JP2011164599A - Method for sorting micromirror device, device for sorting micromirror device, and maskless exposure apparatus - Google Patents

Method for sorting micromirror device, device for sorting micromirror device, and maskless exposure apparatus Download PDF

Info

Publication number
JP2011164599A
JP2011164599A JP2011005044A JP2011005044A JP2011164599A JP 2011164599 A JP2011164599 A JP 2011164599A JP 2011005044 A JP2011005044 A JP 2011005044A JP 2011005044 A JP2011005044 A JP 2011005044A JP 2011164599 A JP2011164599 A JP 2011164599A
Authority
JP
Japan
Prior art keywords
micromirror
micromirror device
diffracted light
image
light distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011005044A
Other languages
Japanese (ja)
Other versions
JP5481400B2 (en
Inventor
Taketo Ueno
剛渡 上野
Yasuhiro Yoshitake
康裕 吉武
Ryoji Nemoto
亮二 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2011005044A priority Critical patent/JP5481400B2/en
Publication of JP2011164599A publication Critical patent/JP2011164599A/en
Application granted granted Critical
Publication of JP5481400B2 publication Critical patent/JP5481400B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70125Use of illumination settings tailored to particular mask patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for sorting a micromirror device to obtain a drawing pattern with good linearity and no recess in a width or thickness direction, in a maskless exposure apparatus. <P>SOLUTION: The device for sorting a micromirror device includes: an illumination system illuminating a micromirror 21 of a micromirror device 2 with illumination light, an optical system allowing the diffracted light generated in the micromirror 21 to enter an image sensor 79; and a processing system 9 processing an image of the diffracted light distribution captured by the image sensor 79 and determining whether the micromirror device 2 is a non-defective product or a defective product. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、表示機器用パネルや半導体マスク等に、パターンを転写焼き付けするマスクレス露光装置に搭載するマイクロミラーデバイスの選別方法およびマイクロミラーデバイス選別装置に関し、特に、マイクロミラーデバイスのマイクロミラーの平坦性の検出に関するものである。   The present invention relates to a micromirror device sorting method and a micromirror device sorting device mounted on a maskless exposure apparatus for transferring and printing a pattern on a display device panel, a semiconductor mask, and the like, and in particular, the micromirror device flatness of the micromirror device. It relates to sex detection.

液晶や有機EL(Electro Luminescence)等のパネルは、マスクに描画された回路パターンを基板に焼き付けることによって製造される。工程としては、ガラス基板上に薄膜を堆積させた後、ホトレジストを塗布、回路パターンを露光し、現像する。次にホトレジストパターンを介して下地の薄膜をエッチングし、薄膜パターンを形成する。この工程を複数回繰り返し、薄膜パターンを積層することにより、各画素の明暗が制御可能な回路パターンが作られる。   A panel such as a liquid crystal or an organic EL (Electro Luminescence) is manufactured by baking a circuit pattern drawn on a mask on a substrate. As a process, after depositing a thin film on a glass substrate, a photoresist is applied, a circuit pattern is exposed and developed. Next, the underlying thin film is etched through the photoresist pattern to form a thin film pattern. By repeating this process a plurality of times and laminating thin film patterns, a circuit pattern in which the brightness of each pixel can be controlled is created.

カラー表示のためにカラーフィルタは、回路パターンのガラス基板とは別のガラス基板に作られる。まず、赤、緑、青の領域を仕切るブラックマトリックスと呼ばれる遮光帯が最初に形成される。次に、赤の顔料を含んだホトレジストを塗布、露光、現像することにより赤のカラーフィルタが作られる。   For color display, the color filter is formed on a glass substrate different from the glass substrate of the circuit pattern. First, a light shielding band called a black matrix that partitions red, green, and blue regions is formed first. Next, a red color filter is made by applying, exposing and developing a photoresist containing a red pigment.

緑、青でも同様な工程が繰り返される。最後に共通の透明電極パターンが、薄膜堆積、レジスト塗布、露光・現像、エッチングにより形成されることにより、赤緑青(RGB)のカラーフィルタが製造される。液晶パネルでは、回路パターンの形成されたガラス基板とカラーフィルタで液晶を挟み、照明側に光源と偏光板、出射側には、光源と直交する方向の偏光板を加え、液晶表示パネルが完成する。   The same process is repeated for green and blue. Finally, a common transparent electrode pattern is formed by thin film deposition, resist coating, exposure / development, and etching, whereby a red, green, and blue (RGB) color filter is manufactured. In a liquid crystal panel, a liquid crystal display panel is completed by sandwiching liquid crystal between a glass substrate on which a circuit pattern is formed and a color filter, adding a light source and a polarizing plate on the illumination side, and a polarizing plate in a direction orthogonal to the light source on the emission side. .

上記のように、製造工程においては、ホトレジスト上にパターンを焼き付ける露光が頻繁に使われる。露光にはマスクが使用されるが、新表示装置の開発時にはマスクの納期が短期開発のネックになる。また、大型テレビ用パネル製造時には、廃棄することになる余分なスペースに、市況に応じて小型パネルを割り付けられれば、資源の有効利用ができる。   As described above, in the manufacturing process, exposure for printing a pattern on a photoresist is frequently used. A mask is used for exposure, but when a new display device is developed, the delivery time of the mask becomes a bottleneck for short-term development. In addition, when a large-sized television panel is manufactured, resources can be effectively used if a small panel is allocated to an extra space to be discarded according to market conditions.

これらには、マスクを使用しないマスクレス露光装置であれば対応できる。マスクレス露光装置は、例えば、米国特許第6、493、867号明細書(特許文献1)に開示されている。   These can be handled by a maskless exposure apparatus that does not use a mask. A maskless exposure apparatus is disclosed in, for example, US Pat. No. 6,493,867 (Patent Document 1).

マスクレス露光装置では、マスクの代わりにマイクロミラーデバイス(以下、MMDと呼ぶ)によりパターンが形成される。2次元配列されたミラー群の個々の傾斜角をトランジスタで制御することにより、反射光の角度の切り替えを行う。   In a maskless exposure apparatus, a pattern is formed by a micromirror device (hereinafter referred to as MMD) instead of a mask. The angle of the reflected light is switched by controlling the individual inclination angles of the two-dimensionally arranged mirror groups with transistors.

MMDは投影レンズを介して基板上に結像されるが、投影レンズを透過する反射角の画素が白、透過できない反射角の画素が黒のパターンを形成する。MMDの各マイクロミラーの傾斜角は、基板が搭載されたステージの移動と連動し、制御されることにより、基板上にパターンが転写される。MMDをステージ移動方向に対して1/Mラジアン傾斜して設置することより、画素ピッチの1/Mの分解能で、パターン転写位置を制御することができる。   The MMD forms an image on a substrate through a projection lens, but forms a pattern in which pixels having a reflection angle that transmits through the projection lens are white and pixels having a reflection angle that cannot be transmitted through the projection lens are black. The inclination angle of each micromirror of the MMD is controlled in conjunction with the movement of the stage on which the substrate is mounted, whereby the pattern is transferred onto the substrate. By installing the MMD with an inclination of 1 / M radian with respect to the stage moving direction, the pattern transfer position can be controlled with a resolution of 1 / M of the pixel pitch.

また、マスクの転写パターン像のシミュレーションに関しては、例えば、Y.Yoshitake et al、”Multispot scanning exposure system for excimer laser stepper”、SPIE、1463、(1991)678(非特許文献1)に開示されている。   Regarding the simulation of the transfer pattern image of the mask, for example, Y.M. Yoshitake et al., “Multispot scanning exposure system for excimer laser stepper”, SPIE, 1463, (1991) 678 (Non-patent Document 1).

米国特許第6、493、867号明細書US Pat. No. 6,493,867

Y.Yoshitake et al、”Multispot scanning exposure system for excimer laser stepper”、SPIE、1463、(1991)678Y. Yoshitake et al, "Multispot scanning exposure system for excimer laser stepper", SPIE, 1463, (1991) 678.

上記のマスクレス露光装置では、画素に対応するマイクロミラー像を基板に転写することによりパターンを形成する。ここで、まず、図11および図12を用いてMMDの機能を説明する。図11はMMDのマイクロミラーのON状態を示す断面図、図12はMMDのマイクロミラーのOFF状態を示す断面図である。   In the above maskless exposure apparatus, a pattern is formed by transferring a micromirror image corresponding to a pixel to a substrate. Here, first, the function of the MMD will be described with reference to FIGS. 11 and 12. 11 is a cross-sectional view showing the ON state of the MMD micromirror, and FIG. 12 is a cross-sectional view showing the OFF state of the MMD micromirror.

図11に示すように、マイクロミラー21はヨーク22に固定されており、ヨーク22は電極24の静電力により、ヒンジ23が捻れることで傾斜し、結果としてマイクロミラー21は角度αだけ傾斜する。   As shown in FIG. 11, the micromirror 21 is fixed to the yoke 22, and the yoke 22 is tilted by twisting of the hinge 23 due to the electrostatic force of the electrode 24, and as a result, the micromirror 21 is tilted by the angle α. .

照明光110をMMDの基板面26の法線方向に対し2αの角度で入射させると、反射光111はMMDの基板面26の法線方向に反射される。   When the illumination light 110 is incident at an angle 2α with respect to the normal direction of the MMD substrate surface 26, the reflected light 111 is reflected in the normal direction of the MMD substrate surface 26.

一方、電極25をONにすると、図12に示すように、図11とは逆方向にマイクロミラー21が傾斜する。この結果、反射光111は、MMDの基板面26の法線方向に対して、4αの方向に反射される。   On the other hand, when the electrode 25 is turned ON, as shown in FIG. 12, the micromirror 21 is tilted in the direction opposite to that in FIG. As a result, the reflected light 111 is reflected in the direction of 4α with respect to the normal direction of the substrate surface 26 of the MMD.

すなわち、電極25がOFFの時のマイクロミラー21の傾斜角αが12度の場合、電極25をONにした際には、MMDの基板面26の法線方向に対して48度の方向に反射される。OFF状態の反射光は図示しない遮光帯により遮光される。   That is, when the inclination angle α of the micromirror 21 when the electrode 25 is OFF is 12 degrees, when the electrode 25 is turned ON, the reflection is performed in a direction of 48 degrees with respect to the normal direction of the substrate surface 26 of the MMD. Is done. The reflected light in the OFF state is shielded by a shading band (not shown).

図13により、マスクレス露光装置の構成について説明する。図13はマスクレス露光装置の構成を示す構成図である。   The configuration of the maskless exposure apparatus will be described with reference to FIG. FIG. 13 is a block diagram showing the configuration of the maskless exposure apparatus.

図13において、光源11から出射した照明光110を折り返しミラー12により所定の角度でMMD2に照射する。MMD2で反射した光は投影レンズ3により、投影レンズ瞳31を介して基板5上にMMD2の投影像4が結像される。基板5はステージ6に搭載されており、ステージ6が移動することにより基板5全面に投影像4が重ね露光される。   In FIG. 13, the illumination light 110 emitted from the light source 11 is applied to the MMD 2 by the folding mirror 12 at a predetermined angle. The light reflected by the MMD 2 is projected on the substrate 5 by the projection lens 3 via the projection lens pupil 31. The substrate 5 is mounted on the stage 6, and the projected image 4 is superimposed and exposed on the entire surface of the substrate 5 by moving the stage 6.

図14により、重ね露光の仕方について説明する。図14はMMDの各マイクロミラーによる重ね露光方法を説明する図である。   With reference to FIG. 14, a method of overlapping exposure will be described. FIG. 14 is a diagram for explaining an overlay exposure method using each MMD micromirror.

図14に示すように、MMD2はステージ6の移動方向50に対して角度θだけ傾斜して設置されている。MMD2の各マイクロミラー像401〜406はステージ6の移動と連動して、ON/OFF状態が切り替わる。ON/OFF状態の切り替え周期の間にステージ6が進む移動量をプロットピッチPPとし、PPをマイクロミラー像のピッチPより大きく選ぶと基板上の画素領域51には、マイクロミラー像が僅かにずれながら重ね露光される。   As shown in FIG. 14, the MMD 2 is installed at an angle θ with respect to the moving direction 50 of the stage 6. The micromirror images 401 to 406 of the MMD 2 are switched between ON / OFF states in conjunction with the movement of the stage 6. When the amount of movement of the stage 6 during the ON / OFF switching cycle is set as the plot pitch PP and PP is selected to be larger than the pitch P of the micromirror image, the micromirror image is slightly shifted in the pixel region 51 on the substrate. Overexposure is performed.

ここで、図15〜図17により、重ね露光時の各マイクロミラー像のX方向の光強度分布について説明する。図15は重ね露光時の各マイクロミラー像のX方向の光強度分布を示す図、図16は図15に示す光強度分布の加算光強度分布を示す図、図17は3画素×1画素パターンの光強度分布を示す図である。   Here, the light intensity distribution in the X direction of each micromirror image at the time of overlapping exposure will be described with reference to FIGS. 15 is a diagram showing a light intensity distribution in the X direction of each micromirror image at the time of overlay exposure, FIG. 16 is a diagram showing an added light intensity distribution of the light intensity distribution shown in FIG. 15, and FIG. 17 is a 3 pixel × 1 pixel pattern It is a figure which shows light intensity distribution.

マイクロミラー像401〜406に対応する、ステージ6の移動方向50と直交する方向Xの光強度分布は、図15の4001〜4006で示す分布となり、それを加算した光強度分布は、図16の4011に示すようになる。   The light intensity distribution in the direction X orthogonal to the moving direction 50 of the stage 6 corresponding to the micromirror images 401 to 406 is a distribution indicated by 4001 to 4006 in FIG. 4011 is shown.

そして、図17に示すように、X方向に3画素、ステージ移動方向Yに1画素の描画パターンとし、各画素の光強度分布4011〜4013が加算されると、光強度分布4100が得られる。各画素の光強度分布4011〜4013の傾斜部は、隣接する光強度分布を加算することによって平坦になっている。この結果得られる、2次元パターン4110は直線性の良いパターンが得られる。   Then, as shown in FIG. 17, when a drawing pattern of 3 pixels in the X direction and 1 pixel in the stage movement direction Y is used and the light intensity distributions 4011 to 4013 of the respective pixels are added, a light intensity distribution 4100 is obtained. The slopes of the light intensity distributions 4011 to 4013 of each pixel are flattened by adding adjacent light intensity distributions. As a result, the two-dimensional pattern 4110 obtained has a good linearity.

以上は、マイクロミラー像の光強度分布が矩形状となる理想状態での説明であったが、ここで、図18〜図20により、ガウス分布状となる場合について説明する。図18は重ね露光時の各マイクロミラー像のガウス分布状光強度分布を示す図、図19は図18に示す光強度分布の加算光強度分布を示す図、図20はガウス分布状マイクロミラー像で生成される3画素×1画素パターンの光強度分布を示す図である。   The above is the description in the ideal state where the light intensity distribution of the micromirror image is rectangular. Here, the case where the light intensity distribution is Gaussian will be described with reference to FIGS. 18 is a diagram showing the Gaussian distribution light intensity distribution of each micromirror image at the time of overlay exposure, FIG. 19 is a diagram showing the added light intensity distribution of the light intensity distribution shown in FIG. 18, and FIG. 20 is a Gaussian distribution micromirror image. It is a figure which shows the light intensity distribution of 3 pixel x 1 pixel pattern produced | generated by (3).

図18に示すように、光強度分布4021〜4026は、マイクロミラー像401〜406に対応する。図18に示す光強度分布を加算した光強度分布は、図19の4031に示すようになる。図19において、矩形状のマイクロミラー像4001〜4006を加算してできた光強度分布4011に対して、傾斜部の幅が狭くなっている。   As shown in FIG. 18, the light intensity distributions 4021 to 4026 correspond to the micromirror images 401 to 406. The light intensity distribution obtained by adding the light intensity distributions shown in FIG. 18 is as indicated by 4031 in FIG. In FIG. 19, the width of the inclined portion is narrower than the light intensity distribution 4011 formed by adding the rectangular micromirror images 4001 to 4006.

そして、図20に示すように、X方向に3画素、Y方向に1画素の描画パターンとし、各画素の光強度分布4031〜4033が加算されると、光強度分布4031〜4033の傾斜部の幅が狭いため、各画素を加算した光強度分布4200の画素境界部の光強度が弱い。   Then, as shown in FIG. 20, when a drawing pattern of 3 pixels in the X direction and 1 pixel in the Y direction is made and the light intensity distributions 4031 to 4033 of each pixel are added, the slopes of the light intensity distributions 4031 to 4033 Since the width is narrow, the light intensity at the pixel boundary portion of the light intensity distribution 4200 obtained by adding the pixels is weak.

この結果、XY平面での2次元パターン4210の画素境界には幅方向の窪み4211と厚さ方向の窪み4212が発生する。パターンをトランジスタのゲートとして使用する場合、幅方向の窪み4211は、トランジスタの特性変化を生じさせる。また、カラーフィルタではホトレジストそのものがパターンとして残るため、厚さ方向の窪み4212が画素の明度変化を引き起こす可能性がある。   As a result, a dent 4211 in the width direction and a dent 4212 in the thickness direction are generated at the pixel boundary of the two-dimensional pattern 4210 on the XY plane. When the pattern is used as a gate of a transistor, the recess 4211 in the width direction causes a change in the characteristics of the transistor. Further, since the photoresist itself remains as a pattern in the color filter, the depression 4212 in the thickness direction may cause a change in the brightness of the pixel.

本発明の目的は、マスクレス露光装置において、幅方向にも厚さ方向にも窪みのない直線性の良い描画パターンを得るためのMMDの選別方法およびMMD選別装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an MMD sorting method and an MMD sorting apparatus for obtaining a drawing pattern with good linearity having no depressions in the width direction and the thickness direction in a maskless exposure apparatus.

本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次の通りである。   Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.

すなわち、代表的なものの概要は、MMDのマイクロミラーに照明光を照射する照明系と、マイクロミラーで発生した回折光を撮像素子に入射させる光学系と、撮像素子で撮像された回折光分布画像を処理し、MMDの良品または不良品の判定を行う処理系とを備えた。   In other words, the outline of a representative one is that an illumination system that irradiates illumination light to an MMD micromirror, an optical system that causes diffracted light generated by the micromirror to enter the image sensor, and a diffracted light distribution image captured by the image sensor And a processing system for determining whether the MMD is non-defective or defective.

本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下の通りである。   The effects obtained by typical ones of the inventions disclosed in the present application will be briefly described as follows.

すなわち、代表的なものによって得られる効果は、簡便で迅速に平坦性の良いMMDを選別できるので、MMDを用いたマスクレス露光装置において、幅方向にも厚さ方向にも窪みのない、直線性の良い転写パターンを得ることができ、マスクレス露光装置の品質・信頼性を高めることができる。   That is, the effect obtained by a typical one is simple and can quickly select MMD with good flatness, and therefore, in a maskless exposure apparatus using MMD, a straight line having no depression in the width direction or the thickness direction. A transfer pattern with good characteristics can be obtained, and the quality and reliability of the maskless exposure apparatus can be improved.

また、マスクレス露光装置に搭載されたMMDの平坦性の経時劣化をモニタすることができるので、転写パターンの直線性の劣化を未然に防ぐことが可能になり、液晶や有機EL等のパネルや半導体マスクの製造において、歩留まりを維持することができる。   In addition, since it is possible to monitor the deterioration over time of the flatness of the MMD mounted in the maskless exposure apparatus, it becomes possible to prevent the deterioration of the linearity of the transfer pattern in advance. The yield can be maintained in the manufacture of the semiconductor mask.

本発明の実施の形態1に係るマイクロミラーデバイス(MMD)選別装置の構成を示す構成図である。It is a block diagram which shows the structure of the micromirror device (MMD) sorter | selector which concerns on Embodiment 1 of this invention. マイクロミラーの平坦性の良いMMDを用いる必要性を説明するための説明図である。It is explanatory drawing for demonstrating the necessity to use MMD with the sufficient flatness of a micromirror. 本発明の実施の形態1に係るMMD選別装置のマイクロミラー中心と周辺の高さの差であるZhを示す図である。It is a figure which shows Zh which is the difference of the height of the micromirror center of the MMD sorting device concerning Embodiment 1 of the present invention, and the circumference. 本発明の実施の形態1に係るMMD選別装置のZhをパラメータとしたマイクロミラー凹面化時の露光シミュレーション結果を示す図である。It is a figure which shows the exposure simulation result at the time of micro mirror concave surface which made Zh the parameter of the MMD sorting device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るMMD選別装置の楔ガラス、直角プリズム、マイクロミラー部の拡大図である。It is an enlarged view of the wedge glass of the MMD sorting device concerning Embodiment 1 of the present invention, a right angle prism, and a micromirror part. 本発明の実施の形態1に係るMMD選別装置のマイクロミラー平坦性判定処理のフローを示すフローチャートである。It is a flowchart which shows the flow of the micromirror flatness determination processing of the MMD selection apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るMMD選別装置の回折光分布画像の領域分割を示す図である。It is a figure which shows the area | region division | segmentation of the diffracted light distribution image of the MMD selection apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るMMD選別装置のマイクロミラー中心と周辺の高さの差であるZhと評価値Sの関係を示す図である。It is a figure which shows the relationship between Zh and the evaluation value S which are the height difference of the micromirror center of the MMD sorting device concerning Embodiment 1 of the present invention, and the circumference. 本発明の実施の形態2に係るマスクレス露光装置の構成を示す構成図である。It is a block diagram which shows the structure of the maskless exposure apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るマスクレス露光装置の照明系の回転式アパーチャを示す図である。It is a figure which shows the rotary aperture of the illumination system of the maskless exposure apparatus which concerns on Embodiment 2 of this invention. MMDのマイクロミラーのON状態を示す断面図である。It is sectional drawing which shows the ON state of the micro mirror of MMD. MMDのマイクロミラーのOFF状態を示す断面図である。It is sectional drawing which shows the OFF state of the micro mirror of MMD. マスクレス露光装置の構成を示す構成図である。It is a block diagram which shows the structure of a maskless exposure apparatus. MMDの各マイクロミラーによる重ね露光方法を説明する図である。It is a figure explaining the overlap exposure method by each micromirror of MMD. 重ね露光時の各マイクロミラー像のX方向の光強度分布を示す図である。It is a figure which shows the light intensity distribution of the X direction of each micromirror image at the time of superposition exposure. 図15に示す光強度分布の加算光強度分布を示す図である。It is a figure which shows the addition light intensity distribution of the light intensity distribution shown in FIG. 3画素×1画素パターンの光強度分布を示す図である。It is a figure which shows the light intensity distribution of a 3 pixel x 1 pixel pattern. 重ね露光時の各マイクロミラー像のガウス分布状光強度分布を示す図である。It is a figure which shows the Gaussian distribution light intensity distribution of each micromirror image at the time of superposition exposure. 図18に示す光強度分布の加算光強度分布を示す図である。It is a figure which shows the addition light intensity distribution of the light intensity distribution shown in FIG. ガウス分布状マイクロミラー像で生成される3画素×1画素パターンの光強度分布を示す図である。It is a figure which shows the light intensity distribution of 3 pixel x 1 pixel pattern produced | generated with a Gaussian distribution-type micromirror image.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.

(実施の形態1)
図1により、本発明の実施の形態1に係るマイクロミラーデバイス(以下、MMDと呼ぶ)選別装置の構成について説明する。図1は本発明の実施の形態1に係るMMD選別装置の構成を示す構成図である。
(Embodiment 1)
With reference to FIG. 1, the configuration of a micromirror device (hereinafter referred to as MMD) sorting apparatus according to Embodiment 1 of the present invention will be described. FIG. 1 is a configuration diagram showing the configuration of the MMD sorting apparatus according to Embodiment 1 of the present invention.

図1において、MMD選別装置は、MMD2、処理系9、照明系である光源70および光ファイバ71、光学系であるコリメートレンズ72、楔ガラス73、直角プリズム74、レンズ75、77、78、および絞り76、撮像素子79、表示系900から構成されている。MMD2は、マイクロミラー21から構成されている。   In FIG. 1, the MMD sorting apparatus includes an MMD 2, a processing system 9, a light source 70 and an optical fiber 71 as an illumination system, a collimating lens 72 as an optical system, a wedge glass 73, a right-angle prism 74, lenses 75, 77, 78, and A diaphragm 76, an image sensor 79, and a display system 900 are included. The MMD 2 is composed of a micro mirror 21.

本実施の形態では、MMD2に平行光を所定の角度で照射し、反射した回折光をレンズでコリメートし、レンズ系で回折光分布を撮像素子に縮小結像し、処理系9で画像処理を行い、回折光分布の特徴を定量化し、マイクロミラー21の平坦性を検出している。   In the present embodiment, the MMD 2 is irradiated with parallel light at a predetermined angle, the reflected diffracted light is collimated by a lens, the diffracted light distribution is reduced and imaged on an image sensor by a lens system, and image processing is performed by a processing system 9. The diffracted light distribution characteristics are quantified, and the flatness of the micromirror 21 is detected.

まず、図2により、マイクロミラー21の平坦性の良いMMD2を用いる必要性について説明する。図2はマイクロミラー21の平坦性の良いMMD2を用いる必要性を説明するための説明図であり、平坦性が悪いマイクロミラー21の作用について示している。   First, the necessity of using the MMD 2 with good flatness of the micromirror 21 will be described with reference to FIG. FIG. 2 is an explanatory diagram for explaining the necessity of using the MMD 2 with good flatness of the micromirror 21, and shows the action of the micromirror 21 with poor flatness.

図2に示すように、マイクロミラー21は、MMD2の製作時の熱応力や、照明光照射による熱応力によって凹面状に湾曲している。このため、マイクロミラー21は、平行光110を集光光112に変換する作用を持ち、マイクロミラー21の基板5上での像は、光強度分布4021のようにガウス分布状となる。   As shown in FIG. 2, the micromirror 21 is curved in a concave shape due to thermal stress at the time of manufacturing the MMD 2 and thermal stress due to illumination light irradiation. For this reason, the micromirror 21 has an action of converting the parallel light 110 into the condensed light 112, and an image of the micromirror 21 on the substrate 5 has a Gaussian distribution like a light intensity distribution 4021.

これが、図20で説明したように、パターン内画素境界部での窪みを発生させる原因となる。このため、まず、平坦性の良いマイクロミラー21をもつMMD2を選別して使用する必要がある。平坦性の測定は、レーザ共焦点顕微鏡で行うことができるが、測定に手間と時間が掛かるため、本実施の形態では、回折光分布の特性を用いた。   As described with reference to FIG. 20, this causes a depression at the pixel boundary in the pattern. For this reason, first, it is necessary to select and use the MMD 2 having the micromirror 21 with good flatness. The flatness can be measured with a laser confocal microscope. However, since the measurement takes time and effort, the characteristics of the diffracted light distribution are used in this embodiment.

次に、図3および図4により、本発明の実施の形態1に係るMMD選別装置の平坦性の良いマイクロミラーの検出の原理について説明する。図3は本発明の実施の形態1に係るMMD選別装置のマイクロミラー中心と周辺の高さの差であるZhを示す図、図4は本発明の実施の形態1に係るMMD選別装置のZhをパラメータとしたマイクロミラー凹面化時の露光シミュレーション結果を示す図である。   Next, the principle of detection of a micromirror with good flatness in the MMD sorting apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 3 is a diagram showing Zh, which is the difference between the height of the micromirror center and the periphery of the MMD sorting apparatus according to Embodiment 1 of the present invention, and FIG. 4 is Zh of the MMD sorting apparatus according to Embodiment 1 of the present invention. It is a figure which shows the exposure simulation result at the time of micro-mirror concave surface using as a parameter.

本実施の形態では、マイクロミラー21が凹面化した時の回折光分布の特性に着目した。凹面化時には平面に対して周辺部での位相乖離が大きくなり、これに伴い、高次の回折光強度が大きくなるという性質がある。ここで、図3に示すように、マイクロミラーの凹面化を放物面で近似した時の、中心と周辺の高さの差をZhとする。   In the present embodiment, attention is paid to the characteristics of the diffracted light distribution when the micromirror 21 is concave. When the concave surface is formed, the phase divergence at the peripheral portion with respect to the flat surface increases, and accordingly, the higher-order diffracted light intensity increases. Here, as shown in FIG. 3, the difference in height between the center and the periphery when the concave surface of the micromirror is approximated by a paraboloid is defined as Zh.

図4に示す露光シミュレーション結果は、マイクロミラーのサイズが13.7μm角である場合について、示している。図4に示すように、Zhが大きくなるに従い、瞳上で高次回折光が発生し、基板上のマイクロミラー像は凹面の集光作用のため丸くなっている。瞳上の回折光分布を撮像し、高次回折光位置の輝度を評価値で定量化すれば、凹面化の度合が定量化でき、この評価値により平坦性の良いマイクロミラーをもつMMDを選別することが可能となる。   The exposure simulation result shown in FIG. 4 shows the case where the size of the micromirror is 13.7 μm square. As shown in FIG. 4, as Zh increases, higher-order diffracted light is generated on the pupil, and the micromirror image on the substrate is rounded due to the condensing function of the concave surface. By imaging the diffracted light distribution on the pupil and quantifying the brightness of the higher-order diffracted light position with an evaluation value, the degree of concave surface can be quantified. Based on this evaluation value, an MMD having a micromirror with good flatness is selected. It becomes possible.

次に、図1、および図5〜図8により、本発明の実施の形態1に係るMMD選別装置の動作について説明する。図5〜図8は本発明の実施の形態1に係るMMD選別装置の動作を説明するための説明図であり、図5はMMD選別装置の楔ガラス、直角プリズム、マイクロミラー部の拡大図、図6はマイクロミラー平坦性判定処理のフローを示すフローチャート、図7は回折光分布画像の領域分割を示す図、図8はマイクロミラー中心と周辺の高さの差であるZhと評価値Sの関係を示す図である。   Next, the operation of the MMD sorting apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 5 to 8. 5 to 8 are explanatory diagrams for explaining the operation of the MMD sorting apparatus according to the first embodiment of the present invention. FIG. 5 is an enlarged view of the wedge glass, the right-angle prism, and the micromirror unit of the MMD sorting apparatus. FIG. 6 is a flowchart showing the flow of the micromirror flatness determination process, FIG. 7 is a diagram showing the region division of the diffracted light distribution image, and FIG. 8 is a graph showing the difference between the height of Zh and the evaluation value S between the micromirror center and the periphery It is a figure which shows a relationship.

まず、図1に示すように、光源70で発生した照明光は、光ファイバ71より出射され、コリメートレンズ72により平行光となり、楔ガラス73で角度θ1だけ偏向される。角度θ1と楔ガラス73の角度βの関係は、楔ガラス73の屈折率をn1とすると、以下の(式1)の式で与えられる。   First, as shown in FIG. 1, the illumination light generated by the light source 70 is emitted from the optical fiber 71, becomes parallel light by the collimating lens 72, and is deflected by the wedge glass 73 by an angle θ <b> 1. The relationship between the angle θ1 and the angle β of the wedge glass 73 is given by the following equation (Equation 1), where n1 is the refractive index of the wedge glass 73.

θ1= (n1−1)β …(式1)
楔ガラス73を出射した照明光710は直角プリズム74に入射し、MMD2のマイクロミラー21に入射、反射光は直角プリズム74の斜面で全反射される。
θ1 = (n1-1) β (Formula 1)
The illumination light 710 emitted from the wedge glass 73 is incident on the right-angle prism 74, is incident on the micromirror 21 of the MMD2, and the reflected light is totally reflected by the inclined surface of the right-angle prism 74.

ここで、直角プリズム74の内部での照明光710の中心光線711の光路を図5を用いて説明する。   Here, the optical path of the central ray 711 of the illumination light 710 inside the right-angle prism 74 will be described with reference to FIG.

以下では、マイクロミラーの傾斜角αが12度である場合について示す。θ1〜θ5は以下の(式2)〜(式5)に従い、αの値に伴って変化することに留意されたい。反射光を直角プリズムに垂直入射させるには、入射角θ5は2α=24度にする必要がある。この時、θ5とθ4の関係は、直角プリズムの屈折率をn2とすると、以下の(式2)の式で与えられる。   Hereinafter, a case where the inclination angle α of the micromirror is 12 degrees will be described. Note that θ1 to θ5 vary with the value of α in accordance with the following (Expression 2) to (Expression 5). In order for the reflected light to vertically enter the right-angle prism, the incident angle θ5 needs to be 2α = 24 degrees. At this time, the relationship between θ5 and θ4 is given by the following equation (Equation 2) where the refractive index of the right-angle prism is n2.

sinθ4= sinθ5/n2 …(式2)
n2=1.5とすると、θ5=24度なのでθ4は15.73度となる。一方、θ4とθ3の関係は、以下の(式3)の式となるので、θ3は29.27度となる。
sin θ4 = sin θ5 / n2 (Expression 2)
If n2 = 1.5, θ5 = 24 degrees, so θ4 is 15.73 degrees. On the other hand, since the relationship between θ4 and θ3 is the following equation (Equation 3), θ3 is 29.27 degrees.

θ3=45−θ4 …(式3)
また、直角プリズム74の斜辺での屈折は、以下の(式4)の式で与えられる。
θ3 = 45−θ4 (Formula 3)
The refraction at the hypotenuse of the right-angle prism 74 is given by the following equation (Equation 4).

sinθ2=n2・sinθ3 …(式4)
これにより、θ2は47.17度と求まる。θ1とθ2の関係は、以下の(式5)の式となるので、θ1は2.17度となる。
sin θ2 = n2 · sin θ3 (Expression 4)
As a result, θ2 is found to be 47.17 degrees. Since the relationship between θ1 and θ2 is the following equation (Equation 5), θ1 is 2.17 degrees.

θ1=45−θ2 …(式5)
これを実現する楔ガラス73の角度βは(式1)の式より、n1=1.5とすると、1.09度となる。
θ1 = 45−θ2 (Formula 5)
The angle β of the wedge glass 73 for realizing this is 1.09 degrees when n1 = 1.5 from the equation (Equation 1).

ここで、再び図1により、マイクロミラー21で発生した回折光712の光路について説明する。回折光712はレンズ75でコリメートされた後、レンズ75の焦点距離f1の位置に設置された絞り76により、測定に不要な部分がカットされる。   Here, referring again to FIG. 1, the optical path of the diffracted light 712 generated by the micromirror 21 will be described. After the diffracted light 712 is collimated by the lens 75, a portion unnecessary for measurement is cut by the diaphragm 76 installed at the position of the focal length f1 of the lens 75.

絞り76の位置がマイクロミラー73のフーリエ変換面であり、回折光分布が最も分離良く検出される位置である。絞り76は撮像素子79の視野より大きい。   The position of the diaphragm 76 is the Fourier transform plane of the micromirror 73, and is the position where the diffracted light distribution is detected with the best separation. The diaphragm 76 is larger than the field of view of the image sensor 79.

そこで、リレー縮小光学系をレンズ77とレンズ78で構成する。絞り76はレンズ77の焦点距離f2とレンズ78の焦点距離f3の比、f3/f2倍に縮小され、撮像素子79上に結像される。   Therefore, the relay reduction optical system is composed of the lens 77 and the lens 78. The aperture 76 is reduced to a ratio of the focal length f2 of the lens 77 and the focal length f3 of the lens 78, which is f3 / f2 times, and is imaged on the image sensor 79.

ここで、レンズ77とレンズ78の距離は焦点距離の和、f2+f3とする。撮像素子79により撮像された回折光分布画像80は処理系9により、画像処理が施され、マイクロミラー21の凹面性が判定される。   Here, the distance between the lens 77 and the lens 78 is the sum of focal lengths, f2 + f3. The diffracted light distribution image 80 picked up by the image pickup element 79 is subjected to image processing by the processing system 9 to determine the concave nature of the micromirror 21.

次に、図6に示すフローチャートにより、処理系9による、マイクロミラー21の凹面性判定方法について説明をする。   Next, the method for determining the concave surface of the micromirror 21 by the processing system 9 will be described with reference to the flowchart shown in FIG.

まず、ステップ901で撮像素子79により回折光分布を撮像する。次に、ステップ902で各回折光領域に分割する。   First, in step 901, the diffracted light distribution is imaged by the image sensor 79. Next, in step 902, each diffracted light region is divided.

図4に示すシミュレーション結果によれば、マイクロミラー21の平坦性の良い時は、回折光強度は中心付近の4つが強いが、凹面化するにつれ、周辺の回折光強度が強くなってくることが分かっている。   According to the simulation result shown in FIG. 4, when the flatness of the micromirror 21 is good, the diffracted light intensity is strong at the four near the center, but the diffracted light intensity at the periphery increases as the surface becomes concave. I know it.

そこで、図7に示すように、回折光分布画像80の絞り輪郭像760内の領域を、中心部801〜804と周辺部811〜822に分割する。   Therefore, as shown in FIG. 7, the region in the aperture contour image 760 of the diffracted light distribution image 80 is divided into center portions 801 to 804 and peripheral portions 811 to 822.

次に、ステップ903で各領域の輝度平均値を算出する。これを用いてステップ904で評価値Sを算出する。評価値Sは、中心部801〜804の平均輝度をI1〜I4、I1〜I4の平均値をm1、周辺部の平均輝度をI11〜I22、I11〜I22の平均値をm2とし、以下の(式6)の式で表される。   Next, in step 903, the average luminance value of each region is calculated. Using this, an evaluation value S is calculated in step 904. The evaluation value S is the average luminance of the central portions 801 to 804 as I1 to I4, the average value of I1 to I4 as m1, the average luminance of the peripheral portion as I11 to I22, and the average value of I11 to I22 as m2. It is represented by the formula of Formula 6).

SはI1〜I4の平均値と標準偏差の比をI11〜I22の平均値と標準偏差の比で割った値であり、I1〜I4への回折光の集中が高いほど、すなわち、平坦性が良い程、大きな値となる。   S is a value obtained by dividing the ratio of the average value of I1 to I4 and the standard deviation by the ratio of the average value of I11 to I22 and the standard deviation. The higher the concentration of diffracted light on I1 to I4, that is, the flatness is. The better, the larger the value.

(式6)の式により算出される評価値とマイクロミラー21の中心と周辺の高さの差であるZhとの関係は、図8に示すようになる。図8に示す関係から、Zhに対し、評価値Sは単調減少しており、Zhが評価値Sでモニタできることが分かる。   The relationship between the evaluation value calculated by the equation (Equation 6) and Zh which is the difference in height between the center and the periphery of the micromirror 21 is as shown in FIG. From the relationship shown in FIG. 8, it can be seen that the evaluation value S monotonously decreases with respect to Zh, and Zh can be monitored by the evaluation value S.

図8に示すように、Zhの許容値を75nmと設定すると、対応する評価値Sのしきい値は3.42となる。   As shown in FIG. 8, when the allowable value of Zh is set to 75 nm, the threshold value of the corresponding evaluation value S is 3.42.

図8に示す例では、領域830が平坦性の良い良品の範囲となる。図6のステップ905では、このしきい値を用い、評価値Sがしきい値より大きい場合は、ステップ907で「良品」および回折光分布画像を表示系900に表示し、しきい値以下の場合は、ステップ906で「不良品」および回折光分布画像を表示系900に表示する。   In the example shown in FIG. 8, the region 830 is a non-defective range with good flatness. In step 905 of FIG. 6, when this threshold value is used and the evaluation value S is larger than the threshold value, “good” and a diffracted light distribution image are displayed on the display system 900 in step 907 and In this case, the “defective product” and the diffracted light distribution image are displayed on the display system 900 in step 906.

以上の処理により、本実施の形態では、マイクロミラー21の平坦性の良いMMDを選別することが可能になる。   With the above processing, in the present embodiment, it is possible to select an MMD with good flatness of the micromirror 21.

(実施の形態2)
本実施の形態は、実施の形態1のMMD選別装置をマスクレス露光装置上に搭載したものである。
(Embodiment 2)
In this embodiment, the MMD sorting apparatus of the first embodiment is mounted on a maskless exposure apparatus.

図9および図10により、本発明の実施の形態2に係るマスクレス露光装置の構成および動作について説明する。図9は本発明の実施の形態2に係るマスクレス露光装置の構成を示す構成図、図10は本発明の実施の形態2に係るマスクレス露光装置の照明系の回転式アパーチャを示す図である。   The configuration and operation of the maskless exposure apparatus according to the second embodiment of the present invention will be described with reference to FIGS. FIG. 9 is a block diagram showing the configuration of the maskless exposure apparatus according to Embodiment 2 of the present invention, and FIG. 10 is a diagram showing the rotary aperture of the illumination system of the maskless exposure apparatus according to Embodiment 2 of the present invention. is there.

本実施の形態では、回折光分布をマスクレス露光装置上でモニタする構成となっている。   In this embodiment, the diffracted light distribution is monitored on a maskless exposure apparatus.

図9において、マスクレス露光装置は、図1に示すMMD選別装置と同様に、MMD2、処理系90、光源70、光ファイバ71、コリメートレンズ72、楔ガラス73、直角プリズム74、レンズ75、77、78、絞り76、撮像素子79、表示系900を有している。レンズ75、77および絞り76でマスクレス露光装置の投影レンズ3を構成している。また、基板5を搭載するステージ6、制御系91、アパーチャ100、アパーチャ駆動部103を備えている。   In FIG. 9, the maskless exposure apparatus is similar to the MMD sorting apparatus shown in FIG. 1, MMD2, processing system 90, light source 70, optical fiber 71, collimating lens 72, wedge glass 73, right angle prism 74, lenses 75, 77. 78, aperture 76, imaging element 79, and display system 900. The lenses 75 and 77 and the aperture 76 constitute the projection lens 3 of the maskless exposure apparatus. Further, a stage 6 on which the substrate 5 is mounted, a control system 91, an aperture 100, and an aperture driving unit 103 are provided.

図10において、アパーチャ100は、回折光用アパーチャ101および露光用アパーチャ102から構成されている。   In FIG. 10, the aperture 100 includes a diffracted light aperture 101 and an exposure aperture 102.

まず、通常のマスクレス露光装置としての使用状態から、制御系91はステージ6を駆動し、基板5を待避させ、レンズ78と撮像素子79が投影レンズ3の光軸300上に来るよう移動させる。   First, from the state of use as a normal maskless exposure apparatus, the control system 91 drives the stage 6, retracts the substrate 5, and moves the lens 78 and the image sensor 79 so that they are on the optical axis 300 of the projection lens 3. .

さらに、制御系91は、アパーチャ駆動部103を回転し、図10に示す、露光用アパーチャ102から回折光用アパーチャ101に切り替える。回折光用アパーチャ101の半径rAは、以下の(式7)の式によって決められる。なお、半径rAは、この値より小さければよい。   Further, the control system 91 rotates the aperture driving unit 103 to switch from the exposure aperture 102 to the diffracted light aperture 101 shown in FIG. The radius rA of the diffracted light aperture 101 is determined by the following equation (Equation 7). The radius rA only needs to be smaller than this value.

rA=f0・λ/P …(式7)
ここに、f0はコリメートレンズ72の焦点距離、λは照明光の波長、Pはマイクロミラー21の傾斜方向のピッチである。この式でrAを決めることにより、回折光分布が互いに重畳することなく検出することができる。
rA = f0 · λ / P (Expression 7)
Here, f0 is the focal length of the collimating lens 72, λ is the wavelength of the illumination light, and P is the pitch of the micromirror 21 in the tilt direction. By determining rA by this equation, the diffracted light distributions can be detected without overlapping each other.

光源70で発生した照明光710は、光ファイバ71より出射され、アパーチャ100を介してコリメートレンズ72により平行光となり、楔ガラス73で偏向され、直角プリズム74に入射、透過し、MMD2のマイクロミラー21を照明する。   Illumination light 710 generated by the light source 70 is emitted from the optical fiber 71, converted into parallel light by the collimator lens 72 through the aperture 100, deflected by the wedge glass 73, incident on and transmitted through the right-angle prism 74, and MMD2 micromirror 21 is illuminated.

中心光線711は照明光710の中心の光路を示す。マイクロミラー21で発生した回折光712は、レンズ75、レンズ77、絞り76で構成される投影レンズ3によって、基板5の表面55の位置で結像し、レンズ78でコリメートされた後、撮像素子79で撮像される。   A central light beam 711 indicates the optical path at the center of the illumination light 710. The diffracted light 712 generated by the micromirror 21 is imaged at the position of the surface 55 of the substrate 5 by the projection lens 3 including the lens 75, the lens 77, and the diaphragm 76, collimated by the lens 78, and then image pickup device. The image is captured at 79.

レンズ78は、基板の表面55から焦点距離f4の距離に設置され、撮像素子79はレンズ78の後方、焦点距離f4の位置に設置される。これにより、レンズ77とレンズ78とで、絞り76を撮像素子79上に結像する。撮像素子79で撮像された回折光分布画像80は処理系9により、実施の形態1と同様の処理がなされ、判定結果および回折光分布画像が表示系900に表示される。   The lens 78 is installed at a distance of the focal length f4 from the surface 55 of the substrate, and the imaging element 79 is installed at the rear of the lens 78 and at the position of the focal length f4. As a result, the lens 77 and the lens 78 form an image of the diaphragm 76 on the image sensor 79. The diffracted light distribution image 80 captured by the image sensor 79 is processed by the processing system 9 in the same manner as in the first embodiment, and the determination result and the diffracted light distribution image are displayed on the display system 900.

判定結果は制御系91に送られ、「不良品」と判定された場合、制御系は、警告音や画面表示、電子メール送信等の手段でアラームを発生し、警告ログとして図示しない制御系91の記録部に記録する。   The determination result is sent to the control system 91, and when it is determined as “defective product”, the control system generates an alarm by means of warning sound, screen display, e-mail transmission, etc., and the control system 91 not shown as a warning log. To the recording section.

以上の構成により、マイクロミラー21がマスクレス露光装置搭載後に凹面化したかどうかの評価が可能になる。しきい値を超えて凹面化した場合は、MMD2の交換等の対策を迅速に行うことにより、許容値を超えた転写パターンの直線性の劣化を未然に防ぐことができる。   With the above configuration, it is possible to evaluate whether or not the micromirror 21 has become concave after mounting the maskless exposure apparatus. When the surface is concaved beyond the threshold, it is possible to prevent deterioration of the linearity of the transferred pattern exceeding the allowable value by taking measures such as replacement of the MMD 2 promptly.

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.

例えば、実施の形態1、2では、(式6)の式を用いて、評価値を算出して「良品」、「不良品」を判断しているが、図4に示すような、露光シミュレーション結果の回折光分布の画像を、複数用意し、画像そのものを比較するなどして、「良品」、「不良品」を判断するようにしてもよい。   For example, in the first and second embodiments, the evaluation value is calculated using the equation (Equation 6) to determine “good” or “defective”, but an exposure simulation as shown in FIG. A plurality of images of the resultant diffracted light distribution may be prepared, and “good” or “defective” may be determined by comparing the images themselves.

本発明は、表示機器用パネルや半導体マスク等に、パターンを転写焼き付けするマスクレス露光装置や投影露光装置などに、広く適用可能である。   The present invention can be widely applied to a maskless exposure apparatus and a projection exposure apparatus that transfer and print a pattern on a display device panel, a semiconductor mask, and the like.

2…マイクロミラーデバイス(MMD)、3…投影レンズ、4…投影像、5…基板、6…ステージ、9…処理系、21…マイクロミラー、22…ヨーク、23…ヒンジ、24、25…電極、26…MMDの基板面、31…投影レンズ瞳、55…基板の表面、70…光源、71…光ファイバ、72…コリメートレンズ、73…楔ガラス、74…直角プリズム、75、77、78…レンズ、76…絞り、79…撮像素子、80…回折光分布画像、91…制御系、900…表示系。   DESCRIPTION OF SYMBOLS 2 ... Micromirror device (MMD), 3 ... Projection lens, 4 ... Projection image, 5 ... Substrate, 6 ... Stage, 9 ... Processing system, 21 ... Micromirror, 22 ... Yoke, 23 ... Hinge, 24, 25 ... Electrode 26 ... MMD substrate surface, 31 ... projection lens pupil, 55 ... substrate surface, 70 ... light source, 71 ... optical fiber, 72 ... collimating lens, 73 ... wedge glass, 74 ... right angle prism, 75, 77, 78 ... Lens 76. Diaphragm 79 Image sensor 80 Diffracted light distribution image 91 Control system 900 Display system

Claims (8)

マスクレス露光を行うための転写パターンを生成するマイクロミラーデバイスの選別方法であって、
前記マイクロミラーデバイスのマイクロミラーに照明光を照射し、前記マイクロミラーからの回折光分布を撮像するステップと、
露光シミュレーション結果に基づいた複数の回折光分布の情報と、前記マイクロミラーからの回折光分布の情報とを比較するステップと、
前記比較結果に基づいて、前記マイクロミラーデバイスの良品または不良品の情報、および前記回折光分布の画像を表示するステップとを有することを特徴とするマイクロミラーデバイスの選別方法。
A method of selecting a micromirror device that generates a transfer pattern for performing maskless exposure,
Illuminating illumination light on a micromirror of the micromirror device, and imaging a diffracted light distribution from the micromirror;
Comparing information of a plurality of diffracted light distributions based on an exposure simulation result with information of a diffracted light distribution from the micromirror;
A method of selecting a micromirror device, comprising: displaying information on a good or defective product of the micromirror device and an image of the diffracted light distribution based on the comparison result.
マスクレス露光を行うための転写パターンを生成するマイクロミラーデバイスの選別方法であって、
前記マイクロミラーデバイスのマイクロミラーに照明光を照射し、前記マイクロミラーからの回折光分布を撮像するステップと、
前記回折光分布の領域別の輝度平均値を算出するステップと、
前記輝度平均値から前記マイクロミラーの評価値を算出するステップと、
前記評価値としきい値を比較するステップと、
前記比較結果に基づいて、前記マイクロミラーデバイスの良品または不良品の情報、および前記回折光分布の画像を表示するステップとを有することを特徴とするマイクロミラーデバイスの選別方法。
A method of selecting a micromirror device that generates a transfer pattern for performing maskless exposure,
Illuminating illumination light on a micromirror of the micromirror device, and imaging a diffracted light distribution from the micromirror;
Calculating a luminance average value for each region of the diffracted light distribution;
Calculating an evaluation value of the micromirror from the luminance average value;
Comparing the evaluation value with a threshold value;
A method of selecting a micromirror device, comprising: displaying information on a good or defective product of the micromirror device and an image of the diffracted light distribution based on the comparison result.
マスクレス露光を行うための転写パターンを生成するマイクロミラーデバイスを選別するマイクロミラーデバイス選別装置であって、
前記マイクロミラーデバイスのマイクロミラーに照明光を照射する照明系と、
前記マイクロミラーで発生した回折光を撮像素子に入射させる光学系と、
前記撮像素子で撮像された回折光分布画像を処理し、前記マイクロミラーデバイスの良品または不良品の判定を行う処理系とを備えたことを特徴とするマイクロミラーデバイス選別装置。
A micromirror device sorting apparatus for sorting micromirror devices that generate a transfer pattern for performing maskless exposure,
An illumination system for irradiating illumination light to the micromirror of the micromirror device;
An optical system for causing the diffracted light generated by the micromirror to enter the imaging device;
A micromirror device sorting apparatus comprising: a processing system that processes a diffracted light distribution image picked up by the image pickup device and determines whether the micromirror device is non-defective or defective.
請求項3記載のマイクロミラーデバイス選別装置において、
前記回折光分布画像と前記判定結果を表示する表示系を備えたことを特徴とするマイクロミラーデバイス選別装置。
In the micromirror device sorting apparatus according to claim 3,
A micromirror device sorting apparatus comprising a display system for displaying the diffracted light distribution image and the determination result.
請求項3記載のマイクロミラーデバイス選別装置において、
前記照明系は、楔ガラスと直角プリズムを含むことを特徴とするマイクロミラーデバイス選別装置。
In the micromirror device sorting apparatus according to claim 3,
The illumination system includes a wedge glass and a right angle prism.
マイクロミラーデバイスにより生成したパターンを投影レンズで基板上に投影するマスクレス露光装置であって、
前記マイクロミラーデバイスに照明光を照射する照明系と、
撮像素子と、
前記基板および前記撮像素子を移動させるステージと、
前記マイクロミラーデバイスの良品または不良品の判定を行う際、前記ステージを移動させ、前記撮像素子に前記マイクロミラーデバイスのマイクロミラーからの回折光を入射させ、前記照明系の絞りの大きさを制御する制御系と、
前記撮像素子によって撮像された回折光分布画像を処理し、前記回折光分布画像の処理結果に基づいて、前記マイクロミラーデバイスの良品または不良品の判定を行う処理系とを備えたことを特徴とするマスクレス露光装置。
A maskless exposure apparatus that projects a pattern generated by a micromirror device onto a substrate with a projection lens,
An illumination system for illuminating the micromirror device with illumination light;
An image sensor;
A stage for moving the substrate and the imaging device;
When determining whether the micromirror device is good or defective, the stage is moved, the diffracted light from the micromirror of the micromirror device is incident on the image sensor, and the size of the diaphragm of the illumination system is controlled. A control system to
A processing system for processing a diffracted light distribution image captured by the image sensor and determining whether the micromirror device is a good product or a defective product based on a processing result of the diffracted light distribution image. Maskless exposure device.
請求項6記載のマスクレス露光装置において、
前記回折光分布画像および前記判定結果を表示する表示系を備えたことを特徴とするマスクレス露光装置。
The maskless exposure apparatus according to claim 6.
A maskless exposure apparatus comprising a display system for displaying the diffracted light distribution image and the determination result.
請求項6記載のマスクレス露光装置において、
前記マイクロミラーデバイスの良品または不良品の判定を行う際の前記照明系の絞りの半径は、前記照明系のコリメートレンズの焦点距離をf、前記照明光の波長をλ、前記マイクロミラーデバイスのマイクロミラーのピッチをPとした時、λ・f/Pより小さいことを特徴とするマスクレス露光装置。
The maskless exposure apparatus according to claim 6.
The radius of the diaphragm of the illumination system when determining whether the micromirror device is good or defective is f for the focal length of the collimating lens of the illumination system, λ for the wavelength of the illumination light, and micro of the micromirror device. A maskless exposure apparatus characterized in that when the pitch of the mirror is P, it is smaller than λ · f / P.
JP2011005044A 2010-01-15 2011-01-13 Micromirror device sorting method, micromirror device sorting apparatus, and maskless exposure apparatus Expired - Fee Related JP5481400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005044A JP5481400B2 (en) 2010-01-15 2011-01-13 Micromirror device sorting method, micromirror device sorting apparatus, and maskless exposure apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010006806 2010-01-15
JP2010006806 2010-01-15
JP2011005044A JP5481400B2 (en) 2010-01-15 2011-01-13 Micromirror device sorting method, micromirror device sorting apparatus, and maskless exposure apparatus

Publications (2)

Publication Number Publication Date
JP2011164599A true JP2011164599A (en) 2011-08-25
JP5481400B2 JP5481400B2 (en) 2014-04-23

Family

ID=44276214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005044A Expired - Fee Related JP5481400B2 (en) 2010-01-15 2011-01-13 Micromirror device sorting method, micromirror device sorting apparatus, and maskless exposure apparatus

Country Status (3)

Country Link
JP (1) JP5481400B2 (en)
KR (1) KR101294915B1 (en)
CN (1) CN102129180B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016517029A (en) * 2013-03-15 2016-06-09 アイマックス ヨーロッパ ソシエテ アノニム Projector optimized for modulator diffraction effect
JP2016167017A (en) * 2015-03-10 2016-09-15 株式会社Screenホールディングス Test method and test equipment
JP2018025816A (en) * 2017-10-04 2018-02-15 アイマックス シアターズ インターナショナル リミテッド Projector optimised for modulator diffraction effect
CN109158337A (en) * 2018-10-29 2019-01-08 宁波舜宇仪器有限公司 Camera lens defect automatic detection system
CN109513621A (en) * 2018-11-14 2019-03-26 吴美珍 Optical fibre device loading and unloading mould group and optical fibre device test equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6173862B2 (en) * 2013-09-30 2017-08-02 株式会社日立ハイテクノロジーズ electronic microscope
JP6484853B2 (en) * 2014-04-17 2019-03-20 株式会社ブイ・テクノロジー Reflector unit for exposure apparatus and exposure apparatus
JP6536185B2 (en) * 2014-06-13 2019-07-03 信越化学工業株式会社 Method of manufacturing synthetic quartz glass substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229818A (en) * 1996-02-28 1997-09-05 Fuji Photo Film Co Ltd Micromirror type image forming device and its management method
JP2003257844A (en) * 2002-03-07 2003-09-12 M S Tec:Kk Direct exposure system
JP2003337427A (en) * 2002-05-20 2003-11-28 Fuji Photo Film Co Ltd Exposure device
JP2006091655A (en) * 2004-09-27 2006-04-06 Tohoku Univ Device and method for pattern drawing
JP2006516724A (en) * 2003-01-15 2006-07-06 マイクロニック レーザー システムズ アクチボラゲット How to detect defective pixels
WO2009145048A1 (en) * 2008-05-28 2009-12-03 株式会社ニコン Inspection device and inspecting method for spatial light modulator, illuminating optical system, method for adjusting the illuminating optical system, exposure device, and device manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3281241B2 (en) * 1994-12-27 2002-05-13 株式会社東芝 Method and system for evaluating distribution of absorbed light amount of resist
SE9800665D0 (en) * 1998-03-02 1998-03-02 Micronic Laser Systems Ab Improved method for projection printing using a micromirror SLM
JP4266082B2 (en) * 2001-04-26 2009-05-20 株式会社東芝 Inspection method for exposure mask pattern
CN101063822A (en) * 2002-10-01 2007-10-31 麦克罗尼克激光系统公司 Methods and systems for improving boundary contrast
US6775049B1 (en) * 2003-01-20 2004-08-10 Texas Instruments Incorporated Optical digital signal processing system and method
JP4087723B2 (en) * 2003-02-27 2008-05-21 帝人化成株式会社 Optical disk substrate inspection method
US7580559B2 (en) * 2004-01-29 2009-08-25 Asml Holding N.V. System and method for calibrating a spatial light modulator
JP2009204388A (en) * 2008-02-27 2009-09-10 Toppan Printing Co Ltd Defect inspection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229818A (en) * 1996-02-28 1997-09-05 Fuji Photo Film Co Ltd Micromirror type image forming device and its management method
JP2003257844A (en) * 2002-03-07 2003-09-12 M S Tec:Kk Direct exposure system
JP2003337427A (en) * 2002-05-20 2003-11-28 Fuji Photo Film Co Ltd Exposure device
JP2006516724A (en) * 2003-01-15 2006-07-06 マイクロニック レーザー システムズ アクチボラゲット How to detect defective pixels
JP2006091655A (en) * 2004-09-27 2006-04-06 Tohoku Univ Device and method for pattern drawing
WO2009145048A1 (en) * 2008-05-28 2009-12-03 株式会社ニコン Inspection device and inspecting method for spatial light modulator, illuminating optical system, method for adjusting the illuminating optical system, exposure device, and device manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016517029A (en) * 2013-03-15 2016-06-09 アイマックス ヨーロッパ ソシエテ アノニム Projector optimized for modulator diffraction effect
US9915820B2 (en) 2013-03-15 2018-03-13 Imax Theatres International Limited Projector optimized for modulator diffraction effects
US10433626B2 (en) 2013-03-15 2019-10-08 Imax Theatres International Limited Projector optimized for modulator diffraction effects
JP2016167017A (en) * 2015-03-10 2016-09-15 株式会社Screenホールディングス Test method and test equipment
JP2018025816A (en) * 2017-10-04 2018-02-15 アイマックス シアターズ インターナショナル リミテッド Projector optimised for modulator diffraction effect
CN109158337A (en) * 2018-10-29 2019-01-08 宁波舜宇仪器有限公司 Camera lens defect automatic detection system
CN109158337B (en) * 2018-10-29 2024-02-23 宁波舜宇仪器有限公司 Automatic detection equipment for lens defects
CN109513621A (en) * 2018-11-14 2019-03-26 吴美珍 Optical fibre device loading and unloading mould group and optical fibre device test equipment

Also Published As

Publication number Publication date
CN102129180B (en) 2013-12-18
JP5481400B2 (en) 2014-04-23
KR101294915B1 (en) 2013-08-08
KR20110084117A (en) 2011-07-21
CN102129180A (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP5481400B2 (en) Micromirror device sorting method, micromirror device sorting apparatus, and maskless exposure apparatus
JP5464288B2 (en) Spatial light modulator inspection apparatus and inspection method
JP4135603B2 (en) Two-dimensional spectroscopic device and film thickness measuring device
US11002534B2 (en) Patterned light projection apparatus and method
TW201546565A (en) Method for processing image data in a lithography manufacturing process and a system therefor
JP6546172B2 (en) Reflective optical element, in particular a measuring arrangement for measuring the optical properties of microlithography
CN105629671B (en) Illumination optics device and device manufacturing method
KR102478399B1 (en) Exposure apparatus, exposure method, and article manufacturing method
JP2006032692A (en) Wavefront aberration measurement device, optical projection system, manufacturing method thereof, projection aligner, manufacturing method thereof, micro device and manufacturing method thereof
JPWO2004077533A1 (en) Exposure equipment
US7081956B1 (en) Method and device for determining reflection lens pupil transmission distribution and illumination intensity distribution in reflective imaging system
TWI567505B (en) Exposure optical system, exposure apparatus, and exposure method
TWI716903B (en) Method and device for testing projection systems
KR101794650B1 (en) Maskless exposure apparatus
JP2010016317A (en) Exposure apparatus and method of manufacturing device
JP2008140795A (en) Stepper and method, and process for fabricating device
JP2005266622A (en) Mask defect inspection apparatus
TWI529496B (en) An optical imaging writer system
TWI481967B (en) An optical imaging writer system
JP2007299891A (en) Light source unit, illuminating optical system, aligner, and manufacturing method of device
TWI440991B (en) An optical imaging writer system
Shirinkami DEVELOPMENT OF MASKLESS LITHOGRAPHY SYSTEM
JP2009222689A (en) Inspection apparatus
JP2015225059A (en) Inspection device for optical element, inspection method for optical element, and inspection system for optical element
JP2012104523A (en) Illumination device, exposure device, program and illumination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5481400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees