JP2011167828A - Conveying device - Google Patents

Conveying device Download PDF

Info

Publication number
JP2011167828A
JP2011167828A JP2010036112A JP2010036112A JP2011167828A JP 2011167828 A JP2011167828 A JP 2011167828A JP 2010036112 A JP2010036112 A JP 2010036112A JP 2010036112 A JP2010036112 A JP 2010036112A JP 2011167828 A JP2011167828 A JP 2011167828A
Authority
JP
Japan
Prior art keywords
trajectory
point
distance
transport
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010036112A
Other languages
Japanese (ja)
Other versions
JP5439665B2 (en
Inventor
Hirotoshi Kawamura
博年 河村
Toshio Kamigaki
敏雄 神垣
Toru Saeki
亨 佐伯
Naoki Uchiyama
直樹 内山
Kazunori Mori
和紀 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Sinfonia Technology Co Ltd
Original Assignee
Toyohashi University of Technology NUC
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC, Sinfonia Technology Co Ltd filed Critical Toyohashi University of Technology NUC
Priority to JP2010036112A priority Critical patent/JP5439665B2/en
Publication of JP2011167828A publication Critical patent/JP2011167828A/en
Application granted granted Critical
Publication of JP5439665B2 publication Critical patent/JP5439665B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new conveying device which corrects a conveying track according to displacement without impairing characteristics of the conveying track before correction when correcting the preset conveying track according to the displacement. <P>SOLUTION: The conveying device is a device for conveying a conveying object along the conveying track Pt from a start point S to an end point E. In carrying out conveying control using the preset conveying track Pt, when the end point E' as a target is displaced from the end point E of the conveying track Pt, the conveying device corrects the conveying track Pt to allow the end point E of the conveying track Pt to be the target end point E'. In correcting the track Pt, the conveying device proportionally divides a deviation vector between the end point E before the correction and the target end point E' after the correction over a section from the start point S to the target end point E', gradually corrects the conveying track, into the track Pt' after the correction. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、搬送軌道に沿って搬送対象物を搬送する搬送装置に係り、特に予め設定された搬送軌道と目標位置とのズレを補正する機能を適正化した搬送装置に関するものである。   The present invention relates to a transport device that transports a transport object along a transport track, and more particularly to a transport device in which a function for correcting a deviation between a preset transport track and a target position is optimized.

搬送装置は、特許文献1に例示のように、ロボットアーム等の搬送機構を駆動させて搬送軌道に沿って搬送対象物を搬送するものである。搬送軌道は、予めオフラインで生成されて搬送装置に設定される。この搬送軌道は、搬送効率を向上させるために搬送時間短縮などを考慮したものが多い。   As illustrated in Patent Document 1, the transfer device drives a transfer mechanism such as a robot arm to transfer a transfer object along a transfer track. The transport track is generated in advance offline and set in the transport device. In many cases, this transport track takes into account a reduction in transport time in order to improve transport efficiency.

特開2003−145461号公報JP 2003-145461 A

上記のように予め設定された搬送軌道を用いて搬送制御を行うにあたり、外部からの影響によって予め設定された搬送軌道の始点や終点からズレた位置を新たな始点や終点として搬送しなければならない場合があり、位置ズレに応じて搬送軌道をリアルタイムで補正する機能が要求される。   When carrying out conveyance control using a preset conveyance path as described above, the position shifted from the start point and end point of the preset conveyance path due to external influences must be conveyed as a new start point and end point. In some cases, a function for correcting the conveyance trajectory in real time according to the positional deviation is required.

このような搬送軌道のリアルタイム補正を実現する構成として、予め設定された搬送軌道に沿った搬送動作の開始時又は終了時に補正動作を加えるものが一つの有効な手段として挙げられる。具体的には、図7(a)に示すように、まず予め設定された実線で示す搬送軌道Ptに沿って始点Sから終点Eまで搬送対象物Wを搬送し、その後、破線で示すように終点Eから目標終点E’まで移動する補正動作を行うことや、図7(b)に破線で示すように目標始点S’から搬送軌道Ptの始点Sまで移動する補正動作を行い、その後、実線で示す搬送軌道Ptの始点Sから終点Eまで搬送することが挙げられる。   One effective means for realizing such real-time correction of the transport path is to add a correction operation at the start or end of the transport operation along a preset transport path. Specifically, as shown in FIG. 7A, first, the conveyance object W is conveyed from the start point S to the end point E along a preset conveyance path Pt indicated by a solid line, and then as indicated by a broken line. A correction operation for moving from the end point E to the target end point E ′ is performed, or a correction operation for moving from the target start point S ′ to the start point S of the transport path Pt is performed as shown by a broken line in FIG. And transport from the start point S to the end point E of the transport trajectory Pt.

しかしながら、このように最適な搬送軌道と独立して補正動作を加えたものでは、軌道の急激な変化によって補正前軌道Ptの形状が崩れて補正前軌道Ptの特性が損なわれてしまう。特に補正前軌道Ptが搬送時間短縮や振動抑制等に適した特性を備えていた場合には、補正機能によってこれら特性が失われ、結果として搬送効率の低下を招くこととなる。   However, in the case where the correction operation is added independently from the optimum transport path as described above, the shape of the pre-correction path Pt is lost due to a rapid change in the path, and the characteristics of the pre-correction path Pt are impaired. In particular, when the pre-correction trajectory Pt has characteristics suitable for shortening the transport time and suppressing vibrations, these characteristics are lost by the correction function, resulting in a decrease in transport efficiency.

本発明は、このような課題に着目してなされたものであって、その目的は、予め設定された搬送軌道を位置ズレに応じて補正するにあたり、補正前の搬送軌道の特性を損なうことなく、位置ズレに応じて搬送軌道を補正する新たな搬送装置を提供することである。   The present invention has been made paying attention to such a problem, and its purpose is to correct the conveyance trajectory set in advance according to the positional deviation without impairing the characteristics of the conveyance trajectory before correction. Another object of the present invention is to provide a new transport device that corrects the transport trajectory in accordance with the positional deviation.

本発明は、かかる目的を達成するために、次のような手段を講じたものである。   In order to achieve this object, the present invention takes the following measures.

すなわち、本発明の搬送装置は、始点から終点まで搬送軌道に沿って搬送対象物を搬送するものであって、予め設定された搬送軌道を用いて搬送制御を行うにあたり、目標となる終点が前記搬送軌道の終点から位置ズレしている場合に搬送軌道の終点が目標終点となるように前記搬送軌道を補正する軌道補正部を具備し、前記軌道補正部は、補正前の終点と補正後の目標終点とを結ぶ方向をズレ方向とし、補正前軌道上の始点から或る点までの距離のうちズレ方向成分の距離を補正前距離とし、補正後軌道上の点のうち前記或る点を通るズレ方向に沿った軸上に位置する点を対応点として補正後軌道上の始点から前記対応点までの距離のうちズレ方向成分の距離を補正後距離とした場合に、前記或る点が軌道上の所定の点のうちいずれにあっても補正前距離と補正後距離との比率が同一となるように、始点を基準として補正前距離をズレ方向に沿って拡大又は縮小することにより当該軌道を補正することを特徴とする。   That is, the transport device of the present invention transports a transport object along a transport trajectory from a start point to an end point, and when performing transport control using a preset transport trajectory, the target end point is A trajectory correction unit that corrects the transport trajectory so that the end point of the transport trajectory becomes a target end point when the position is shifted from the end point of the transport trajectory, and the trajectory correction unit includes the end point before correction and the corrected end point The direction connecting the target end point is the deviation direction, the distance in the deviation direction component of the distance from the start point on the pre-correction trajectory to a certain point is the pre-correction distance, and the certain point among the points on the post-correction trajectory is When a point located on an axis along the passing deviation direction is a corresponding point and the distance of the deviation direction component of the distance from the start point on the corrected trajectory to the corresponding point is the corrected distance, the certain point is Whichever point on the orbit Also as the ratio of the pre-correction distance and the corrected distance is the same, and corrects the trajectory by enlarging or reducing the uncorrected distance along the shift direction relative to the starting point.

「所定の点」とは、搬送軌道を構成する点であればよいという程度の意味であり、例えば、搬送軌道を連続的に表現するものや離散的に表現するものが挙げられる。   The “predetermined point” means a point that may be any point that constitutes the transport path, and examples thereof include those that express the transport path continuously and those that express it discretely.

この構成によれば、軌道上の所定の点のうちいずれにあっても補正前距離と補正後距離との比率が同一となるように、始点を基準として補正前距離をズレ方向に沿って拡大又は縮小することにより軌道を補正しているので、補正前の軌道の形状をほぼ維持したまま始点から目標終点に至るまで軌道が徐々に補正され、搬送開始時や終了時に補正動作を行う等の急激な軌道変化によって補正前の軌道の特性を損なうことがなく、終点の位置ズレを補正することができる。   According to this configuration, the pre-correction distance is enlarged along the deviation direction with the start point as a reference so that the ratio of the pre-correction distance and the post-correction distance is the same at any of the predetermined points on the trajectory. Or, since the trajectory is corrected by reducing the trajectory, the trajectory is gradually corrected from the start point to the target end point while substantially maintaining the shape of the trajectory before correction, and a correction operation is performed at the start and end of conveyance, etc. The position deviation of the end point can be corrected without impairing the characteristics of the track before correction due to a sudden track change.

一方、始点の位置ズレを補正するための本発明の搬送装置は、始点から終点まで搬送軌道に沿って搬送対象物を搬送するものであって、予め設定された搬送軌道を用いて搬送制御を行うにあたり、目標となる始点が前記搬送軌道の始点から位置ズレしている場合に搬送軌道の始点が目標始点となるように前記搬送軌道を補正する軌道補正部を具備し、前記軌道補正部は、補正前の始点と補正後の目標始点とを結ぶ方向をズレ方向とし、補正前軌道上の或る点から終点までの距離のうちズレ方向成分の距離を補正前距離とし、補正後軌道上の点のうち前記或る点を通るズレ方向に沿った軸上に位置する点を対応点として補正後軌道上の前記対応点から終点までの距離のうちズレ方向成分の距離を補正後距離とした場合に、前記或る点が軌道上の所定の点のうちいずれにあっても補正前距離と補正後距離との比率が同一となるように、終点を基準として補正前距離をズレ方向に沿って拡大又は縮小することにより当該軌道を補正することを特徴とする。   On the other hand, the transport device of the present invention for correcting the positional deviation of the start point transports a transport target object along the transport track from the start point to the end point, and performs transport control using a preset transport track. In doing so, it comprises a trajectory correction unit for correcting the transport trajectory so that the start point of the transport trajectory becomes the target start point when the target start point is displaced from the start point of the transport trajectory, The direction connecting the start point before correction and the target start point after correction is the shift direction, and the distance of the shift direction component of the distance from a certain point on the track before correction to the end point is the pre-correction distance. Among the distances from the corresponding point on the corrected trajectory to the end point, the point located on the axis along the deviation direction passing through the certain point is the corrected distance. The point is on the orbit Correct the trajectory by enlarging or reducing the pre-correction distance along the deviation direction with the end point as the reference so that the ratio of the pre-correction distance and the post-correction distance is the same regardless of the fixed point. It is characterized by doing.

この構成によれば、軌道上の所定の点のうちいずれにあっても補正前距離と補正後距離との比率が同一となるように、終点を基準として補正前距離をズレ方向に沿って拡大又は縮小することにより軌道を補正しているので、補正前の軌道の形状をほぼ維持したまま目標始点から終点に至るまで軌道が徐々に補正され、搬送開始時や終了時に補正動作を行う等の急激な軌道変化によって補正前の軌道の特性を損なうことがなく、始点の位置ズレを補正することができる。   According to this configuration, the pre-correction distance is expanded along the deviation direction with the end point as a reference so that the ratio of the pre-correction distance and the post-correction distance is the same at any of the predetermined points on the trajectory. Or, since the trajectory is corrected by reducing the trajectory, the trajectory is gradually corrected from the target start point to the end point while maintaining the shape of the trajectory before correction, and the corrective action is performed at the start and end of conveyance, etc. The position deviation of the starting point can be corrected without impairing the characteristics of the track before correction due to a sudden track change.

さらに、搬送軌道の補正を簡易な演算で実現するためには、予め設定された搬送軌道は、始点及び終点を含む複数の点により構成されており、前記軌道補正部は、前記搬送軌道を構成する各点を前記ズレ方向に沿って移動させることにより前記補正前距離の拡大又は縮小を行うことが好ましい。   Furthermore, in order to realize the correction of the transport track with a simple calculation, the preset transport track is configured by a plurality of points including a start point and an end point, and the track correction unit configures the transport track. It is preferable to enlarge or reduce the pre-correction distance by moving each point to be moved along the deviation direction.

搬送軌道が各リンクの角度から表されるような複雑な搬送機構であっても簡易な処理で軌道を補正するためには、複数のリンクを屈折可能に接続した多関節ロボット式の搬送機構を用いて前記搬送対象物を搬送する搬送装置であって、前記搬送軌道は、多関節ロボットを構成する各リンクの角度により表されており、前記軌道補正部は、前記搬送軌道を示す各リンクの角度を、前記補正前距離をズレ方向に沿って拡大又は縮小する方向に補正することが望ましい。   In order to correct the trajectory with simple processing even if the transport trajectory is represented by the angle of each link, an articulated robot type transport mechanism in which a plurality of links are refractably connected is used. A transport device that transports the object to be transported, wherein the transport trajectory is represented by an angle of each link constituting the articulated robot, and the trajectory correction unit It is desirable to correct the angle in a direction in which the pre-correction distance is enlarged or reduced along the deviation direction.

本発明は、以上説明したように、軌道上の所定の点のうちいずれにあっても補正前距離と補正後距離との比率が同一となるように、補正前軌道をズレ方向に沿って拡大又は縮小することにより軌道を補正しているので、補正前軌道の形状をほぼ維持したまま始点から終点に至るまで軌道が次第に補正され、搬送開始時や終了時に補正動作を行う等の急激な軌道変化によって補正前軌道の特性を損なうことなく、位置ズレを補正することが可能となる。しかも、補正前軌道の特性をほぼ維持できるので、補正前の搬送軌道が搬送時間短縮や振動抑制等の特性をほぼ維持でき、搬送効率を向上させることが可能となる。   As described above, the present invention enlarges the pre-correction trajectory along the deviation direction so that the ratio of the pre-correction distance and the post-correction distance is the same at any of the predetermined points on the trajectory. Or, since the trajectory is corrected by reducing the trajectory, the trajectory is gradually corrected from the start point to the end point while maintaining the shape of the trajectory before correction, and a rapid trajectory such as performing a correction operation at the start or end of conveyance. The positional deviation can be corrected without deteriorating the characteristics of the pre-correction trajectory due to the change. In addition, since the characteristics of the pre-correction trajectory can be substantially maintained, the pre-correction transport trajectory can substantially maintain characteristics such as shortening the transport time and suppressing vibrations, thereby improving the transport efficiency.

本発明の一実施形態に係る搬送装置を模式的に示す構成図。The block diagram which shows typically the conveying apparatus which concerns on one Embodiment of this invention. 同搬送装置の搬送機構を示す平面図。The top view which shows the conveyance mechanism of the conveyance apparatus. 同搬送装置に予め設定された搬送軌道に関する説明図。Explanatory drawing regarding the conveyance track | orbit preset in the conveyance apparatus. 搬送軌道の補正に関する説明図。Explanatory drawing regarding correction | amendment of a conveyance track | orbit. 搬送制御手段で実行され軌道補正部を実現するフローチャート。The flowchart which implement | achieves a track | orbit correction | amendment part performed by a conveyance control means. 他の実施形態の搬送装置による搬送軌道の補正に関する説明図。Explanatory drawing regarding correction | amendment of the conveyance track | orbit by the conveying apparatus of other embodiment. 従来の搬送軌道の補正に関する説明図。Explanatory drawing regarding the correction | amendment of the conventional conveyance track | orbit.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態の搬送装置1は、図1に示すように、ウエハー等の搬送対象物Wを搬送するロボットアーム等の搬送機構2と、この搬送機構2を駆動して搬送対象物Wの搬送制御を行う搬送制御手段3とを有している。   As shown in FIG. 1, the transfer apparatus 1 according to this embodiment includes a transfer mechanism 2 such as a robot arm that transfers a transfer object W such as a wafer, and a transfer control of the transfer object W by driving the transfer mechanism 2. And a conveyance control means 3 for performing the above.

搬送機構2は、図2に示すように、複数のリンク21・22・23を屈折可能に直列接続した、いわゆる多関節ロボットアームであり、ロボットアームの先端に設定された保持部23bに搬送対象物Wを載置した状態で各関節にある図示しないモータの駆動により各々のリンク間の角度θ・θ・θを変更して搬送対象物Wを所望の位置に搬送するものである。本実施形態の搬送機構2は、ベース20に基端21aが接続された第1のリンク21と、第1のリンク21の先端21bに基端22aが接続された第2のリンク22と、第2のリンク22の先端22bに基端23aが接続され先端に搬送対象物Wを載置するための保持部23bが設定された第3のリンク23とを備え、各リンク21〜23はそれぞれ水平方向に回転可能に接続されて三軸水平多関節ロボットを構成している。各リンク21〜23の長さはそれぞれL、L、Lに設定してある。 As shown in FIG. 2, the transport mechanism 2 is a so-called articulated robot arm in which a plurality of links 21, 22, 23 are connected in series so as to be refracted, and is transported to a holding portion 23b set at the tip of the robot arm. While the object W is placed, the angle θ A · θ B · θ C between the links is changed by driving a motor (not shown) at each joint to convey the object W to be conveyed to a desired position. . The transport mechanism 2 of the present embodiment includes a first link 21 having a base end 21 a connected to the base 20, a second link 22 having a base end 22 a connected to a tip 21 b of the first link 21, And a third link 23 in which a base 23a is connected to the tip 22b of the second link 22 and a holding portion 23b for placing the conveyance object W is set on the tip. Each link 21 to 23 is horizontal. A three-axis horizontal articulated robot is configured so as to be rotatable in the direction. The lengths of the links 21 to 23 are set to L 1 , L 2 , and L 3 , respectively.

図1に示すように、搬送制御手段3は、搬送制御部34と、軌道補正部33と、メモリに予め記憶されている軌道データ31とを有している。これら各部32、33は、CPU、ROM、各種インターフェイス等を備えたマイクロコンピュータ等の情報処理装置においてCPUが予め記憶されている図示しない搬送制御処理ルーチンや図5に示す軌道補正処理ルーチン等を実行することによりソフトウェア及びハードウェアが協働して実現されるものである。また、搬送制御手段3は、位置ズレ検出装置SEと通信可能に接続されている。位置ズレ検出装置SEは、搬送機構2のうち搬送対象物Wが載置されるべき位置から搬送対象物Wがズレて載置された等の位置ズレを検出し、ズレている方向及びその距離を示す信号を搬送制御手段に入力する装置である。勿論、本実施形態では搬送装置1と位置ズレ検出装置SEとを別の装置としているが、搬送装置に位置ズレ検出装置SEと同じ機能を発揮する位置ズレ検出部を設けてもよい。   As shown in FIG. 1, the conveyance control means 3 includes a conveyance control unit 34, a trajectory correction unit 33, and trajectory data 31 stored in advance in a memory. These units 32 and 33 execute a conveyance control processing routine (not shown) in which the CPU is stored in advance in an information processing apparatus such as a microcomputer equipped with a CPU, ROM, various interfaces, a trajectory correction processing routine shown in FIG. By doing so, software and hardware are realized in cooperation. Moreover, the conveyance control means 3 is connected so as to be communicable with the positional deviation detection device SE. The positional deviation detection device SE detects a positional deviation such as the conveyance object W being displaced from the position where the conveyance object W is to be placed in the conveyance mechanism 2, and the direction and distance of the deviation. Is a device that inputs a signal indicating the above to the conveyance control means. Of course, in the present embodiment, the transport device 1 and the position shift detection device SE are separate devices, but the transport device may be provided with a position shift detection unit that performs the same function as the position shift detection device SE.

軌道データ31は、図3に模式的に示すように、搬送対象物Wの中心が通る搬送軌道Ptを、時間間隔Tで(N−1)等分し、始点S及び終点Eを含む複数の点P1〜Nで表現する離散データであり、各々の点PのXY座標(X,Y)を、以下の式を用いて搬送機構2を構成する各リンク21〜23の角度θAk・θBk・θCkで表現している。
=LcosθAk+Lcos(θAk+θBk)+Lcos(θAk+θBk+θCk
=LsinθAk+Lsin(θAk+θBk)+Lsin(θAk+θBk+θCk
As schematically shown in FIG. 3, the trajectory data 31 divides the transport trajectory Pt through which the center of the transport target W passes by (N−1) equally at a time interval T, and includes a plurality of start points S and end points E. It is discrete data expressed by points P 1 to N , and the XY coordinates (X k , Y k ) of each point P k are expressed by the angle θ of each link 21 to 23 constituting the transport mechanism 2 using the following equation. It is expressed as Ak · θ Bk · θ Ck .
X k = L 1 cosθ Ak + L 2 cos (θ Ak + θ Bk) + L 3 cos (θ Ak + θ Bk + θ Ck)
Y k = L 1 sinθ Ak + L 2 sin (θ Ak + θ Bk) + L 3 sin (θ Ak + θ Bk + θ Ck)

図1の搬送制御部34は、図3に示すように、搬送軌道Ptに沿って搬送対象物Wが搬送されるように搬送機構2の駆動を制御するものであり、具体的には、各リンク21〜23の角度θ・θ・θが搬送軌道Ptを構成する点P1〜Nが示すリンクの角度になるように各リンクを回転駆動し、この回転駆動を始点Sから終点Eまで点P毎に順次実行することで搬送軌道Ptに沿った搬送制御を行うものである。 As shown in FIG. 3, the transport control unit 34 in FIG. 1 controls the drive of the transport mechanism 2 so that the transport target W is transported along the transport trajectory Pt. The links 21 to 23 are rotationally driven so that the angles θ A , θ B , θ C of the links 21 to 23 become the angles of the links indicated by the points P 1 to N constituting the transport track Pt. By carrying out sequentially for every point Pk to E, the conveyance control along the conveyance track Pt is performed.

図1の軌道補正部33は、位置ズレ検出装置SEからの位置ズレに関する信号を入力し(図5の処理S1)、この信号に基づいて図4(a)に示す目標終点E’を決定し(図5の処理S2)、目標となる終点E’が予め設定された搬送軌道Ptの終点Eから位置ズレている場合に搬送軌道Ptの終点Eが目標終点E’となるように、搬送制御部34で用いられる搬送軌道Ptを搬送軌道Pt’に補正するものである(図5の処理S3〜処理S7)。   The trajectory correction unit 33 in FIG. 1 inputs a signal related to positional deviation from the positional deviation detection device SE (processing S1 in FIG. 5), and determines a target end point E ′ shown in FIG. 4A based on this signal. (Processing S2 in FIG. 5), when the target end point E ′ is displaced from the preset end point E of the transport path Pt, the transport control is performed so that the end point E of the transport path Pt becomes the target end point E ′. The transport trajectory Pt used in the section 34 is corrected to the transport trajectory Pt ′ (processing S3 to processing S7 in FIG. 5).

具体的に、図4に示すように目標終点E’が終点EからX方向にのみズレた場合を例として説明する。本実施形態では、搬送軌道Ptを表す各リンクの角度θAk・θBk・θCkを補正するものであるが、理解し易いようにXY座標で説明し、その後角度θAk・θBk・θCkで説明する。 Specifically, the case where the target end point E ′ is shifted only in the X direction from the end point E as shown in FIG. 4 will be described as an example. In the present embodiment, and it corrects the angle θ Ak · θ Bk · θ Ck of each link representing the conveyor track Pt, described in XY coordinates for clarity, then the angle θ Ak · θ Bk · θ This will be described using Ck .

まず、図4(a)に示すように、終点Eと目標終点E’を結ぶ方向をズレ方向Gとし(この例ではX軸に沿った方向)、始点Sから終点Eまでの距離のうちズレ方向成分の距離を補正前距離d1とし、始点Sから目標終点E’までの距離のうちズレ方向成分の距離を補正後距離d2として補正前距離d1に対する補正後距離d2の割合(d2/d1)を算出する(図5の処理S4)。 First, as shown in FIG. 4A, a direction connecting the end point E and the target end point E ′ is set as a shift direction G (in this example, a direction along the X axis), and a shift in the distance from the start point S to the end point E is detected. a distance direction component before correction distance d1 N, the ratio of the corrected distance d2 N for uncorrected distance d1 N distances displacement direction component as the corrected distance d2 N of the distance from the start point S to a target end point E '( d2 N / d1 N ) is calculated (step S4 in FIG. 5).

次に、軌道Ptを構成する各点P1〜N毎に以下の処理を順次行う。図4(a)に示すように、始点Sから点Pまでの距離のうちズレ方向成分の補正前距離d1を算出し(図5の処理S5)、この距離d1に上記割合(d2/d1)を乗じて補正後距離d2を算出し(図5の処理S6)、図4(b)に示すように始点Sから点Pまでの距離のうちズレ方向成分の距離が補正後距離d2となるように点Pをズレ方向Gに沿って移動させる(図5の処理S7)。以上の処理を点P1〜N毎に順次行うと、図4(b)に示すように、補正後の軌道Pt’を構成する点P’1〜Nのうちいずれの箇所でも補正前距離d1と補正後距離d2との比率が同一のまま、軌道Ptが軌道Pt’に補正される。 Next, the following processing is sequentially performed for each point P1 to N constituting the trajectory Pt. As shown in FIG. 4 (a), to calculate the uncorrected distance d1 k of the shift direction component of the distance from the starting point S to the point P k (processing of FIG. 5 S5), the ratio (d2 to the distance d1 k N / d1 N ) to calculate the corrected distance d2 k (processing S6 in FIG. 5), and the distance of the deviation direction component among the distances from the starting point S to the point P k is calculated as shown in FIG. 4B. The point Pk is moved along the displacement direction G so that the corrected distance d2k is obtained (step S7 in FIG. 5). When the above processing is sequentially performed for each of the points P 1 to N , as shown in FIG. 4B, the pre-correction distance d 1 at any point among the points P ′ 1 to N constituting the corrected trajectory Pt ′. The trajectory Pt is corrected to the trajectory Pt ′ while the ratio between k and the corrected distance d2 k remains the same.

上記の補正処理を各リンク21〜23の角度θ・θ・θで説明すると、目標終点E’のXY座標を以下の式を用いて角度θ’・θ’・θ’に変換する。

Figure 2011167828
φは、始点Sに対する目標終点E’における図2に示す第3のリンク23のX軸に対する角度(第3のリンク23の姿勢) To explain the above-mentioned correction processing at the angle θ A · θ B · θ C of each link 21 to 23, the target end point E 'the XY coordinates of using the following equation the angle θ' A · θ 'B · θ' C Convert to
Figure 2011167828
φ is the angle with respect to the X axis of the third link 23 shown in FIG. 2 at the target end point E ′ with respect to the start point S (the posture of the third link 23).

次に、上記で求めた角度θ’・θ’・θ’毎に上記補正前距離d1に対応する(θ−θ)、上記補正後距離d2に対応する(θ’−θ)を算出して、上記割合(d2/d1)に対応する割合β=(θ’−θ)/(θ−θ)を算出する。なお、上記XY座標系でいうズレ方向Gは、角度θではその増減方向として表される。 Next, for each of the angles θ ′ A , θ ′ B , θ ′ C determined above, it corresponds to the pre-correction distance d1 NN −θ 1 ) and corresponds to the post-correction distance d2 N (θ ′ N −θ 1 ) is calculated, and a ratio β = (θ ′ N −θ 1 ) / (θ N −θ 1 ) corresponding to the above ratio (d2 N / d1 N ) is calculated. The deviation direction G in the XY coordinate system is expressed as the direction of increase / decrease at the angle θ.

そして、算出した割合βを用いて軌道Ptを構成する各点P1〜N毎に、補正前の各リンクの角度θ・θ・θを補正後の角度θ’・θ’・θ’に変換する処理を順次行う。
θ’=β(θ−θ)+θ
Then, for each point P 1 to N constituting the trajectory Pt using the calculated ratio β, the angle θ A · θ B · θ C of each link before correction is changed to the angle θ ′ A · θ ′ B after correction. -The process of converting to θ ' C is sequentially performed.
θ ′ k = β (θ k −θ 1 ) + θ 1

以上の処理を点P1〜N毎に順次行うと、この結果、補正後の軌道Pt’を構成する点P’1〜Nのうちいずれの箇所でも補正前距離d1に対応する(θ−θ)と補正後距離d2に対応する(θ’−θ)の比率(割合β)が同一のまま、軌道Ptが軌道Pt’に補正される。 When the above processing is sequentially performed for each of the points P 1 to N , as a result, any point among the points P ′ 1 to N constituting the corrected trajectory Pt ′ corresponds to the pre-correction distance d1 kk - [theta] 1) and corresponding to the corrected distance d2 k 'k 1 ratio) of (ratio beta) remains the same, the trajectory Pt orbit Pt' is corrected to.

ここで、補正前の軌道Ptと補正後の軌道Pt’の速度比について検討すると、
補正前の速度は近似的に、(θ−θk−1)/T
補正後の速度は近似的に、(θ’−θ’k−1)/T=β(θ−θk−1)/T
Tは、k時点とk−1時点との時間間隔
で表され、補正前と補正後の速度は各々の時点に関してβ倍の変化しか生じないことが分かり、加速度も同様にβ倍となる。一般的に位置ズレ量は補正前距離d1に比べて微々たるものであり、それに伴いβが1に近い値となり(β−1)も微小なものとなるので、補正前の軌道Ptは、その特性を維持したまま補正後の軌道Pt’に修正される。しかも、補正前の終点Eで搬送動作を一旦止めることなく始点Sから補正後の目標終点E’まで円滑な搬送も可能となる。
Here, considering the speed ratio between the uncorrected trajectory Pt and the corrected trajectory Pt ′,
The speed before correction is approximately (θ k −θ k−1 ) / T
The corrected speed is approximately (θ ′ k −θ ′ k−1 ) / T = β (θ k −θ k−1 ) / T
T is represented by a time interval between the time point k and the time point k-1, and it can be seen that the speed before and after the correction only changes by β times at each time point, and the acceleration also becomes β times. Generally, the amount of positional deviation is slightly smaller than the pre-correction distance d1 k , and accordingly, β becomes a value close to 1 and (β−1) is also very small. The trajectory is corrected to the corrected trajectory Pt ′ while maintaining the characteristics. In addition, smooth conveyance from the start point S to the corrected target end point E ′ is possible without temporarily stopping the conveyance operation at the end point E before correction.

以上のように本実施形態に係る搬送装置は、始点Sから終点Eまで搬送軌道Ptに沿って搬送対象物Wを搬送するものであって、予め設定された搬送軌道Ptを用いて搬送制御を行うにあたり、目標となる終点E’が搬送軌道Ptの終点Eから位置ズレしている場合に搬送軌道Ptの終点Eが目標終点E’となるように搬送軌道Ptを補正する軌道補正部33を具備し、軌道補正部33は、補正前の終点Eと補正後の目標終点E’とを結ぶ方向をズレ方向Gとし、補正前軌道Pt上の始点Sから或る点Pまでの距離のうちズレ方向成分の距離を補正前距離d1とし、補正後軌道Pt’上の点のうち或る点Pを通るズレ方向に沿った軸上に位置する点を対応点P’として補正後軌道Pt’上の始点Sから対応点P’までの距離のうちズレ方向成分の距離を補正後距離d2とした場合に、或る点Pが軌道Pt上の所定の点のうちいずれにあっても補正前距離d1と補正後距離d2との比率が同一となるように、始点Sを基準として補正前距離d1をズレ方向Gに沿って拡大又は縮小することにより補正前の軌道Ptを補正後の軌道Pt’に補正している。 As described above, the transport device according to the present embodiment transports the transport target object W along the transport trajectory Pt from the start point S to the end point E, and performs transport control using the preset transport trajectory Pt. In performing, the trajectory correction unit 33 that corrects the transport trajectory Pt so that the end point E of the transport trajectory Pt becomes the target end point E ′ when the target end point E ′ is displaced from the end point E of the transport trajectory Pt. The trajectory correcting unit 33 includes a direction connecting the end point E before correction and the target end point E ′ after correction as a shift direction G, and calculates a distance from the start point S on the trajectory Pt before correction to a certain point P k . Among them, the distance in the deviation direction component is set as the pre-correction distance d1 k, and the point located on the axis along the deviation direction passing through the point P k among the points on the corrected trajectory Pt ′ is corrected as the corresponding point P ′ k. shift direction of the distance 'from the starting point S on the corresponding point P' rear track Pt to k Same when the distance of the component was corrected distance d2 k, the ratio of In any one point P k is among the predetermined point on the trajectory Pt uncorrected distance d1 k and corrected distance d2 k Thus, the pre-correction trajectory Pt is corrected to the post-correction trajectory Pt ′ by enlarging or reducing the pre-correction distance d1 k along the deviation direction G with the start point S as a reference.

このように、軌道上の所定の点のうちいずれにあっても補正前距離d1と補正後距離d2との比率が同一となるように、始点Sを基準として補正前距離d1をズレ方向Gに沿って拡大又は縮小することにより補正前の軌道Ptを補正後の軌道Pt’に補正しているので、補正前の軌道Ptの形状をほぼ維持したまま始点Sから目標終点E’に至るまで軌道Pt’が徐々に補正され、搬送開始時や終了時に補正動作を行う等の急激な軌道変化によって補正前の軌道Ptの特性を損なうことがなく、終点E’の位置ズレを補正することが可能となる。 In this way, the pre-correction distance d1 k is deviated from the start point S so that the ratio of the pre-correction distance d1 k and the post-correction distance d2 k is the same at any of the predetermined points on the trajectory. Since the pre-correction trajectory Pt is corrected to the post-correction trajectory Pt ′ by enlarging or reducing along the direction G, the shape of the trajectory Pt before correction is substantially maintained to the target end point E ′ from the start point S. The trajectory Pt ′ is gradually corrected until it reaches the end, and the positional deviation of the end point E ′ is corrected without impairing the characteristics of the trajectory Pt before correction by a rapid trajectory change such as performing a correction operation at the start or end of conveyance. It becomes possible.

さらに、本実施形態では、予め設定された搬送軌道Ptは、始点S及び終点Eを含む複数の点P1〜Nにより構成されており、軌道補正部33は、搬送軌道Ptを構成する各点P1〜Nをズレ方向Gに沿って移動させることにより補正前距離d1の拡大又は縮小を行うので、搬送軌道Ptの補正を簡易な演算で実現することが可能となる。 Further, in the present embodiment, the preset transport trajectory Pt is configured by a plurality of points P 1 to N including the start point S and the end point E, and the trajectory correction unit 33 includes each point constituting the transport trajectory Pt. since the P 1 to N perform enlargement or reduction of uncorrected distance d1 k by moving along the displacement direction G, it is possible to realize a simple calculation to correct the conveyor track Pt.

加えて、本実施形態では、複数のリンク21〜23を屈折可能に接続した多関節ロボット式の搬送機構2を用いて搬送対象物Wを搬送するにあたり、搬送軌道Ptは、多関節ロボットを構成する各リンク21〜23の角度θAk・θBk・θCkにより表されており、軌道補正部33は、搬送軌道Ptを示す各リンクの角度θAk・θBk・θCkを、補正前距離d1をズレ方向Gに沿って拡大又は縮小する方向に補正するので、搬送軌道Ptが各リンク21〜23の角度θAk・θBk・θCkにより表されるような複雑な搬送機構であっても簡易な処理で軌道を補正することが可能となる。 In addition, in this embodiment, when transporting the transport target W using the articulated robot type transport mechanism 2 in which a plurality of links 21 to 23 are refractably connected, the transport trajectory Pt constitutes an articulated robot. The links 21 to 23 are represented by the angles θ Ak · θ Bk · θ Ck , and the trajectory correction unit 33 sets the angles θ Ak · θ Bk · θ Ck of the links indicating the transport trajectory Pt to the distance before correction. Since d1 k is corrected in the direction of expansion or reduction along the deviation direction G, the conveyance path Pt is a complicated conveyance mechanism represented by the angles θ Ak , θ Bk , θ Ck of the links 21 to 23. However, the trajectory can be corrected with a simple process.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not only by the above description of the embodiments but also by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

例えば、本実施形態では、予め設定された搬送軌道Ptの終点Eを目標終点E’となるように軌道補正を行うものであるが、図6に示すように、搬送軌道Ptの始点Sが目標始点S’となるように軌道補正を行うようにしてもよい。この場合も上記と同様に、補正前距離d1に対する補正後距離d2の割合(d2/d1)を算出する。そして、点Pから終点Eまでの距離のうちズレ方向成分の補正前距離d1を算出し、この距離d1に上記割合(d2/d1)を乗じて補正後距離d2を算出し、点Pから終点Eまでの距離のうちズレ方向成分の距離が補正後距離d2となるように点Pをズレ方向Gに沿って移動させる。このようにすれば、上記と同様の効果を奏しつつ始点Sの位置ズレを補正することが可能となる。 For example, in this embodiment, the trajectory is corrected so that the preset end point E of the transport trajectory Pt becomes the target end point E ′. However, as shown in FIG. 6, the start point S of the transport trajectory Pt is the target. Orbit correction may be performed so as to be the starting point S ′. Also in this case, as described above, it calculates the ratio of the corrected distance d2 1 (d2 1 / d1 1 ) for uncorrected distance d1 1. Then, the pre-correction distance d1 k of the shift direction component is calculated from the distance from the point P k to the end point E, and the corrected distance d2 k is calculated by multiplying the distance d1 k by the ratio (d2 1 / d1 1 ). and the distance deviation direction component of the distance from the point P k to the end point E moves the point P k such that the corrected distance d2 k along the shift direction G. In this way, it is possible to correct the positional deviation of the starting point S while achieving the same effect as described above.

その他、上記に述べた軌道補正は、複数のリンクを回転可能に直列接続したロボットアーム式の搬送機構2を用いて搬送する搬送装置に適用しているが、これ以外の搬送機構2を用いた搬送装置にも適用可能である。例えば、複数のリンクを並列接続したパラレルマニピュレータ等の搬送装置が挙げられる。また、図1に示す各機能部は、所定プログラムをプロセッサで実行することにより実現しているが、各機能部を専用回路で構成してもよい。   In addition, the trajectory correction described above is applied to a transfer device that uses a robot arm type transfer mechanism 2 in which a plurality of links are rotatably connected in series, but other transfer mechanisms 2 are used. It can also be applied to a transfer device. For example, a transport device such as a parallel manipulator in which a plurality of links are connected in parallel can be used. In addition, each function unit illustrated in FIG. 1 is realized by executing a predetermined program by a processor, but each function unit may be configured by a dedicated circuit.

各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The specific configuration of each unit is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

21・22・23…リンク
33…軌道補正部
S…始点
S’…目標始点
E…終点
E’ …目標終点
Pt…補正前の搬送軌道
Pt’ …補正後の搬送軌道
W…搬送対象物
G…ズレ方向
…或る点
P’…対応点
d1…補正前距離
d2…補正後距離
θAk・θBk・θCk…リンクの角度
21, 22, 23 ... link 33 ... trajectory correction unit S ... start point S '... target start point E ... end point E' ... target end point Pt ... transport trajectory Pt 'before correction ... transport trajectory W after correction ... transport object G ... Misalignment direction P k ... a certain point P ' k ... corresponding point d1 k ... pre-correction distance d2 k ... post-correction distance θ Ak · θ Bk · θ Ck ... link angle

Claims (4)

始点から終点まで搬送軌道に沿って搬送対象物を搬送する搬送装置であって、
予め設定された搬送軌道を用いて搬送制御を行うにあたり、目標となる終点が前記搬送軌道の終点から位置ズレしている場合に搬送軌道の終点が目標終点となるように前記搬送軌道を補正する軌道補正部を具備し、
前記軌道補正部は、補正前の終点と補正後の目標終点とを結ぶ方向をズレ方向とし、補正前軌道上の始点から或る点までの距離のうちズレ方向成分の距離を補正前距離とし、補正後軌道上の点のうち前記或る点を通るズレ方向に沿った軸上に位置する点を対応点として補正後軌道上の始点から前記対応点までの距離のうちズレ方向成分の距離を補正後距離とした場合に、前記或る点が軌道上の所定の点のうちいずれにあっても補正前距離と補正後距離との比率が同一となるように、始点を基準として補正前距離をズレ方向に沿って拡大又は縮小することにより当該軌道を補正することを特徴とする搬送装置。
A transport device that transports a transport object along a transport path from a start point to an end point,
When carrying out transfer control using a preset transfer track, if the target end point is displaced from the end point of the transfer track, the transfer track is corrected so that the end point of the transfer track becomes the target end point. It has a trajectory correction unit,
The trajectory correction unit defines the direction connecting the uncorrected end point and the corrected target end point as the shift direction, and the distance of the shift direction component of the distance from the start point on the track before correction to a certain point as the pre-correction distance. The distance of the deviation direction component of the distance from the start point on the corrected trajectory to the corresponding point, with the point on the axis along the deviation direction passing through the certain point among the points on the corrected trajectory as the corresponding point Is the corrected distance with reference to the start point so that the ratio of the uncorrected distance and the corrected distance is the same regardless of the predetermined point on the trajectory. A transport apparatus that corrects the trajectory by enlarging or reducing the distance along a deviation direction.
始点から終点まで搬送軌道に沿って搬送対象物を搬送する搬送装置であって、
予め設定された搬送軌道を用いて搬送制御を行うにあたり、目標となる始点が前記搬送軌道の始点から位置ズレしている場合に搬送軌道の始点が目標始点となるように前記搬送軌道を補正する軌道補正部を具備し、
前記軌道補正部は、補正前の始点と補正後の目標始点とを結ぶ方向をズレ方向とし、補正前軌道上の或る点から終点までの距離のうちズレ方向成分の距離を補正前距離とし、補正後軌道上の点のうち前記或る点を通るズレ方向に沿った軸上に位置する点を対応点として補正後軌道上の前記対応点から終点までの距離のうちズレ方向成分の距離を補正後距離とした場合に、前記或る点が軌道上の所定の点のうちいずれにあっても補正前距離と補正後距離との比率が同一となるように、終点を基準として補正前距離をズレ方向に沿って拡大又は縮小することにより当該軌道を補正することを特徴とする搬送装置。
A transport device that transports a transport object along a transport path from a start point to an end point,
When carrying out transfer control using a preset transfer track, the transfer track is corrected so that the start point of the transfer track becomes the target start point when the target start point is displaced from the start point of the transfer track. It has a trajectory correction unit,
The trajectory correction unit defines the direction connecting the start point before correction and the target start point after correction as the shift direction, and sets the distance in the shift direction component of the distance from the point to the end point on the track before correction as the pre-correction distance. The distance of the deviation direction component of the distance from the corresponding point on the corrected trajectory to the end point is a point located on the axis along the deviation direction passing through the certain point among the points on the corrected trajectory. Is the corrected distance with reference to the end point so that the ratio of the pre-correction distance and the corrected distance is the same regardless of any given point on the trajectory. A transport apparatus that corrects the trajectory by enlarging or reducing the distance along a deviation direction.
予め設定された搬送軌道は、始点及び終点を含む複数の点により構成されており、
前記軌道補正部は、前記搬送軌道を構成する各点を前記ズレ方向に沿って移動させることにより前記補正前距離の拡大又は縮小を行う請求項1又2に記載の搬送装置。
The preset transport trajectory is composed of a plurality of points including a start point and an end point,
The transport apparatus according to claim 1, wherein the trajectory correction unit expands or reduces the pre-correction distance by moving each point constituting the transport trajectory along the shift direction.
複数のリンクを屈折可能に接続した多関節ロボット式の搬送機構を用いて前記搬送対象物を搬送する搬送装置であって、
前記搬送軌道は、多関節ロボットを構成する各リンクの角度により表されており、
前記軌道補正部は、前記搬送軌道を示す各リンクの角度を、前記補正前距離をズレ方向に沿って拡大又は縮小する方向に補正する請求項1〜3のいずれかに記載の搬送装置。
A transport device that transports the transport object using a multi-joint robot-type transport mechanism in which a plurality of links are refractorably connected,
The transport trajectory is represented by the angle of each link constituting the articulated robot,
The transport device according to claim 1, wherein the trajectory correction unit corrects an angle of each link indicating the transport trajectory in a direction in which the pre-correction distance is expanded or contracted along a shift direction.
JP2010036112A 2010-02-22 2010-02-22 Transport device Expired - Fee Related JP5439665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036112A JP5439665B2 (en) 2010-02-22 2010-02-22 Transport device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036112A JP5439665B2 (en) 2010-02-22 2010-02-22 Transport device

Publications (2)

Publication Number Publication Date
JP2011167828A true JP2011167828A (en) 2011-09-01
JP5439665B2 JP5439665B2 (en) 2014-03-12

Family

ID=44682473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036112A Expired - Fee Related JP5439665B2 (en) 2010-02-22 2010-02-22 Transport device

Country Status (1)

Country Link
JP (1) JP5439665B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146800A1 (en) * 2012-03-30 2013-10-03 東京エレクトロン株式会社 Conveyance device, and conveyance method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159186A (en) * 1987-07-28 1989-06-22 Walter E Red Method of compensating degree of inaccuracy of robot
JP2008302455A (en) * 2007-06-06 2008-12-18 Daihen Corp Carrier robot system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159186A (en) * 1987-07-28 1989-06-22 Walter E Red Method of compensating degree of inaccuracy of robot
JP2008302455A (en) * 2007-06-06 2008-12-18 Daihen Corp Carrier robot system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146800A1 (en) * 2012-03-30 2013-10-03 東京エレクトロン株式会社 Conveyance device, and conveyance method
JP2013211317A (en) * 2012-03-30 2013-10-10 Tokyo Electron Ltd Transport device and transport method
US9227320B2 (en) 2012-03-30 2016-01-05 Tokyo Electron Limited Transfer device and transfer method

Also Published As

Publication number Publication date
JP5439665B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
US9463573B2 (en) Robot control system, robot system, and sensor information processing apparatus
US20060195228A1 (en) Robot locus control method and apparatus and program of robot locus control method
JP5472214B2 (en) Picking system
JP5528095B2 (en) Robot system, control apparatus and method thereof
JP6412955B2 (en) Robot system and end effector deformation detection method
US9579794B2 (en) Articulated robot and method for controlling the same
JP2017536257A (en) Robotic adaptive placement system that performs end effector position estimation
JPWO2014013609A1 (en) Robot system and article transfer method
JP2019048349A (en) Robot system, robot control device, and manufacturing method of workpiece
WO2018066602A1 (en) Robot system and operation method therefor
JP2006289555A (en) Articulated robot
JP5459269B2 (en) Picking system
JPWO2011001675A1 (en) Robot teaching device and robot teaching method
JP2007168053A (en) Teaching method of vertical articulated type robot and industrial robot device
WO2019049488A1 (en) Robot diagnosis method
WO2018066601A1 (en) Robot system and operation method therefor
JP5446887B2 (en) Control device, robot, robot system, and robot tracking method
JP2011104720A (en) Teaching line correction device, teaching line correction method, and program for the same
JP5439665B2 (en) Transport device
JP2020121360A (en) Robot system
US20160375580A1 (en) Robot system and robot control method
JP5803206B2 (en) Transport device
JP5353718B2 (en) Control device, robot, robot system, and robot tracking control method
JP2010199478A (en) Method of correcting eccentricity of wafer, and wafer conveying apparatus
WO2023204143A1 (en) Control device for substrate-transport robot and control method for substrate-transport robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131126

R150 Certificate of patent or registration of utility model

Ref document number: 5439665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees