得るグラフト化工程とを備えている。含浸重合工程は、ポリプロピレン樹脂(a)中にエチレン性不飽和単量体(b)と有機過酸化物基を有するエチレン性不飽和単量体(c)とトルエン(d)との混合物を含浸させた後、ラジカル重合開始剤により共重合することによってポリプロピレン樹脂組成物前駆体を得る工程である。グラフト化工程は、ポリプロピレン樹脂組成物前駆体を溶融混練してグラフト共重合体を含有するポリプロピレン樹脂組成物を得る工程である。   Conventionally known methods are employed as the method for producing the graft copolymer, but the method shown below is the most preferable method. This method consists of the following two steps. That is, an impregnation polymerization step for obtaining a polypropylene resin composition precursor and a grafting step for obtaining a polypropylene resin composition containing a graft copolymer are provided. In the impregnation polymerization step, a polypropylene resin (a) is impregnated with a mixture of an ethylenically unsaturated monomer (b), an ethylenically unsaturated monomer (c) having an organic peroxide group, and toluene (d). And a step of obtaining a polypropylene resin composition precursor by copolymerization with a radical polymerization initiator. The grafting step is a step of obtaining a polypropylene resin composition containing a graft copolymer by melt-kneading a polypropylene resin composition precursor.

前記含浸重合工程は、エチレン性不飽和単量体(b)と有機過酸化物基を有するエチレン性不飽和単量体(c)とトルエン(d)との混合物にラジカル重合開始剤を加え、有機過酸化物基を有するエチレン性不飽和単量体(c)の有機過酸化物基の分解が実質的に起こらない条件で加熱する方法であれば特に限定されない。   In the impregnation polymerization step, a radical polymerization initiator is added to a mixture of an ethylenically unsaturated monomer (b), an ethylenically unsaturated monomer having an organic peroxide group (c), and toluene (d), If it is the method of heating on the conditions which decomposition | disassembly of the organic peroxide group of the ethylenically unsaturated monomer (c) which has an organic peroxide group does not occur substantially, it will not specifically limit.

有機過酸化物基を有するエチレン性不飽和単量体(c)としては、公知のものが用いられる。具体的には、t−ブチルペルオキシアクリロイルオキシエチルカーボネート(分解開始温度135℃)、t−アミルペルオキシアクリロイルオキシエチルカーボネート(分解開始温度133℃)、t−ヘキシルペルオキシアクリロイルオキシエチルカーボネート(分解開始温度130℃)、t−ブチルペルオキシメタクリロイルオキシエチルカーボネート(分解開始温度136℃)、t−アミルペルオキシメタクリロイルオキシエチルカーボネート(分解開始温度134℃)、t−ヘキシルペルオキシメタクリロイルオキシエチルカーボネート(分解開始温度131℃)等の共役系エチレン性不飽和単量体が、t−ブチルペルオキシアリルカーボネート(分解開始温度130℃)、t−アミルペルオキシアリルカーボネート(分解開始温度128℃)、t−ヘキシルペルオキシアリルカーボネート(分解開始温度125℃)等の非共役系エチレン性不飽和単量体が挙げられる。これらのうち、共役系エチレン性不飽和単量体としてt−ブチルペルオキシメタクリロイルオキシエチルカーボネート(分解開始温度136℃)が、非共役系エチレン性不飽和単量体としてt−ブチルペルオキシアリルカーボネート(分解開始温度130℃)がより好ましい。これらは、単独或いは2種類以上を混合して用いても良い。   A well-known thing is used as an ethylenically unsaturated monomer (c) which has an organic peroxide group. Specifically, t-butylperoxyacryloyloxyethyl carbonate (decomposition start temperature 135 ° C.), t-amyl peroxyacryloyloxyethyl carbonate (decomposition start temperature 133 ° C.), t-hexyl peroxyacryloyloxyethyl carbonate (decomposition start temperature 130). ° C), t-butylperoxymethacryloyloxyethyl carbonate (decomposition start temperature 136 ° C), t-amyl peroxymethacryloyloxyethyl carbonate (decomposition start temperature 134 ° C), t-hexylperoxymethacryloyloxyethyl carbonate (decomposition start temperature 131 ° C) Conjugated ethylenically unsaturated monomers such as t-butyl peroxyallyl carbonate (decomposition start temperature 130 ° C.), t-amyl peroxyallyl carbonate (decomposition start temperature 1) 8 ° C.), a non-conjugated ethylenically unsaturated monomers such as t- hexyl peroxy allyl carbonate (decomposition temperature 125 ° C.) and the like. Among these, t-butylperoxymethacryloyloxyethyl carbonate (decomposition start temperature 136 ° C.) is used as the conjugated ethylenically unsaturated monomer, and t-butylperoxyallyl carbonate (decomposed) is used as the nonconjugated ethylenically unsaturated monomer. More preferred is a starting temperature of 130 ° C. You may use these individually or in mixture of 2 or more types.

この有機過酸化物基を有するエチレン性不飽和単量体(c)の使用量は、エチレン性不飽和単量体(b)と有機過酸化物基を有するエチレン性不飽和単量体(c)との混合物100質量部に対して好ましくは0.1〜5質量部、より好ましくは0.5〜3質量部である。この使用量が0.1質量部未満であると、ポリプロピレン樹脂組成物前駆体の有する活性酸素が少なく、十分なグラフト共重合体が得られなくなる。一方、使用量が5質量部を超えると、前記グラフト化工程でラジカルが多く発生するため、エチレン性不飽和単量体(b)の重合体より形成される架橋体の架橋度が高くなり、ポリプロピレン樹脂組成物を成形してなる成形体の外観が悪くなり、成形体の発泡がし難くなる。   The amount of the ethylenically unsaturated monomer (c) having an organic peroxide group is such that the ethylenically unsaturated monomer (b) and the ethylenically unsaturated monomer having an organic peroxide group (c Preferably, it is 0.1-5 mass parts with respect to 100 mass parts of mixtures with 0.5, More preferably, it is 0.5-3 mass parts. When the amount used is less than 0.1 part by mass, the polypropylene resin composition precursor has a small amount of active oxygen, and a sufficient graft copolymer cannot be obtained. On the other hand, when the amount used exceeds 5 parts by mass, a large amount of radicals are generated in the grafting step, so the degree of crosslinking of the crosslinked product formed from the polymer of the ethylenically unsaturated monomer (b) increases. The appearance of the molded product formed by molding the polypropylene resin composition is deteriorated, and the molded product is difficult to foam.

前記トルエン(d)は、含浸重合工程におけるエチレン性不飽和単量体(b)がポリプロピレン樹脂(a)中に均一に含浸されるようにするための溶剤だけでなく、含浸重合工程におけるエチレン性不飽和単量体(b)を重合する際の分子量調節剤やグラフト化工程におけるエチレン性不飽和単量体(b)の重合体の架橋体が均一に反応できるようにするための溶剤として働く重要な物質である。   The toluene (d) is not only a solvent for uniformly impregnating the ethylenically unsaturated monomer (b) in the impregnation polymerization step into the polypropylene resin (a), but also the ethylenic property in the impregnation polymerization step. Acts as a molecular weight regulator for polymerizing the unsaturated monomer (b) and a solvent for uniformly reacting a crosslinked product of the polymer of the ethylenically unsaturated monomer (b) in the grafting step It is an important substance.

トルエン(d)の添加量は、エチレン性不飽和単量体(b)100質量部に対して0.5〜10質量部が好ましく、0.7〜2質量部がさらに好ましい。前記トルエン(d)の添加量が0.5質量部未満であると、含浸重合工程においてエチレン性不飽和単量体(b)の重合が不均一となりやすく、その後のグラフト化工程で不均一な反応が起こるため、エチレン性不飽和単量体(b)の重合体即ち架橋体の分散粒径が不均一となる。一方、トルエン(d)の添加量が10質量部を超えると、得られるポリプロピレン樹脂組成物中に残存するトルエン量が多くなるため、成形時の外観が悪化する。   0.5-10 mass parts is preferable with respect to 100 mass parts of ethylenically unsaturated monomers (b), and, as for the addition amount of toluene (d), 0.7-2 mass parts is more preferable. When the amount of toluene (d) added is less than 0.5 parts by mass, the polymerization of the ethylenically unsaturated monomer (b) tends to be non-uniform in the impregnation polymerization step, and non-uniform in the subsequent grafting step. Since the reaction occurs, the dispersed particle size of the polymer of the ethylenically unsaturated monomer (b), that is, the crosslinked product becomes non-uniform. On the other hand, when the amount of toluene (d) added exceeds 10 parts by mass, the amount of toluene remaining in the resulting polypropylene resin composition increases, and the appearance during molding deteriorates.

前記ラジカル重合開始剤は、10時間の半減期を得るための分解温度(以下、10時間半減期温度という)が好ましくは40〜90℃、さらに好ましくは50〜75℃の化合物である。なぜなら、含浸重合工程における重合は先述したように、使用される有機過酸化物基を有するエチレン性不飽和単量体(c)が分解しない条件で行われなければならないからである。有機過酸化物基を有するエチレン性不飽和単量体(c)の10時間半減期温度は90〜110℃であるため、重合温度は90℃以下であることが好ましい。   The radical polymerization initiator is a compound having a decomposition temperature for obtaining a half-life of 10 hours (hereinafter referred to as a 10-hour half-life temperature) of preferably 40 to 90 ° C, more preferably 50 to 75 ° C. This is because, as described above, the polymerization in the impregnation polymerization process must be performed under the condition that the ethylenically unsaturated monomer (c) having an organic peroxide group to be used is not decomposed. Since the 10-hour half-life temperature of the ethylenically unsaturated monomer (c) having an organic peroxide group is 90 to 110 ° C, the polymerization temperature is preferably 90 ° C or lower.

前記ラジカル重合開始剤の10時間半減期温度が90℃を超えると、重合温度が高くなり、有機過酸化物基を有するエチレン性不飽和単量体(c)が重合中に分解する可能性がある。一方、ラジカル重合開始剤の10時間半減期温度が40℃未満であると、ポリプロピレン樹脂(a)にラジカル重合開始剤が含浸される過程でラジカルが発生してしまう。その結果、生成するポリプロピレン樹脂組成物前駆体の組成が不均一となりやすく、その後のグラフト化工程で不均一な反応が起こるため、エチレン性不飽和単量体(b)の重合体即ち架橋体の分散粒径が不均一となる。ここで、10時間半減期温度とは、ベンゼン1リットル中にラジカル重合開始剤を0.1モル添加し、ある温度で10時間経過したとき、ラジカル重合開始剤の分解率が50%となる温度をいう。   When the 10-hour half-life temperature of the radical polymerization initiator exceeds 90 ° C., the polymerization temperature increases, and the ethylenically unsaturated monomer (c) having an organic peroxide group may be decomposed during the polymerization. is there. On the other hand, when the 10-hour half-life temperature of the radical polymerization initiator is less than 40 ° C., radicals are generated in the process of impregnating the polypropylene resin (a) with the radical polymerization initiator. As a result, the composition of the resulting polypropylene resin composition precursor tends to be non-uniform, and a non-uniform reaction occurs in the subsequent grafting step. Therefore, the polymer of the ethylenically unsaturated monomer (b), that is, the crosslinked product The dispersed particle size becomes non-uniform. Here, the 10-hour half-life temperature is a temperature at which the decomposition rate of the radical polymerization initiator is 50% when 0.1 mole of the radical polymerization initiator is added to 1 liter of benzene and 10 hours have passed at a certain temperature. Say.

このようなラジカル重合開始剤としては、例えばジ−n−プロピルペルオキシジカーボネート(10時間半減期温度40.3℃)、ジイソプロピルペルオキシジカーボネート(10時間半減期温度40.5℃)、ジ(2−エチルヘキシル)ペルオキシジカーボネート(10時間半減期温度43.6℃)、t−ヘキシルペルオキシネオデカネート(10時間半減期温度44.7℃)、t−ブチルペルオキシネオデカネート(10時間半減期温度46.5℃)、t−ヘキシルペルオキシピバレート(10時間半減期温度53.2℃)、t−ブチルペルオキシピバレート(10時間半減期温度55.0℃)、ジ(3,3,5−トリメチルヘキサノイル)ペルオキシド(10時間半減期温度59.5℃)、ジラウロイルペルオキシド(10時間半減期温度62.0℃)、t−ヘキシルペルオキシ−2−エチルヘキサノエート(10時間半減期温度69.9℃)、t−ブチルペルオキシ−2−エチルヘキサノエート(10時間半減期温度72.5℃)、ジベンゾイルペルオキシド(74℃)等が挙げられる。これらは、単独または2種類以上を混合して用いても良い。   Examples of such radical polymerization initiators include di-n-propyl peroxydicarbonate (10-hour half-life temperature 40.3 ° C.), diisopropyl peroxydicarbonate (10-hour half-life temperature 40.5 ° C.), di (2 -Ethylhexyl) peroxydicarbonate (10-hour half-life temperature 43.6 ° C), t-hexyl peroxyneodecanate (10-hour half-life temperature 44.7 ° C), t-butylperoxyneodecanate (10-hour half-life temperature) 46.5 ° C.), t-hexyl peroxypivalate (10 hour half-life temperature 53.2 ° C.), t-butyl peroxypivalate (10 hour half-life temperature 55.0 ° C.), di (3,3,5- Trimethylhexanoyl) peroxide (10-hour half-life temperature 59.5 ° C), dilauroyl peroxide (10-hour half-life) 62.0 ° C), t-hexylperoxy-2-ethylhexanoate (10-hour half-life temperature 69.9 ° C), t-butylperoxy-2-ethylhexanoate (10-hour half-life temperature 72.5 ° C) ° C), dibenzoyl peroxide (74 ° C) and the like. You may use these individually or in mixture of 2 or more types.

ラジカル重合開始剤の使用量は、エチレン性不飽和単量体混合物の合計100質量部に対し、好ましくは0.01〜5質量部、より好ましくは0.1〜3質量部である。ラジカル重合開始剤の使用量が0.01質量部未満であると、エチレン性不飽和単量体(b)と有機過酸化物基を有するエチレン性不飽和単量体(c)との混合物の重合が完全に行われず、良好な成形体が得られない。一方、ラジカル重合開始剤の使用量が5質量部を超えると、重合中にポリプロピレン樹脂(a)のラジカル分解による低分子量化によって、得られるポリプロピレン樹脂組成物成形体の機械的強度が低下する。   The amount of the radical polymerization initiator used is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass in total of the ethylenically unsaturated monomer mixture. When the amount of the radical polymerization initiator used is less than 0.01 parts by mass, the mixture of the ethylenically unsaturated monomer (b) and the ethylenically unsaturated monomer (c) having an organic peroxide group Polymerization is not performed completely and a good molded product cannot be obtained. On the other hand, when the usage-amount of a radical polymerization initiator exceeds 5 mass parts, the mechanical strength of the polypropylene resin composition molded object obtained will fall by the low molecular weight reduction by radical decomposition of polypropylene resin (a) during superposition | polymerization.

前記エチレン性不飽和単量体(b)と有機過酸化物基を有するエチレン性不飽和単量体(c)との混合物の共重合体の重量平均分子量(Mw)は、示差屈折率検出器を備えたゲル浸透クロマトグラフィ(ゲルパーミエーションクロマトグラフィ、GPCともいう)によるポリスチレン換算値で表される。その重量平均分子量は、好ましくは5万〜300万、より好ましくは10万〜200万である。この重量平均分子量が5万未満の場合、エチレン性不飽和単量体(b)の重合体の架橋体を得るには、エチレン性不飽和単量体(b)と有機過酸化物基を有するエチレン性不飽和単量体(c)との混合物中の有機過酸化物基を有するエチレン性不飽和単量体(c)が10質量%を超えてしまう。そのため、グラフト化工程でラジカルが多く発生し、ポリプロピレン樹脂(a)のラジカル分解による低分子量化によって、得られるポリプロピレン樹脂組成物成形体の機械的強度が低下する。一方、重量平均分子量が300万を超えた場合、後のグラフト化工程での溶融混練が困難となる。   The weight average molecular weight (Mw) of the copolymer of the mixture of the ethylenically unsaturated monomer (b) and the ethylenically unsaturated monomer (c) having an organic peroxide group is a differential refractive index detector. It is represented by a polystyrene conversion value by gel permeation chromatography (also referred to as gel permeation chromatography, also referred to as GPC). The weight average molecular weight is preferably 50,000 to 3,000,000, more preferably 100,000 to 2,000,000. When this weight average molecular weight is less than 50,000, in order to obtain a crosslinked product of a polymer of ethylenically unsaturated monomer (b), it has an ethylenically unsaturated monomer (b) and an organic peroxide group. The ethylenically unsaturated monomer (c) having an organic peroxide group in the mixture with the ethylenically unsaturated monomer (c) exceeds 10% by mass. Therefore, a lot of radicals are generated in the grafting step, and the mechanical strength of the obtained molded polypropylene resin composition is lowered due to the low molecular weight due to radical decomposition of the polypropylene resin (a). On the other hand, when the weight average molecular weight exceeds 3 million, melt kneading in the subsequent grafting step becomes difficult.

前記含浸重合工程の方法は、一般に行われている水性懸濁重合法により行われる。即ち、ポリプロピレン樹脂(a)とこれとは別に調製したラジカル重合開始剤をエチレン性不飽和単量体(b)と有機過酸化物基を有するエチレン性不飽和単量体(c)とトルエン(d)との混合物に溶解させた溶液とを、水性懸濁重合に使用可能な懸濁剤の存在下で水中に攪拌分散される。懸濁剤としては、例えば水溶性重合体である(部分ケン化)ポリビニルアルコール、ポリビニルピロリドン、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等、或いは難水溶性無機物質であるリン酸カルシウム、酸化マグネシウム等が用いられる。   The method of the impregnation polymerization step is performed by a commonly used aqueous suspension polymerization method. That is, a polypropylene resin (a) and a radical polymerization initiator prepared separately from the ethylenically unsaturated monomer (b), an ethylenically unsaturated monomer (c) having an organic peroxide group, and toluene ( The solution dissolved in the mixture with d) is stirred and dispersed in water in the presence of a suspending agent that can be used for aqueous suspension polymerization. As the suspending agent, for example, water-soluble polymer (partially saponified) polyvinyl alcohol, polyvinyl pyrrolidone, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, or the like, or a poorly water-soluble inorganic substance such as calcium phosphate, magnesium oxide or the like is used. .

この際、ポリプロピレン樹脂(a)に対する前記溶液の含浸は、できるだけ高温で行うことが好ましい。しかしながら、含浸時にラジカル重合開始剤が分解して重合を開始してしまうと、生成するポリプロピレン樹脂組成物前駆体の組成が不均一となりやすく、その後のグラフト化工程で不均一な反応が起こるため、エチレン性不飽和単量体(b)の重合体の架橋体の分散粒径が不均一となる。そのため、一般的には、使用されるラジカル重合開始剤の10時間半減期温度よりも5℃以上低い温度で行うのが好ましい。   At this time, the impregnation of the solution into the polypropylene resin (a) is preferably performed at as high a temperature as possible. However, if the radical polymerization initiator decomposes and starts polymerization during impregnation, the composition of the resulting polypropylene resin composition precursor tends to be non-uniform, and a non-uniform reaction occurs in the subsequent grafting step. The dispersed particle size of the crosslinked polymer of the ethylenically unsaturated monomer (b) becomes non-uniform. Therefore, generally, it is preferable to carry out at a temperature lower by 5 ° C. or more than the 10-hour half-life temperature of the radical polymerization initiator used.

また、遊離のエチレン性不飽和単量体(b)と有機過酸化物基を有するエチレン性不飽和単量体(c)とトルエン(d)の混合物とラジカル重合開始剤とをポリプロピレン樹脂(a)に含浸させる条件は、始めの添加量の50質量%より少なくなるまで、好ましくは20質量%より少なくなるまで含浸を行うのが好ましい。この量が50質量%以上であると、生成するポリプロピレン樹脂組成物前駆体の組成が不均一となりやすく、その後のグラフト化工程で不均一な反応が起こるため、エチレン性不飽和単量体(b)の重合体の架橋体の分散粒径が不均一となる。   Further, a mixture of a free ethylenically unsaturated monomer (b), an ethylenically unsaturated monomer (c) having an organic peroxide group, and toluene (d) and a radical polymerization initiator are mixed with a polypropylene resin (a It is preferable that the impregnation is carried out until the amount added is less than 50% by mass, preferably less than 20% by mass. When this amount is 50% by mass or more, the composition of the polypropylene resin composition precursor to be produced tends to be non-uniform, and a non-uniform reaction occurs in the subsequent grafting step. ), The dispersed particle size of the crosslinked polymer becomes non-uniform.

遊離のエチレン性不飽和単量体(b)と有機過酸化物基を有するエチレン性不飽和単量体(c)との混合物とラジカル重合開始剤の合計量は、水性懸濁液の任意量をサンプリングし、これを300メッシュ程度の金網を用いて手早く濾過して、ポリプロピレン樹脂(a)と液相とに分離し、液相中のエチレン性不飽和単量体混合物とラジカル重合開始剤の量を測定して算出する。   The total amount of the mixture of the free ethylenically unsaturated monomer (b) and the ethylenically unsaturated monomer having an organic peroxide group (c) and the radical polymerization initiator is an arbitrary amount of the aqueous suspension. And is quickly filtered using a wire mesh of about 300 mesh to separate into a polypropylene resin (a) and a liquid phase, and the mixture of the ethylenically unsaturated monomer in the liquid phase and the radical polymerization initiator. Measure and calculate the amount.

ポリプロピレン樹脂組成物前駆体を得るための重合は、通常30〜110℃の温度で行われる。なぜなら、重合中における有機過酸化物基を有するエチレン性不飽和単量体(c)の分解を可能な限り防止するためである。この温度が110℃を超えた場合、重合時間が5時間以上になると、有機過酸化物基を有するエチレン性不飽和単量体(c)の分解が起こり、ポリプロピレン樹脂(a)のラジカル分解による低分子量化によって、得られるポリプロピレン樹脂組成物成形体の機械的強度が低下する。重合時間としては一般に2〜20時間が適当である。   The polymerization for obtaining the polypropylene resin composition precursor is usually performed at a temperature of 30 to 110 ° C. This is to prevent decomposition of the ethylenically unsaturated monomer (c) having an organic peroxide group during polymerization as much as possible. When this temperature exceeds 110 ° C., when the polymerization time is 5 hours or more, the ethylenically unsaturated monomer (c) having an organic peroxide group is decomposed, and due to radical decomposition of the polypropylene resin (a). By lowering the molecular weight, the mechanical strength of the obtained molded polypropylene resin composition is lowered. In general, the polymerization time is suitably 2 to 20 hours.

含浸重合工程において、作業性や物性を損なわない程度に、分子量調節剤としての連鎖移動剤や多官能エチレン性不飽和単量体を併用することができる。
前記グラフト化工程は、前述したポリプロピレン樹脂組成物前駆体を、前記有機過酸化物基を有するエチレン性不飽和単量体(c)の分解開始温度よりも65〜120℃高い温度で溶融混練して行われる。このグラフト化工程により、ポリプロピレン樹脂組成物の成形体が得られる。前記有機過酸化物基を有するエチレン性不飽和単量体(c)中の有機過酸化物基は、溶融混練によりグラフト共重合体の主鎖となるポリプロピレン樹脂(a)とのグラフト反応に寄与している。加えて、グラフト反応温度が有機過酸化物基を有するエチレン性不飽和単量体(c)の分解開始温度よりも65〜120℃高い温度であると、グラフト反応だけでなく、グラフト共重合体の側鎖となるエチレン性不飽和単量体(b)の重合体の架橋反応にも寄与する。
In the impregnation polymerization step, a chain transfer agent as a molecular weight regulator or a polyfunctional ethylenically unsaturated monomer can be used in combination so as not to impair workability and physical properties.
In the grafting step, the aforementioned polypropylene resin composition precursor is melt-kneaded at a temperature 65 to 120 ° C. higher than the decomposition start temperature of the ethylenically unsaturated monomer (c) having the organic peroxide group. Done. By this grafting step, a molded product of the polypropylene resin composition is obtained. The organic peroxide group in the ethylenically unsaturated monomer (c) having the organic peroxide group contributes to the graft reaction with the polypropylene resin (a) that becomes the main chain of the graft copolymer by melt kneading. is doing. In addition, when the graft reaction temperature is 65 to 120 ° C. higher than the decomposition start temperature of the ethylenically unsaturated monomer (c) having an organic peroxide group, not only the graft reaction but also the graft copolymer It contributes also to the crosslinking reaction of the polymer of the ethylenically unsaturated monomer (b) which becomes the side chain of

ここで、溶融混練温度と有機過酸化物基を有するエチレン性不飽和単量体(c)の分解開始温度との差が65℃未満の場合には、エチレン性不飽和単量体(b)の重合体が架橋体とならないため、得られるポリプロピレン樹脂組成物を発泡成形する際の条件に依存して、微細でかつ均一な気泡径を有する微細気泡発泡体が得られない。一方、溶融混練温度と有機過酸化物基を有するエチレン性不飽和単量体(c)の分解開始温度との差が120℃を超える場合には、溶融混練の際にラジカルが瞬時に発生するため失活してしまう。従って、グラフト反応および架橋反応が起こらなくなり、得られるポリプロピレン樹脂組成物を発泡成形する際の条件に依存して、微細でかつ均一な気泡径を有する微細気泡発泡体が得られない。   Here, when the difference between the melt kneading temperature and the decomposition start temperature of the ethylenically unsaturated monomer (c) having an organic peroxide group is less than 65 ° C., the ethylenically unsaturated monomer (b) Since this polymer does not become a cross-linked product, a fine cell foam having a fine and uniform cell diameter cannot be obtained depending on the conditions at the time of foam molding the resulting polypropylene resin composition. On the other hand, when the difference between the melt kneading temperature and the decomposition start temperature of the ethylenically unsaturated monomer (c) having an organic peroxide group exceeds 120 ° C., radicals are instantaneously generated during the melt kneading. It will be deactivated. Therefore, the graft reaction and the cross-linking reaction do not occur, and a fine cell foam having a fine and uniform cell diameter cannot be obtained depending on the conditions at the time of foam molding of the obtained polypropylene resin composition.

前記グラフト化工程における溶融混練時間は、30〜300秒が好ましく、60〜120秒が最も好ましい。溶融混練時間が30秒未満では均一な混練が難しく、300秒を超えるとポリプロピレン樹脂(a)またはエチレン性不飽和単量体(b)の重合体の架橋体が混練により分解し、エチレン性不飽和単量体(b)の重合体の数平均粒径が100〜1000nmで数平均粒径に対する標準偏差が5〜20%となるように分散させることができなくなる。   The melt kneading time in the grafting step is preferably 30 to 300 seconds, and most preferably 60 to 120 seconds. When the melt kneading time is less than 30 seconds, uniform kneading is difficult. When the melt kneading time is longer than 300 seconds, the crosslinked polymer of the polypropylene resin (a) or ethylenically unsaturated monomer (b) is decomposed by kneading, and the The saturated monomer (b) polymer cannot be dispersed so that the number average particle diameter of the polymer is 100 to 1000 nm and the standard deviation with respect to the number average particle diameter is 5 to 20%.

溶融混練装置は公知のものであれば特に限定されないが、例えば一軸押出機、二軸押出機等の各種押出機やバンバリーミキサー、ブラベンダー、プラストグラフ、熱ロール、ニーダー等の溶融混練機が挙げられる。また、ポリプロピレン樹脂組成物には、必要に応じて紫外線吸収剤、酸化防止剤、結晶核剤、帯電防止剤、難燃剤、充填剤、顔料、着色剤、離型剤、滑剤、抗菌剤等をポリプロピレン樹脂組成物の特性を損なわない範囲で配合することができる。   The melt kneading apparatus is not particularly limited as long as it is a known one, but examples thereof include various extruders such as a single screw extruder and a twin screw extruder, and melt kneaders such as a Banbury mixer, a Brabender, a plastograph, a heat roll, and a kneader. It is done. In addition, the polypropylene resin composition may contain an ultraviolet absorber, an antioxidant, a crystal nucleating agent, an antistatic agent, a flame retardant, a filler, a pigment, a colorant, a release agent, a lubricant, an antibacterial agent, and the like as necessary. It can mix | blend in the range which does not impair the characteristic of a polypropylene resin composition.

次に、発泡体は、前述のポリプロピレン樹脂組成物の成形体に対して加圧した無機系物理発泡剤を含浸し、該発泡剤を成形体中で飽和状態にした後、発泡させるという発泡方法によって得られるものであれば特に限定されない。発泡方法としては特に制限はなく、急激に減圧することにより発泡させる減圧発泡法、昇温して発泡させる昇温発泡法のいずれも採用することができる。但し、発泡温度については、ポリプロピレン樹脂(a)が流動する温度(170℃)以下であることが好ましい。   Next, the foam is impregnated with an inorganic physical foaming agent pressurized against the molded product of the polypropylene resin composition described above, and after the foaming agent is saturated in the molded product, foaming is performed. There is no particular limitation as long as it can be obtained. There is no restriction | limiting in particular as a foaming method, Both the pressure reduction foaming method which foams by reducing pressure rapidly, and the temperature rising foaming method which heats up and foams can be employ | adopted. However, the foaming temperature is preferably not higher than the temperature (170 ° C.) at which the polypropylene resin (a) flows.

無機系物理発泡剤としては、例えば二酸化炭素、窒素、ヘリウム、アルゴン、亜酸化窒素、エチレン、エタン、テトラフルオロエチレン、パーフルオロエタン、テトラフルオロメタン等が挙げられ、これらの中でも二酸化炭素または窒素が好ましく、二酸化炭素がさらに好ましい。   Examples of the inorganic physical foaming agent include carbon dioxide, nitrogen, helium, argon, nitrous oxide, ethylene, ethane, tetrafluoroethylene, perfluoroethane, tetrafluoromethane, etc. Among these, carbon dioxide or nitrogen is used. Preferably, carbon dioxide is more preferred.

ポリプロピレン樹脂組成物の成形体を発泡させる場合の発泡倍率は1.1〜5倍程度であることが望ましい。発泡倍率が1.1倍を下回る場合には得られる発泡体が発泡体としての機能を十分に発現することができず、5倍を上回る場合には発泡倍率が高くなり過ぎて発泡体の強度が低下したりして好ましくない。   It is desirable that the expansion ratio when foaming the molded body of the polypropylene resin composition is about 1.1 to 5 times. When the expansion ratio is less than 1.1 times, the obtained foam cannot fully exhibit the function as a foam, and when it exceeds 5 times, the expansion ratio becomes too high and the strength of the foam Is not preferable.

得られる発泡体を微細かつ均一な気泡を有する微細気泡発泡体とするために、その数平均気泡径は1000nm以下であることが好ましく、50〜800nmであることがさらに好ましい。数平均気泡径が1000nmを超える場合には、気泡が微細なものにならず、微細気泡発泡体としての機能を発現することができなくなる。また、その数平均気泡径に対する標準偏差は5〜25%であることが好ましい。標準偏差が25%を超える場合には、気泡の均一性が得られず、微細気泡発泡体の機能が低下する。   In order to make the obtained foam into a fine cell foam having fine and uniform cells, the number average cell diameter is preferably 1000 nm or less, and more preferably 50 to 800 nm. When the number average bubble diameter exceeds 1000 nm, the bubbles do not become fine, and the function as a fine bubble foam cannot be expressed. Moreover, it is preferable that the standard deviation with respect to the number average bubble diameter is 5 to 25%. When the standard deviation exceeds 25%, the uniformity of the bubbles cannot be obtained, and the function of the fine bubble foam deteriorates.

前述のポリプロピレン樹脂組成物を用いることにより、微細かつ均一な気泡を有する微細気泡発泡体を得ることができることから、その微細気泡発泡体は軽量性、機械的特性、断熱性及び光学特性等の物性に優れている。   By using the above-mentioned polypropylene resin composition, a fine cell foam having fine and uniform cells can be obtained, and the micro cell foam has physical properties such as lightness, mechanical properties, heat insulating properties and optical properties. Is excellent.

発泡体にはその特性を損なわない範囲で必要に応じて、コロナ処理、印刷、コーティング、蒸着等の表面加工等を施すことも可能である。このようにして得られる発泡体は、液晶表示装置、照明器具、照明看板等に用いられる反射材、低誘電率を要求される材料分野への応用、高強度多孔体、断熱材、緩衝材等の用途に有効に活用することができる。   If necessary, the foam may be subjected to surface treatment such as corona treatment, printing, coating, and vapor deposition as long as the characteristics are not impaired. The foam obtained in this way is a reflective material used in liquid crystal display devices, lighting fixtures, lighting signs, etc., application to the material field requiring low dielectric constant, high strength porous material, heat insulating material, cushioning material, etc. It can be effectively used for various purposes.

以下に、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明する。各例における各種物性値については、下記に示す方法によって測定した。
(1)ポリプロピレン樹脂のメルトフローレート(MFR)
JISK7210に基づくメルトフロー測定装置〔メルトフローインデクサー、東洋精機製作所(株)製、TYPEC−5059D〕を用い、シリンダー温度230℃、荷重2.16kgでのメルトフローレート(g/10min)を測定した。
(2)ポリプロピレン樹脂前駆体中のエチレン性不飽和単量体(b)の重合体の重量平均分子量(Mw)
ポリプロピレン樹脂前駆体をテトラヒドロフラン(以下、THFという)中に浸漬し、8時間還流させた溶液を減圧乾燥して得られた重合体を、示差屈折率検出器を備えたゲル浸透クロマトグラフィ装置〔GPC、(株)島津製作所製〕を用い、溶出液をTHF、カラム温度を40℃として、標準ポリスチレン換算により求めた。
(3)ポリプロピレン樹脂組成物中および成形体中のエチレン性不飽和単量体(b)の共重合体架橋物の分散性
ポリプロピレン樹脂組成物中のエチレン性不飽和単量体(b)の共重合体架橋物の数平均粒径および数平均粒径に対する標準偏差の測定:得られたポリプロピレン樹脂組成物の成形体から、ウルトラミクロトーム〔ウルトラカットUCT、(株)ライカ製〕を用い、厚み50〜100nmの超薄切片を作製した。得られた超薄切片を透過型電子顕微鏡(TEM)〔JEM−1600EX、(株)日本電子製〕を用いてエチレン性不飽和単量体共重合物の分散状態を観察撮影した。
Hereinafter, the embodiment will be described more specifically with reference to examples and comparative examples. Various physical property values in each example were measured by the following methods.
(1) Melt flow rate (MFR) of polypropylene resin
The melt flow rate (g / 10 min) at a cylinder temperature of 230 ° C. and a load of 2.16 kg was measured using a melt flow measuring device (melt flow indexer, manufactured by Toyo Seiki Seisakusho, TYPEC-5059D) based on JISK7210. .
(2) Weight average molecular weight (Mw) of polymer of ethylenically unsaturated monomer (b) in polypropylene resin precursor
A polymer obtained by immersing a polypropylene resin precursor in tetrahydrofuran (hereinafter referred to as “THF”) and drying under reduced pressure for 8 hours to obtain a polymer obtained by subjecting the polymer to a gel permeation chromatography apparatus equipped with a differential refractive index detector [GPC, (Manufactured by Shimadzu Corporation)], and the eluate was determined in terms of standard polystyrene with THF as the eluate and a column temperature of 40 ° C.
(3) Dispersibility of cross-linked copolymer of ethylenically unsaturated monomer (b) in polypropylene resin composition and molded body Copolymerization of ethylenically unsaturated monomer (b) in polypropylene resin composition Measurement of the number average particle diameter of the polymer crosslinked product and the standard deviation with respect to the number average particle diameter: From the molded product of the obtained polypropylene resin composition, an ultramicrotome [Ultracut UCT, manufactured by Leica Co., Ltd.] was used, and the thickness was 50 to 100 nm. Ultrathin sections were prepared. The obtained ultrathin slice was observed and photographed for the dispersion state of the ethylenically unsaturated monomer copolymer using a transmission electron microscope (TEM) [JEM-1600EX, manufactured by JEOL Ltd.].

得られたTEM写真を複数用いて、視野内で確認可能な独立粒子数を100μm(縦10μm、横10μm)以上の範囲でカウントした。またTEM写真において、粒子数の合計が100個以上となるよう任意の写真を複数選択し、粒径を目盛り付き定規で測定し、数平均粒径を算出した。さらに、それぞれの粒径の標準偏差(σ)を算出し、数平均粒径あたりに直すことで、数平均粒径に対する標準偏差を求めた。
(4)ポリプロピレン樹脂組成物中のエチレン性不飽和単量体(b)の重合体の架橋体の確認
ポリプロピレン樹脂組成物中のエチレン性不飽和単量体(b)の重合体の未架橋体の定量:ポリプロピレン樹脂組成物0.5gを正確に秤り取り、円筒濾紙〔アドバンテック(株)製、No.86R〕に入れて、ソックスレー抽出装置を用いてキシレンにより24時間抽出した。得られた抽出液をその10倍量のTHF溶媒に添加してポリプロピレン樹脂(a)を沈殿させ、濾過後の溶液をエバポレーターによって減圧乾燥した。その質量を測定し、使用したエチレン性不飽和単量体(b)と有機過酸化物基を有するエチレン性不飽和単量体(c)の総質量で除することにより、ポリプロピレン樹脂組成物中のエチレン性不飽和単量体(b)の重合体の未架橋物(%)を算出した。なお、この数値が5%以下であるものを架橋体と判断し、この数値が5%を超えるものを未架橋体と判断する。
(5)ポリプロピレン樹脂(a)とエチレン性不飽和単量体(b)の重合体の架橋体とのグラフト共重合体の確認
ポリプロピレン樹脂組成物0.5gを正確に秤り取り、円筒濾紙〔アドバンテック(株)製、No.86R〕に入れて、ソックスレー抽出装置を用いてキシレンにより24時間抽出した。円筒濾紙内に存在するポリマーを乾燥した後、熱分解ガスクロマトグラフィーにてポリプロピレン樹脂を定量し、グラフト共重合体中のポリプロピレン樹脂(a)含有率を算出した。
(6)ポリプロピレン樹脂組成物発泡体の発泡気泡の分散状態
ポリプロピレン樹脂組成物発泡体中の数平均気泡径およびその数平均気泡径に対する標準偏差の測定:得られたポリプロピレン樹脂組成物発泡体を液体窒素に浸け、凍結破断した。得られた破断面を金蒸着し、走査型電子顕微鏡(SEM)〔S−3000N、日立ハイテク(株)製〕を用いて発泡気泡径の分散状態を観察撮影した。得られたSEM写真を複数用いて、視野内で確認可能な独立した気泡粒子の数を400μm(縦20μm、横20μm)以上の範囲でカウントした。また、SEM写真において、気泡粒子数の合計が100個以上となるよう任意の写真を複数選択し、粒径を目盛り付き定規で測定し、数平均気泡径を算出した。さらに、それぞれの気泡径の標準偏差を算出し、数平均気泡径あたりに直すことで、数平均気泡径に対する標準偏差を求めた。
(7)ポリプロピレン樹脂組成物発泡体の発泡倍率
固体比重計〔SD−200L、アルファーミラジュ(株)〕を用いて、得られたポリプロピレン樹脂組成物発泡体(0.5g)の比重(d)を測定した。発泡前のポリプロピレン樹脂組成物の比重(d)も同様の方法で測定し、以下の計算式により、発泡倍率を算出した。
Using a plurality of the obtained TEM photographs, the number of independent particles that can be confirmed in the visual field was counted in a range of 100 μm 2 (10 μm in length, 10 μm in width) or more. Further, in the TEM photograph, a plurality of arbitrary photographs were selected so that the total number of particles was 100 or more, the particle diameter was measured with a ruler with a scale, and the number average particle diameter was calculated. Furthermore, the standard deviation (σ) of each particle size was calculated and corrected per number average particle size to obtain the standard deviation with respect to the number average particle size.
(4) Confirmation of crosslinked polymer of ethylenically unsaturated monomer (b) in polypropylene resin composition Uncrosslinked polymer of ethylenically unsaturated monomer (b) in polypropylene resin composition Quantitative determination: 0.5 g of polypropylene resin composition was accurately weighed, and cylindrical filter paper [manufactured by Advantech Co., Ltd., No. 86R] and extracted with xylene using a Soxhlet extractor for 24 hours. The obtained extract was added to 10 times the amount of THF solvent to precipitate the polypropylene resin (a), and the filtered solution was dried under reduced pressure by an evaporator. In the polypropylene resin composition, the mass is measured and divided by the total mass of the ethylenically unsaturated monomer (b) used and the ethylenically unsaturated monomer (c) having an organic peroxide group. The uncrosslinked product (%) of the polymer of ethylenically unsaturated monomer (b) was calculated. In addition, the thing whose this number is 5% or less is judged as a crosslinked body, and the thing over 5% is judged as an uncrosslinked body.
(5) Confirmation of graft copolymer of polypropylene resin (a) and cross-linked polymer of ethylenically unsaturated monomer (b) 0.5 g of polypropylene resin composition was accurately weighed and cylindrical filter paper [ Manufactured by Advantech Co., Ltd. 86R] and extracted with xylene using a Soxhlet extractor for 24 hours. After drying the polymer present in the cylindrical filter paper, the polypropylene resin was quantified by pyrolysis gas chromatography, and the content of the polypropylene resin (a) in the graft copolymer was calculated.
(6) Dispersion state of foamed bubbles of polypropylene resin composition foam Number average cell diameter in polypropylene resin composition foam and measurement of standard deviation with respect to the number average cell diameter: The obtained polypropylene resin composition foam is liquid It was immersed in nitrogen and freeze fractured. The obtained fracture surface was vapor-deposited in gold, and the dispersion state of the foamed bubble diameter was observed and photographed using a scanning electron microscope (SEM) [S-3000N, manufactured by Hitachi High-Tech Co., Ltd.]. Using a plurality of the obtained SEM photographs, the number of independent bubble particles that can be confirmed in the visual field was counted in a range of 400 μm 2 (vertical 20 μm, horizontal 20 μm) or more. In addition, in the SEM photograph, a plurality of arbitrary photographs were selected so that the total number of bubble particles was 100 or more, the particle diameter was measured with a ruler with a scale, and the number average bubble diameter was calculated. Furthermore, the standard deviation of each bubble diameter was calculated, and the standard deviation with respect to the number average bubble diameter was determined by correcting it per number average bubble diameter.
(7) Foaming ratio of polypropylene resin composition foam Specific gravity (d 2 ) of the obtained polypropylene resin composition foam (0.5 g) using a solid specific gravity meter [SD-200L, Alpha Mirage Co., Ltd.]. ) Was measured. The specific gravity (d 1 ) of the polypropylene resin composition before foaming was also measured by the same method, and the foaming ratio was calculated by the following formula.

発泡倍率(倍)=d/d
実施例及び比較例に用いた原料は次のとおりである。
ポリプロピレン樹脂(a):日本ポリプロ(株)製、商品名「ノバテックPP FY4」、プロピレンの単独重合体(アイソタクチックポリプロピレン)、メルトフローレート(MFR)=5.0g/10min
エチレン性不飽和単量体(b):三菱ガス化学(株)製メタクリル酸メチル(MMA)、日本触媒(株)製アクリル酸ブチル(BA)、日本酢ビ・ポバール(株)製酢酸ビニル(VAc)、日本酢ビ・ポバール(株)製ピバリン酸ビニル(VPv)
有機過酸化物基を有するエチレン性不飽和単量体(c):日油(株)製t−ブチルペルオキシ−2−メタクリロイルオキシエチルカーボネート、商品名「ペロマーMEC(MEC)」、日油(株)製t−ブチルペルオキシアリルモノカーボネート、商品名「ペロマーAC(AC)」
トルエン(d):和光純薬(株)製試薬特級
ラジカル重合開始剤:日油(株)製ジラウロイルペルオキシド(LPO)、商品名「パーロイルL」
(実施例1−1)
ポリプロピレン樹脂700質量部を内容積5000mlのステンレス鋼製セパラブルフラスコに入れ、純水2500ml、懸濁剤としてポリビニルアルコールを2.5質量部加えた。別にメタクリル酸メチル(MMA)300質量部に有機過酸化物基を有するエチレン性不飽和単量体としてt−ブチルペルオキシ−2−メタクリロイルオキシエチルカーボネート(MEC)6質量部とトルエン6質量部とラジカル重合開始剤としてジラウロイルペルオキシド(LPO)1.5質量部とを溶解し、この溶液を前記セパラブルフラスコ中に投入、攪拌した。次いで、これを40℃に保ち、約6時間攪拌することによりMMA、MECおよびLPOをポリプロピレン樹脂に含浸させた。次いで、温度を60℃に上げ、その温度で5時間維持して重合を完結させ、水洗および乾燥してグラフト化前駆体を得た。このグラフト前駆体のMMAとMECとの共重合体をクロロホルムで抽出後乾燥し、重量平均分子量(Mw)を測定し、表1に示した。
Foaming ratio (times) = d 1 / d 2
The raw materials used in the examples and comparative examples are as follows.
Polypropylene resin (a): manufactured by Nippon Polypro Co., Ltd., trade name “Novatech PP FY4”, propylene homopolymer (isotactic polypropylene), melt flow rate (MFR) = 5.0 g / 10 min
Ethylenically unsaturated monomer (b): Methyl methacrylate (MMA) manufactured by Mitsubishi Gas Chemical Co., Ltd., Butyl Acrylate (BA) manufactured by Nippon Shokubai Co., Ltd. VAc), vinyl pivalate (VPv) manufactured by Nihon Vinegar Poval Co.
Ethylenically unsaturated monomer having an organic peroxide group (c): t-butylperoxy-2-methacryloyloxyethyl carbonate manufactured by NOF Corporation, trade name “Peromer MEC (MEC)”, NOF Corporation ) T-Butylperoxyallyl monocarbonate, trade name "Peromer AC (AC)"
Toluene (d): Special grade reagent manufactured by Wako Pure Chemical Industries, Ltd. Radical polymerization initiator: Dilauroyl peroxide (LPO) manufactured by NOF Corporation, trade name “PAROIL L”
(Example 1-1)
700 parts by mass of polypropylene resin was placed in a separable flask made of stainless steel having an internal volume of 5000 ml, and 2500 ml of pure water and 2.5 parts by mass of polyvinyl alcohol as a suspending agent were added. Separately, as an ethylenically unsaturated monomer having an organic peroxide group in 300 parts by mass of methyl methacrylate (MMA), 6 parts by mass of t-butylperoxy-2-methacryloyloxyethyl carbonate (MEC), 6 parts by mass of toluene and a radical As a polymerization initiator, 1.5 parts by mass of dilauroyl peroxide (LPO) was dissolved, and this solution was put into the separable flask and stirred. Then, this was kept at 40 ° C. and stirred for about 6 hours to impregnate polypropylene resin with MMA, MEC and LPO. The temperature was then raised to 60 ° C. and maintained at that temperature for 5 hours to complete the polymerization, washed with water and dried to obtain a grafted precursor. The graft precursor MMA and MEC copolymer was extracted with chloroform and dried, and the weight average molecular weight (Mw) was measured.

次いで、このポリプロピレン樹脂組成物前駆体を一軸押出機〔東洋精機製作所(株)製〕で230℃にて押出し、グラフト化反応させることでグラフト共重合体を含有するポリプロピレン樹脂組成物を得た。このポリプロピレン樹脂組成物中のMMA重合体(PMMA)の分散形態をTEMで測定し、表1に示した。また、このグラフト共重合体を、o−ジクロロベンゼンを用いて160℃で1時間ソックスレー抽出した不溶分から、PMMAのグラフト効率およびトルエン中の膨潤平均粒径を測定し、表1に示した。   Next, this polypropylene resin composition precursor was extruded at 230 ° C. with a single screw extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd.) and grafted to obtain a polypropylene resin composition containing a graft copolymer. The dispersion form of the MMA polymer (PMMA) in this polypropylene resin composition was measured by TEM and shown in Table 1. Further, the graft efficiency of PMMA and the average swelling particle diameter in toluene were measured from the insoluble matter obtained by Soxhlet extraction of this graft copolymer with o-dichlorobenzene at 160 ° C. for 1 hour.

得られたグラフト共重合体を長さ100mm、幅100mmの大きさに切り、長さ100mm、幅100mm、厚さ0.25mmの金属スペーサーに入れ、200℃に設定した熱プレスを用いて、10MPaの圧力で5分間、さらに25℃で1分間保持して成形体を得た。この成形体中のPMMAの分散形態をTEMで測定し、表1に示した。
(実施例1−2)
実施例1−1において、ポリプロピレン樹脂を950質量部に、MMAを50質量部に、MECを1質量部とトルエン1質量部とLPOを0.25質量部に変更した以外は実施例1−1と同様の方法でポリプロピレン樹脂組成物および成形体を得た。これらを実施例1−1と同様の方法で評価し、その結果を表1に示した。
(実施例1−3)
実施例1−1において、ポリプロピレンを550質量部に、MMAを450質量部に、MECを9質量部とトルエン9質量部とLPOを2.25質量部に変更した以外は実施例1−1と同様の方法でポリプロピレン樹脂組成物および成形体を得た。これらを実施例1−1と同様の方法で評価し、その結果を表1に示した。
(実施例1−4)
実施例1−1において、MMAをアクリル酸ブチル(BA)に変更した以外は実施例1−1と同様の方法でポリプロピレン樹脂組成物および成形体を得た。これらを実施例1−1と同様の方法で評価し、その結果を表1に示した。
(実施例1−5)
実施例1−1において、MMAを酢酸ビニル(VAc)に、MECをACに変更した以外は実施例1−1と同様の方法でポリプロピレン樹脂組成物、成形体および発泡体を得た。これらを実施例1−1と同様の方法で評価し、その結果を表1に示した。
(実施例1−6)
実施例1−1において、MMAをピバリン酸ビニル(VPv)に、MECをACに変更した以外は実施例1−1と同様の方法でポリプロピレン樹脂組成物、成形体および発泡体を得た。これらを実施例1−1と同様の方法で評価し、その結果を表1に示した。
(実施例2−1〜2−6)
実施例1−1〜1−6で得られたポリプロピレン樹脂組成物の成形体を40℃に温度調節されたオートクレーブに投入し、炭酸ガス(二酸化炭素)で10MPaに加圧し、成形体に二酸化炭素を6時間含浸させた。その後オートクレーブのリークバルブを全開放し、減圧速度0.5MPa/secでオートクレーブ内の圧力を開放し、取り出した成形体を瞬時にあらかじめ80℃に設定されたオイルバス中で1分間浸漬し、その後25℃の水に浸漬して発泡体を得た。得られた発泡体の発泡気泡の分散形態および発泡倍率を測定し、表1に示した。
The obtained graft copolymer was cut into a size of 100 mm in length and 100 mm in width, placed in a metal spacer having a length of 100 mm, a width of 100 mm, and a thickness of 0.25 mm, and using a hot press set at 200 ° C., 10 MPa Was held at 25 ° C. for 1 minute and a molded body was obtained. The dispersion form of PMMA in this molded body was measured by TEM and shown in Table 1.
(Example 1-2)
Example 1-1 is the same as Example 1-1 except that polypropylene resin is changed to 950 parts by mass, MMA is changed to 50 parts by mass, MEC is changed to 1 part by mass, toluene is 1 part by mass, and LPO is changed to 0.25 parts by mass. A polypropylene resin composition and a molded body were obtained in the same manner as described above. These were evaluated in the same manner as in Example 1-1, and the results are shown in Table 1.
(Example 1-3)
Example 1-1 is the same as Example 1-1 except that polypropylene is changed to 550 parts by mass, MMA is changed to 450 parts by mass, MEC is changed to 9 parts by mass, toluene is 9 parts by mass, and LPO is changed to 2.25 parts by mass. A polypropylene resin composition and a molded body were obtained in the same manner. These were evaluated in the same manner as in Example 1-1, and the results are shown in Table 1.
(Example 1-4)
In Example 1-1, a polypropylene resin composition and a molded body were obtained in the same manner as in Example 1-1 except that MMA was changed to butyl acrylate (BA). These were evaluated in the same manner as in Example 1-1, and the results are shown in Table 1.
(Example 1-5)
In Example 1-1, a polypropylene resin composition, a molded product and a foam were obtained in the same manner as in Example 1-1 except that MMA was changed to vinyl acetate (VAc) and MEC was changed to AC. These were evaluated in the same manner as in Example 1-1, and the results are shown in Table 1.
(Example 1-6)
In Example 1-1, a polypropylene resin composition, a molded body and a foam were obtained in the same manner as in Example 1-1 except that MMA was changed to vinyl pivalate (VPv) and MEC was changed to AC. These were evaluated in the same manner as in Example 1-1, and the results are shown in Table 1.
(Examples 2-1 to 2-6)
The molded product of the polypropylene resin composition obtained in Examples 1-1 to 1-6 was put into an autoclave whose temperature was adjusted to 40 ° C., pressurized to 10 MPa with carbon dioxide (carbon dioxide), and carbon dioxide was applied to the molded product. Was impregnated for 6 hours. After that, fully open the leak valve of the autoclave, release the pressure in the autoclave at a depressurization rate of 0.5 MPa / sec, and immediately immerse the removed molded body in an oil bath set at 80 ° C. for 1 minute. A foam was obtained by immersion in water at 25 ° C. The foam foam dispersion and foaming ratio of the obtained foam were measured and shown in Table 1.

Figure 2011168695
(実施例1−7)
実施例1−1において、MEC6質量部をMEC0.3質量部に変更した以外は実施例1−1と同様の方法でポリプロピレン樹脂組成物および成形体を得た。これらを実施例1−1と同様の方法で評価し、その結果を表2に示した。
(実施例1−8)
実施例1−1において、MEC6質量部をMEC15質量部に変更した以外は実施例1−1と同様の方法でポリプロピレン樹脂組成物および成形体を得た。これらを実施例1−1と同様の方法で評価し、その結果を表2に示した。
(実施例1−9)
実施例1−1において、トルエン6質量部をトルエン1.5質量部に変更した以外は実施例1−1と同様の方法でポリプロピレン樹脂組成物および成形体を得た。これらを実施例1−1と同様の方法で評価し、その結果を表2に示した。
(比較例1−1)
実施例1−1において、MEC6質量部をMEC0質量部に、トルエン6質量部をトルエン0質量部に変更した以外は実施例1−1と同様の方法でポリプロピレン樹脂組成物および成形体を得た。これらを実施例1−1と同様の方法で評価し、その結果を表2に示した。
(比較例1−2)
実施例1−1において、トルエン6質量部をトルエン0質量部に、グラフト化反応温度を200℃に変更した以外は実施例1−1と同様の方法でポリプロピレン樹脂組成物および成形体を得た。これらを実施例1−1と同様の方法で評価し、その結果を表2に示した。
(比較例1−3)
実施例1−1において、トルエン6質量部をトルエン0質量部に、グラフト化反応温度を260℃に変更した以外は実施例1−1と同様の方法でポリプロピレン樹脂組成物および成形体を得た。これらを実施例1−1と同様の方法で評価し、その結果を表2に示した。
(実施例2−7〜2−9および比較例2−1〜2−3)
実施例1−7〜1−9および比較例1−1〜1−3で得られたポリプロピレン樹脂組成物の成形体を40℃に温度調節されたオートクレーブに投入し、炭酸ガス(二酸化炭素)で10MPaに加圧し、成形体に二酸化炭素を6時間含浸させた。その後、オートクレーブのリークバルブを全開放し、減圧速度0.5MPa/secでオートクレーブ内の圧力を開放し、取り出した成形体を瞬時にあらかじめ80℃に設定されたオイルバス中で1分間浸漬し、その後25℃の水に浸漬して発泡体を得た。得られた発泡体の発泡気泡の分散形態および発泡倍率を測定し、表2に示した。
Figure 2011168695
(Example 1-7)
In Example 1-1, a polypropylene resin composition and a molded body were obtained in the same manner as in Example 1-1, except that 6 parts by mass of MEC was changed to 0.3 parts by mass of MEC. These were evaluated in the same manner as in Example 1-1, and the results are shown in Table 2.
(Example 1-8)
In Example 1-1, a polypropylene resin composition and a molded body were obtained in the same manner as in Example 1-1 except that 6 parts by mass of MEC was changed to 15 parts by mass of MEC. These were evaluated in the same manner as in Example 1-1, and the results are shown in Table 2.
(Example 1-9)
In Example 1-1, a polypropylene resin composition and a molded body were obtained in the same manner as in Example 1-1 except that 6 parts by mass of toluene was changed to 1.5 parts by mass of toluene. These were evaluated in the same manner as in Example 1-1, and the results are shown in Table 2.
(Comparative Example 1-1)
In Example 1-1, a polypropylene resin composition and a molded body were obtained in the same manner as in Example 1-1 except that 6 parts by mass of MEC was changed to 0 parts by mass of MEC and 6 parts by mass of toluene were changed to 0 parts by mass of toluene. . These were evaluated in the same manner as in Example 1-1, and the results are shown in Table 2.
(Comparative Example 1-2)
In Example 1-1, a polypropylene resin composition and a molded body were obtained in the same manner as in Example 1-1 except that 6 parts by mass of toluene was changed to 0 parts by mass of toluene and the grafting reaction temperature was changed to 200 ° C. . These were evaluated in the same manner as in Example 1-1, and the results are shown in Table 2.
(Comparative Example 1-3)
In Example 1-1, a polypropylene resin composition and a molded body were obtained in the same manner as in Example 1-1 except that 6 parts by mass of toluene was changed to 0 parts by mass of toluene and the grafting reaction temperature was changed to 260 ° C. . These were evaluated in the same manner as in Example 1-1, and the results are shown in Table 2.
(Examples 2-7 to 2-9 and Comparative Examples 2-1 to 2-3)
The molded product of the polypropylene resin composition obtained in Examples 1-7 to 1-9 and Comparative Examples 1-1 to 1-3 was put into an autoclave whose temperature was adjusted to 40 ° C., and carbon dioxide gas (carbon dioxide) was used. The pressure was increased to 10 MPa, and the compact was impregnated with carbon dioxide for 6 hours. Thereafter, the autoclave leak valve is fully opened, the pressure in the autoclave is released at a depressurization rate of 0.5 MPa / sec, and the removed molded body is immediately immersed in an oil bath set at 80 ° C. for 1 minute. Thereafter, it was immersed in water at 25 ° C. to obtain a foam. The foam foam dispersion and foaming ratio of the obtained foam were measured and shown in Table 2.

Figure 2011168695
表2に示したように、比較例1−1では有機過酸化物基を有するエチレン性不飽和単量体(c)およびトルエン(d)を含有しないポリプロピレン樹脂組成物を用いたため、ポリプロピレン樹脂(a)とエチレン性不飽和単量体(b)の重合体とからなるグラフト共重合体が存在しなかった。従って、グラフト化工程後に得られたポリプロピレン樹脂組成物中に架橋体が存在せず、その成形体におけるエチレン性不飽和単量体(b)の重合体の分散粒径が極めて大きくかつ不均一になるため、成形時の熱履歴によって分散粒径が異なる。さらに、比較例2−1では、比較例1−1のポリプロピレン樹脂組成物の成形体から得られる発泡体は、数平均気泡径が非常に大きくかつ不均一となる。
Figure 2011168695
As shown in Table 2, in Comparative Example 1-1, a polypropylene resin composition containing no ethylenically unsaturated monomer (c) having an organic peroxide group and toluene (d) was used. There was no graft copolymer consisting of a) and a polymer of ethylenically unsaturated monomer (b). Therefore, there is no cross-linked product in the polypropylene resin composition obtained after the grafting step, and the dispersed particle size of the ethylenically unsaturated monomer (b) polymer in the molded product is extremely large and non-uniform. Therefore, the dispersed particle diameter varies depending on the thermal history during molding. Furthermore, in Comparative Example 2-1, the foam obtained from the molded product of the polypropylene resin composition of Comparative Example 1-1 has a very large number average cell diameter and is non-uniform.

これに対し、表1および表2に示したように、実施例1−1〜1−9では有機過酸化物基を有するエチレン性不飽和単量体(c)をエチレン性不飽和単量体(b)100質量部に対して0.1〜5質量部用い、トルエン(d)をエチレン性不飽和単量体(b)100質量部に対して0.5〜10質量部用い、かつグラフト化工程時において有機過酸化物基を有するエチレン性不飽和単量体(c)の分解開始温度より65℃〜120℃高い温度で溶融混練させた。このため、グラフト化工程時において有機過酸化物基を有するエチレン性不飽和単量体(c)の分解開始温度より65℃未満または120℃を超える温度で溶融混練させた比較例1−2および1−3のポリプロピレン樹脂組成物に比べて、エチレン性不飽和単量体(b)の重合体が架橋され、かつポリプロピレ樹脂(a)がグラフト化されることにより、成形時の熱履歴によるエチレン性不飽和単量体(b)の重合体架橋物の分散粒径が小さくかつ均一である。このことから、実施例2−1〜2−9のポリプロピレン樹脂組成物の成形体を発泡させた発泡体は、比較例2−2および2−3のポリプロピレン樹脂組成物の成形体を発泡させた発泡体と比較して、数平均気泡径が小さくかつ均一な微細発泡体が得られることが明らかとなった。従って、該ポリプロピレン樹脂組成物より得られる成形体の発泡体は、機械的物性や反射特性に優れる微細発泡成形品を得るのに有用な材料になりうる。   On the other hand, as shown in Table 1 and Table 2, in Examples 1-1 to 1-9, the ethylenically unsaturated monomer (c) having an organic peroxide group was changed to an ethylenically unsaturated monomer. (B) 0.1-5 parts by mass with respect to 100 parts by mass, 0.5-10 parts by mass of toluene (d) with respect to 100 parts by mass of the ethylenically unsaturated monomer (b), and grafting During the conversion step, the mixture was melt-kneaded at a temperature 65 ° C. to 120 ° C. higher than the decomposition start temperature of the ethylenically unsaturated monomer (c) having an organic peroxide group. For this reason, Comparative Example 1-2 melt-kneaded at a temperature lower than 65 ° C. or higher than 120 ° C. from the decomposition start temperature of the ethylenically unsaturated monomer (c) having an organic peroxide group during the grafting step and Compared with the polypropylene resin composition of 1-3, the polymer of the ethylenically unsaturated monomer (b) is cross-linked, and the polypropylene resin (a) is grafted, whereby ethylene due to heat history at the time of molding. The dispersed particle diameter of the polymer crosslinked product of the unsaturated unsaturated monomer (b) is small and uniform. From this, the foam which foamed the molded body of the polypropylene resin composition of Examples 2-1 to 2-9 foamed the molded body of the polypropylene resin composition of Comparative Examples 2-2 and 2-3. It became clear that a uniform fine foam having a small number average cell diameter as compared with the foam can be obtained. Therefore, a foam of a molded product obtained from the polypropylene resin composition can be a useful material for obtaining a fine foam molded product having excellent mechanical properties and reflection characteristics.

Claims (6)

主鎖成分がポリプロピレン樹脂(a)、側鎖成分が下記化学式(1)で示される(メタ)アクリル酸エステルまたは下記化学式(2)で示されるカルボン酸ビニルであるエチレン性不飽和単量体(b)の重合体からなるグラフト共重合体を含有するポリプロピレン樹脂組成物において、
前記グラフト共重合体を構成するエチレン性不飽和単量体(b)の重合体は、その数平均粒径が100〜1000nmで数平均粒径に対する標準偏差が5〜20%で分散した架橋体であることを特徴とする無機系物理発泡成形用ポリプロピレン樹脂組成物。
Figure 2011168695
(Rは水素またはメチル基を示す。RはCm+1、m=1〜4の整数を示す。)
Figure 2011168695
(RはCn+1、n=1〜4の整数を示す。)
An ethylenically unsaturated monomer in which the main chain component is a polypropylene resin (a) and the side chain component is a (meth) acrylic acid ester represented by the following chemical formula (1) or a vinyl carboxylate represented by the following chemical formula (2) ( In a polypropylene resin composition containing a graft copolymer comprising the polymer of b),
The polymer of the ethylenically unsaturated monomer (b) constituting the graft copolymer is a crosslinked product having a number average particle diameter of 100 to 1000 nm and a standard deviation with respect to the number average particle diameter of 5 to 20%. A polypropylene resin composition for inorganic physical foam molding, characterized in that
Figure 2011168695
(R 1 represents hydrogen or a methyl group. R 2 represents an integer of C m H m + 1 and m = 1 to 4.)
Figure 2011168695
(R 3 represents an integer of C n H n + 1, n = 1~4.)
前記エチレン性不飽和単量体(b)が、メタクリル酸メチルであることを特徴とする請求項1に記載の無機系物理発泡成形用ポリプロピレン樹脂組成物。 2. The polypropylene resin composition for inorganic physical foam molding according to claim 1, wherein the ethylenically unsaturated monomer (b) is methyl methacrylate. 前記エチレン性不飽和単量体(b)が、酢酸ビニルであることを特徴とする請求項1または請求項2に記載の無機系物理発泡成形用ポリプロピレン樹脂組成物。 3. The polypropylene resin composition for inorganic physical foam molding according to claim 1, wherein the ethylenically unsaturated monomer (b) is vinyl acetate. 前記グラフト共重合体は、ポリプロピレン樹脂(a)中でエチレン性不飽和単量体(b)と有機過酸化物基を有するエチレン性不飽和単量体(c)とトルエン(d)とを含浸重合させて得られるポリプロピレン樹脂組成物前駆体を、前記有機過酸化物基を有するエチレン性不飽和単量体(c)の走査型示差熱量計を用いた10℃/minの昇温過程での分解開始温度よりも65〜120℃高い温度で溶融混練してなるものであることを特徴とする請求項1から請求項3のいずれか1項に記載の無機系物理発泡成形用ポリプロピレン樹脂組成物。 The graft copolymer is impregnated with an ethylenically unsaturated monomer (b), an ethylenically unsaturated monomer (c) having an organic peroxide group, and toluene (d) in a polypropylene resin (a). The polypropylene resin composition precursor obtained by polymerization is subjected to a temperature rising process of 10 ° C./min using a scanning differential calorimeter of the ethylenically unsaturated monomer (c) having the organic peroxide group. The polypropylene resin composition for inorganic physical foam molding according to any one of claims 1 to 3, wherein the polypropylene resin composition is melt kneaded at a temperature 65 to 120 ° C higher than the decomposition start temperature. . 前記有機過酸化物基を有するエチレン性不飽和単量体(c)が、t−ブチルペルオキシメタクリロイルオキシエチルカーボネートまたはt−ブチルペルオキシアリルカーボネートであることを特徴とする請求項4に記載の無機系物理発泡成形用ポリプロピレン樹脂組成物。 The inorganic system according to claim 4, wherein the ethylenically unsaturated monomer (c) having an organic peroxide group is t-butylperoxymethacryloyloxyethyl carbonate or t-butylperoxyallyl carbonate. Polypropylene resin composition for physical foam molding. 請求項1から請求項5のいずれか1項に記載の無機系物理発泡成形用プロピレン樹脂組成物を無機系物理発泡剤により発泡させてなることを特徴とする発泡体。 6. A foam obtained by foaming the propylene resin composition for inorganic physical foam molding according to any one of claims 1 to 5 with an inorganic physical foaming agent.
JP2010033804A 2010-02-18 2010-02-18 Polypropylene resin composition for inorganic physical foam molding and foam thereof Expired - Fee Related JP5418282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033804A JP5418282B2 (en) 2010-02-18 2010-02-18 Polypropylene resin composition for inorganic physical foam molding and foam thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033804A JP5418282B2 (en) 2010-02-18 2010-02-18 Polypropylene resin composition for inorganic physical foam molding and foam thereof

Publications (2)

Publication Number Publication Date
JP2011168695A true JP2011168695A (en) 2011-09-01
JP5418282B2 JP5418282B2 (en) 2014-02-19

Family

ID=44683146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033804A Expired - Fee Related JP5418282B2 (en) 2010-02-18 2010-02-18 Polypropylene resin composition for inorganic physical foam molding and foam thereof

Country Status (1)

Country Link
JP (1) JP5418282B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139166A (en) * 1974-04-24 1975-11-06
JPH06136070A (en) * 1992-10-30 1994-05-17 Nippon Oil & Fats Co Ltd Fluidity improver and resin composition improved in fluidity
JP2002338778A (en) * 2001-05-16 2002-11-27 Nof Corp Graft copolymer composition, thermoplastic resin composition containing the same, and molded item thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139166A (en) * 1974-04-24 1975-11-06
JPH06136070A (en) * 1992-10-30 1994-05-17 Nippon Oil & Fats Co Ltd Fluidity improver and resin composition improved in fluidity
JP2002338778A (en) * 2001-05-16 2002-11-27 Nof Corp Graft copolymer composition, thermoplastic resin composition containing the same, and molded item thereof

Also Published As

Publication number Publication date
JP5418282B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
US8329294B2 (en) Styrene-modified polypropylene type resin particle, foamable styrene-modified polypropylene type resin particle, styrene-modified polypropylene type resin foamed particle, styrene-modified polypropylene type resin foamed molded product, and production methods thereof
JP5107692B2 (en) Polypropylene-based resin foamed particles and molded article of the foamed particles
JP5815934B2 (en) Method for producing composite resin expanded particles, and composite resin expanded particles
JP5592558B2 (en) Composite polystyrene resin foamed particles and foamed molded articles thereof
JP5565240B2 (en) Composite resin foamed particles and method for producing the same, and method for producing foamable composite resin particles
WO2018225649A1 (en) Expanded polyolefin-based resin beads, production method for expanded polyolefin-based resin beads, and molded polyolefin-based resin foam by in-mold foaming
EP2860217B1 (en) Expandable composite resin bead
JP2015129315A (en) Composite resin expanded particle and molded body of the same
JP2011256244A (en) Foaming modified resin particle and modified resin foamed particle
JP2017179212A (en) Composite resin foam particle and composite resin foam particle molded body
JP6323251B2 (en) Expandable composite resin particles
JP6453995B2 (en) Composite resin particles and their expandable particles, expanded particles and expanded molded articles
JP2012214567A (en) Method of manufacturing polypropylene-based resin particle for seed polymerization, polypropylene-based resin particle for seed polymerization, method of manufacturing composite resin particle, composite resin particle, foaming composite resin particle, preliminary foamed particle, and expansion molding body
CN114479224B (en) Thermoplastic resin porous foam and preparation method and application thereof
JP5418282B2 (en) Polypropylene resin composition for inorganic physical foam molding and foam thereof
JP2014189769A (en) Modified polystyrenic foamable resin particles, method for manufacturing the same, foam particles, and foam molding
JP2008115274A (en) Master batch and manufacturing method of molded product using the same
JP6404164B2 (en) Seed polymerization seed particles, composite resin particles, expandable particles, expanded particles, and composite resin foam moldings
JP2009263639A (en) Foamable styrene-modified polyolefin-based resin particle, its production method, prefoamed particle, and foam molded body
JP6322148B2 (en) Seed polymerization seed particles, composite resin particles, expandable particles, expanded particles, and composite resin foam moldings
JP2014196441A (en) Polystyrene-based composite resin particle and method for producing the same, expandable particle, expanded particle, and expansion molded body
JP6076463B2 (en) Modified polystyrene-based cross-linked resin particles and production method thereof, expandable particles and production method thereof, pre-expanded particles and expanded molded article
JP2011168696A (en) Aromatic polycarbonate resin composition for inorganic physical expansion molding, and foamed article thereof
JP2013203985A (en) Cushioning material
JP7078849B2 (en) Effervescent composite resin particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

LAPS Cancellation because of no payment of annual fees