JP2011164000A - センサー回路 - Google Patents
センサー回路 Download PDFInfo
- Publication number
- JP2011164000A JP2011164000A JP2010028588A JP2010028588A JP2011164000A JP 2011164000 A JP2011164000 A JP 2011164000A JP 2010028588 A JP2010028588 A JP 2010028588A JP 2010028588 A JP2010028588 A JP 2010028588A JP 2011164000 A JP2011164000 A JP 2011164000A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- output
- signal
- wave signal
- sensor element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
する。
【解決手段】センサー回路は、検出すべき被測定対象の変化に応じて振幅の値が変化する
正弦波の信号を出力するセンサー素子Xと、センサー素子Xが出力した周波数信号が入力
され矩形波の信号を出力する増幅回路Ampと、正弦波の信号、又は正弦波の信号のレベ
ルをレベル変換器10で調整した正弦波の信号と、矩形波の信号とを同期検波する同期検
波回路12と、同期検波回路12の出力信号を積分する積分回路14と、を備えたセンサ
ー回路である。
【選択図】図1
Description
素子の等価抵抗を高速に測定するセンサー回路に関する。
法等が提案され、広く用いられてきた。中でもπ回路位相法等は、圧電振動子の二端子間
の位相差が零となる周波数を共振周波数とし、そのときの抵抗値を等価抵抗値とする測定
法であり、圧電振動子の標準測定法となっている。
特許文献1には、水晶振動子のCI測定方法及び水晶発振回路が開示されている。図6
に示す水晶発振回路において、Xtal1は被測定水晶振動子、GV1は直流入力電圧V
AGCに比例して増幅度が変化するAGC増幅回路、C11は発振回路の入力容量である
。図6のR11、C22、及びAVは、夫々積分回路を構成する抵抗、容量、及び高増幅
率増幅回路である。
積分回路は、高増幅率増幅回路AVの入力側に抵抗R11が、入力と出力間に容量C2
2が並列接続されている。水晶振動子が共振状態となるときは、等価直列共振インダクタ
ンスLx、等価キャパシタンスCx、および等価抵抗Rxの直列回路で表わされる。
図6に示す水晶発振回路の発振持続条件は、水晶振動子の直列共振抵抗RxをCI(ク
リスタルインピーダンス)とし、増幅回路GV1の増幅率をGV1とすると、CI=GV
1/(ω2・C11・C22・R11)(ωは角周波数)で表わせる。AGC増幅回路G
V1の直線動作範囲内で発振が安定した場合、直流入力電圧VAGCを水晶振動子Xta
l1のCIの比例値として測定することができ、正確なCIを得ることができると開示さ
れている。
法は、等価定数の測定精度は良好であるものの、等価定数の測定に調整時間を要し、加速
度センサー等の慣性センサーに用いられる輪郭モードのセンサー素子の等価抵抗値を高速
で測定するには、不向きであるという問題があった。
本発明は上記問題を解決するためになされたもので、センサー素子の等価抵抗値を容易
に高速測定するセンサー回路を提供することにある。
形態又は適用例として実現することが可能である。
の値が変化する正弦波の信号を出力するセンサー素子と、前記センサー素子が出力した周
波数信号が入力され矩形波の信号を出力する増幅回路と、前記正弦波の信号又は前記正弦
波の信号のレベルを調整した正弦波の信号と前記矩形波の信号とを同期検波する同期検波
回路と、前記同期検波回路の出力信号を積分する積分回路と、を備えたことを特徴とする
センサー回路である。
センサー回路を構成する。センサー素子が出力する周波数にホワイトノイズ(雑音)が重
畳した測定信号と、増幅回路が出力する矩形波の周波数の参照信号と、を同期検波回路に
入力することにより、その出力からは測定信号周波数の2倍の成分と、直流成分とが出力
される。この出力を、ローパスフィルタを介することによりホワイトノイズが大部分除去
された直流成分が得られる。この直流成分を演算回路で演算処理することにより、重畳す
るホワイトノイズに測定値が影響されないで、CI値(等価抵抗値)を高速に、高精度で
測定できるという効果がある。
化する正弦波の信号を出力するセンサー素子と、前記センサー素子が出力した周波数信号
が入力され矩形波の信号を出力する増幅回路と、記正弦波の信号又は前記正弦波の信号の
レベルを調整した正弦波の信号を出力する増幅器と、前記矩形波の信号との差に基づく信
号を出力する差動増幅回路と、前記差動増幅回路の出力信号と前記矩形波の信号とを同期
検波する同期検波回路と、前記同期検波回路の出力信号を積分する積分回路と、を備えた
ことを特徴とするセンサー回路である。
と、積分回路とを備えたセンサー回路を構成する。センサー素子が出力周波数にホワイト
ノイズ(雑音)が重畳した測定信号と、増幅回路が出力する矩形波の信号を同調回路で正
弦波に変換し且つそのレベルを測定信号のレベルに調整した信号と、を差動増幅器に入力
する。差動増幅器の出力信号を同期検波回路に入力すると共に増幅回路が出力する矩形波
の信号を同期検波回路に入力する。同期検波回路の出力をローパスフィルタに入力し、そ
の出力からCI値を求める。
センサー素子のCI値(等価抵抗値)が変動すると差動増幅器の出力が零レベルから変
動する。差動増幅器からの測定信号と、増幅回路からの参照信号と、が同期検波回路に入
力されることにより、その出力からは測定信号周波数の2倍の成分と、直流成分とが出力
される。この出力を、ローパスフィルタを介することによりホワイトノイズが大部分除去
された直流成分が得られる。この直流成分を演算回路で演算処理することにより、ホワイ
トノイズに影響されないで、精度の高いCI値の変化分の測定が、短時間でしかも容易に
できるという効果がある。
ルタであることを特徴とする適用例1又は2に記載のセンサー回路である。
が小型で且つ原価を低減できるという効果がある。
形態に係るセンサー回路1の構成を示す概略ブロック回路図である。センサー回路1は、
例えば輪郭振動モードのセンサー素子Xを含む発振器5と、アッテネーターと増幅器を有
するレベル変換器10と、発振器5の出力の位相と同期して検波する同期検波回路12と
、例えばローパスフィルタ等の積分回路14と、を備えている。
センサー素子Xは振動素子として、増幅回路Ampと抵抗R1、R2及び容量C1、C
2とを備えた発振回路に接続され、発振回路と共に発振器5を構成する。発振器5の構成
は、センサー素子Xの一方の端子に容量C1の一方の端子が接続され、容量C1の他方の
端子は接地される。センサー素子Xの他方の端子に容量C2の一方の端子が接続され、容
量C2の他方の端子は接地される。更に、センサー素子Xの一方の端子には、増幅回路A
mp及び抵抗R1の夫々一方の端子が接続され、センサー素子Xの端子には、抵抗R2の
一方の端子が接続され、抵抗R2の他方の端子は、増幅回路Amp及び抵抗R1の夫々他
方の端子に接続されて、発振回路5が構成される。
子X)のCI値(等価抵抗値)に応じて、インバーター(増幅回路)の入力側の電圧振幅
が変化する。この電圧振幅を整流して増幅し、演算処理を施せば、CI値を求めることが
できる。しかし、単にダイオード等を用いて整流してCI値を求める測定では、S/N比
が悪く、ホワイトノイズ(雑音)に影響されてCI値を精度のよく求めることはできない
。
ホワイトノイズが混在する信号の検出には、ロックインアンプが適している。ロックイ
ンアンプとは、ヘテロダイン技術を用いて、増幅と信号検出の両機能を併せ持った増幅器
で、特定の周波数の信号を検出し増幅する。ノイズに埋もれた微小信号の検出に優れてい
る。
クトルには、図2(b)に示すように、信号fs以外にホワイトノイズ(雑音)が重畳す
る。この雑音が重畳する測定信号fsと、参照信号frとをミキサーに入力すると、測定
信号fsと参照信号frとの掛け算が行われ、図2(c)に示すような周波数スペクトル
が出力される。即ち、測定信号fsの2倍の周波数成分(−cos(2ωt+α+β))
と、直流成分(cos(β−α)/2)とが出力される。これらの出力成分をローパスフ
ィルタに入力することにより、ローパスフィルタの出力には、測定信号fsの2倍の周波
数成分が阻止され、直流成分のみが出力される。
周波数変換は一般のアナログ乗算回路では精度が得られないので、スイッチ素子を用い
た同期検波回路PSDが使われる。
変化に応じて振幅の値が変化する正弦波の信号(1)が出力される。増幅回路Ampは、
センサー素子Xが出力した周波数信号(1)が入力され、飽和した矩形波の信号(2)を
出力する。センサー素子Xが出力する正弦波の信号(1)、又は正弦波の信号(1)のレ
ベルをレベル変換器10で調整した正弦波の信号(3)が、同期検波する同期検波回路1
2に入力される。同時に発振回路5が出力する矩形波の信号(2)が、同期検波回路12
に入力されて、同期検波が行われる。同期検波回路12の出力信号(4)は、ローパスフ
ィルタ等の積分回路14に入力され、同期検波回路12の出力信号(4)の中、高周波成
分はカットされ、直流成分のみが、積分回路14で積分されて出力信号(5)となって出
力される。
積分回路14の一例として、抵抗Rと容量Cによる分圧回路があり、積分回路として、
又ローパスフィルタとしても機能する。
波形(3)、同期検波回路12の出力波形(4)、積分回路14の出力波形(5)を併記
したタイムチャートである。発振器5の出力波形(2)は電源電圧Vdまで飽和している
。レベル変換器10の出力波形(3)は正弦波である。同期検波回路12の出力波形(4
)は、レベル変換器10の出力波形(3)の正の波形はそのままに、負の波形はマイナス
1を乗じて零のレベルで折り返した波形となっている。積分回路14の出力波形(5)は
、同期検波回路12の出力波形(4)を積分し、直流電圧として出力される。
抵抗値が大きくなり、レベル変換器10の出力波形(3)の振幅が小さくなる。レベル変
換器10の出力波形(3)の振幅が小さくなると、同期検波回路12の出力波形(4)も
小さくなり、積分回路14の出力波形(5)の直流電圧も小さくなる。この直流電圧を演
算器で演算処理することにより、センサー素子Xの等価抵抗値を高速に求めることができ
る。センサー素子Xの周波数は、発振器5の出力をカウンターで読み取ればよい。
センサー素子Xと、増幅回路Ampと、レベル変換器10と、同期検波回路12と、積
分回路14と、を備えたセンサー回路を構成すると、センサー素子Xが出力する電圧(1
)にホワイトノイズ(雑音)が重畳することは避けられない。このホワイトノイズが重畳
した測定信号と、増幅回路Ampが出力する矩形波の周波数の参照信号と、を同期検波回
路12に入力することにより、その出力からは測定信号周波数の2倍の成分と、直流成分
とが出力される。この出力を、ローパスフィルタ14に通すことにより、ホワイトノイズ
が大部分除去された直流成分が得られる。この直流成分を演算回路で演算処理することに
より、ホワイトノイズに影響されないで測定精度の高いCIの測定が、短時間でしかも容
易に得られるという効果がある。
は、発振器5と、センサー素子Xの出力を増幅する増幅器20と、アッテネーターを有し
発振器5の矩形波出力を正弦波に変換する同調回路22と、2つの入力信号の差分を増幅
する差動増幅器24と、発振器5の出力の位相と同期して検波する同期検波回路26と、
例えばローパスフィルタ等の積分回路28と、を備えている。
発振器5は、輪郭振動モードのセンサー素子X、増幅回路Amp、2個の抵抗R1、R
2及び2個の容量C1、C2を備えた発振器であり、図1のセンサー回路1の発振器5と
同様である。
図4に示す発振器5のセンサー素子Xの図中左方の端子には、検出すべき被測定対象の
変化に応じて振幅の値が変化する正弦波の信号(1)が出力される。増幅回路Ampは、
センサー素子Xが出力した電圧信号(1)が入力され、矩形波の電圧信号(2)を出力す
る。センサー素子Xが出力する正弦波の信号(1)のレベルは、増幅器20で調整され、
正弦波の出力信号(6)が、差動増幅器24の一方に入力される。また、発振器5の矩形
波出力(2)が同調回路22に入力され、レベルを調整されると共に正弦波に変換されて
、同調回路22の出力波形(7)となる。この同調回路22の出力(7)は、差動増幅器
24の他方に入力される。差動増幅回路24は、入力(6)と入力(7)の差分を増幅し
た出力波形(8)を出力し、この出力波形(8)の測定信号が同期検波回路26に入力さ
れる。同時に発振回路5が出力する矩形波の参照信号(2)が、同期検波回路12に入力
されて同期検波が行われる。同期検波回路26の出力信号(9)は、積分回路28に入力
され、同期検波回路26の出力信号(9)の中、高周波成分はカットされ、直流成分のみ
が、積分回路28で積分されて出力信号(10)となって出力される。
6)、同調回路22の出力波形(7)、差動増幅器24の出力波形(8)、同期検波回路
26の出力波形(9)、積分回路28の出力波形(10)を併記したタイムチャートであ
る。発振器5の出力波形(2)は電源電圧Vdまで飽和している。増幅器20の出力波形
(6)と、同調回路24の出力波形(7)とは、正弦波である。差動増幅器24の出力波
形(8)は、入力(6)と(7)の差分が増幅されて出力波形(8)となる。
同期検波回路26の出力波形(9)は、差動増幅器24の出力波形(8)の正の波形はそ
のままに、負の波形はマイナス1を乗じて零のレベルで折り返した波形となる。例えばロ
ーパスフィルタの積分回路28の出力波形(10)は、同期検波回路26の出力波形(9
)を積分し、直流電圧として出力される。
(7)のレベルとを合わせておくと、差動増幅器24の出力は零レベルとなる。次に、図
5のPで示す時間にセンサー素子Xにかけている負荷を減ずると、センサー素子Xの等価
抵抗値が小さくなり、増幅器20の出力波形(6)のレベルが大きくなる。発振器5の飽
和した出力(2)が入力される同調回路22の出力波形(7)のレベルは、一定であるの
で、増幅器20の出力波形(6)のレベルが大きくなると、差動増幅器24の出力は、2
つの入力の差分を増幅した電圧が出力波形(8)となって出力される。そのため、同期検
波回路26の出力波形(9)は、零レベルから増大する。積分回路28の出力波形(10
)は、零レベルから増幅器20の出力と同調回路22の出力との差分に係数を乗じた分だ
け増大する。この直流電圧を演算器で演算処理することにより、センサー素子Xの等価抵
抗値を求めることができる。センサー素子Xの周波数は発振器5の出力をカウンターで読
み取ればよい。
24と、同期検波回路26と、積分回路28とを備えたセンサー回路2を構成する。セン
サー素子Xが出力する周波数にはホワイトノイズ(雑音)が重畳し、この重畳した測定信
号と、増幅回路Ampが出力する矩形波の信号を同調回路22で正弦波に変換すし且つそ
のレベルを測定信号のレベルに調整した信号と、を差動増幅器24に入力する。差動増幅
器24の出力信号を同期検波回路26に入力すると共に増幅回路Ampが出力する矩形波
の参照信号を同期検波回路26に入力して同期検波を行う。その出力をローパスフィルタ
に入力し、その出力からCI値を求める。
センサー素子XのCI値(等価抵抗値)が変動すると差動増幅器24の出力が零レベル
から変動する。差動増幅器24からの測定信号と、増幅回路Ampからの参照信号と、が
同期検波回路26に入力されることにより、その出力からは測定信号周波数の2倍の成分
と、直流成分とが出力される。この出力を、ローパスフィルタ28を介することにより、
ホワイトノイズが大部分除去された直流成分が得られる。この直流成分を演算回路で演算
処理することにより、ホワイトノイズに影響されないで精度の高いCI値の変化分の測定
が、短時間でしかも容易にできるという効果がある。
14、28…積分回路、20…増幅器、22…同調回路、24…差動増幅器、X…センサ
ー素子、R1、R2…抵抗、C1、C2…容量、Amp…増幅回路、(1)…センサー素
子の出力波形、(2)…発振器5の出力波形、(3)…レベル変換器10の出力波形、(
4)…同期検波回路2の出力波形、(5)…積分回路14の出力波形、(6)…増幅器2
0の出力波形、(7)…同調回路22の出力波形、(8)…差動増幅器24の出力波形、
(9)…同期検波回路26の出力波形、(10)…積分回路28の出力波形
Claims (3)
- 検出すべき被測定対象の変化に応じて振幅の値が変化する正弦波の信号を出力するセン
サー素子と、前記センサー素子が出力した周波数信号が入力され矩形波の信号を出力する
増幅回路と、
前記正弦波の信号又は前記正弦波の信号のレベルを調整した正弦波の信号と前記矩形波
の信号とを同期検波する同期検波回路と、前記同期検波回路の出力信号を積分する積分回
路と、
を備えたことを特徴とするセンサー回路。 - 検出すべき被測定対象の変化に応じて振幅の値が変化する正弦波の信号を出力するセン
サー素子と、前記センサー素子が出力した周波数信号が入力され矩形波の信号を出力する
増幅回路と、
前記正弦波の信号又は前記正弦波の信号のレベルを調整した正弦波の信号と前記矩形波
の信号との差に基づく信号を出力する差動増幅回路と、前記差動増幅回路の出力信号と前
記矩形波の信号とを同期検波する同期検波回路と、前記同期検波回路の出力信号を積分す
る積分回路と、
を備えたことを特徴とするセンサー回路。 - 前記積分回路は、抵抗と容量とからなるローパスフィルタを用いることを特徴とする請
求項1又は2に記載のセンサー回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010028588A JP2011164000A (ja) | 2010-02-12 | 2010-02-12 | センサー回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010028588A JP2011164000A (ja) | 2010-02-12 | 2010-02-12 | センサー回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011164000A true JP2011164000A (ja) | 2011-08-25 |
JP2011164000A5 JP2011164000A5 (ja) | 2013-03-14 |
Family
ID=44594842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010028588A Withdrawn JP2011164000A (ja) | 2010-02-12 | 2010-02-12 | センサー回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011164000A (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0333628A (ja) * | 1989-06-30 | 1991-02-13 | Nippon Dempa Kogyo Co Ltd | 真空圧力計 |
JPH10339755A (ja) * | 1997-06-09 | 1998-12-22 | Suwa Denshi Kk | 水晶振動子のci測定方法および水晶発振回路 |
WO2005068939A1 (ja) * | 2004-01-20 | 2005-07-28 | Ngk Insulators, Ltd. | 検波回路、検波方法および物理量測定装置 |
JP2007057340A (ja) * | 2005-08-24 | 2007-03-08 | Citizen Watch Co Ltd | 発振回路及び角速度センサ |
JP2008160510A (ja) * | 2006-12-25 | 2008-07-10 | Epson Toyocom Corp | 2出力型水晶発振器 |
-
2010
- 2010-02-12 JP JP2010028588A patent/JP2011164000A/ja not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0333628A (ja) * | 1989-06-30 | 1991-02-13 | Nippon Dempa Kogyo Co Ltd | 真空圧力計 |
JPH10339755A (ja) * | 1997-06-09 | 1998-12-22 | Suwa Denshi Kk | 水晶振動子のci測定方法および水晶発振回路 |
WO2005068939A1 (ja) * | 2004-01-20 | 2005-07-28 | Ngk Insulators, Ltd. | 検波回路、検波方法および物理量測定装置 |
JP2007057340A (ja) * | 2005-08-24 | 2007-03-08 | Citizen Watch Co Ltd | 発振回路及び角速度センサ |
JP2008160510A (ja) * | 2006-12-25 | 2008-07-10 | Epson Toyocom Corp | 2出力型水晶発振器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3139305B2 (ja) | 容量型加速度センサ | |
US9003883B2 (en) | Angular velocity sensor and synchronous detection circuit used therein | |
US8219331B2 (en) | Electronic device and method for evaluating a variable capacitance | |
US8613222B2 (en) | Detector, physical quantity measuring device, and electronic apparatus | |
JPH04230599A (ja) | 測定値検出および伝送装置 | |
Sell et al. | A digital PLL circuit for resonator sensors | |
WO2024147299A1 (en) | Systems and methods for real-time frequency shift detection technical field | |
CN109917185A (zh) | 一种基于谐振频率测量的电容传感器及其工作方法及应用 | |
WO2003023417A1 (en) | Sensor capacity sensing apparatus and sensor capacity sensing method | |
US8593130B2 (en) | Detector, physical quantity measuring device, and electronic apparatus | |
JP2011164000A (ja) | センサー回路 | |
KR100415076B1 (ko) | 각속도 검출 방법 및 진동 자이로스코프 | |
TWI591343B (zh) | 感測裝置 | |
US20120306583A1 (en) | Apparatus and method for oscillator resonator power control | |
JP2002090401A (ja) | 静電容量センサ回路 | |
RU131481U1 (ru) | Устройство диагностическое виброизмерительное | |
JP2003075486A (ja) | インピーダンス検出回路及び静電容量検出回路とその方法 | |
RU2212091C2 (ru) | Кварцевый генератор стабилизированный по амплитуде | |
JP2004170163A (ja) | 静電容量式変位センサ | |
RU2688880C1 (ru) | Акселерометр | |
EP3803314B1 (en) | Measuring system and method for measuring the displacement of at least one point of a bridge | |
RU2397497C1 (ru) | Устройство для измерения ускорений | |
RU2004129017A (ru) | Способ опредеделения положения ротора микромеханического гироскопа по оси возбуждения колебаний и микромеханический гироскоп для реализации данного способа | |
JP2002243816A (ja) | 磁気検出装置 | |
JPH04104013A (ja) | 電磁流量計 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130124 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130924 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20131115 |