JP2011168468A - Method for hardening blast furnace slag - Google Patents

Method for hardening blast furnace slag Download PDF

Info

Publication number
JP2011168468A
JP2011168468A JP2010048344A JP2010048344A JP2011168468A JP 2011168468 A JP2011168468 A JP 2011168468A JP 2010048344 A JP2010048344 A JP 2010048344A JP 2010048344 A JP2010048344 A JP 2010048344A JP 2011168468 A JP2011168468 A JP 2011168468A
Authority
JP
Japan
Prior art keywords
weight
parts
blast furnace
furnace slag
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010048344A
Other languages
Japanese (ja)
Inventor
Shigeji Kobori
茂次 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010048344A priority Critical patent/JP2011168468A/en
Publication of JP2011168468A publication Critical patent/JP2011168468A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solidification agent which allows the curing temperature and curing time to be reduced, and has a high energy saving effect and is excellent in the environment though materials such as the blast furnace cement in mixed cement, slag plaster and blast furnace slag-plaster are inexpensive compared with normal cement, and are widely used, e.g., in the field of building material production and application for soil stabilizers. <P>SOLUTION: As a cement solidification agent which is solidified at ordinary temperature, and has a low pH by reducing an alkali content, only a magnesia series has been considered, but, as lime based alkali stimulants, blast furnace slag-lime nitrogen and blast furnace slag-carbide series are newly discovered. Regarding these solidification agents, compared with the conventional lime series, the amount of lime to be added is the small one of about 1/2, thus the amount of alkali can be reduced, and an environmental load is reduced. Further, the initial strength can be increased as well. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

高炉スラグの硬化方法に関し、高炉スラグにアルカリ刺激剤として、(以下アルカリ刺激剤という、セメント及び生石灰及び消石灰、焼成ドロマイト)石灰窒素、カーバイト、石膏を含み、又、マグネシア)と活性剤として、(以下活性剤という、アルカリ土類金属硫酸塩及びアルカリ土類金属塩)を含み、単独又は2種類以上の混合物を共存させて水和させる、高炉スラグの硬化方法である。Regarding the method of hardening blast furnace slag, as alkali stimulant in blast furnace slag (hereinafter referred to as alkali stimulator, cement and quicklime and slaked lime, calcined dolomite) including lime nitrogen, carbide, gypsum, and magnesia) and activator, This is a method for curing blast furnace slag, which includes (hereinafter referred to as an activator, alkaline earth metal sulfate and alkaline earth metal salt) and hydrates in the presence of one or a mixture of two or more.

高炉スラグの化学組成は、CaOが約40%含まれており、セメントと同程度の含有量である、しかし、高炉スラグではガラス化により、石灰の溶出速度が遅く、セメントに比較して、水和活性が低く潜在水硬性といわれており、アルカリ刺激剤と石膏を添加する方法が行われており、初期はセメント並みの強度が得られていない現状である。
従来、高炉スラグの硬化方法は、アルカリ刺激剤の石灰類、マグネシア又はセメント及び石膏を添加し、活性剤のカルシウムアルミネート、アルミン酸ソーダ、炭酸ソーダ、硫酸マグネシウム、アミノアルコールなどを添加することが行われている。
しかし、高炉スラグとアルカリ刺激剤を用いる方法の凝結時間は、セメントに比較して遅く、工場生産の建材の生産には、蒸気養生やオートクレイブ養生が行われている。
The chemical composition of blast furnace slag contains about 40% CaO, which is about the same content as cement. However, blast furnace slag has a slow leaching rate of lime due to vitrification, and water content is lower than that of cement. It is said to have low sum activity and latent hydraulic properties, and a method of adding an alkali stimulant and gypsum has been carried out, and the initial strength is not as high as cement.
Conventionally, blast furnace slag curing methods include adding alkali stimulants such as limes, magnesia or cement and gypsum, and adding activators calcium aluminate, sodium aluminate, sodium carbonate, magnesium sulfate, amino alcohol, etc. Has been done.
However, the setting time of the method using blast furnace slag and alkali stimulant is slower than that of cement, and steam curing and autoclave curing are performed for production of factory building materials.

高炉スラグを利用する利点は、土壌固化剤では、ゲルの溶出がセメントより多く、土壌のコロイド性に影響され難い微細な硬化物の性質と有機物に影響され難い特性がある。又、アルカリ刺激剤の添加量が少なく済むため、遊離石灰のエフロやpHを抑制でき、耐酸性が向上できる他、高炉セメントのようにコストが低く生産できる利点がある。The advantage of using blast furnace slag is that the soil solidifying agent has more gel elution than cement and has the property of fine hardened material that is hardly affected by the colloidal properties of the soil and the property that is hardly affected by organic matter. In addition, since the amount of the alkali stimulator added is small, it is possible to suppress free lime effloration and pH, improve acid resistance, and have the advantage of being able to be produced at low cost like blast furnace cement.

土壌固化剤の条件は、環境問題から常温硬化性が良好で、pHが低く、耐水性が高く、CBRが優れ、高含水比でも固化することなどと、重金属類の不溶性などがあげられ、施工による環境負荷が低い性質が求められている。
しかし、このような固化剤は、マグホワイト(マグネシア系固化剤)以外になく、セメントメーカーの上市している製品は、大部分がセメント・石膏系の組成であり、高硫酸塩セメントである。
The conditions for the soil solidifying agent include good room temperature curability due to environmental problems, low pH, high water resistance, excellent CBR, solidification even at high water content, and insoluble heavy metals. There is a demand for properties that have a low environmental impact.
However, there is no such solidifying agent other than mag white (magnesia type solidifying agent), and most of the products on the market of cement manufacturers are cement / gypsum based compositions, which are high sulfate cements.

従来、高炉スラグにアルカリ刺激剤として、セメント、石灰を添加するか、石膏を添加する方法が行われており、代表例は高炉セメントである。近年環境問題がセメントにも及び環境に優しいセメントが求められている、しかるに、従来の方法では、pHを高くしてセメントを硬化させることが行われており、アルカリ量を低下させ、pHを12以下にするとセメントは硬化しにくいと言われていた。又、マグネシア量を16%以下にする方法がセメント製造で行われ、膨張を抑制することが行われている。
高炉スラグにアルカリ刺激剤を添加する、混合セメントでは凝結時間が長くなり、強度の発生が、遅く、加熱養生の時間が長くなる傾向がある。
セメントは、クロムの溶出があり、クロム公害が発生する危険があり、ソイルセメントの利用が禁止されていため、物性の許す限り高炉スラグを多量に配合することが可能になる方法が勘案される。
又、環境対策として、クロムフリーのみならず、アルカリの溶出が少ないセメントが求められており、可能な限り低アルカリセメントが必要になりつつある。
セメントの蒸気養生には1kg当たり約3円の加熱コストが必要で、養生コストを低下させることも必要である。
炭酸ガスの発生量を削減するには、セメントの代わりに高炉スラグを多様した、セメントを作り、常温硬化のセメントが必要で、同時に低コストなセメントが求められている。
Conventionally, a method of adding cement or lime or adding gypsum as an alkali stimulant to blast furnace slag has been performed, and a typical example is blast furnace cement. In recent years, environmental problems have been applied to cement, and environmentally friendly cements have been demanded. However, in conventional methods, the cement is hardened by increasing the pH. The cement was said to be hard to harden if it is below. Moreover, the method of making magnesia amount 16% or less is performed by cement manufacture, and expansion | swelling is performed.
In the mixed cement in which an alkali stimulant is added to the blast furnace slag, the setting time is long, the generation of strength is slow, and the heat curing time tends to be long.
Cement has a leaching of chromium, and there is a danger that chromium pollution will occur, and the use of soil cement is prohibited. Therefore, a method that makes it possible to add a large amount of blast furnace slag as far as the physical properties allow is considered.
Further, as an environmental measure, there is a demand not only for chromium-free but also for cement with little alkali elution, and a low-alkaline cement is required as much as possible.
Cement steam curing requires a heating cost of about 3 yen per kg, and it is also necessary to reduce the curing cost.
In order to reduce the amount of carbon dioxide generated, it is necessary to make cement with various types of blast furnace slag instead of cement and to cure at room temperature, and at the same time, low-cost cement is required.

課題を解決ための手段Means for solving the problem

以上の課題を解決するためには、高炉スラグを如何に活性化するかに関わり、請求項1では、高炉スラグ100部に対し、各々、アルカリ刺激剤の石灰類として、生石灰、消石灰、石膏を約5%添加している。可能な限り添加量を少なくする方法として、活性の高い、発生期の消石灰を発生させるには、石灰窒素、カーバイトを用いることが好ましく、一般的に用いられている石膏以外の石灰類として、5%内外を添加量とするのに対し、約1/2の量で同等以上のアルカリ刺激効果が得られる。
この原因は、直接CaOを添加する方法と異なり、石灰窒素、カーバイトは、加水により、間接的に尿素及びアセチレンを発生して、水酸化カルシウムを発生し、高炉スラグと間接的に反応させることも一因である。
又、活性剤として、硫酸アルミニウム、硫酸マグネシウム、アルミン酸ソーダを単独または複合して用いると、0.5〜4%、好ましくは、2%以下を添加し、高炉スラグを活性化することが可能になった。即ち、水和時の発熱量が高くなり、熱化学反応のセメント水和反応が活性化され、硫酸アルミニウム、硫酸マグネシウム、アルミン酸ソーダ添加量に比例して発熱量が増大する。
アルカリ刺激剤の性質と添加量の関係は、活性度では、カーバイト>石灰窒素>生石灰>消石灰>石膏の順であり、高炉スラグ100部に対し生石灰、消石灰、石膏5%が従来の添加量で、カーバイト>石灰窒素添加では、2%で5%に匹敵する、物性が得られる。
又更に、硫酸アルミニウム、硫酸マグネシウム、アルミン酸ソーダ等の活性剤は、アルミ混合により、改善されるとともに、硫酸アルミニウム+アルミン酸ソーダ及び硫酸マグネシウム+アルミン酸ソーダによる反応により、更に活性化が行える。
この結果、高炉スラグ100部に対し生石灰4重量部、硫酸アルミニウムI重量部とアルミン酸ソーダ0.2重量部の混合物に水50重量部(配合1)のスラリーの発熱状態は、20℃で1分後に4℃、8分後に5℃、10分後に5℃、15分後に7℃、1時間25分後に5℃、2時間後に4℃、2時間18分で終結した。これに対し、硫酸アルミニウムを除いたものでは、20℃で1分後に2℃、8分後に2℃、10分後に3℃、15分後に3℃、1時間25分後に2℃、2時間後に2℃、4時間10分で終結した。
又更に、高炉スラグ100部に対し生石灰3重量部、硫酸アルミニウム1重量部の混合物に水50重量部のスラリーの発熱状態は、20℃で1分後に3℃、8分後に4℃、10分後に4℃、15分後に5℃、1時間25分後に4℃、2時間後に3℃、3時間35分で終結した。
(配合1)の生石灰5重量部を石灰窒素3重量部に置換すると、発熱状態は、ほぼ同様な発熱状態であるが、3日後の圧縮強さは(配合1)3.2N/mmであるのに対し、石灰窒素3重量部では、28日後に53N/mmである。
この原因は、石灰窒素が水和するときに、生石灰よりも遙かに微細な活性度の高い、消石灰が発生しているためと考えられ、カーバイトにも同じような傾向がみられる。
従って、消石灰>生石灰=セメント>石灰窒素の順に石灰添加量は増大し、遊離石灰量が減少できる。これらを用いれば、発熱量が高くなり、養生時間が短縮されるため、養生コストが軽減される利点がある。
In order to solve the above problems, it relates to how to activate the blast furnace slag. In claim 1, quick lime, slaked lime, and gypsum are used as limes of alkali stimulants for 100 parts of blast furnace slag. About 5% is added. As a method of reducing the addition amount as much as possible, in order to generate slaked lime with high activity and nascent stage, it is preferable to use lime nitrogen and carbide, as limes other than gypsum generally used, While the addition amount is 5% inside or outside, an alkali stimulating effect equal to or greater than about 1/2 is obtained.
The cause of this is that, unlike the method of adding CaO directly, lime nitrogen and carbide generate urea and acetylene indirectly by addition of water to generate calcium hydroxide and react indirectly with blast furnace slag. Is also a factor.
When aluminum sulfate, magnesium sulfate, or sodium aluminate is used alone or in combination as an activator, 0.5 to 4%, preferably 2% or less can be added to activate blast furnace slag. Became. That is, the calorific value during hydration increases, the cement hydration reaction of the thermochemical reaction is activated, and the calorific value increases in proportion to the added amount of aluminum sulfate, magnesium sulfate and sodium aluminate.
The relationship between the nature of the alkali stimulant and the addition amount is in the order of carbide, lime nitrogen, quick lime, slaked lime, and gypsum in terms of activity, and quick lime, slaked lime, and 5% gypsum are the conventional addition amount for 100 parts of blast furnace slag. In addition, when Carbite> lime nitrogen is added, physical properties comparable to 5% are obtained at 2%.
Furthermore, activators such as aluminum sulfate, magnesium sulfate, and sodium aluminate can be improved by mixing with aluminum, and further activated by reaction with aluminum sulfate + sodium aluminate and magnesium sulfate + sodium aluminate.
As a result, the heat generation state of the slurry of 50 parts by weight of water (formulation 1) in a mixture of 4 parts by weight of quicklime, I parts by weight of aluminum sulfate and 0.2 parts by weight of sodium aluminate with respect to 100 parts of blast furnace slag was 1 at 20 ° C. After 4 minutes, 5 ° C. after 8 minutes, 5 ° C. after 10 minutes, 7 ° C. after 15 minutes, 5 ° C. after 1 hour and 25 minutes, 4 ° C. after 2 hours, and 2 hours and 18 minutes. On the other hand, with the exception of aluminum sulfate, 2 ° C. after 1 minute at 20 ° C., 2 ° C. after 8 minutes, 3 ° C. after 10 minutes, 3 ° C. after 15 minutes, 2 ° C. after 1 hour 25 minutes, 2 ° C. after 2 hours The reaction was completed at 2 ° C for 4 hours and 10 minutes.
Furthermore, the heat generation state of a slurry of 3 parts by weight of quicklime and 1 part by weight of aluminum sulfate and 50 parts by weight of water in 100 parts of blast furnace slag was 3 ° C after 1 minute at 20 ° C, 4 ° C after 10 minutes, and 10 minutes. After 4 ° C, 15 minutes later 5 ° C, 1 hour 25 minutes later 4 ° C, 2 hours later 3 ° C, 3 hours 35 minutes.
When 5 parts by weight of quicklime in (Compound 1) is replaced with 3 parts by weight of lime nitrogen, the exothermic state is almost the same exothermic state, but the compression strength after 3 days is (Composition 1) 3.2 N / mm 2 In contrast, with 3 parts by weight of lime nitrogen, it is 53 N / mm 2 after 28 days.
This is thought to be due to the occurrence of slaked lime, which has a much finer activity than quick lime when lime nitrogen hydrates.
Therefore, the amount of lime addition increases and the amount of free lime can decrease in the order of slaked lime> quick lime = cement> lime nitrogen. If these are used, the calorific value is increased, and the curing time is shortened. Therefore, there is an advantage that the curing cost is reduced.

請求項2では、高炉スラグ100重量部に対し、アルカリ刺激剤の軽焼マグネシア量を15〜30重量部、無水石膏3〜7重量部を添加する配合において、硫酸アルミニウム、硫酸マグネシウム、アルミン酸ソーダを単独又は複数を用いると、凝結終了前の発熱状態が大きく発熱側に変化させることができる。即ち、高炉スラグと、活性剤を添加すると発熱反応を伴ない、アルカリ刺激剤の軽焼マグネシアとは殆ど発熱がなく、石灰類と大きく異なる点である。
マグネシア源として、焼成方法により重焼マグネシア、軽焼マグネシアがあり、活性度は活性の高い軽焼マグネシアが適しており、更に海水マグネシアが好ましい。
本発明のマグホワイトでは、初期強度の改善と長期強度の短縮発現を目的に、活性剤が添加されており。添加量は1重量部〜4重量部の範囲であり、硫酸アルミニウムとアルミン酸ソーダの混合物が最も活性が高い。
初期の発熱量が添加量に比例して上昇し、上昇温度は最大12℃/200gスケールで、始発時間は2分以内である。しかし、高炉スラグの粉末度が上がると当然活性度も上昇し、アルミン酸ソーダ添加は初期にのみ影響を与える。
硫酸マグネシウム単独では、活性が低く、アルミン酸ソーダと共用することで活性が上昇する。
平成15年以降の改良されたマグホワイトでは、活性剤が添加されており、各々、マグホワイトIの重金属処理用と土壌固化剤のマグホワイトIII及びマグホワイトIIIE、高強度用のマグホワイトIIIPにも添加されている、押し出し製品用と抑草用のマグホワイトDには添加されていないが、凝結時間の調節には、無水クエン酸が用いられて、スラリーの流動性を改善し、活性剤ののスラリーのこわばりを改善している。これらは、上市されている代表例であるが、活性剤の添加量によって、並行して無水クエン酸によりポットライフを調節でき、用途に合わせて製品開発が行えるようになり、初期強度と長期強度の調整が可能である。
In claim 2, in the blending of adding 15 to 30 parts by weight of light burned magnesia of alkali stimulant and 3 to 7 parts by weight of anhydrous gypsum to 100 parts by weight of blast furnace slag, aluminum sulfate, magnesium sulfate, sodium aluminate When one or a plurality of is used, the heat generation state before the end of the condensation can be greatly changed to the heat generation side. That is, when blast furnace slag and an activator are added, there is an exothermic reaction, and the alkali-stimulated light-burned magnesia has little heat generation and is greatly different from limes.
As the magnesia source, there are heavy-burned magnesia and light-burned magnesia depending on the baking method. Light-activated magnesia with high activity is suitable, and seawater magnesia is more preferable.
In the mug white of the present invention, an activator is added for the purpose of improving the initial strength and shortening the long-term strength. The addition amount is in the range of 1 to 4 parts by weight, and a mixture of aluminum sulfate and sodium aluminate has the highest activity.
The initial calorific value rises in proportion to the added amount, the rising temperature is a maximum of 12 ° C./200 g scale, and the start time is within 2 minutes. However, as the fineness of the blast furnace slag increases, the activity naturally increases, and the addition of sodium aluminate only affects the initial stage.
With magnesium sulfate alone, the activity is low, and the activity increases when used with sodium aluminate.
In the improved Mag White since 2003, activators have been added to the Mag White I heavy metal treatment, the soil solidifier Mag White III and Mag White IIIE, and the high strength Mag White IIIP, respectively. Is added to the extruded product and the herbicidal Mag White D, but the adjustment of the setting time uses anhydrous citric acid to improve the fluidity of the slurry, and the activator The stiffness of the slurry is improved. These are typical examples on the market, but the pot life can be adjusted with anhydrous citric acid in parallel depending on the amount of activator added, and product development can be performed according to the application, initial strength and long-term strength Can be adjusted.

発明の効果The invention's effect

本発明は、用途が広くアルカリの溶出が少ない安全な固化材に適用できるほか、セメント製品の蒸気養生、オートクレイブ養生の養生温度と養生時間を短縮できる、水和反応の活性剤に関し、省エネ効果が大きいく、セメント+活性剤+無水クエン酸では養生6時間で脱生強度が得られ、高炉セメントではセメント量が低減でき、高炉C以下のセメント添加量で、高炉B以上の物性が得られる発明である。
又、環境対策の基本である、セメント固化剤になくてはならない、マグネシア系固化剤は本来、強度が出にくい状態であったが、本発明によって物性が大きく改善されるようになり、28日強さが約2倍になり、pHは、低下する形になった。
最も効果的な発明は、高炉スラグ+石灰窒素又は高炉スラグ+カーバイトの固化剤である。
これらは、石灰窒素の農薬的性状はそのまま維持し、固化によって、農地の表面に枯草性を与え、マルチングの下では、殺菌作用と土解作用があり、農業の省力化に有効である。
又、世界的にサンゴの生育が悪化し、沖縄では、シャコ貝の養殖に初めてマグホワイトで成功したことを受け、同様な化学成分に近い条件で、サンゴの養殖基盤研究が開始されている、これらの性質は、無機質の多孔体が必要不可欠で、アセチレンのガスにより、アルミ粉では困難な連続気泡の構造をもつ、発泡体が求められており、遊離石灰の少ない、スラグ硬化物が適している。
The present invention relates to an activator for a hydration reaction that can be applied to a safe solidifying material that is versatile and has little alkali elution, and can shorten the curing temperature and curing time of steam curing of cement products and autoclave curing. With a large amount of cement, activator + anhydrous citric acid can provide a reviving strength within 6 hours of curing, and with blast furnace cement, the amount of cement can be reduced. It is an invention.
In addition, the magnesia-based solidifying agent, which is a basic cementing agent for environmental measures, was originally in a state where it was difficult to obtain strength. However, the present invention greatly improved the physical properties, and the 28th day. The strength doubled and the pH decreased.
The most effective invention is a solidifying agent of blast furnace slag + lime nitrogen or blast furnace slag + carbite.
They maintain the agrochemical properties of lime nitrogen, solidify the surface of the farmland and give hay resistance to the surface of the farmland. Under mulching, they have a bactericidal and soil-dissolving action, which is effective for labor saving in agriculture.
In addition, coral growth has deteriorated globally, and in Okinawa, the first successful cultivation of giant clam shellfish with mug white, coral aquaculture research has begun under conditions similar to chemical components. For these properties, an inorganic porous body is indispensable, and there is a demand for a foam having an open cell structure that is difficult with aluminum powder due to the acetylene gas, and a slag cured product with less free lime is suitable. Yes.

実施形態の効果Effects of the embodiment

高炉スラグにアルカリ刺激剤として用いられているアルカリ類と石膏は、石灰窒素及びカーバイト以外は、常温養生の使用は、土壌安定剤であり、セメント用途では、物性が出難いため、蒸気養生やオートクレイブ養生が行われており、セメント類でも工場生産では同様の養生が行われている。
マグホワイトの様に、環境対応のセメント固化剤では、加熱養生が困難であるため、可能このため、マグホワイトでは、物性を改善するため、活性剤として、硫酸マグネシウム、硫酸アルミニウムウム、アルミン酸ソーダを単独又は混合して用いると、初期強度と長期強度を改善することが可能である。無添加の場合は、28日圧縮強さが1/2に低下し、添加効果が大きい。
セメント製品の製造でも、養生温度と養生時間の短縮が図られ、省エネ効果が大きい。
流動性を改善する、セメント混和剤を少量添加し、無水クエン酸、グルコン酸、ケトグルタール酸などの遅延剤を併用することで、スランプを改善することが可能である。
Alkaline and gypsum used as alkali stimulants in blast furnace slag are soil stabilizers, except for lime nitrogen and carbide, which are soil stabilizers. Autoclave curing is performed, and the same curing is also performed in cement production at the factory.
This is possible because heat curing is difficult with an environmentally-friendly cement solidifying agent like Mag White. For this reason, Mag White has magnesium sulfate, aluminum sulfate, sodium aluminate as activators to improve physical properties. When these are used alone or in combination, the initial strength and long-term strength can be improved. In the case of no addition, the 28-day compressive strength is reduced to ½, and the effect of addition is great.
Even in the manufacture of cement products, the curing temperature and curing time can be shortened, resulting in a significant energy saving effect.
Slump can be improved by adding a small amount of a cement admixture that improves fluidity and using a retarder such as citric anhydride, gluconic acid, or ketoglutaric acid together.

以下に本発明を例示して、詳細に説明する。
本実施例は、材料規格、材料の生産方法などの条件により、必ずしも本発明の再現性に責を負うものではない。
実施例1.高炉スラグ(粉末度4.000の住金鉱化(株)製)100重量部に対し、石灰窒素(電気化学工業粉末)2重量部と無水石膏重量部と無水硫酸アルミニウム(水沢化学工業製)1重量部を混合してなる粉末粉末混合物を、JiS−R−5201に準じて、凝結試験及び物理試験を行う。
始発3時間46分 終結4時間24分。
圧縮強さ7日/mm 114N/mm/mm 14日313N/mm 28日 508N/mm
実施例 2.高炉スラグ(粉末度4.000の住金鉱化(株)製)100重量部に対し、石灰窒素4重量部と無水クエン酸0.1重量部を、JiS−R−5201に準じて、凝結試験及び物理試験を行う。
凝結試験及び物理試験を行う。4時間1分 終結5時間34分。
圧縮強さ7日/mm 114N/mm 14日323N/mm
28日 501N/mm
実施例3、.高炉スラグ(粉末度4.000の住金鉱化(株)製)100重量部に対し、石灰窒素2重量部と無水クエン酸0.1重量部を、JiS−R−5201に準じて、凝結試験及び物理試験を行う。4時間4分 終結例 2.高炉スラグ(粉末度4.000の住金鉱化(株)製)100重量部に対し、石灰窒素2重量部と無水クエン酸0.1重量部を、JiS−R−5201に準じて、凝結試験及び物理試験を行う。4時間4分 終結5時間10分。
圧縮強さ7日/mm 104N/mm/mm 14日313N/mm 28日 501N/mm
スラグ(粉末度4.000の住金鉱化(株)製)100重量部に対し、石灰窒素2重量部と無水クエン酸0.1100重量部を、JiS−R−5201に準じて、凝結試験及び物理試験を行う。4時間4分 終結5時間分。
圧縮強さ7日 111N/mm 14日256N/mm 28日 506N/mm
実施例 3.高炉スラグ(粉末度8.000の住金鉱化(株)製)100重量部に対し、石灰窒素(電気化学工業粉末)5重量部と無水石膏5重量部、無水硫酸アルミニウム(水沢化学工業製)2重量部とアルミン酸ナトリウム0.2重量部、と無水クエン酸0.1重量部を混合してなる粉末混合物を、JiS−R−5201に準じて、凝結試験及び物理試験を行う。
始発2時間48分 終結4時間36分
圧縮強さ7日 121N/mm 14日321N/mm 28日544N/mm
実施例4. 高炉スラグ(粉末度4.000住金鉱化(株)製)100重量部に対し、石灰窒素(電気化学工業粉末)3重量部と無水石膏重量部と無水硫酸マグネシウム(昭和化学製)3重量部とアルミン酸ソーダ1重量部を混合してなる粉末混合物を、JiS−R−5201に準じて、凝結試験及び物理試験を行う。
始発3時間14分 終結4時間36分。
圧縮強さ7日 102N/mm 14日28IN/mm 28日 546N/mm
実施例5 高炉スラグ(粉末度4.000の住金鉱化(株)製)100重量部に対し、石灰窒素(電気化学工業粉末)3重量部と無水石膏重量部とアルミン酸ソーダ(昭和化学製)1重量部を混合してなる粉末100重量部に水100重量部とエチレン酢酸ビニル50%液1/10希釈液5重量部を添加して、スラリーを作り、これを鉄道草の瀬高60cm繁茂地に400g/m濃度で散布すると、土壌面は約2mm厚さに固化し、散布7日よりを鉄道草は、枯死を開始し、14日では完全に枯死した。
比較例1.実施例4と同様な鉄道草の瀬高60cm繁茂地に、ランドアップ(日産化学製)100倍希釈液を散布し、散布7日よりを鉄道草は、古紙を開始し、14日では完全に枯死した、しかし、土壌はイオン交換反応を起こし、風雨により流されやすくなった。
実施例6 高炉スラグ(粉末度4.000の住金鉱化(株)製)100重量部に対し、カーバイト粉末(日本カーバイト製)3重量部と無水石膏重量部と無水硫酸アルミニウム(水沢化学工業製)1重量部を混合してなる粉末混合物を、JiS−R−5201に準じて、凝結試験及び物理試験を行う。
始発46分 終結3時間14分。
圧縮強さ7日/mm 87N/mm/mm 14日274N/mm 28日 497 N/mm
この成形物は、連続気泡の透水率23%の多孔質で、養殖漁礁、透水性舗装材に用いられる。
実施例7 高炉スラグ(粉末度4.000の住金鉱化(株)製)100重量部に対し、普通セメント(太平洋セメント)15重量部と無水石膏7重量部、無水硫酸アルミニウム(水沢化学工業製)0.4重量部及び無水クエン酸0.1を重量部を混合してなる混合粉末を、JiS−R−5201に準じて、凝結試験及び物理試験を行う。始発2時間46分 終結4時間38分。圧縮強さ7日材令、104N/mm/mm 14日214N/mm 28日 412N/mm
実施例8. 高炉スラグ(粉末度4.000の住金鉱化(株)製)100重量部に対し、普通セメント(太平洋セメント)15重量部と無水石膏7重量部、無水硫酸アルミニウム(水沢化学工業製)2重量部及び無水クエン酸0.1を重量部を混合してなる混合粉末を、JiS−R−5201に準じて、凝結試験及び物理試験を行う。始発2時間06分 終結3時間10分。圧縮強さ、1日材令104N/mm/mm 14日214N/mm 28日 489N/mm蒸気養生なく12時間後に脱型強度が得られる。
実施例9 高炉スラグ(粉末度4.000の住金鉱化(株)製)100重量部に対し、軽焼マグネシア(宇部マテ利アル製)23重量部と無水石膏5重量部]と無水硫酸アルミニウム(水沢化学製)2重量部、無水クエン酸0.1重量部の混合物を、水50重量部を混合してスラリーを作る。
20℃の室温で、スラリー温度は急速に上昇して、200gスケールで5分後に4度、10分後に8℃、25分後に10℃に上昇し、46分で始発が見られ、1時間25分で終結した。
JiS−R−5201に準じて、物理試験を行う。
始発2時間46分 終結4時間38分、
圧縮強さ7日材令、104N/mm/mm 14日205N/mm 28日 459N/mmである。
実施例10、高炉スラグ(粉末度4.000の住金鉱化(株)製)100重量部に対し、軽焼マグネシア(宇部マテ利アル製)23重量部と無水石膏5重量部の混合物を100重量部に対し、水50重量部をもってスラリーを作る。
20℃の室温で、スラリー温度は一時的に降下し、5分後に17℃、15後に21℃に昇温した。
始発は、1時間46分、終結は、4時間8分である。
実施例11、 高炉スラグ(粉末度4.000の住金鉱化(株)製)100重量部に対し、軽焼マグネシア(宇部マテ利アル製)30量部と無水石膏5重量部と無水硫酸アルミニウム(水沢化学製)重量部、無水クエン酸0.1重量部の混合物を100重量部に対し、水50重量部を混合してスラリーを作る。
200gスケールで20℃の室温で、スラリー温度は急速に上昇して、5分で7℃、10分後に9℃、25分後に12℃上昇し、31分で始発が見られ、46分で終結した。
実施例12、高炉スラググ(粉末度4.000の住金鉱化(株)製)100重量部に対し、軽焼マグネシア(宇部マテリアル製)15重量部と無水石膏5重量部と重焼リン10重量部、無水硫酸アルミニウム(水沢化学製)2重量部、無水クエン酸0.1重量部の混合物を200重量部に対し、水100重量部を混合し、スラリーを作る。
200gスケールで5分後に23℃、10後に、28℃に上昇した。
始発は、2時間42分、終結は、3時間51分であった。
この製品は、重金属処理に適している。
実施例13、高炉スラググ(粉末度4.000の住金鉱化(株)製)100重量部に対し、軽焼マグネシア(宇部マテリアル製)15重量部と無水石膏5重量部と重焼リン10重量部、無水硫酸マグネシウム2重量部、アルミン酸ソーダ1重量部、無水クエン酸0.1重量部の混合物を200重量部に対し、水100重量部を混合し、スラリーを作る。
20℃の条件で200gスケールで5分後に23℃、10後に、28℃に上昇した。
始発は、2時間42分、終結は、3時間51分であった。
この製品は、重金属処理に適している。
特開平−53023 特開平7−60739 特開平8−164140 特開平−142956 特許第3675466 05001PCT−US 特許第3511287号 特願2004−102993 特願2001−036285 特願2000−8634 石膏石灰ハンドブック(1986年版) 無機化学ハンドブック(1990年版) マグネシアセメント進化論(2007年小堀 茂次) マグホワイトと石灰窒素の併用による飼料イネのカドミニウム吸収抑制効果 自然環境に優しい土壌硬化剤マグホワイト マルチングによる赤土流出防止工法 湖沼等の環境浄化処理技術の開発(平成13年度・14年度環境省) 結した。高炉スラグを主体としたクリンカーレス租粒子セメントコンクリートについて(新日鉄)
Hereinafter, the present invention will be illustrated and described in detail.
This embodiment is not necessarily responsible for the reproducibility of the present invention depending on conditions such as material standards and material production methods.
Example 1. For 100 parts by weight of blast furnace slag (manufactured by Sumikin Mineral Co., Ltd.), 2 parts by weight of lime nitrogen (electrochemical industry powder), parts by weight of anhydrous gypsum, and anhydrous aluminum sulfate (manufactured by Mizusawa Chemical Industry) 1 A setting test and a physical test are performed on the powder mixture obtained by mixing parts by weight in accordance with JiS-R-5201.
First 3 hours 46 minutes and last 4 hours 24 minutes.
Compressive strength 7 days / mm 2 114 N / mm 2 / mm 2 14 days 313 N / mm 2 28 days 508 N / mm 2 .
Example 2. Condensation test according to JiS-R-5201 with 4 parts by weight of lime nitrogen and 0.1 parts by weight of anhydrous citric acid to 100 parts by weight of blast furnace slag (manufactured by Sumikin Mineral Co., Ltd.) And conduct physical tests.
Conduct condensation and physical tests. 4 hours and 1 minute, 5 hours and 34 minutes.
Compressive strength 7 days / mm 2 114 N / mm 2 14 days 323 N / mm 2
28 days 501 N / mm 2 .
Example 3,. Condensation test according to JiS-R-5201 with 2 parts by weight of lime nitrogen and 0.1 part by weight of anhydrous citric acid for 100 parts by weight of blast furnace slag (manufactured by Sumikin Mineral Co., Ltd.) And conduct physical tests. 4 hours 4 minutes Termination example Condensation test according to JiS-R-5201 with 2 parts by weight of lime nitrogen and 0.1 part by weight of anhydrous citric acid for 100 parts by weight of blast furnace slag (manufactured by Sumikin Mineral Co., Ltd.) And conduct physical tests. 4 hours and 4 minutes and 5 hours and 10 minutes.
Compressive strength 7 days / mm 2 104N / mm 2 / mm 2 14 days 313N / mm 2 28 days 501N / mm 2.
For 100 parts by weight of slag (manufactured by Sumikin Mineral Co., Ltd.), 2 parts by weight of lime nitrogen and 0.1100 parts by weight of anhydrous citric acid were subjected to a setting test according to JiS-R-5201. Perform physical tests. 4 hours 4 minutes 5 hours.
Compressive strength 7 days 111N / mm 2 14 days 256N / mm 2 28 days 506N / mm 2
Example 3. For 100 parts by weight of blast furnace slag (manufactured by Sumikin Mineral Co., Ltd.), 5 parts by weight of lime nitrogen (electrochemical industry powder) and 5 parts by weight of anhydrous gypsum, anhydrous aluminum sulfate (manufactured by Mizusawa Chemical Industry) A powder mixture formed by mixing 2 parts by weight, 0.2 part by weight of sodium aluminate, and 0.1 part by weight of anhydrous citric acid is subjected to a setting test and a physical test according to JiS-R-5201.
Initial set 2 hours 48 minutes terminator 4 hours 36 minutes Compressive strength 7 days 121N / mm 2 14 days 321N / mm 2 28 days 544N / mm 2.
Example 4 3 parts by weight of lime nitrogen (electrochemical industry powder), 3 parts by weight of anhydrous gypsum and 3 parts by weight of anhydrous magnesium sulfate (manufactured by Showa Chemical Co., Ltd.) per 100 parts by weight of blast furnace slag (fineness: 4.00, manufactured by Sumikin Mineral Co., Ltd.) A powder mixture formed by mixing 1 part by weight of sodium aluminate and sodium aluminate is subjected to a setting test and a physical test according to JiS-R-5201.
First 3 hours 14 minutes and last 4 hours 36 minutes.
Compressive strength 7 days 102N / mm 2 14 days 28IN / mm 2 28 days 546N / mm 2
Example 5 With respect to 100 parts by weight of blast furnace slag (manufactured by Sumikin Mineral Co., Ltd.), 3 parts by weight of lime nitrogen (electrochemical industry powder), parts by weight of anhydrous gypsum, and sodium aluminate (manufactured by Showa Chemical) ) Add 100 parts by weight of water and 5 parts by weight of 1/50 dilution of ethylene vinyl acetate 50% solution to 100 parts by weight of powder mixed with 1 part by weight to make a slurry. When sprayed to the ground at a concentration of 400 g / m 2 , the soil surface solidified to a thickness of about 2 mm, and the railroad grass started to die from the 7th day of spraying, and completely died on the 14th day.
Comparative Example 1 Land up (Nissan Chemical Co., Ltd.) 100 times diluted solution is sprayed on the 60cm high height of the railway grass height in the same way as in Example 4, and the railroad grass starts the waste paper from the 7th spraying day, and it completely dies on the 14th. However, the soil caused an ion exchange reaction and was easily washed away by wind and rain.
Example 6 For 100 parts by weight of blast furnace slag (manufactured by Sumikin Mineral Co., Ltd. having a fineness of 4.000), 3 parts by weight of carbide powder (manufactured by Nippon Carbite), parts by weight of anhydrous gypsum and anhydrous aluminum sulfate (Mizusawa Chemical) A coagulation test and a physical test are performed on a powder mixture obtained by mixing 1 part by weight of an industrial product according to JiS-R-5201.
First 46 minutes, 3 hours 14 minutes.
Compressive strength 7 days / mm 2 87 N / mm 2 / mm 2 14 days 274 N / mm 2 28 days 497 N / mm 2 .
This molded product is porous with open cell permeability of 23% and is used for aquaculture reefs and permeable pavement materials.
Example 7 With respect to 100 parts by weight of blast furnace slag (manufactured by Sumikin Mineral Co., Ltd.), 15 parts by weight of ordinary cement (Pacific cement) and 7 parts by weight of anhydrous gypsum, anhydrous aluminum sulfate (manufactured by Mizusawa Chemical Industry) ) Condensation test and physical test are performed on the mixed powder obtained by mixing 0.4 part by weight and 0.1 part by weight of anhydrous citric acid according to JiS-R-5201. First 2 hours 46 minutes 4 hours 38 minutes. Compressive strength 7 days material age, 104 N / mm 2 / mm 2 14 days 214 N / mm 2 28 days 412 N / mm 2
Example 8 FIG. For 100 parts by weight of blast furnace slag (manufactured by Sumikin Mineral Co., Ltd.), 15 parts by weight of ordinary cement (Pacific cement) and 7 parts by weight of anhydrous gypsum, 2 parts of anhydrous aluminum sulfate (manufactured by Mizusawa Chemical Co., Ltd.) A coagulation test and a physical test are performed on a mixed powder obtained by mixing parts by weight and 0.1 part by weight of anhydrous citric acid in accordance with JiS-R-5201. First 2 hours 06 minutes and last 3 hours 10 minutes. Compressive strength, 1 day material age 104 N / mm 2 / mm 2 14 days 214 N / mm 2 28 days 489 N / mm 2 Demolding strength is obtained after 12 hours without steam curing.
Example 9 For 100 parts by weight of blast furnace slag (manufactured by Sumikin Mineral Co., Ltd. having a fineness of 4.000), 23 parts by weight of light-burned magnesia (manufactured by Ube Material) and 5 parts by weight of anhydrous gypsum] and anhydrous aluminum sulfate A slurry is prepared by mixing 2 parts by weight (manufactured by Mizusawa Chemical) and 0.1 parts by weight of anhydrous citric acid with 50 parts by weight of water.
At a room temperature of 20 ° C., the slurry temperature rapidly increased, 4 degrees after 5 minutes on the 200 g scale, 8 ° C. after 10 minutes, 10 ° C. after 25 minutes, and the first start was seen at 46 minutes. It ended in minutes.
A physical test is performed according to JiS-R-5201.
First time 2 hours 46 minutes End time 4 hours 38 minutes,
The compressive strength is 7 days old, 104 N / mm 2 / mm 2 14 days 205 N / mm 2 28 days 459 N / mm 2 .
Example 10 For 100 parts by weight of blast furnace slag (manufactured by Sumikin Mineral Co., Ltd. having a fineness of 4.0000), a mixture of 23 parts by weight of light-burned magnesia (manufactured by Ube Material) and 5 parts by weight of anhydrous gypsum is 100. A slurry is prepared with 50 parts by weight of water per part by weight.
At room temperature of 20 ° C., the slurry temperature temporarily dropped, and the temperature was raised to 17 ° C. after 5 minutes and to 21 ° C. after 15 minutes.
The first train is 1 hour 46 minutes and the last train is 4 hours 8 minutes.
Example 11 With respect to 100 parts by weight of blast furnace slag (manufactured by Sumikin Mineral Co., Ltd.), 30 parts by weight of light-burned magnesia (manufactured by Ube Material), 5 parts by weight of anhydrous gypsum and anhydrous aluminum sulfate A slurry is prepared by mixing 50 parts by weight of water with 100 parts by weight of a mixture of parts by weight (manufactured by Mizusawa Chemical) and 0.1 parts by weight of anhydrous citric acid.
At a room temperature of 20 ° C on a 200g scale, the slurry temperature rose rapidly, 7 ° C in 5 minutes, 9 ° C in 10 minutes, 12 ° C in 25 minutes, the first in 31 minutes, and the end in 46 minutes did.
Example 12, with respect to 100 parts by weight of blast furnace slug (manufactured by Sumikin Mineral Co., Ltd. having a fineness of 4.000), 15 parts by weight of light-burned magnesia (manufactured by Ube Material), 5 parts by weight of anhydrous gypsum and 10 parts by weight of heavy burned phosphorus 100 parts by weight of water are mixed with 200 parts by weight of a mixture of 2 parts by weight of anhydrous aluminum sulfate (manufactured by Mizusawa Chemical) and 0.1 part by weight of anhydrous citric acid to make a slurry.
The temperature rose to 23 ° C. after 10 minutes and 28 ° C. after 5 minutes on a 200 g scale.
The first train was 2 hours and 42 minutes, and the last train was 3 hours and 51 minutes.
This product is suitable for heavy metal processing.
Example 13 For 100 parts by weight of blast furnace slug (manufactured by Sumikin Mineral Co., Ltd. having a fineness of 4.000), 15 parts by weight of light-burned magnesia (manufactured by Ube Material), 5 parts by weight of anhydrous gypsum and 10 parts by weight of heavy burned phosphorus 100 parts by weight of water is mixed with 200 parts by weight of a mixture of 1 part by weight, anhydrous magnesium sulfate 2 parts by weight, sodium aluminate 1 part by weight, and anhydrous citric acid 0.1 part by weight to form a slurry.
The temperature rose to 23 ° C. after 5 minutes and 28 ° C. after 5 minutes on a 200 g scale at 20 ° C.
The first train was 2 hours and 42 minutes, and the last train was 3 hours and 51 minutes.
This product is suitable for heavy metal processing.
JP-A-53023 JP-A-7-60739 JP-A-8-164140 JP-A-1422956 Patent No. 3675466 05001 PCT-US Patent No. 3511287 Patent application 2004-10993 Patent application 2001-036285 Patent application 2000-8634 Gypsum Lime Handbook (1986 Edition) Inorganic Chemistry Handbook (1990 Edition) Magnesia Cement Evolution (2007 Shigeru Kobori) Inhibition of cadmium absorption in feed rice by the combination of magwhite and lime nitrogen Nitrogen-friendly soil hardening agent Red soil runoff prevention method Development of environmental purification technology for lakes and marshes (FY2001 and FY2002). Clinker-less cement cement concrete mainly composed of blast furnace slag (Nippon Steel)

Claims (2)

高炉スラグ(粉末度4.000〜12.000)100重量部に対し、アルカリ刺激剤の石灰類、石膏、石灰窒素、カーバイト各々2重量部及び5重量部、高炉スラグ活性剤の硫酸アルミニウム、硫酸マグネシウム、アルミン酸ソーダの単独又は二種類以上の混合物0.2〜5.0重量部、無水石膏7重量部を添加し、更に遅延剤を添加してなる混合物に加水して固化させる、高炉スラグの硬化方法。Alkaline stimulant limes, gypsum, lime nitrogen, 2 parts by weight and 5 parts by weight each of blast furnace slag (powder degree 4.000-12.000), aluminum sulfate of blast furnace slag activator, A blast furnace in which 0.2 to 5.0 parts by weight of a mixture of magnesium sulfate and sodium aluminate or a mixture of two or more kinds and 7 parts by weight of anhydrous gypsum are added, and a retardant is added to solidify the mixture. Slag curing method. 高炉スラグ(粉末度4.000〜12.000)100重量部に対し、アルカリ刺激剤のマグネシア10重量部〜40重量部、高炉スラグ活性剤の硫酸アルミニウム、硫酸マグネシウム、アルミン酸ソーダの単独又は二種類以上の混合物0.2〜5.0重量部、無水石膏5重量部を添加し、更に遅延剤を添加してなる混合物に加水して固化させる、高炉スラグの硬化方法。100 parts by weight of blast furnace slag (fineness: 4.000-12.000), 10 parts by weight to 40 parts by weight of magnesia as an alkali stimulant, aluminum sulfate, magnesium sulfate, sodium aluminate as blast furnace slag activator A method for curing blast furnace slag, in which 0.2 to 5.0 parts by weight of a mixture of at least one kind and 5 parts by weight of anhydrous gypsum are added, and a mixture obtained by adding a retarder is further added and solidified.
JP2010048344A 2010-02-16 2010-02-16 Method for hardening blast furnace slag Pending JP2011168468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010048344A JP2011168468A (en) 2010-02-16 2010-02-16 Method for hardening blast furnace slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010048344A JP2011168468A (en) 2010-02-16 2010-02-16 Method for hardening blast furnace slag

Publications (1)

Publication Number Publication Date
JP2011168468A true JP2011168468A (en) 2011-09-01

Family

ID=44682984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010048344A Pending JP2011168468A (en) 2010-02-16 2010-02-16 Method for hardening blast furnace slag

Country Status (1)

Country Link
JP (1) JP2011168468A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531419A (en) * 2012-01-04 2012-07-04 浙江大学宁波理工学院 Steel slag activation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531419A (en) * 2012-01-04 2012-07-04 浙江大学宁波理工学院 Steel slag activation method

Similar Documents

Publication Publication Date Title
KR101366003B1 (en) Method for producing concrete block using non-cement binder
CN105272069B (en) A kind of ultra-fine portland cement base grouting material and preparation method thereof
JP5628486B2 (en) Heavy metal elution inhibitor and curable composition containing the same
KR101729216B1 (en) Accelerator for freeze protection of exothermal concrete
KR101488147B1 (en) A composition of eco-friendly non-cement type binder by low-temperature calcination, mortar and concrete comprising the same
KR101333084B1 (en) High early strength cement comprising blast furnace slag and CSA cement
KR100880930B1 (en) Cement composition for rapid hardening
RU2410345C1 (en) Composite construction material
JP2002241154A (en) Cement composition
KR101553820B1 (en) The environment-friendly mortar composition
KR101642039B1 (en) A composite of eco-friendly binding materials with low CO2 emission property by using waste resources, steam cured cement mortar and stem cured concrete composite comprising the same
KR101806161B1 (en) Binder agent with high-calcium
CN103265263A (en) Magnesium oxysulfate cement and preparation method thereof
CN108863133A (en) A kind of efficient special fibre antimitotic agent and preparation method thereof
CN105417986A (en) Early-strength waterproof agent for ordinary Portland cement
WO2016208277A1 (en) Quick-hardening material, method for manufacturing same, and quick-hardening cement composition using same
KR101473228B1 (en) The composition of solidificant having highstrength and rapid solidification
KR20170096494A (en) A environmental-frindly ultra super early strength cement and a environmental-frindly ultra super early strength mortar containing the same
JP6897918B2 (en) Method for promoting hydration reaction of blast furnace slag in cement-based hydrohard composition
KR101410796B1 (en) Rapid solidified agent for deep mixing method on sea
JP2013170112A (en) Acid-proof hydraulic composition, mortar composition, and mortar hardened body
JP2011168468A (en) Method for hardening blast furnace slag
JP6580313B2 (en) Geopolymer additive and geopolymer cured product
CN106746880A (en) A kind of high-performance permeable concrete cementing agent and its application
CN105565700A (en) Early strength waterproof agent for ordinary Portland cement