JP2011164068A - Superconductive photodetector - Google Patents

Superconductive photodetector Download PDF

Info

Publication number
JP2011164068A
JP2011164068A JP2010030383A JP2010030383A JP2011164068A JP 2011164068 A JP2011164068 A JP 2011164068A JP 2010030383 A JP2010030383 A JP 2010030383A JP 2010030383 A JP2010030383 A JP 2010030383A JP 2011164068 A JP2011164068 A JP 2011164068A
Authority
JP
Japan
Prior art keywords
superconducting
meander
thin
insulating film
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010030383A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shibata
浩行 柴田
Yasuhiro Tokura
康弘 都倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010030383A priority Critical patent/JP2011164068A/en
Publication of JP2011164068A publication Critical patent/JP2011164068A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductive photodetector that solves a problem of a conventional technology, namely low light detection efficiency, and then has small polarization dependency and high light detection efficiency. <P>SOLUTION: In this superconductive photodetector, a plurality of superconductive thin lines of a meandering (meandering, lightning pattern, or zigzag) shape are installed via the front and back of a crystal substrate, insulating film, or adhesive so that the thin lines are close to each other and the directions of the thin lines are orthogonal to each other. As a result of to this arrangement and constitution, a photon that has not been detected because it has polarization rectangular to the first meandering thin line can be detected because it has polarization parallel to the next meandering thin line. In other words, any photon is decomposed into polarizations consisting of mutually rectangular straight lines, so that a photon having any polarization is detected. A failure due to polarization is eliminated thereby, so that the polarization dependency is small and the light detection efficiency is increased by about twice comparing with the conventional example. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は超伝導を用いた光検出素子に関し、特に赤外域における単一光子を偏波依存性無しに検出するための超伝導光検出素子に関する。   The present invention relates to a photodetection element using superconductivity, and more particularly to a superconductivity photodetection element for detecting a single photon in the infrared region without polarization dependence.

量子力学の原理を応用した暗号化システムと情報伝達システムを統合した量子暗号通信は盗聴不可能な究極の通信であり、次世代の通信として実用化が期待されている。量子暗号通信では極微弱な単一光子を伝達情報の単位として使用しており、光ファイバを用いた長距離伝送をするためには、高量子効率・高速・低ノイズの単一光子光検出器が必要である。現在、様々な単一光子検出器が開発されているが、最近、超伝導を用いた単一光子検出器が実現し、注目されている(特許文献1,2および3)。この単一光子検出器はメアンダ(蛇行、雷文、ジクザク)形状の超伝導細線からなり、高速(GHz)動作可能で、暗計数率が低いなど他の検出器では実現できない多くの利点を持つ。しかしながら、その単一光子検出器はメアンダ細線に平行な偏波に対しては光検出効率が高いが、メアンダ細線に直角な偏波に対しては光検出効率が低いという偏波依存性を示す。光ファイバ中の光の偏光状態は通常ランダムになっており、効率よく検出するためには偏波依存性のない光検出器が望ましい。   Quantum cryptography communication that integrates an encryption system that applies the principles of quantum mechanics and an information transmission system is the ultimate communication that cannot be tapped, and is expected to be put to practical use as the next generation of communications. Quantum cryptocommunication uses extremely weak single photons as a unit of transmission information, and single quantum photon detectors with high quantum efficiency, high speed, and low noise are required for long-distance transmission using optical fibers. is required. At present, various single photon detectors have been developed. Recently, single photon detectors using superconductivity have been realized and are attracting attention (Patent Documents 1, 2, and 3). This single photon detector consists of a meander-shaped superconducting wire, can operate at high speed (GHz) and has many advantages that cannot be realized by other detectors such as low dark count rate. . However, the single photon detector shows a polarization dependency that the light detection efficiency is high for the polarization parallel to the meander wire, but the light detection efficiency is low for the polarization perpendicular to the meander wire. . The polarization state of light in the optical fiber is usually random, and a photodetector having no polarization dependency is desirable for efficient detection.

特開2008−71908号公報JP 2008-71908 A 米国特許第6812464号明細書US Pat. No. 6,812,464 米国特許第7049593号明細書US Pat. No. 7,049,593

S. N. Dorenbos, et al., ‘‘Superconducting single photon detectors with minimized polarization dependence’’, Applied Physics Letters, Vol. 93, 161102, 2008.S. N. Dorenbos, et al., 'Superconducting single photon detectors with minimized polarization dependence', Applied Physics Letters, Vol. 93, 161102, 2008.

しかしながら、従来技術では偏波依存性を減少させるために、メアンダの形状を変更して、縦方向のメアンダ細線と横方向のメアンダ細線とを同一平面上で並べて設置して受光する方法、または、メアンダ細線を渦巻き型の曲線に変更する方法が試みられてきた(非特許文献1)。しかしながら、この従来方法では偏波がメアンダの方向と異なって検出されなかった光は、検出素子を透過してしまうため、光検出効率が低いという解決すべき課題があった。   However, in the prior art, in order to reduce the polarization dependency, the meander shape is changed and the longitudinal meander wire and the transverse meander wire are placed side by side on the same plane to receive light, or Attempts have been made to change the meander wire to a spiral curve (Non-Patent Document 1). However, in this conventional method, the light that has not been detected with the polarization different from the meander direction is transmitted through the detection element, so that there is a problem to be solved that the light detection efficiency is low.

本発明の目的は、上記従来技術における上記のような課題を解消し、偏波依存性が小さく、かつ高い光検出効率を有する超伝導光検出素子を提供することにある。   An object of the present invention is to provide a superconducting photodetecting element that eliminates the above-described problems in the prior art, has a small polarization dependency, and has high photodetection efficiency.

上記目的を達成するため、本発明の超伝導光検出素子は、メアンダ形状の複数の細線を垂直方向に互いに近接して、一方の細線の配列方向に対して隣接する他方の細線の配列方向が直角となるように、順次重ね合わせて設置されていることを特徴とする。最初のメアンダ細線に直角な偏波を有するため検出されなかった光子は、次のメアンダ細線とは平行な偏波を有するために検出可能となる。任意の光子は互いに直角な直線からなる偏波に分解することが可能なため、この配置構成によれば、任意の偏波を有する光子について検出可能となる。この配置構成により、本発明によれば、偏波による取りこぼしがなくなるため、偏波依存性は小さくなり、光検出効率は表面だけにメアンダ細線がある従来技術に比べて2倍程度向上する。   In order to achieve the above object, the superconducting photodetecting element of the present invention has a plurality of meander-shaped fine lines close to each other in the vertical direction, and the arrangement direction of the other fine line adjacent to the arrangement direction of one fine line is It is characterized by being placed one on top of the other so as to form a right angle. A photon that is not detected because it has a polarization perpendicular to the first meander wire is detectable because it has a polarization parallel to the next meander wire. Since arbitrary photons can be decomposed into polarized waves composed of straight lines perpendicular to each other, this arrangement makes it possible to detect photons having arbitrary polarized waves. With this arrangement, according to the present invention, since there is no loss due to polarization, the dependence on polarization is reduced, and the light detection efficiency is improved about twice as much as that of the prior art in which a meandering thin line is provided only on the surface.

さらに詳細に説明すると、本発明の一態様においては、例えば、結晶基板上の表面に対して超伝導材料からなるメアンダ形状の第1の細線を形成し、その後、その結晶基板の裏面に対して、表面の第1の細線とは直角な向きに超伝導材料からなるメアンダ形状の第2の細線を形成する。これにより、第2の細線は、第1の細線に対して垂直位置で、かつ第2の細線の配列方向が前記第1の細線の配列方向に対して直角となる位置に形成される。この場合、結晶基板の表面の第1の細線と直角な偏波を有する光子は、表面の第1の細線には吸収されずに、結晶基板の裏面の第2の細線上に照射される。この光子は裏面の第2の細線と平行な偏波を有するため、裏面の第2の細線に吸収される。表面および裏面のメアンダ形状のこれら細線は、その片端を結合すれば一本の細線と見なせるので、その結合した細線に読み出し検出用の電気回路を接続すれば、単一光子の検出が出来る光子検出デバイスが得られる。また、結晶基板の表面および裏面の第1、第2の細線を独立なものとして、各々の細線に対して、別個に読み出し検出用電気回路を接続しても、光子の検出ができる。   More specifically, in one embodiment of the present invention, for example, a meander-shaped first fine wire made of a superconducting material is formed on the surface of the crystal substrate, and then the back surface of the crystal substrate is formed. Then, a meander-shaped second fine wire made of a superconducting material is formed in a direction perpendicular to the first fine wire on the surface. As a result, the second fine line is formed at a position perpendicular to the first fine line and at a position where the arrangement direction of the second fine lines is perpendicular to the arrangement direction of the first fine lines. In this case, photons having a polarization perpendicular to the first thin line on the surface of the crystal substrate are not absorbed by the first thin line on the surface, but are irradiated onto the second thin line on the back surface of the crystal substrate. Since this photon has a polarization parallel to the second thin line on the back surface, it is absorbed by the second thin line on the back surface. These thin lines in the meander shape on the front and back surfaces can be regarded as a single thin line if their ends are combined, so photon detection that can detect single photons by connecting an electrical circuit for readout detection to the combined thin lines A device is obtained. Further, even if the first and second thin wires on the front and back surfaces of the crystal substrate are made independent and a readout detection electric circuit is connected to each thin wire, photons can be detected.

また、入射光のスポット径の拡がりによる光検出効率の低下を防ぐために、好ましくは表面の第1の細線と裏面の第2の細線の間隔(すなわち結晶基板の厚さ)は10μm以上100μm以下に近接させて設置する。   In order to prevent a decrease in light detection efficiency due to the spread of the spot diameter of incident light, the distance between the first thin wire on the front surface and the second thin wire on the back surface (that is, the thickness of the crystal substrate) is preferably 10 μm or more and 100 μm or less. Install in close proximity.

本発明の別の様態においては、例えば、結晶基板上に超伝導材料からなるメアンダ形状の第1の細線を形成し、その結晶基板と第1の細線上に第1の絶縁膜を形成した後で、その第1の絶縁膜の上に第1の細線とは直角な向きに超伝導材料からなるメアンダ形状の第2の細線をさらに形成することで、上記の態様と同様に、偏波による取りこぼしがなくなるため、偏波依存性は小さくなり、光検出効率は表面だけにメアンダ細線がある従来技術に比べて2倍程度向上する。さらに、その第1の絶縁膜と第2の細線の表面に対して第2の絶縁膜を形成し、第2の絶縁膜の表面に対して超伝導材料からなるメアンダ形状の第3の細線を形成し、第2の絶縁膜と第3の細線の表面に対して第3の絶縁膜を形成し、第3の絶縁膜の表面に対して超伝導材料からなるメアンダ形状の第4の細線を形成するというように、N(Nは3以上の整数)以上の絶縁膜と超伝導材料からなるメアンダ形状のN+1以上の細線を繰り返し形成する多層膜構造にして、偶数番目の1つまたは2つ以上の細線が、隣接する奇数番目の細線に対して垂直位置で、かつ偶数番目の細線の配列方向が奇数番目の細線の配列方向に対して直角となる位置に形成することにより、光検出効率をさらに向上することもできる。また、入射光のスポット径の拡がりによる光検出効率の低下を防ぐために、各絶縁膜の厚さは10nm以上100μm以下が好ましい。   In another aspect of the present invention, for example, after forming a meander-shaped first fine wire made of a superconducting material on a crystal substrate and forming a first insulating film on the crystal substrate and the first fine wire Then, by further forming a meander-shaped second fine wire made of a superconducting material on the first insulating film in a direction perpendicular to the first fine wire, similarly to the above-described aspect, Since there is no missing, the dependence on polarization is reduced, and the light detection efficiency is improved about twice as compared with the conventional technique in which the meander wire is only on the surface. Further, a second insulating film is formed on the surface of the first insulating film and the second thin wire, and a meander-shaped third thin wire made of a superconducting material is formed on the surface of the second insulating film. Forming a third insulating film on the surface of the second insulating film and the third fine wire, and forming a meander-shaped fourth fine wire made of a superconductive material on the surface of the third insulating film. An even-numbered one or two is formed in a multilayer film structure in which N + 1 (N is an integer of 3 or more) insulating films and a meander-shaped N + 1 or more fine wire made of a superconducting material are repeatedly formed. The above-mentioned fine lines are formed at a position perpendicular to the adjacent odd-numbered fine lines and at a position where the even-numbered fine lines are arranged at right angles to the odd-numbered fine lines. Can be further improved. In addition, in order to prevent a decrease in light detection efficiency due to an increase in the spot diameter of incident light, the thickness of each insulating film is preferably 10 nm to 100 μm.

本発明のさらに別の様態においては、例えば、第1の結晶基板上に超伝導材料からなるメアンダ形状の第1の細線を形成し、第2の結晶基板上に超伝導材料からなるメアンダ形状の第2の細線を形成し、第2の細線の配列方向が第1の細線の配列方向に対して直角となる向きに、第2の細線を接着剤または絶縁膜と接着剤を介して第1の細線に接着することより、上述した他の態様と同様に、偏波による取りこぼしがなくなるため、偏波依存性は小さくなり、光検出効率は表面だけにメアンダ細線がある従来技術に比べて2倍程度向上する。ここで、入射光のスポット径の拡がりによる光検出効率の低下を防ぐために、第1の細線と第2の細線間の間隔は、1μm以上100μm以下であることが好ましい。   In still another aspect of the present invention, for example, a meander-shaped first fine wire made of a superconducting material is formed on a first crystal substrate, and a meander-shape made of a superconducting material is formed on a second crystal substrate. Forming a second fine wire, and arranging the second fine wire through an adhesive or an insulating film and an adhesive in a direction in which the arrangement direction of the second fine wire is perpendicular to the arrangement direction of the first fine wire. By adhering to the thin wire, as in the other embodiments described above, the loss due to the polarization is eliminated, so that the polarization dependency is reduced, and the light detection efficiency is 2 as compared with the conventional technology in which the meander thin wire is only on the surface. It improves about twice. Here, in order to prevent a decrease in light detection efficiency due to the spread of the spot diameter of the incident light, the interval between the first thin wire and the second thin wire is preferably 1 μm or more and 100 μm or less.

また、本発明の上記各構成に対して、光の入射側である超伝導光検出素子の表面側に配置された無反射コーティング、およびその超伝導光検出素子の裏面側に配置されたバックミラーの少なくともいずれかの設置によるキャビティ化を追加することによって、さらなる光検出効率の向上を図ることができる。   In addition, for each of the above-described configurations of the present invention, a non-reflective coating disposed on the surface side of the superconducting photodetection element on the light incident side, and a rearview mirror disposed on the back side of the superconducting photodetection element By further adding a cavity by installing at least one of the above, it is possible to further improve the light detection efficiency.

また、本発明の上記各構成に対して、メアンダ形状の各上記細線において、そのメアンダ形状の大きさが1μm角以上で10μm角以下であり、その細線の線幅が10nm以上で200nm以下であり、その細線の厚みが1nm以上で5nm以下である、とすることができる。   Further, for each of the above-described configurations of the present invention, in each of the meander-shaped fine wires, the size of the meander shape is 1 μm square or more and 10 μm square or less, and the line width of the thin line is 10 nm or more and 200 nm or less. The thickness of the fine wire can be 1 nm or more and 5 nm or less.

また、本発明の上記各構成に対して、超伝導材料がNbNであり、結晶基板および絶縁膜がMgOまたはAlNまたは酸化アルミニウムである、あるいは、超伝導材料がMgB2であり、結晶基板および絶縁膜がSiCまたはAlNまたは酸化アルミニウムである、あるいは、超伝導材料が銅酸化物超伝導体であり、結晶基板および絶縁膜がNdGaO3またはSrLaGaO4またはLaSrAlO4である、とすることができる。 Further, for each of the above configurations of the present invention, the superconductive material is NbN and the crystal substrate and the insulating film are MgO, AlN, or aluminum oxide, or the superconductive material is MgB 2 and the crystal substrate and the insulating film are insulated. The film can be SiC or AlN or aluminum oxide, or the superconducting material can be a copper oxide superconductor, and the crystal substrate and the insulating film can be NdGaO 3, SrLaGaO 4, or LaSrAlO 4 .

以上説明したように、上記構成により、本発明によれば、入射した光子は、偏波方向にかかわらず、必ず光検出効率の高い偏波依存性を有するメアンダ細線上に照射されるため、光検出効率の高い光検出素子を得ることができる。   As described above, according to the present invention, according to the present invention, the incident photon is always irradiated on the meander thin line having high polarization dependency with high light detection efficiency regardless of the polarization direction. A photodetecting element with high detection efficiency can be obtained.

本発明を適応した第1の実施の形態の超伝導光検出素子の概略構成を示し、(a)は上面図(平面図)、(b)は裏面図(背面図)、および(c)は(a)および(b)の切断線A−A’線に沿う断面図である。1 shows a schematic configuration of a superconducting photodetection element according to a first embodiment to which the present invention is applied, wherein (a) is a top view (plan view), (b) is a back view (back view), and (c) is a top view. It is sectional drawing which follows the cutting line AA 'line of (a) and (b). 本発明を適応した第2の実施の形態の超伝導光検出素子の概略構成を示し、(a)は素子の上面図(平面図)、(b)は結晶基板の上面図、および(c)は(a)および(b)の切断線B−B’線に沿う断面図である。1 shows a schematic configuration of a superconducting light detection element according to a second embodiment to which the present invention is applied, wherein (a) is a top view (plan view) of the element, (b) is a top view of a crystal substrate, and (c). These are sectional drawings which follow the cutting line BB 'of (a) and (b). 本発明を適応した第3の実施の形態の超伝導光検出素子の断面図である。It is sectional drawing of the superconducting photodetection element of 3rd Embodiment to which this invention was applied. 本発明を適応した第4の実施の形態の超伝導光検出素子の断面図である。It is sectional drawing of the superconducting photodetection element of 4th Embodiment to which this invention was applied. 本発明を適応した第5の実施の形態の超伝導光検出素子の断面図である。It is sectional drawing of the superconducting photodetection element of 5th Embodiment to which this invention was applied.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明を適用した第1の実施の形態の超伝導光検出素子の概略構成を示し、図1(a)は上面図(平面図)、図1(b)は裏面図(背面図)、および図1(c)は図1(a)、(b)の切断線A-A’線に沿う断面図である。   FIG. 1 shows a schematic configuration of a superconducting photodetection element according to a first embodiment to which the present invention is applied. FIG. 1 (a) is a top view (plan view), and FIG. 1 (b) is a back view (back view). ) And FIG. 1C are cross-sectional views taken along line AA ′ in FIGS. 1A and 1B.

本実施形態の超伝導光検出素子を製造工程順に説明する。まず、MgO結晶基板101の表面上に反応性スパッタ法によりNbN超伝導薄膜を厚さ4nm形成する。   The superconducting light detection element of this embodiment will be described in the order of the manufacturing process. First, a 4 nm thick NbN superconducting thin film is formed on the surface of the MgO crystal substrate 101 by reactive sputtering.

続いて、電子ビームリソグラフィ(EB)および反応性イオンエッチング(RIE)によって上記NbN薄膜を図1(a)に示すようなメアンダ形状の細線102に形成する。メアンダの大きさは10μm ×10μmで線幅は100nm、線間隔(ある線の中心から隣の線の中心までの距離。以下同様)は200nm(開口率50%)である。なお、線と線との「隙間」は、100nmである。   Subsequently, the NbN thin film is formed on a meander-shaped thin wire 102 as shown in FIG. 1A by electron beam lithography (EB) and reactive ion etching (RIE). The meander size is 10 μm × 10 μm, the line width is 100 nm, and the line interval (distance from the center of one line to the center of the next line, the same applies hereinafter) is 200 nm (aperture ratio 50%). The “gap” between the lines is 100 nm.

次に、上記MgO結晶基板101の裏面をその基板の厚さが約50μmになるまで研磨する。ここで、研磨による基板割れを防ぐために、基板の表面に別のMgO基板を張り付けてから研磨しても良い。または、最初から厚さ50μmの結晶基板を用いることもできる。結晶基板の厚みは入射光のスポット径広がりを抑えるために小さい方が良いが、薄すぎると自立できなくなるため、10μm以上100μm以下であることが好ましい。   Next, the back surface of the MgO crystal substrate 101 is polished until the thickness of the substrate reaches about 50 μm. Here, in order to prevent substrate cracking due to polishing, another MgO substrate may be attached to the surface of the substrate before polishing. Alternatively, a crystal substrate having a thickness of 50 μm can be used from the beginning. The thickness of the crystal substrate is preferably small in order to suppress the spread of the spot diameter of incident light. However, if the thickness is too thin, the crystal substrate cannot be self-supporting, and is preferably 10 μm or more and 100 μm or less.

さらに、MgO結晶基板101の裏面に反応性スパッタ法によりNbN超伝導薄膜を厚さ4nm形成する。   Further, a 4 nm thick NbN superconducting thin film is formed on the back surface of the MgO crystal substrate 101 by reactive sputtering.

続いて、電子ビームリソグラフィ(EB)および反応性イオンエッチング(RIE)によって、裏面のNbN薄膜を図1(b)に示すようなメアンダ形状の細線103に形成する。この際、裏面のメアンダ細線103は、表面のメアンダ細線102に対して、垂直に重なる位置で、メアンダ細線の配列方向が互いに直角となる位置に形成する。   Subsequently, an NbN thin film on the back surface is formed on a meander-shaped thin wire 103 as shown in FIG. 1B by electron beam lithography (EB) and reactive ion etching (RIE). At this time, the meandering fine wire 103 on the back surface is formed at a position where it overlaps perpendicularly with respect to the meandering thin wire 102 on the front surface, and the arrangement direction of the meandering fine wires is perpendicular to each other.

このようにして形成された超伝導光検出素子の断面を図1(c)に示す。図1(c)から、光照射方向である素子の上方からみた場合、上下のメアンダ形状の細線102,103は互いに直角に交差した構造になっていることが分かる。この素子の上方から極微弱光(矢印104で示す)を照射し、単一光子が入射した場合を考える。単一光子の偏波依存性は、上方のメアンダ細線に平行な成分と、それに直角な成分に分解できる。上方のメアンダ細線102に平行な成分の光子は、上方のメアンダ細線102で検出され、電気信号となって検出される。一方、上方のメアンダ細線102に直角な成分の光子は、上方のメアンダ細線102を透過するが、下方のメアンダ細線103に照射され、このメアンダ細線103により検出される。したがって、直交したメアンダ細線102,103が結晶基板の両面にあることにより、表面だけにメアンダ細線がある従来技術の場合と比較して、光検出効率は2倍に向上する。 A cross section of the superconducting photodetection element thus formed is shown in FIG. From FIG. 1C, it can be seen that the upper and lower meander-shaped thin wires 102 and 103 intersect each other at right angles when viewed from above the element in the light irradiation direction. Consider a case where very weak light (indicated by an arrow 104) is irradiated from above the element and a single photon is incident. The polarization dependence of a single photon can be broken down into a component parallel to the upper meander wire and a component perpendicular to it. Photons having a component parallel to the upper meandering wire 102 are detected by the upper meandering wire 102 and detected as an electric signal. On the other hand, a photon having a component perpendicular to the upper meander wire 102 is transmitted through the upper meander wire 102, but is irradiated to the lower meander wire 103 and detected by the meander wire 103. Accordingly, the presence of the orthogonal meander wires 102 and 103 on both surfaces of the crystal substrate improves the light detection efficiency by a factor of two compared to the prior art in which the meander wires are only on the surface.

上記の材質や寸法等は一具体例を例示したもので、本発明はこれに限定されない。例えば、細線102、103は超伝導材料から形成されるが、この超伝導材料としては、上記のNbNの他に、MgB2、銅酸化物が使用できる。細線102,103の超伝導材料としてNbNを使用した場合には、結晶基板101には上記MgOの他に、酸化アルミニウムまたはAlNが使用できる。また、細線102,103の超伝導材料としてMgB2を使用した場合は、結晶基板101にはSiCまたはAlNまたは酸化アルミニウムが使用できる。一方、細線102,103の超伝導材料として銅酸化物超伝導体を使用した場合は、結晶基板101としてはNdGaO3またはSrLaGaO4またはSrLaAlO4が使用できる。さらに、細線の断面は単一光子検出可能となるためには小さい方が望ましく、細線102,103の線幅は10nm以上で200nm以下、細線102,103の厚みは1nm以上で5nm以下であることが好ましい。また、メアンダの大きさは、1μm角以上で10μm角以下が好ましい。 The materials, dimensions, etc. described above are only specific examples, and the present invention is not limited to these. For example, the thin wires 102 and 103 are made of a superconducting material. As this superconducting material, MgB 2 and copper oxide can be used in addition to the above NbN. When NbN is used as the superconducting material of the thin wires 102 and 103, aluminum oxide or AlN can be used for the crystal substrate 101 in addition to the above MgO. Further, when MgB 2 is used as the superconducting material of the thin wires 102 and 103, SiC, AlN or aluminum oxide can be used for the crystal substrate 101. On the other hand, when a copper oxide superconductor is used as the superconductive material of the thin wires 102 and 103, NdGaO 3, SrLaGaO 4, or SrLaAlO 4 can be used as the crystal substrate 101. Furthermore, it is desirable that the cross section of the thin line is small in order to be able to detect single photons, the line width of the thin lines 102 and 103 is 10 nm or more and 200 nm or less, and the thickness of the thin lines 102 and 103 is 1 nm or more and 5 nm or less. Is preferred. Further, the size of the meander is preferably 1 μm square or more and 10 μm square or less.

結晶基板101の表面のメアンダ細線102および裏面のメアンダ細線103は、それら細線の片端を互いに結合すれば一本の細線とみなせるので、この結合した細線に読み出し検出用の電気回路(図示しない)を接続すれば、単一光子の検出ができる光デバイスが得られる。また、結晶基板101の表面のメアンダ細線102および裏面のメアンダ細線103を独立なものとして、各々の細線102,103に対して別個に、読み出し検出用の電気回路(図示しない)を接続しても、光子の検出ができる。   The meander fine wire 102 on the front surface of the crystal substrate 101 and the meander fine wire 103 on the back surface can be regarded as one fine wire if one end of the fine wire is joined to each other. Therefore, an electrical circuit (not shown) for reading and detecting is connected to the joined fine wire. If connected, an optical device capable of detecting single photons can be obtained. Further, the meander thin wire 102 on the front surface and the meander thin wire 103 on the back surface of the crystal substrate 101 are made independent, and an electric circuit (not shown) for reading detection is connected to each of the thin wires 102 and 103 separately. , Can detect photons.

図2は本発明を適応した第2の実施の形態の超伝導光検出素子の概略構成を示し、図2(a)は素子の上面図(平面図)、図2(b)は結晶基板の上面図、および図2(c)は図2(a)、(b)の切断線B−B’に沿う断面図である。   FIG. 2 shows a schematic configuration of a superconducting photodetection element according to a second embodiment to which the present invention is applied. FIG. 2 (a) is a top view (plan view) of the element, and FIG. 2 (b) is a crystal substrate. FIG. 2C and FIG. 2C are cross-sectional views taken along the cutting line BB ′ in FIGS.

本実施形態の超伝導光検出素子を製造工程順に説明する。まず、MgO結晶基板201の上に反応性スパッタ法によりNbN超伝導薄膜を厚さ4nm形成する。   The superconducting light detection element of this embodiment will be described in the order of the manufacturing process. First, a 4 nm thick NbN superconducting thin film is formed on the MgO crystal substrate 201 by reactive sputtering.

電子ビームリソグラフィ(EB)および反応性イオンエッチング(RIE)によって上記のNbN薄膜を図2(b)に示すようなメアンダ形状の第1の細線202に形成する。メアンダの大きさは10μm ×10μmで線幅は100nm、線間隔は200nm(開口率50%)である。   The NbN thin film is formed on the first thin wire 202 having a meander shape as shown in FIG. 2B by electron beam lithography (EB) and reactive ion etching (RIE). The meander size is 10 μm × 10 μm, the line width is 100 nm, and the line interval is 200 nm (aperture ratio 50%).

次に、結晶基板201と第1の細線202の上に、反応性スパッタ法によりMgO絶縁体薄膜203を厚さ1μm形成する。その後、化学的機械的研磨(CMP)によって、MgO絶縁体薄膜203の表面を平坦化する。ここで、MgO薄膜は蒸着法によって作製しても良い。また、MgO薄膜203の厚さは、薄膜であるために、上述の第1の実施の形態の基板を用いた場合よりも薄くすることが可能で、10nm以上100μm以下であることが好ましい。   Next, an MgO insulator thin film 203 is formed to a thickness of 1 μm on the crystal substrate 201 and the first thin wire 202 by reactive sputtering. Thereafter, the surface of the MgO insulator thin film 203 is planarized by chemical mechanical polishing (CMP). Here, the MgO thin film may be produced by a vapor deposition method. Further, since the MgO thin film 203 is a thin film, it can be made thinner than the case of using the substrate of the first embodiment described above, and is preferably 10 nm or more and 100 μm or less.

平坦化されたMgO絶縁体薄膜203の表面に反応性スパッタ法によりNbN超伝導薄膜を厚さ4nm形成する。   A 4 nm thick NbN superconducting thin film is formed on the surface of the planarized MgO insulator thin film 203 by reactive sputtering.

電子ビームリソグラフィ(EB)および反応性イオンエッチング(RIE)によって、MgO絶縁体薄膜表面上のNbN薄膜を、図2(a)に示すようなメアンダ形状の第2の細線204に形成する。この際、第2のメアンダ細線204は、MgO基板201上の第1のメアンダ細線202に対して、垂直に重なる位置で、メアンダ細線の配列方向が互いに直角となる位置に形成する。   By means of electron beam lithography (EB) and reactive ion etching (RIE), an NbN thin film on the surface of the MgO insulator thin film is formed on a second thin wire 204 having a meander shape as shown in FIG. At this time, the second meander thin line 204 is formed at a position where it overlaps perpendicularly to the first meander thin line 202 on the MgO substrate 201 and at a position where the arrangement direction of the meander thin lines is perpendicular to each other.

このようにして形成された超伝導光検出素子の断面を図2(c)に示す。図2(c)から、光照射方向である素子の上方からみた場合、上下のメアンダ形状の細線202,204は互いに直角に交差した構造になっていることが分かる。この素子の上方から極微弱光(矢印205で示す)を照射し、単一光子が入射した場合を考える。単一光子の偏波依存性は上方のメアンダ細線204に平行な成分とそれに直角な成分に分解できる。上方のメアンダ細線204に平行な成分の光子は、上方のメアンダ細線204で検出され、電気信号となって検出される。一方、上方のメアンダ細線204に直角な成分の光子は、上方のメアンダ細線204を透過するが、下方のメアンダ細線202に照射され、このメアンダ細線202により検出される。したがって、直交したメアンダ細線202.204が上下にあることにより、表面だけにメアンダ細線がある従来技術の場合と比較して、光検出効率は2倍に向上する。   A cross section of the superconducting photodetection element thus formed is shown in FIG. From FIG. 2 (c), it can be seen that the upper and lower meander-shaped thin wires 202 and 204 intersect each other at right angles when viewed from above the element in the light irradiation direction. Consider a case in which extremely weak light (indicated by an arrow 205) is irradiated from above the element and a single photon is incident. The polarization dependence of a single photon can be decomposed into a component parallel to the upper meander wire 204 and a component perpendicular thereto. Photons having a component parallel to the upper meander thin line 204 are detected by the upper meander thin line 204 and detected as an electric signal. On the other hand, a photon having a component perpendicular to the upper meander thin line 204 is transmitted through the upper meander thin line 204, but is irradiated to the lower meander thin line 202 and detected by the meander thin line 202. Therefore, since the orthogonal meander wires 202.204 are above and below, the light detection efficiency is improved twice as compared with the case of the prior art in which the meander wires are only on the surface.

上記の材質や寸法等は一具体例を例示したもので、本発明はこれに限定されない。例えば、細線202、204は超伝導材料から形成されるが、この超伝導材料としては、上記のNbNの他に、MgB2、銅酸化物が使用できる。細線202,204の超伝導材料としてNbNを使用した場合には、結晶基板201および絶縁膜203には上記MgOの他に、酸化アルミニウムまたはAlNが使用できる。また、細線202,204の超伝導材料としてMgB2を使用した場合は、結晶基板201および絶縁膜203にはSiCまたはAlNまたは酸化アルミニウムが使用できる。一方、細線202,204の超伝導材料として銅酸化物超伝導体を使用した場合は、結晶基板201および絶縁膜203としてはNdGaO3またはSrLaGaO4またはSrLaAlO4が使用できる。さらに、細線202,204の線幅は10nm以上で200nm以下、細線202,204の厚みは1nm以上で5nm以下であることが好ましい。また、メアンダの大きさは、1μm角以上で10μm角以下が好ましい。 The materials, dimensions, etc. described above are only specific examples, and the present invention is not limited to these. For example, the thin wires 202 and 204 are formed of a superconducting material. As this superconducting material, MgB 2 and copper oxide can be used in addition to the above NbN. When NbN is used as the superconducting material of the thin wires 202 and 204, aluminum oxide or AlN can be used for the crystal substrate 201 and the insulating film 203 in addition to the above MgO. Further, when MgB 2 is used as the superconducting material of the thin wires 202 and 204, SiC, AlN, or aluminum oxide can be used for the crystal substrate 201 and the insulating film 203. On the other hand, when a copper oxide superconductor is used as the superconducting material of the thin wires 202 and 204, NdGaO 3, SrLaGaO 4 or SrLaAlO 4 can be used as the crystal substrate 201 and the insulating film 203. Furthermore, it is preferable that the line widths of the thin wires 202 and 204 are 10 nm or more and 200 nm or less, and the thicknesses of the thin wires 202 and 204 are 1 nm or more and 5 nm or less. Further, the size of the meander is preferably 1 μm square or more and 10 μm square or less.

本実施形態の上記細線202,204と読み出し検出用の電気回路(図示しない)との結線状態は上述の第1の実施の形態と同様なので、その説明は省略する。   Since the connection state between the thin wires 202 and 204 of the present embodiment and the electrical circuit for reading detection (not shown) is the same as that of the first embodiment, the description thereof is omitted.

図3は本発明を適応した第3の実施の形態の超伝導光検出素子の断面図である。   FIG. 3 is a sectional view of a superconducting photodetecting element according to a third embodiment to which the present invention is applied.

光がNbN超伝導メアンダ細線に照射された際に、図2の構成では第2のメアンダ細線204と第1のメアンダ細線202を透過する光も実際上あり得るため、本実施の形態では、図3に示すように、第2のメアンダ細線204の上に第2の絶縁膜305を作製し、その絶縁層305の上に第3のメアンダ細線306を第1のメアンダ細線202と同じ向きに作製し、さらにその第3のメアンダ細線306の上に第3の絶縁膜307を作製し、その第3の絶縁層の上に第4のメアンダ細線308を第2のメアンダ細線204と同じ向きに作製する。このような多層構造にすることにより、光検出効率がさらに向上する。なお、各絶縁膜の厚さは10nm以上100μm以下が好ましいことは、上述の第2の実施の形態と同様である。   When light is applied to the NbN superconducting meander wire, in the configuration of FIG. 2, light that passes through the second meander wire 204 and the first meander wire 202 may actually be present. 3, the second insulating film 305 is formed on the second meander thin line 204, and the third meander thin line 306 is formed on the insulating layer 305 in the same direction as the first meander thin line 202. Further, a third insulating film 307 is formed on the third meander thin line 306, and a fourth meander thin line 308 is formed on the third insulating layer in the same direction as the second meander thin line 204. To do. By using such a multilayer structure, the light detection efficiency is further improved. The thickness of each insulating film is preferably 10 nm or more and 100 μm or less, as in the second embodiment described above.

また、これら各層の細線の配置の位置関係の順番、層の個数は必要に応じて任意に決めて良い。例えば、本実施形態は、N(Nは3以上の整数)以上の絶縁膜と超伝導材料からなるメアンダ形状のN+1以上の細線とを交互に繰り返し積層した多層膜構造の超伝導光検出素子に、上記と同様に適用できる。その他の構成や変形例は、上述の第2の実施の形態と同様なので、その説明は省略する。   In addition, the order of the positional relationship of the arrangement of the fine lines in each layer and the number of layers may be arbitrarily determined as necessary. For example, the present embodiment is a superconducting photodetection element having a multilayer structure in which N (N is an integer of 3 or more) insulating films and meander-shaped N + 1 or more fine wires made of a superconducting material are alternately and repeatedly stacked. The same applies as above. Other configurations and modifications are the same as those of the second embodiment described above, and thus the description thereof is omitted.

図4は本発明を適応した第4の実施の形態の超伝導光検出素子の断面図である。   FIG. 4 is a sectional view of a superconducting photodetecting element according to a fourth embodiment to which the present invention is applied.

第1の結晶基板201の上に作製された第1のメアンダ細線202と、第2の結晶基板401の上に作製された第2のメアンダ細線204を、接着剤402を介して、それら細線が互いに直角に交差するように、相対する向きに貼り合わせることで、超伝導光検出素子を形成する。本例に用いる「接着剤」は、光ファイバ接続等に用いられる光に対し透過性を有する光学用の導電性のない接着剤である。接着剤402の厚みは入射光のスポット径広がりを抑えるために薄くした方が良く、1μm以上100μm以下であることが好ましい。このような構造にすることにより偏波依存性のない単一光子の検出が出来る光子検出デバイスが得られる。また、第1のメアンダ細線202と第2のメアンダ細線204の上にそれぞれ絶縁膜(図示しない)を作製した後に、それら絶縁膜同士を接着剤402により接着しても良い。その他の構成や変形例は、上述の第2の実施の形態と同様なので、その説明は省略する。   The first meander wire 202 produced on the first crystal substrate 201 and the second meander wire 204 produced on the second crystal substrate 401 are connected to each other through an adhesive 402. A superconducting photodetecting element is formed by pasting in opposite directions so as to cross each other at right angles. The “adhesive” used in this example is an optical non-conductive adhesive that is transparent to light used for optical fiber connection and the like. The thickness of the adhesive 402 is preferably reduced in order to suppress the spread of the spot diameter of incident light, and is preferably 1 μm or more and 100 μm or less. With such a structure, a photon detection device capable of detecting a single photon having no polarization dependency can be obtained. In addition, after an insulating film (not shown) is formed on each of the first meander wire 202 and the second meander wire 204, the insulating films may be bonded to each other with an adhesive 402. Other configurations and modifications are the same as those of the second embodiment described above, and thus the description thereof is omitted.

図5は本発明を適応した第5の実施の形態の超伝導光検出素子の断面図である。   FIG. 5 is a sectional view of a superconducting photodetecting element according to a fifth embodiment to which the present invention is applied.

第5の実施の形態では、図1(c)、あるいは図2(c)、あるいは図3、あるいは図4に示すような本発明の超伝導光検出素子の表面(光の入射側)に無反射コーティング501を設置し、その素子の裏面にバックミラー502を設置している。バックミラー502としては、例えば金膜などが適用される。このように、無反射コーティングやバックミラーの設置によるキャビティ化を追加することによって、さらなる光検出効率の向上を図ることができる。   In the fifth embodiment, there is no effect on the surface (light incident side) of the superconducting photodetection element of the present invention as shown in FIG. 1 (c), FIG. 2 (c), FIG. 3, or FIG. A reflective coating 501 is installed, and a rearview mirror 502 is installed on the back surface of the element. For example, a gold film is applied as the rearview mirror 502. As described above, by adding a cavity by installing a non-reflective coating or a rearview mirror, it is possible to further improve the light detection efficiency.

(他の実施例)
上記では、本発明の好適な実施形態を例示して説明したが、本発明の実施形態は上記例示に限定されるものではなく、特許請求の範囲に記載の範囲内であれば、その構成部材等の置換、変更、追加、個数の増減、形状の設計変更等の各種変形は、すべて本発明の実施形態に含まれる。
(Other examples)
In the above, the preferred embodiment of the present invention has been described by way of example. However, the embodiment of the present invention is not limited to the above-described example, and the constituent members thereof are within the scope of the claims. Various modifications such as replacement, change, addition, increase / decrease in number, change in shape design, and the like are all included in the embodiment of the present invention.

101 結晶基板
102 表面超伝導メアンダ細線(第1の細線)
103 裏面超伝導メアンダ細線(第2の細線)
104 入射光
201 第1の結晶基板
202 第1の超伝導メアンダ細線
203 絶縁膜(第1の絶縁膜)
204 第2の超伝導メアンダ細線
205 入射光
305 第2の絶縁膜(絶縁体薄膜)
306 第3の超伝導メアンダ細線
307 第3の絶縁膜
308 第4の超伝導メアンダ細線
401 第2の結晶基板
402 接着剤または接着剤及び絶縁膜
501 無反射コーティング
502 バックミラー
101 crystal substrate 102 surface superconducting meander wire (first wire)
103 Backside superconducting meander wire (second wire)
104 Incident light 201 First crystal substrate 202 First superconducting meander wire 203 Insulating film (first insulating film)
204 Second superconducting meander wire 205 Incident light 305 Second insulating film (insulator thin film)
306 Third superconducting meander wire 307 Third insulating film 308 Fourth superconducting meander wire 401 Second crystal substrate 402 Adhesive or adhesive and insulating film 501 Non-reflective coating 502 Rearview mirror

Claims (10)

結晶基板上の表面に対して形成された超伝導材料からなるメアンダ形状の第1の細線と、
前記結晶基板上の裏面に対して形成された前記超伝導材料からなるメアンダ形状の第2の細線とを有し、
前記第2の細線が、前記第1の細線に対して垂直位置で、かつ前記第2の細線の配列方向が前記第1の細線の配列方向に対して直角となる位置に形成されていることを特徴とする超伝導光検出素子。
A meander-shaped first fine wire made of a superconducting material formed on the surface of the crystal substrate;
A meander-shaped second fine wire made of the superconducting material formed on the back surface of the crystal substrate;
The second thin line is formed at a position perpendicular to the first thin line, and the arrangement direction of the second thin line is perpendicular to the arrangement direction of the first thin line. A superconducting photodetection element.
前記結晶基板の厚さが10μm以上100μm以下であることを特徴とする請求項1に記載の超伝導光検出素子。   The superconducting photodetecting element according to claim 1, wherein the thickness of the crystal substrate is 10 µm or more and 100 µm or less. 結晶基板上の表面に対して形成された超伝導材料からなるメアンダ形状の第1の細線と、
前記結晶基板上と前記第1の細線の表面に対して形成された第1の絶縁膜と、
前記第1の絶縁膜の表面に対して形成された前記超伝導材料からなるメアンダ形状の第2の細線とを有し、
前記第2の細線が、前記第1の細線に対して垂直位置で、かつ前記第2の細線の配列方向が前記第1の細線の配列方向に対して直角となる位置に形成されていることを特徴とする超伝導光検出素子。
A meander-shaped first fine wire made of a superconducting material formed on the surface of the crystal substrate;
A first insulating film formed on the crystal substrate and the surface of the first thin wire;
A meander-shaped second fine wire made of the superconducting material formed on the surface of the first insulating film,
The second thin line is formed at a position perpendicular to the first thin line, and the arrangement direction of the second thin line is perpendicular to the arrangement direction of the first thin line. A superconducting photodetection element.
さらに、前記第1の絶縁膜と前記第2の細線の表面に対して形成された第2の絶縁膜と、
前記第2の絶縁膜の表面に対して形成された超伝導材料からなるメアンダ形状の第3の細線と、
前記第2の絶縁膜と前記第3の細線の表面に対して形成された第3の絶縁膜と、
前記第3の絶縁膜の表面に対して形成された超伝導材料からなるメアンダ形状の第4の細線を少なくとも有する、N(Nは3以上の整数)以上の絶縁膜と超伝導材料からなるメアンダ形状のN+1以上の細線とを交互に繰り返し積層した多層膜構造の超伝導光検出素子であって、
偶数番目の1つまたは2つ以上の前記細線が、隣接する奇数番目の前記細線に対して垂直位置で、かつ前記偶数番目の細線の配列方向が前記奇数番目の細線の配列方向に対して直角となる位置に形成されていることを特徴とする請求項3に記載の超伝導光検出素子。
A second insulating film formed on the surface of the first insulating film and the second thin wire;
A meander-shaped third fine wire made of a superconductive material formed on the surface of the second insulating film;
A third insulating film formed on the surface of the second insulating film and the third thin wire;
A meander made of a superconducting material and an insulating film of N (N is an integer of 3 or more) having at least a fourth meander-shaped thin wire made of a superconducting material formed on the surface of the third insulating film. A superconducting photodetecting element having a multilayer structure in which N + 1 or more fine wires having a shape are alternately and repeatedly laminated,
The even-numbered one or more fine lines are perpendicular to the adjacent odd-numbered fine lines, and the arrangement direction of the even-numbered fine lines is perpendicular to the arrangement direction of the odd-numbered thin lines. The superconducting photodetection element according to claim 3, wherein the superconducting photodetection element is formed at a position where
各前記絶縁膜の厚さが10nm以上100μm以下であることを特徴とする請求項3または4に記載の超伝導光検出素子。   The superconducting photodetection element according to claim 3 or 4, wherein each insulating film has a thickness of 10 nm or more and 100 µm or less. 第1の結晶基板上の表面に対して形成された超伝導材料からなるメアンダ形状の第1の細線と、
第2の結晶基板上の表面に対して形成された前記超伝導材料からなるメアンダ形状の第2の細線とを有し、
前記第2の細線が、接着剤または絶縁膜と接着剤を介して、前記第1の細線に対して垂直位置で、かつ前記第2の細線の配列方向が前記第1の細線の配列方向に対して直角となる位置に、前記第1の細線に対して接着して形成されていることを特徴とする、超伝導光検出素子。
A meander-shaped first fine wire made of a superconducting material formed on the surface of the first crystal substrate;
A meander-shaped second fine wire made of the superconducting material formed on the surface of the second crystal substrate,
The second fine wire is positioned perpendicular to the first fine wire via an adhesive or an insulating film and an adhesive, and the arrangement direction of the second fine wire is in the arrangement direction of the first fine wire. A superconducting photodetecting element, wherein the superconducting photodetecting element is formed by bonding to the first thin wire at a position perpendicular to the first thin wire.
前記第1の細線と前記第2の細線間の間隔が、1μm以上100μm以下であることを特徴とする請求項6に記載の超伝導光検出素子。   The superconducting photodetection element according to claim 6, wherein an interval between the first fine wire and the second fine wire is 1 µm or more and 100 µm or less. 光の入射側である前記超伝導光検出素子の表面側に配置された無反射コーティング、および該超伝導光検出素子の裏面側に配置されたバックミラーの少なくともいずれかをさらに有することを特徴とする請求項1乃至7のいずれかの項に記載の超伝導光検出素子。   It further has at least one of a non-reflective coating disposed on the surface side of the superconducting light detection element that is a light incident side, and a rearview mirror disposed on the back surface side of the superconducting light detection element. The superconducting photodetection element according to any one of claims 1 to 7. メアンダ形状の各前記細線において、該メアンダ形状の大きさが1μm角以上で10μm角以下であり、該細線の線幅が10nm以上で200nm以下であり、該細線の厚みが1nm以上で5nm以下であることを特徴とする請求項1乃至7のいずれかの項に記載の超伝導光検出素子。   In each meander-shaped thin wire, the size of the meander shape is not less than 1 μm square and not more than 10 μm square, the line width of the fine line is not less than 10 nm and not more than 200 nm, and the thickness of the fine line is not less than 1 nm and not more than 5 nm The superconducting photodetecting element according to claim 1, wherein the superconducting photodetecting element is provided. 前記超伝導材料がNbNであり、前記結晶基板および前記絶縁膜がMgOまたはAlNまたは酸化アルミニウムである、あるいは
前記超伝導材料がMgB2であり、前記結晶基板および前記絶縁膜がSiCまたはAlNまたは酸化アルミニウムである、あるいは
前記超伝導材料が銅酸化物超伝導体であり、前記結晶基板および前記絶縁膜がNdGaO3またはSrLaGaO4またはLaSrAlO4である、のいずれかであることを特徴とする請求項1乃至7のいずれかの項に記載の超伝導光検出素子。
The superconductive material is NbN, and the crystal substrate and the insulating film are MgO, AlN, or aluminum oxide, or the superconductive material is MgB 2 , and the crystal substrate and the insulating film are SiC, AlN, or oxide. The superconducting material is a copper oxide superconductor, or the crystal substrate and the insulating film are NdGaO 3, SrLaGaO 4, or LaSrAlO 4. 8. The superconducting photodetecting element according to any one of 1 to 7.
JP2010030383A 2010-02-15 2010-02-15 Superconductive photodetector Pending JP2011164068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010030383A JP2011164068A (en) 2010-02-15 2010-02-15 Superconductive photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010030383A JP2011164068A (en) 2010-02-15 2010-02-15 Superconductive photodetector

Publications (1)

Publication Number Publication Date
JP2011164068A true JP2011164068A (en) 2011-08-25

Family

ID=44594900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010030383A Pending JP2011164068A (en) 2010-02-15 2010-02-15 Superconductive photodetector

Country Status (1)

Country Link
JP (1) JP2011164068A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620820A (en) * 2012-03-28 2012-08-01 南京大学 Superconducting single-photon detector with composite structure and method for preparing superconducting single-photon detector
JP2016148534A (en) * 2015-02-10 2016-08-18 国立研究開発法人情報通信研究機構 Fluorescence correlation spectroscope
KR20180083357A (en) * 2015-12-08 2018-07-20 노스롭 그루먼 시스템즈 코포레이션 Non-oxide based dielectrics for superconductor devices
JP2019144169A (en) * 2018-02-22 2019-08-29 公立大学法人大阪府立大学 Neutron imaging device, imaging device and camera
JP2020016543A (en) * 2018-07-25 2020-01-30 キオクシア株式会社 Particle detector, image generation device and image generation method
US10608159B2 (en) 2016-11-15 2020-03-31 Northrop Grumman Systems Corporation Method of making a superconductor device
US10763419B2 (en) 2017-06-02 2020-09-01 Northrop Grumman Systems Corporation Deposition methodology for superconductor interconnects
CN111707362A (en) * 2020-05-12 2020-09-25 中国科学院上海微系统与信息技术研究所 High-speed superconducting micrometer-line single-photon detector and preparation method thereof
US10985059B2 (en) 2018-11-01 2021-04-20 Northrop Grumman Systems Corporation Preclean and dielectric deposition methodology for superconductor interconnect fabrication
CN113432732A (en) * 2021-06-02 2021-09-24 南方科技大学 Superconducting detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132856A (en) * 1997-10-24 1999-05-21 Masanori Okuyama Thermal-type infrared ray detection element, its manufacturing, and infrared ray image pick-up system and device
JPH11297973A (en) * 1998-04-07 1999-10-29 Mitsubishi Electric Corp Infrared imaging device
JP2002538475A (en) * 1999-03-01 2002-11-12 オーティーエム テクノロジーズ リミテッド Polarization sensing detector
JP2008071908A (en) * 2006-09-13 2008-03-27 Nippon Telegr & Teleph Corp <Ntt> Superconductive photodetector
JP2008135479A (en) * 2006-11-27 2008-06-12 Konica Minolta Holdings Inc Photoelectric conversion element, optical sensor array, and radiation image detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132856A (en) * 1997-10-24 1999-05-21 Masanori Okuyama Thermal-type infrared ray detection element, its manufacturing, and infrared ray image pick-up system and device
JPH11297973A (en) * 1998-04-07 1999-10-29 Mitsubishi Electric Corp Infrared imaging device
JP2002538475A (en) * 1999-03-01 2002-11-12 オーティーエム テクノロジーズ リミテッド Polarization sensing detector
JP2008071908A (en) * 2006-09-13 2008-03-27 Nippon Telegr & Teleph Corp <Ntt> Superconductive photodetector
JP2008135479A (en) * 2006-11-27 2008-06-12 Konica Minolta Holdings Inc Photoelectric conversion element, optical sensor array, and radiation image detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013019483; S. N. Dorenbos: '"Superconducting single photon detectors with minimized polarization dependence"' Appl Phys Lett Vol.93 No.16, 20081020, Page.161102-1〜161102-3 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620820A (en) * 2012-03-28 2012-08-01 南京大学 Superconducting single-photon detector with composite structure and method for preparing superconducting single-photon detector
JP2016148534A (en) * 2015-02-10 2016-08-18 国立研究開発法人情報通信研究機構 Fluorescence correlation spectroscope
KR102139460B1 (en) * 2015-12-08 2020-07-30 노스롭 그루먼 시스템즈 코포레이션 Non-oxide based dielectrics for superconductor devices
KR20180083357A (en) * 2015-12-08 2018-07-20 노스롭 그루먼 시스템즈 코포레이션 Non-oxide based dielectrics for superconductor devices
US10608159B2 (en) 2016-11-15 2020-03-31 Northrop Grumman Systems Corporation Method of making a superconductor device
US10763419B2 (en) 2017-06-02 2020-09-01 Northrop Grumman Systems Corporation Deposition methodology for superconductor interconnects
JP2019144169A (en) * 2018-02-22 2019-08-29 公立大学法人大阪府立大学 Neutron imaging device, imaging device and camera
JP7064750B2 (en) 2018-02-22 2022-05-11 公立大学法人大阪 Neutron imaging device
JP2020016543A (en) * 2018-07-25 2020-01-30 キオクシア株式会社 Particle detector, image generation device and image generation method
JP7062547B2 (en) 2018-07-25 2022-05-06 キオクシア株式会社 Particle detector, image generator and image generation method
US11402520B2 (en) 2018-07-25 2022-08-02 Kioxia Corporation Particle detector, image generation device, and image generation method
US10985059B2 (en) 2018-11-01 2021-04-20 Northrop Grumman Systems Corporation Preclean and dielectric deposition methodology for superconductor interconnect fabrication
CN111707362A (en) * 2020-05-12 2020-09-25 中国科学院上海微系统与信息技术研究所 High-speed superconducting micrometer-line single-photon detector and preparation method thereof
CN113432732A (en) * 2021-06-02 2021-09-24 南方科技大学 Superconducting detector
CN113432732B (en) * 2021-06-02 2024-04-05 南方科技大学 Superconducting detector

Similar Documents

Publication Publication Date Title
JP2011164068A (en) Superconductive photodetector
JP2008071908A (en) Superconductive photodetector
Djavid et al. Enhancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures
JP6161554B2 (en) Electromagnetic wave detector and electromagnetic wave detector array
US20140087952A1 (en) Efficient Polarization Independent Single Photon Detector
US20090134486A1 (en) Photodiode, method for manufacturing such photodiode, optical communication device and optical interconnection module
JP2015045629A5 (en)
JP6126490B2 (en) Optical filter
KR102511647B1 (en) Touch sensor with circular polarization plate and image display device
Ma et al. Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers
US9252303B2 (en) Thin film photovoltaic cell structure, nanoantenna, and method for manufacturing
TW201133907A (en) Semiconductor device and electronic apparatus
JP5470654B2 (en) Mounting method of superconducting single photon detector
CN107507911B (en) Superconducting nano-wire single-photon detector
JP7335273B2 (en) Optoelectronic Devices Based on Intrinsic Plasmon-Exciton Polaritons
CN110931573B (en) High-efficiency superconducting nanowire single-photon detector without polarization selection and preparation method thereof
KR20130137712A (en) Light-detection systems
US20220131020A1 (en) Electrode structure and photodetection element
Nishizawa et al. Arbitrary helicity control of circularly polarized light from lateral-type spin-polarized light-emitting diodes at room temperature
Meng et al. Terahertz polarization conversion from optical dichroism in a topological Dirac semimetal
Zhang et al. Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting
JP2007013065A (en) Near infrared photodetection element
Gu et al. Fractal-inspired, polarization-insensitive superconducting nanowire single-photon detectors
JP5952108B2 (en) Photodetector
CN108365049B (en) Large-photosurface superconducting nanowire single photon detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225