JP2011163047A - Joint structure of steel frame member and reinforced concrete member - Google Patents

Joint structure of steel frame member and reinforced concrete member Download PDF

Info

Publication number
JP2011163047A
JP2011163047A JP2010028934A JP2010028934A JP2011163047A JP 2011163047 A JP2011163047 A JP 2011163047A JP 2010028934 A JP2010028934 A JP 2010028934A JP 2010028934 A JP2010028934 A JP 2010028934A JP 2011163047 A JP2011163047 A JP 2011163047A
Authority
JP
Japan
Prior art keywords
reinforced concrete
steel frame
steel
concrete member
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010028934A
Other languages
Japanese (ja)
Inventor
Yasuo Jinno
靖夫 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2010028934A priority Critical patent/JP2011163047A/en
Publication of JP2011163047A publication Critical patent/JP2011163047A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an effective and proper joint structure for joining a steel frame member such as a beam steel frame, a column steel frame or the like with a reinforced concrete member such as a beam end made of RC and encasing concrete. <P>SOLUTION: This joint structure is constituted by insulating the steel frame member to be unable to transmit a stress to the reinforced concrete member by using a scope of the reinforced concrete member having the predetermined dimension L from its surface as a stress concentrating part among burying parts of the reinforced concrete member (the beam end 2b) burying the steel frame member (the beam steel frame 2a), providing an insulating material 4 to prevent transmission of the stress between the reinforced concrete member and the steel frame member in the stress concentrating part, and gradually reducing the thickness of the stress concentrating part from the surface of the reinforced concrete member toward its tip side. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は建物における構造部材どうしの接合技術に係わり、特に鉄骨部材と鉄筋コンクリート部材との接合構造に関する。   The present invention relates to a technique for joining structural members in a building, and more particularly, to a joining structure of a steel frame member and a reinforced concrete member.

建物の構造として、たとえば特許文献1に示されるように、鉄骨造(S造)と鉄筋コンクリート造(RC造)とを組み合わせた複合構造が知られている。
これは、図10に模式的に示すように、RC造の柱1と、梁鉄骨2aを主体とするS造の梁2とを組み合わせたもので、その梁2の梁端部2bのみをRC造として柱1に対してアンカー筋(図示略)を介して構造的に一体に接合するようにしたものである。
As a structure of a building, for example, as shown in Patent Document 1, a composite structure combining a steel structure (S structure) and a reinforced concrete structure (RC structure) is known.
As schematically shown in FIG. 10, this is a combination of an RC column 1 and an S beam 2 mainly composed of a beam steel frame 2a, and only the beam end 2b of the beam 2 is RC. As a structure, it is structurally integrally joined to the column 1 via an anchor bar (not shown).

なお、このような構造は、柱1と一体に設けた鉄筋コンクリート部材(RC部材)としての梁端部2bに対して鉄骨部材としての梁鉄骨2aの端部を埋設した構造であるともいえるし、そのような梁端部2bは鉄骨部材が埋設されることから結果的には鉄骨鉄筋コンクリート部材(SRC部材)であるともいえる。
また、梁端部2bは現場打ちのRC造として施工される他、プレキャストコンクリートにより形成されることもある。
In addition, it can be said that such a structure is a structure in which the end of the beam steel 2a as the steel member is embedded in the beam end 2b as the reinforced concrete member (RC member) provided integrally with the column 1, Such a beam end portion 2b can be said to be a steel-framed reinforced concrete member (SRC member) as a result since a steel-frame member is embedded.
In addition, the beam end 2b may be formed by precast concrete in addition to being constructed as an on-site RC structure.

特開2006−144535号公報JP 2006-144535 A

ところで、上記のようなS造とRC造との複合構造では、図11に示すように、梁2の主体である梁鉄骨2aに作用する鉛直荷重Pは、その梁鉄骨2aの端部を埋設している梁端部2bからの反力R、Rによって支持されることになるが、このとき、梁鉄骨2aの先端側に生じる下向きの反力Rに比べて手前側に生じる上向きの反力Rの方が大きくなるから、従来のこの種の構造ではRC部材としての梁端部2bの先端側に大きな応力集中が生じることになり、それに起因して図11(b)に示すように梁端部2bの先端面にひび割れや剥落が生じることがある。
そのようなひび割れや剥落等の損傷が生じてもそれ自体は軽微であって、梁端部2bに必要とされる終局耐力には影響が及ばないので構造的には問題は生じないものの、補修が必要となるので好ましいことではない。
By the way, in the composite structure of the S structure and the RC structure as described above, as shown in FIG. 11, the vertical load P acting on the beam steel 2a which is the main body of the beam 2 is embedded in the end of the beam steel 2a. The beam is supported by the reaction forces R 1 and R 2 from the beam end 2b, but at this time, the upward force generated on the front side compared to the downward reaction force R 2 generated on the tip side of the beam steel frame 2a. since towards the reaction force R 1 becomes large, the structure of the conventional this type will be large stress concentration at the tip side of the beam end 2b of the RC member is caused, due to that in FIG. 11 (b) As shown, cracks and peeling may occur on the tip surface of the beam end 2b.
Even if damage such as cracking or peeling occurs, it is insignificant and does not affect the ultimate strength required for the beam end 2b. Is not preferable because it is necessary.

なお、このことは上記のようなS造の梁2の場合のみならず、図12に示すようにS造の柱3の柱脚部をRC造とするような場合、つまり柱鉄骨3aの柱脚部に根巻きコンクリート3bを設ける場合にも同様に生じ、この場合は柱鉄骨3aに作用する水平荷重によって(b)に示すように根巻きコンクリート3bの上面にひび割れや剥落が生じることがある。   This is not only the case of the S-shaped beam 2 as described above, but also the case where the column base of the S-shaped column 3 is made of RC as shown in FIG. 12, that is, the column of the column steel frame 3a. The same occurs when the root-wrapped concrete 3b is provided on the leg, and in this case, the horizontal load acting on the column steel 3a may cause cracking or peeling off on the top surface of the root-wrapped concrete 3b as shown in (b). .

上記事情に鑑み、本発明は、この種の複合構造において梁鉄骨や柱鉄骨等の鉄骨部材を梁端部や根巻きコンクリートのような鉄筋コンクリート部材に対して接合する場合において、それら鉄筋コンクリート部材にひび割れや剥落が生じることを防止し得る有効適切な接合構造を提供することを目的とする。   In view of the above circumstances, the present invention cracks the reinforced concrete members in the case of joining steel members such as beam steel and column steel to reinforced concrete members such as beam ends and root wound concrete in this type of composite structure. Another object of the present invention is to provide an effective and appropriate joint structure capable of preventing the occurrence of peeling.

請求項1記載の発明は、鉄骨部材の端部を鉄筋コンクリート部材に埋設してそれら鉄骨部材と鉄筋コンクリート部材どうしを接合するための構造であって、前記鉄骨部材を埋設する前記鉄筋コンクリート部材の埋設部のうち、該鉄筋コンクリート部材の表面からの所定寸法Lの範囲を応力集中部として該応力集中部では前記鉄骨部材を該鉄筋コンクリート部材に対して応力伝達不能に絶縁するとともに、前記埋設部のうち前記応力集中部よりも先端側の全体で前記鉄骨部材を該鉄筋コンクリート部材に対して応力伝達可能に一体化してなることを特徴とする。   The invention according to claim 1 is a structure for embedding an end portion of a steel member in a reinforced concrete member and joining the steel member and the reinforced concrete member, wherein the reinforced concrete member is embedded in the steel member. Among them, the range of a predetermined dimension L from the surface of the reinforced concrete member is defined as a stress concentration portion, and the stress concentration portion insulates the steel frame member so as not to transmit stress to the reinforced concrete member, and the stress concentration in the embedded portion. The steel member is integrated so that stress can be transmitted to the reinforced concrete member on the entire tip side from the portion.

請求項2記載の発明は、請求項1記載の発明の鉄骨部材と鉄筋コンクリート部材との接合構造であって、前記応力集中部に前記鉄筋コンクリート部材と前記鉄骨部材とを応力伝達不能に絶縁する絶縁材を設けたことを特徴とする。   The invention according to claim 2 is the joining structure of the steel member and the reinforced concrete member according to claim 1, and insulates the reinforced concrete member and the steel member at the stress concentration portion so that stress cannot be transmitted. Is provided.

請求項3記載の発明は、請求項1または2記載の発明の鉄骨部材と鉄筋コンクリート部材との接合構造であって、前記応力集中部の厚さ寸法を前記鉄筋コンクリート部材の表面から先端側に向かって漸次小さくしたことを特徴とする。   The invention according to claim 3 is the joining structure of the steel member and the reinforced concrete member according to claim 1 or 2, wherein the thickness dimension of the stress concentration portion is directed from the surface of the reinforced concrete member toward the tip side. It is characterized by being gradually reduced.

本発明によれば、鉄骨部材を埋設する鉄筋コンクリート部材の表面近傍に応力集中部を設定してそこでは鉄骨部材と鉄筋コンクリート部材とを絶縁したことにより、鉄筋コンクリート部材の表面近傍への応力集中が緩和されてそこにひび割れや剥落が生じることを防止することができる。   According to the present invention, the stress concentration portion is set in the vicinity of the surface of the reinforced concrete member in which the steel member is embedded, and the stress concentration in the vicinity of the surface of the reinforced concrete member is reduced by insulating the steel member and the reinforced concrete member there. It is possible to prevent cracks and peeling off.

本発明の接合構造により梁鉄骨をRC造の梁端部に接合する場合の一実施形態を示す図である。It is a figure which shows one Embodiment in the case of joining a beam steel frame to the RC beam end part by the joining structure of this invention. 同、他の実施形態を示す図である。It is a figure which shows other embodiment same as the above. 同、他の実施形態を示す図である。It is a figure which shows other embodiment same as the above. 同、他の実施形態を示す図である。It is a figure which shows other embodiment same as the above. 同、他の実施形態を示す図である。It is a figure which shows other embodiment same as the above. 同、他の実施形態を示す図である。It is a figure which shows other embodiment same as the above. 本発明の接合構造により柱鉄骨をRC造の根巻きコンクリートに接合する場合の一実施形態を示す図である。It is a figure which shows one Embodiment in the case of joining a column steel frame to RC reinforced concrete with the joining structure of this invention. 同、他の実施形態を示す図である。It is a figure which shows other embodiment same as the above. 同、他の実施形態を示す図である。It is a figure which shows other embodiment same as the above. 従来の複合構造の一例を示す図である。It is a figure which shows an example of the conventional composite structure. 同、接合部を示す図である。It is a figure which shows a junction part similarly. 従来の複合構造の他の例を示す図である。It is a figure which shows the other example of the conventional composite structure.

図1は本発明の一実施形態を示すものである。
本実施形態は、図10〜図11に示したようにRC造の柱1とS造の梁2とによる複合構造への適用例であって、基本的には従来の場合と同様に、梁2の梁端部2bのみをRC造としてそれに梁主体としての梁鉄骨2aの端部を埋設したもの、つまり鉄筋コンクリート部材(RC部材)としての梁端部2bに対して鉄骨部材としての梁鉄骨2aを埋設してそれらを構造的に一体に接合するようにしたものである。
なお、本実施形態においても、特許文献1に示されるように梁端部2bを柱1に対してアンカー筋を介して接合することでも良いし、RC部材としての梁端部2bをプレキャストコンクリートにより形成することでも良い。
FIG. 1 shows an embodiment of the present invention.
This embodiment is an application example to a composite structure with RC columns 1 and S beams 2 as shown in FIGS. 10 to 11, and basically, as in the conventional case, beams The beam end 2b of the beam 2 is an RC structure and the end of the beam steel frame 2a as the main body of the beam is embedded, that is, the beam end 2b as a reinforced concrete member (RC member) and the beam steel frame 2a as a steel member. Are embedded and structurally joined together.
Also in this embodiment, as shown in Patent Document 1, the beam end 2b may be joined to the column 1 via an anchor bar, and the beam end 2b as an RC member is made of precast concrete. It may be formed.

従来においては、梁端部2bに対して梁鉄骨2aの端部全体を単に埋設してその全体を梁端部2bに対して応力伝達可能な状態で一体化していたのであるが、本実施形態では梁端部2bの表面近傍においてはそれらを敢えて一体化せずに絶縁する、つまり構造的に縁切りすることを主眼とする。
すなわち、本実施形態では、図1(a)に示すように、梁鉄骨2aが埋設される梁端部2bの埋設部のうち、梁端部2bの先端面から所定寸法Lの範囲を応力集中部として、その応力集中部では梁鉄骨2aを梁端部2bに対して応力伝達不能に絶縁するようにし、そのうえで、応力集中部よりも先端側の全体で梁鉄骨2aを梁部材2bに対して応力伝達可能に一体化するようにしている。
Conventionally, the entire end of the beam steel frame 2a is simply embedded in the beam end 2b, and the entire end is integrated in a state where stress can be transmitted to the beam end 2b. Then, in the vicinity of the surface of the beam end portion 2b, the main purpose is to insulate them without integrating them, that is, to structurally cut the edges.
That is, in the present embodiment, as shown in FIG. 1 (a), the stress concentration is within a range of a predetermined dimension L from the distal end surface of the beam end portion 2b among the embedded portion of the beam end portion 2b in which the beam steel frame 2a is embedded. As a part, in the stress concentration part, the beam steel frame 2a is insulated from the beam end part 2b so as not to transmit stress, and then the beam steel frame 2a is entirely attached to the beam member 2b on the tip side of the stress concentration part. They are integrated so that stress can be transmitted.

応力集中部において梁鉄骨2aと梁端部2bとを絶縁するためには、図1(b)に示すように梁鉄骨2aの上フランジの上面および下フランジの下面にそれぞれ絶縁材4を取り付ければ良く、これにより応力集中部においては絶縁材4によってそれらの一体化が妨げられて応力伝達が生じないように構造的に縁切りすることができる。
絶縁材4としてはコンクリートに比べて弾性係数が充分に小さい素材であれば特に限定されないが、たとえばゴムが好適に採用可能である。また、絶縁材4の幅Lや厚さは梁鉄骨2aが変形した際にも梁端部2bに対する絶縁状態が維持されて応力が伝達されないように適宜設定すれば良いが、たとえば幅Lは50mm程度、厚さを5mm程度で充分である。
In order to insulate the beam steel frame 2a and the beam end 2b at the stress concentration portion, as shown in FIG. 1 (b), the insulating material 4 is attached to the upper surface of the upper flange and the lower surface of the lower flange, respectively. In this way, the stress concentration portion can be structurally edged so that the insulating material 4 prevents their integration and prevents stress transmission.
The insulating material 4 is not particularly limited as long as it has a sufficiently small elastic coefficient compared with concrete, but rubber, for example, can be suitably used. The width L and thickness of the insulating material 4 may be set as appropriate so that stress is not transmitted because the insulating state with respect to the beam end 2b is maintained even when the beam steel frame 2a is deformed. For example, the width L is 50 mm. A thickness of about 5 mm is sufficient.

このように梁端部2bの先端面近傍に応力集中部を設定してそこでは梁鉄骨2aと梁端部2bとを構造的に絶縁したことにより、梁鉄骨2aに作用する鉛直荷重によって梁端部2bに生じる反力点の位置が従来よりも梁鉄骨2aの先端側に変位し、それにより梁端部2bの先端部への応力集中が緩和され、その結果、梁端部2bの先端面にひび割れや剥落が生じることを未然に防止することができる。
勿論、上記の応力集中部を確保した以外は従来と同様に梁鉄骨2aの全体を梁端部2bに対して応力伝達可能に接合することにより、この接合部全体として必要とされる応力伝達性能は支障なく確保することができる。
As described above, the stress concentration portion is set in the vicinity of the distal end surface of the beam end portion 2b, and the beam steel frame 2a and the beam end portion 2b are structurally insulated, so that the beam end is caused by the vertical load acting on the beam steel frame 2a. The position of the reaction force point generated in the portion 2b is displaced to the distal end side of the beam steel frame 2a as compared with the prior art, thereby reducing the stress concentration on the distal end portion of the beam end portion 2b, and as a result, on the distal end surface of the beam end portion 2b. It is possible to prevent the occurrence of cracks and peeling.
Of course, except that the above-mentioned stress concentration portion is secured, the entire beam steel frame 2a is joined to the beam end portion 2b so as to be able to transmit stress as in the conventional case, so that the stress transmission performance required as the whole joint portion is obtained. Can be secured without hindrance.

なお、図示例のように、応力集中部の厚さ(すなわち絶縁材4の厚さ)をその幅寸法全体にわたって均等とすることでも良いが、図2に示すように梁鉄骨2aの軸方向の応力分布に応じて先端側を漸次薄くするようにしても良い。   Note that, as shown in the example of the drawing, the thickness of the stress concentration portion (that is, the thickness of the insulating material 4) may be made uniform over the entire width dimension. However, as shown in FIG. The tip side may be made thinner gradually according to the stress distribution.

また、上記実施形態では応力集中部を梁鉄骨2aの上下(上フランジの上面と下フランジの下面)にのみ設けたが、応力集中部は梁端部2bの先端面から所定寸法の範囲に設定する限りにおいてその位置や範囲は任意であって、たとえば図3に示すように上下のフランジのそれぞれの上下面に設定したり、図4に示すように上下フランジの下面にのみ設定したり、図5に示すようにウェブも含めて梁鉄骨2aの全周にわたって設定することでも良い。   Further, in the above embodiment, the stress concentration portion is provided only on the upper and lower sides of the beam steel frame 2a (the upper surface of the upper flange and the lower surface of the lower flange), but the stress concentration portion is set within a predetermined size range from the tip surface of the beam end portion 2b. As long as the position and range are arbitrary, for example, as shown in FIG. 3, it is set on the upper and lower surfaces of the upper and lower flanges, as shown in FIG. 4, only on the lower surface of the upper and lower flanges, As shown in FIG. 5, it may be set over the entire circumference of the beam steel frame 2a including the web.

但し、図11に示した従来例のように、梁端部2bの先端面でのひび割れや剥落は下フランジの下部に最も生じやすいことから、少なくとも図6に示すように下フランジの下面側には絶縁材4を設けてそこでは絶縁状態を確保すべきである。   However, as in the conventional example shown in FIG. 11, cracks and peeling off at the tip surface of the beam end 2b are most likely to occur in the lower portion of the lower flange, so at least on the lower surface side of the lower flange as shown in FIG. Should be provided with an insulating material 4 to ensure insulation.

以上の実施形態はS造の梁2への適用例であるが、図7に示す実施形態は図12に示したようなS造の柱3への適用例である。この場合、鉄骨部材としての柱鉄骨3aの下端部をRC部材としての根巻きコンクリート3bに埋設するのであるが、根巻きコンクリート3bの上面からの所定寸法Lの範囲に応力集中部を設定してそこに絶縁材4を設けることによりそこでは柱鉄骨3aと根巻きコンクリート3bとを応力伝達不能に絶縁し、以て根巻きコンクリート3bの上面に過度の応力集中が生じることを防止してひび割れや剥落を防止するようにしたものである。
この場合も、絶縁材4(応力集中部)は図7(b)に示すように柱鉄骨3の左右のフランジの外面側に設ける他、図8に示すように左右のフランジの両面にそれぞれ設けることでも良く、さらには図9に示すようにウェブも含めて柱鉄骨3aの全周にわたって設けることでも良い。
The above embodiment is an application example to the S-structured beam 2, but the embodiment shown in FIG. 7 is an application example to the S-structured pillar 3 as shown in FIG. In this case, the lower end portion of the column steel frame 3a as the steel frame member is embedded in the root winding concrete 3b as the RC member, but the stress concentration portion is set in a range of a predetermined dimension L from the upper surface of the root winding concrete 3b. By providing the insulating material 4 there, the column steel frame 3a and the root-wrapped concrete 3b are insulated so that stress cannot be transmitted, thereby preventing excessive stress concentration on the upper surface of the root-wrapped concrete 3b. It is intended to prevent peeling.
Also in this case, the insulating material 4 (stress concentration part) is provided on both outer surfaces of the left and right flanges of the column steel frame 3 as shown in FIG. Furthermore, as shown in FIG. 9, it may be provided over the entire circumference of the column steel frame 3a including the web.

以上で本発明の実施形態について説明したが、本発明は上記実施形態のようにS造の梁2をRC造の柱1に接合する場合や、S造の柱3に根巻きコンクリート3aを設ける場合に適用するのみならず、鉄筋コンクリート部材と鉄骨部材とを接合する場合全般に広く適用できることはいうまでもない。
また、上記実施形態では応力集中部に絶縁材4を介在させることで鉄骨部材と鉄筋コンクリート部材とを絶縁するようにしたが、本発明では応力集中部での応力伝達を断つように構造的に縁切りすれば良いのであって、その限りにおいては必ずしも絶縁材4を設けることはなく、たとえば応力集中部に絶縁材4の厚みに相当するような隙間を単に確保しておくことでも同様の絶縁効果が得られる。
Although the embodiment of the present invention has been described above, the present invention provides the case where the S-shaped beam 2 is joined to the RC column 1 as in the above-described embodiment, or the S-shaped column 3 is provided with the root-wrapped concrete 3a. Needless to say, the present invention can be widely applied not only to cases but also to cases where reinforced concrete members and steel members are joined.
Further, in the above embodiment, the steel member and the reinforced concrete member are insulated by interposing the insulating material 4 in the stress concentration portion. However, in the present invention, the edge is structurally cut so as to cut off the stress transmission in the stress concentration portion. The insulating material 4 is not necessarily provided as long as that is the case. For example, a similar insulating effect can be obtained by simply securing a gap corresponding to the thickness of the insulating material 4 in the stress concentration portion. can get.

1 柱
2 梁
2a 梁鉄骨(鉄骨部材)
2b 梁端部(鉄筋コンクリート部材)
3 柱
3a 柱鉄骨(鉄骨部材)
3b 根巻きコンクリート(鉄筋コンクリート部材)
4 絶縁材(応力集中部)
1 Column 2 Beam 2a Beam steel frame (steel member)
2b Beam end (reinforced concrete member)
3 pillar 3a pillar steel frame (steel member)
3b Neck winding concrete (steel reinforced concrete member)
4 Insulation material (stress concentration part)

Claims (3)

鉄骨部材の端部を鉄筋コンクリート部材に埋設してそれら鉄骨部材と鉄筋コンクリート部材どうしを接合するための構造であって、
前記鉄骨部材を埋設する前記鉄筋コンクリート部材の埋設部のうち、該鉄筋コンクリート部材の表面からの所定寸法の範囲を応力集中部として該応力集中部では前記鉄骨部材を該鉄筋コンクリート部材に対して応力伝達不能に絶縁するとともに、前記埋設部のうち前記応力集中部よりも先端側の全体で前記鉄骨部材を該鉄筋コンクリート部材に対して応力伝達可能に一体化してなることを特徴とする鉄骨部材と鉄筋コンクリート部材との接合構造。
It is a structure for embedding the ends of steel members in reinforced concrete members and joining these steel members and reinforced concrete members,
Of the embedded portion of the reinforced concrete member in which the steel member is embedded, a range of a predetermined dimension from the surface of the reinforced concrete member is defined as a stress concentrated portion, and the stress concentrated portion cannot transmit stress to the reinforced concrete member. The steel member and the reinforced concrete member, wherein the steel member and the reinforced concrete member are integrated so as to be able to transmit stress to the reinforced concrete member throughout the embedded portion and on the tip side of the stress concentration portion. Junction structure.
請求項1記載の鉄骨部材と鉄筋コンクリート部材との接合構造であって、
前記応力集中部に前記鉄筋コンクリート部材と前記鉄骨部材とを応力伝達不能に絶縁する絶縁材を設けたことを特徴とする鉄骨部材と鉄筋コンクリート部材との接合構造。
A joint structure between the steel frame member and the reinforced concrete member according to claim 1,
A joining structure of a steel member and a reinforced concrete member, wherein an insulating material that insulates the reinforced concrete member and the steel member from each other so as not to transmit stress is provided in the stress concentration portion.
請求項1または2記載の鉄骨部材と鉄筋コンクリート部材との接合構造であって、
前記応力集中部の厚さ寸法を前記鉄筋コンクリート部材の表面から先端側に向かって漸次小さくしたことを特徴とする鉄骨部材と鉄筋コンクリート部材との接合構造。
A joint structure between the steel member and the reinforced concrete member according to claim 1 or 2,
A joining structure between a steel member and a reinforced concrete member, wherein the thickness of the stress concentration portion is gradually reduced from the surface of the reinforced concrete member toward the tip side.
JP2010028934A 2010-02-12 2010-02-12 Joint structure of steel frame member and reinforced concrete member Pending JP2011163047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010028934A JP2011163047A (en) 2010-02-12 2010-02-12 Joint structure of steel frame member and reinforced concrete member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010028934A JP2011163047A (en) 2010-02-12 2010-02-12 Joint structure of steel frame member and reinforced concrete member

Publications (1)

Publication Number Publication Date
JP2011163047A true JP2011163047A (en) 2011-08-25

Family

ID=44594062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010028934A Pending JP2011163047A (en) 2010-02-12 2010-02-12 Joint structure of steel frame member and reinforced concrete member

Country Status (1)

Country Link
JP (1) JP2011163047A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015001123A (en) * 2013-06-17 2015-01-05 清水建設株式会社 Structure for joining steel beam and concrete column
CN112593631A (en) * 2020-12-27 2021-04-02 黄旭祥 Main structure of green assembly type building

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015001123A (en) * 2013-06-17 2015-01-05 清水建設株式会社 Structure for joining steel beam and concrete column
CN112593631A (en) * 2020-12-27 2021-04-02 黄旭祥 Main structure of green assembly type building
CN112593631B (en) * 2020-12-27 2021-12-07 中建五局华南建设有限公司 Main structure of green assembly type building

Similar Documents

Publication Publication Date Title
CA2741013C (en) Construction frame shear lug
JP2009052227A (en) Column reinforcing structure
JP2009052283A (en) Method and apparatus for connecting between steel member and concrete member
JP5779119B2 (en) Composite beam and frame with composite beam
JP6227452B2 (en) Wall pillar structure
JP6638905B2 (en) Beam-column connection structure and beam-column connection method
JP2011163047A (en) Joint structure of steel frame member and reinforced concrete member
JP2009133114A (en) Reinforcement structure of pole member with wall
JP2008082126A (en) High performance cracking induction joint for earthquake-resisting wall
JP2012122282A (en) Floor structure
JP6533074B2 (en) Roof structure, wall structure, floor structure provided with in-plane shear strength structure and the in-plane shear strength structure
JP2016216899A (en) Earthquake-proof wall structure
JP2018053441A (en) Precast concrete floor slab provided with loop-like joint
JP6346847B2 (en) Anchor cable fixing structure
JP2009102878A (en) Beam-column connection structure
JP2009052291A (en) Anti-termite structure of foundation
JP5271164B2 (en) Floor slab structure
JP2005155131A (en) Intermediate floor base isolation structure of building
JP2013032690A (en) Column base structure of steel column
JP5682983B1 (en) Opening reinforcement method for foundations with open top openings in wooden houses and small buildings
JP4870004B2 (en) Fixing structure
JPH06272304A (en) Junction structure of reinforced concrete column and steel framed beam
JP2011179317A (en) Method for designing composite structural beam
JP4750155B2 (en) Column and beam joint structure
KR102242105B1 (en) Cross-clined shear steel and steel composite structures using it