JP2011162905A - Fiber material for reinforcing molding material - Google Patents

Fiber material for reinforcing molding material Download PDF

Info

Publication number
JP2011162905A
JP2011162905A JP2010026058A JP2010026058A JP2011162905A JP 2011162905 A JP2011162905 A JP 2011162905A JP 2010026058 A JP2010026058 A JP 2010026058A JP 2010026058 A JP2010026058 A JP 2010026058A JP 2011162905 A JP2011162905 A JP 2011162905A
Authority
JP
Japan
Prior art keywords
resin
fiber
fiber bundle
impregnated
impregnated fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010026058A
Other languages
Japanese (ja)
Inventor
Shigeyuki Kosaka
繁行 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Polymer Ltd
Original Assignee
Daicel Polymer Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Polymer Ltd filed Critical Daicel Polymer Ltd
Priority to JP2010026058A priority Critical patent/JP2011162905A/en
Publication of JP2011162905A publication Critical patent/JP2011162905A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber material for reinforcing a molding material, exhibiting improved dispersibility/mixability and a high reinforcement effect upon blending it with a hydraulic material such as mortar and concrete, or with various molding materials such as a resin and rubber. <P>SOLUTION: There is disclosed a resin-impregnated fiber bundle made to have an uneven surface, including a fiber material (A) selected from an organic fiber and an inorganic fiber integrally impregnated with a thermoplastic resin (B), which resin-impregnated fiber bundle is to be used as a fiber material for reinforcing a molding material. The molding material is selected from a hydraulic material, a synthetic resin, a natural resin, synthetic rubber, natural rubber, and a ceramic material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、コンクリート、モルタル等の水硬性材料、樹脂、ゴム等の各種成形材料に配合して使用する補強用繊維材に関する。   The present invention relates to a reinforcing fiber material used by blending it with various molding materials such as hydraulic materials such as concrete and mortar, resins and rubbers.

コンクリート、モルタル、樹脂、ゴム等の各種成形材料を補強するための天然繊維や合成繊維からなる各種繊維材料が知られている。   Various fiber materials made of natural fibers and synthetic fibers for reinforcing various molding materials such as concrete, mortar, resin, rubber and the like are known.

特許文献1には、ポリビニルアルコール系、ポリアクリロニトリル系、ポリアミド系、ポリオレフィン系、アラミド系から選ばれる有機合成繊維で撚掛けしたものを疎水性高分子集束剤で固着した後、アスペクト比20〜300に切断したセメントモルタル又はコンクリート補強用繊維の発明が開示されている。   Patent Document 1 discloses that an organic synthetic fiber selected from polyvinyl alcohol, polyacrylonitrile, polyamide, polyolefin, and aramid is fixed with a hydrophobic polymer sizing agent and then has an aspect ratio of 20 to 300. The invention of a cement mortar or concrete reinforcing fiber cut into two pieces is disclosed.

特許文献2には、セメントを主成分として、高強度ビニロン繊維を補強繊維とする繊維強化高靱性セメントボードからなるコンクリート構造物の発明が開示されている。   Patent Document 2 discloses an invention of a concrete structure composed of a fiber-reinforced high-toughness cement board having cement as a main component and high-strength vinylon fibers as reinforcing fibers.

特許文献3には、ポリビニルアルコール系繊維等(〔0018〕)を補強繊維として使用した繊維補強モルタル又は繊維補強コンクリートの発明が開示されている。   Patent Document 3 discloses an invention of a fiber reinforced mortar or fiber reinforced concrete using polyvinyl alcohol fiber or the like ([0018]) as a reinforcing fiber.

特許文献4には、繊維に対してドライ・ブラスト処理することにより、繊維表面に平均粒径7〜500μmの粒子が一部埋没した状態で存在させた(さらに凹部も存在させた)、ゴムや樹脂の補強用繊維の発明が開示されている。   In Patent Document 4, by dry blasting a fiber, particles having an average particle diameter of 7 to 500 μm were partially embedded in the fiber surface (and a recess was also present), rubber, An invention of resin reinforcing fibers is disclosed.

特公平5−43654号公報Japanese Patent Publication No. 5-43654 特開2004−36253号公報JP 2004-36253 A 特開2007−302528号公報JP 2007-302528 A 特開2009−249787号公報JP 2009-249787 A

各種繊維をモルタルやコンクリートの補強材として使用するとき、繊維の分散混合性が高いことが重要となるが、特許文献1〜3の発明では、セメントやモルタルと繊維の分散混合性の点で改善の余地がある。   When various fibers are used as reinforcing materials for mortar and concrete, it is important that the fiber is highly dispersible and mixed. However, the inventions of Patent Documents 1 to 3 are improved in terms of the dispersible and mixed properties of cement and mortar and fibers. There is room for.

特許文献4の発明は、製造方法が複雑であり、繊維に対してドライ・ブラスと処理をするため、図1からも理解できるとおり、一定した品質のものを得ることが困難であり、繊維自体が損傷して強度が低下するおそれもある。   In the invention of Patent Document 4, since the manufacturing method is complicated and the fiber is treated with dry brass, it is difficult to obtain a constant quality as can be understood from FIG. There is also a risk that the strength is reduced due to damage.

本発明は、モルタルやコンクリート等の水硬性材料、樹脂、ゴム等の各種成形材料に配合したときの分散混合性が良く、高い補強効果が得られる補強用繊維材を提供することを課題とする。   It is an object of the present invention to provide a reinforcing fiber material that has good dispersion and mixing properties when blended with various molding materials such as hydraulic materials such as mortar and concrete, resins, and rubbers, and has a high reinforcing effect. .

本発明は、(A)有機繊維及び無機繊維から選ばれる繊維材料に(B)熱可塑性樹脂が含浸され一体化され、表面に凹凸が形成された樹脂含浸繊維束であり、成形材料の補強用繊維材として用いる樹脂含浸繊維束を提供する。   The present invention is a resin-impregnated fiber bundle in which (A) a fiber material selected from organic fibers and inorganic fibers is impregnated with (B) a thermoplastic resin and has irregularities formed on the surface thereof. A resin-impregnated fiber bundle used as a fiber material is provided.

本発明の樹脂含浸繊維束は、セメント、モルタル、天然水硬性石灰等の水硬性材料、合成及び天然樹脂、合成及び天然ゴム、セラミックス材料等から選ばれる各種成形材料の補強用繊維材として使用するものである。   The resin-impregnated fiber bundle of the present invention is used as a reinforcing fiber material for various molding materials selected from hydraulic materials such as cement, mortar and natural hydraulic lime, synthetic and natural resins, synthetic and natural rubber, ceramic materials and the like. Is.

本発明の樹脂含浸繊維束は、表面に凹凸を有しているため(即ち、表面積が大きくなっているため)、成形材料と混合したときの接触面積を増大できることから、成形材料との混合・分散性が良くなり、成形材料を固化したときには成形材料との結合性も高められる。   Since the resin-impregnated fiber bundle of the present invention has irregularities on the surface (that is, because the surface area is large), the contact area when mixed with the molding material can be increased. Dispersibility is improved, and when the molding material is solidified, the bondability with the molding material is also improved.

本発明の補強用繊維材として使用する樹脂含浸繊維束の製造方法を説明するためのフロー図である。It is a flowchart for demonstrating the manufacturing method of the resin impregnation fiber bundle used as a reinforcing fiber material of this invention. 図1で示すフロー中の一部工程の説明図。Explanatory drawing of the one part process in the flow shown in FIG. 図2とは別実施形態の一部工程の説明図。Explanatory drawing of the one part process of embodiment different from FIG. 実施例の試験方法の説明図。Explanatory drawing of the test method of an Example.

本発明の樹脂含浸繊維束は、多数本の(A)成分の繊維材料に(B)成分の熱可塑性樹脂が含浸され一体化された束の表面に凹凸が形成されたものである。   The resin-impregnated fiber bundle of the present invention is one in which irregularities are formed on the surface of a bundle obtained by impregnating a large number of (A) component fiber materials with the (B) component thermoplastic resin.

本発明の樹脂含浸繊維束に含まれる(A)成分は、有機繊維及び無機繊維から選ばれる繊維材料である。   The component (A) contained in the resin-impregnated fiber bundle of the present invention is a fiber material selected from organic fibers and inorganic fibers.

(A)成分の有機繊維は、アラミド繊維、ポリアミド繊維(アラミド繊維を除く)、全芳香族ポリエステル繊維、セルロース繊維、レーヨン繊維から選ばれるものを用いることができる。   As the organic fiber of the component (A), those selected from aramid fibers, polyamide fibers (excluding aramid fibers), wholly aromatic polyester fibers, cellulose fibers, and rayon fibers can be used.

(A)成分の無機繊維は、ガラス繊維、炭素繊維、玄武岩繊維、炭化珪素繊維、ボロン繊維から選ばれるものを用いることができる。   As the inorganic fiber (A), those selected from glass fiber, carbon fiber, basalt fiber, silicon carbide fiber, and boron fiber can be used.

(A)成分の繊維材料(有機繊維及び無機繊維)の直径及び長さは特に制限されるものではないが、好ましくは直径が5〜24μmの範囲のものである。なお、樹脂含浸繊維束を構成する(A)成分の繊維材料の長さは、樹脂含浸繊維束の長さと一致するから、前記長さは樹脂含浸繊維束の長さでもある。本発明の樹脂含浸繊維束の製造に使用する(A)成分の繊維材料の長さは、製造方法の説明にも記載しているとおり、もっと長いものを用いる。   The diameter and length of the fiber material (organic fiber and inorganic fiber) as the component (A) are not particularly limited, but preferably have a diameter in the range of 5 to 24 μm. In addition, since the length of the fiber material of the component (A) constituting the resin-impregnated fiber bundle coincides with the length of the resin-impregnated fiber bundle, the length is also the length of the resin-impregnated fiber bundle. The length of the fiber material of the component (A) used for the production of the resin-impregnated fiber bundle of the present invention is longer as described in the explanation of the production method.

本発明の樹脂含浸繊維束に含まれる(A)成分の繊維材料の数は特に制限されるものではないが、1000〜24,000本の範囲が好ましく、1000〜12,000本の範囲がより好ましい。   The number of (A) component fiber materials contained in the resin-impregnated fiber bundle of the present invention is not particularly limited, but is preferably in the range of 1000 to 24,000, more preferably in the range of 1000 to 12,000.

本発明の樹脂含浸繊維束に含まれる(B)成分の熱可塑性樹脂としては、ポリアミド樹脂(ポリアミド6、ポリアミド66、ポリアミド12等)、オレフィン樹脂(ポリプロピレン、高密度ポリエチレン、酸変性ポリプロピレン等)、ポリフェニレンスルフィド樹脂、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、熱可塑性ウレタン樹脂(TPU)、ポリオキシメチレン樹脂(POM)、ABS樹脂、ポリカーボネート樹脂、ポリカーボネート樹脂とABS樹脂のアロイ等から選ばれるものを用いることができる。(B)成分の熱可塑性樹脂は、2種以上からなるアロイも用いることができ、その場合には、適当な相溶化剤も含有することができる。   As the thermoplastic resin of the component (B) contained in the resin-impregnated fiber bundle of the present invention, polyamide resin (polyamide 6, polyamide 66, polyamide 12, etc.), olefin resin (polypropylene, high density polyethylene, acid-modified polypropylene, etc.), Polyphenylene sulfide resin, polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), thermoplastic urethane resin (TPU), polyoxymethylene resin (POM), ABS resin, polycarbonate resin, alloy of polycarbonate resin and ABS resin, etc. Can be used. (B) The thermoplastic resin of a component can also use the alloy which consists of 2 or more types, In that case, a suitable compatibilizer can also be contained.

本発明の樹脂含浸繊維束には、上記した(A)成分と(B)成分以外にも、必要に応じて他の成分を含有することができる。前記他の成分としては、補強用繊維材の適用対象となる成形材料の種類に応じて、公知の添加剤から適宜選択して含有することができる。   The resin-impregnated fiber bundle of the present invention may contain other components as necessary in addition to the above-described components (A) and (B). As said other component, according to the kind of molding material used as the application object of a reinforcing fiber material, it can select from a well-known additive suitably and can contain.

本発明の樹脂含浸繊維束において、(A)成分の繊維材料と(B)成分の熱可塑性樹脂の合計量中、(A)成分の繊維材料の含有量は5〜90質量%が好ましく、10〜80質量%がより好ましく、20〜70質量%がさらに好ましい。   In the resin-impregnated fiber bundle of the present invention, the content of the fiber material (A) is preferably 5 to 90% by mass in the total amount of the fiber material (A) and the thermoplastic resin (B). -80 mass% is more preferable, and 20-70 mass% is further more preferable.

本発明の樹脂含浸繊維束は、補強用繊維として使用する各種成形材料の用途や必要な機械的強度等に応じて寸法を調整することができるが、例えば、直径が0.5〜4.0mm、長さが4〜50mmにすることができる。   The resin-impregnated fiber bundle of the present invention can be adjusted in dimensions according to the use of various molding materials used as reinforcing fibers, the required mechanical strength, etc., for example, the diameter is 0.5 to 4.0 mm The length can be 4-50 mm.

次に、本発明の成形材料の補強用繊維材として用いる樹脂含浸繊維束の製造方法を、製造フローを示した図1により説明する。   Next, a method for producing a resin-impregnated fiber bundle used as a reinforcing fiber material of the molding material of the present invention will be described with reference to FIG. 1 showing a production flow.

本発明の樹脂含浸繊維束は、凹凸の形成工程を有する製造方法を適用して、表面に凹凸が形成されたものである。表面に凹凸が形成されていない樹脂含浸繊維束の製造方法は公知であり、例えば、特許第4302938号公報に記載されているが(より具体的には、段落番号0035、段落番号0046、図1参照)、前記特許発明に記載の製造方法には、凹凸の形成工程(凹凸の形成手段)が含まれていないので、表面に凹凸が形成された樹脂含浸繊維束を得ることはできない。   The resin-impregnated fiber bundle of the present invention is one in which unevenness is formed on the surface by applying a production method having an unevenness forming step. A method for producing a resin-impregnated fiber bundle having no irregularities on its surface is known, and is described in, for example, Japanese Patent No. 4302929 (more specifically, paragraph number 0035, paragraph number 0046, FIG. 1). The manufacturing method described in the above-mentioned patent invention does not include an unevenness forming step (irregularity forming means), and therefore cannot obtain a resin-impregnated fiber bundle having unevenness formed on the surface.

図1は、外観上は、特許第4302938号公報の図1と同じものであるが、樹脂含浸繊維束の表面に凹凸を形成するための手段が、成形ロール又はペレタイザに備え付けられている。   FIG. 1 is the same as FIG. 1 in Japanese Patent No. 4302929, but the molding roll or pelletizer is provided with means for forming irregularities on the surface of the resin-impregnated fiber bundle.

まず、(A)成分の繊維材料を長さ方向に揃えた状態で束ねた長尺状の繊維束10a(例えば、繊維直径が5〜24μm程度の繊維系材料を、1000〜24,000本程度束ねたもの)を用意し、この長尺状の繊維束を予備加熱装置11内に送り、予備加熱する。   First, a long fiber bundle 10a in which the fiber materials of the component (A) are bundled in the length direction (for example, about 1000 to 24,000 fiber materials having a fiber diameter of about 5 to 24 μm were bundled). A long fiber bundle is sent into the preheating device 11 and preheated.

予備加熱は、次工程において、繊維材料に溶融状態の樹脂を含浸し易くするための処理である。予備加熱温度は融点未満の温度で、使用する繊維材料の種類により異なるものであり、例えば、アラミド繊維であれば100〜400℃程度に加熱し、玄武岩繊維であれば100〜500℃程度に加熱する。   The preheating is a process for easily impregnating the fiber material with a molten resin in the next step. The preheating temperature is a temperature lower than the melting point, and varies depending on the type of fiber material used. For example, the aramid fiber is heated to about 100 to 400 ° C, and the basalt fiber is heated to about 100 to 500 ° C. To do.

次に、予備加熱処理した繊維束10bをクロスヘッドダイ12に送る。クロスヘッドダイ12には、図示するとおり押出機13が接続されており、押出機13から樹脂供給経路14を経て溶融状態の(B)成分の熱可塑性樹脂が供給され、長尺状の繊維束10bと接触する。クロスヘットダイ12の内部は、少なくとも前記熱可塑性樹脂の融点以上の温度に保たれており、長尺状の繊維束10bに樹脂が含浸される。   Next, the preheat-treated fiber bundle 10 b is sent to the crosshead die 12. As shown in the figure, an extruder 13 is connected to the crosshead die 12, and the molten thermoplastic resin (B) component is supplied from the extruder 13 via the resin supply path 14, and a long fiber bundle. 10b is contacted. The interior of the cross head die 12 is maintained at least at a temperature equal to or higher than the melting point of the thermoplastic resin, and the long fiber bundle 10b is impregnated with the resin.

次に、クロスヘッドダイ12から成形(賦形)ロール15に樹脂含浸繊維束10cを送り、成形(賦形)する。本発明の一実施形態では、成形(賦形)ロール15において、長尺状の樹脂含浸繊維束の外表面に凹凸を形成する。図1に示す成形(賦形)ロール15は3本のロールの組み合わせであるが、2本又は4本以上のロールの組み合わせでもよい。   Next, the resin-impregnated fiber bundle 10c is sent from the crosshead die 12 to the molding (shaping) roll 15 and molded (shaping). In one embodiment of the present invention, in the forming (shaping) roll 15, irregularities are formed on the outer surface of the long resin-impregnated fiber bundle. The forming (shaping) roll 15 shown in FIG. 1 is a combination of three rolls, but may be a combination of two or four or more rolls.

成形(賦形)ロール15により、樹脂含浸繊維束の表面に凹凸を形成するときには、図2(a)、(b)に示す2本のロール21、22を組み合わせた成形(賦形)ロール15を用いることができる。   When forming irregularities on the surface of the resin-impregnated fiber bundle by the forming (shaping) roll 15, the forming (shaping) roll 15 combining the two rolls 21 and 22 shown in FIGS. 2 (a) and 2 (b). Can be used.

2本のロール21、22の外表面21a、22aには、長さ方向に等間隔をおいて複数箇所に凹部21b、22bが形成されており、凹部21b、22bは、周方向にも等間隔おいて複数(図面では8個)が形成されている。なお、ロール表面の凹部(又は凸部でもよい)の形成位置や形成状態(例えば、独立した凹部のほか、一定長さの連続した凹部)を適宜調整することにより、樹脂含浸繊維束に形成される凹凸の状態(例えば、特定の方向に対して、連続又は非連続の直線状又は螺旋状の凹凸)を所望の状態に調整することができる。   On the outer surfaces 21a and 22a of the two rolls 21 and 22, concave portions 21b and 22b are formed at a plurality of positions at equal intervals in the length direction, and the concave portions 21b and 22b are also equally spaced in the circumferential direction. A plurality (eight in the drawing) are formed. It is to be noted that the resin-impregnated fiber bundle is formed by appropriately adjusting the formation position and the formation state (for example, independent depressions and continuous depressions of a certain length) of depressions (or projections) on the roll surface. The state of unevenness (for example, continuous or discontinuous linear or spiral unevenness with respect to a specific direction) can be adjusted to a desired state.

長尺状の樹脂含浸繊維束10cが成形(賦形)ロール15(2本のロール21、22)の間を通るとき、外表面に形成された多数の凹部と接触することで、表面に凹凸が形成される。   When the long resin-impregnated fiber bundle 10c passes between the forming (shaping) rolls 15 (the two rolls 21, 22), it comes into contact with a large number of concave portions formed on the outer surface, thereby forming irregularities on the surface. Is formed.

次に、成形(賦形)ロール15通過させ、凹凸が形成された長尺状の樹脂含浸繊維束10dを引取機16に送る。   Next, the forming (shaping) roll 15 is passed through, and the long resin-impregnated fiber bundle 10 d having unevenness is sent to the take-up machine 16.

次に、引取機16を通過させた長尺状の凹凸が形成された樹脂含浸繊維束10dをペレタイザー(裁断機)17に送り、所定長さに切断して、表面に凹凸が形成された樹脂含浸繊維束10eを得る。   Next, the resin-impregnated fiber bundle 10d on which long unevenness formed by passing through the take-up machine 16 is sent to a pelletizer (cutting machine) 17, cut into a predetermined length, and resin with unevenness formed on the surface. An impregnated fiber bundle 10e is obtained.

なお、本発明の他の実施形態では、成形(賦形)ロール15にて凹凸を形成しないで、ペレタイザー(裁断機)17で凹凸を形成することもできる。   In another embodiment of the present invention, the unevenness can be formed by the pelletizer (cutting machine) 17 without forming the unevenness by the forming (shaping) roll 15.

ペレタイザー(裁断機)17で凹凸を形成するときは、図3(a)で示すように、ペレタイザー(裁断機)17に樹脂含浸繊維束10cを導入するための引取ロール31として、図3(b)に示すように、ロール表面に網目状に形成された溝(ローレット)32を有する2本のロール31aか、又はロール表面に引き取り方向に直角に形成された溝(横溝)33を有する2本のロール31bの組み合わせを用いることができる。   When forming irregularities with the pelletizer (cutting machine) 17, as shown in FIG. 3A, as the take-up roll 31 for introducing the resin-impregnated fiber bundle 10c into the pelletizer (cutting machine) 17, FIG. ), Two rolls 31a having a mesh (grolet) 32 formed in a mesh shape on the roll surface, or two having a groove (lateral groove) 33 formed at right angles to the take-up direction on the roll surface. A combination of rolls 31b can be used.

樹脂含浸繊維束10cが引取ロール31を通るとき、外表面に形成された多数の溝と接触することで、表面に凹凸が形成される。   When the resin-impregnated fiber bundle 10c passes through the take-up roll 31, irregularities are formed on the surface by coming into contact with many grooves formed on the outer surface.

本発明の樹脂含浸繊維束に形成された凹凸の好ましい例としては、
(I)長さ方向に連続又は非連続に直線状に形成された凹凸、
(II)周方向に連続又は非連続に形成された凹凸、
(III)長さ方向に連続又は非連続に螺旋状に形成された凹凸、
(IV)独立した複数の凹凸、
のいずれかにすることができるほか、(I)〜(III)から選ばれるいずれか1つと(IV)を組み合わせた凹凸にすることもできる。
As a preferable example of the irregularities formed in the resin-impregnated fiber bundle of the present invention,
(I) Concavities and convexities formed linearly or continuously in the length direction,
(II) Concavities and convexities formed continuously or discontinuously in the circumferential direction,
(III) Concavities and convexities formed spirally continuously or discontinuously in the length direction,
(IV) Independent multiple irregularities,
In addition to the above, it is also possible to make irregularities combining (IV) with any one selected from (I) to (III).

凹凸の内、凹部の深さと凸部の高さは、凹凸が形成されていない面を基準として、0.05〜2mmの範囲にすることができ、好ましくは0.05〜1.5mmの範囲にすることができる。   Of the unevenness, the depth of the concave portion and the height of the convex portion can be in the range of 0.05 to 2 mm, preferably in the range of 0.05 to 1.5 mm, based on the surface on which the unevenness is not formed. Can be.

本発明の表面に凹凸が形成された樹脂含浸繊維束は、水硬性材料、合成及び天然樹脂、合成及び天然ゴム、セラミックス材料から選ばれる成形材料の補強用繊維材として使用する。   The resin-impregnated fiber bundle having irregularities formed on the surface of the present invention is used as a reinforcing fiber material for a molding material selected from hydraulic materials, synthetic and natural resins, synthetic and natural rubber, and ceramic materials.

水硬性材料としては、公知の各種セメント、前記各種セメントを含むモルタル及びコンクリートのほか、水を添加して硬化する公知の材料を挙げることができ、例えば、天然水硬性石灰(NHL;Natural Hydraulic Lime)にも適用することができる。   Examples of the hydraulic material include known various cements, mortar and concrete containing the various cements, and known materials that are hardened by adding water. For example, natural hydraulic lime (NHL; Natural Hydraulic Lime ).

樹脂含浸繊維束の含有量は、セメント100質量部に対して0.1〜50質量部が好ましく、0.1〜30質量部がより好ましく、0.1〜20質量部がさらに好ましい。   The content of the resin-impregnated fiber bundle is preferably 0.1 to 50 parts by mass, more preferably 0.1 to 30 parts by mass, and still more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of cement.

水硬性材料がモルタルの場合には、セメント、水、細骨材、混和材料(必要に応じて加える)、上記の樹脂含浸繊維束等を含むことができる。   When the hydraulic material is mortar, cement, water, fine aggregate, admixture (added as necessary), the above resin-impregnated fiber bundle, and the like can be included.

水硬性材料がコンクリートの場合には、セメント、水、細骨材、粗骨材、混和材料(必要に応じて加える)、上記の樹脂含浸繊維束等を含むことができる。   When the hydraulic material is concrete, cement, water, fine aggregate, coarse aggregate, admixture (added as necessary), the above resin impregnated fiber bundle, and the like can be included.

上記の細骨材、粗骨材、混和材料等は公知のものであり、例えば、特許文献3(特開2007−302528号公報)の段落番号21に記載されているものを挙げることができる。   The fine aggregates, coarse aggregates, admixtures and the like described above are known, and examples include those described in paragraph 21 of Patent Document 3 (Japanese Patent Laid-Open No. 2007-302528).

合成及び天然樹脂の補強用繊維材として使用する場合には、樹脂含浸繊維束を構成する樹脂よりも融点の低い樹脂に使用する。   When used as a reinforcing fiber material for synthetic and natural resins, it is used for a resin having a lower melting point than the resin constituting the resin-impregnated fiber bundle.

実施例1
図1、図2に示すフローにて、表面に凹凸が形成された樹脂含浸繊維束を製造した。
Example 1
A resin-impregnated fiber bundle having irregularities formed on the surface was manufactured by the flow shown in FIGS.

表1に示すアラミド(ケブラー)繊維(直径14μm)約1300本からなる長さ長尺状の繊維束を予備加熱装置に通して、約300℃で予備加熱した。   A long fiber bundle consisting of about 1300 aramid (Kevlar) fibers (diameter 14 μm) shown in Table 1 was preheated at about 300 ° C. through a preheating device.

次に、予備加熱後の繊維束をクロスヘッドダイに導入して、押出機から供給した溶融状態(280℃)の樹脂(ポリプロピレンとマレイン酸変性ポリプロピレンからなる混合物)と接触させることで、長尺状の繊維束に樹脂を含浸させた。   Next, the preheated fiber bundle is introduced into a crosshead die and brought into contact with a molten resin (a mixture of polypropylene and maleic acid-modified polypropylene) supplied from an extruder (a mixture of polypropylene and maleic acid-modified polypropylene). The fiber bundle was impregnated with resin.

次に、樹脂を含浸させた長尺状の繊維束を図3で示す成形ロールに通過させ、表面に多数の凹凸を形成した。   Next, the long fiber bundle impregnated with the resin was passed through a forming roll shown in FIG. 3 to form a large number of irregularities on the surface.

次に、引取機を通過させた後、ペレタイザで切断して、直径が約2mm、長さが25mmの樹脂含浸繊維束を得た。   Next, after passing through a take-up machine, it was cut with a pelletizer to obtain a resin-impregnated fiber bundle having a diameter of about 2 mm and a length of 25 mm.

実施例2、3
表1に示すバサルト(玄武岩)繊維(直径13μm)約4000本を用い、図1と図2又は図3に示すフローにて、表面に凹凸が形成された、直径が約2mm、長さが25mmの樹脂含浸繊維束を得た。
Examples 2 and 3
Using about 4000 basalt (basalt) fibers (diameter 13 μm) shown in Table 1 and having the irregularities formed on the surface in the flow shown in FIG. 1, 2 or 3, the diameter is about 2 mm and the length is 25 mm. A resin-impregnated fiber bundle was obtained.

比較例1、2
表1に示すアラミド繊維とケブラー繊維(実施例1〜3と同じもの)を用い、図1に示すフロー(但し、凹凸の形成工程は備えていない)にて、表面に凹凸が形成されていない、直径が約2mm、長さが25mmの樹脂含浸繊維束を製造した。
Comparative Examples 1 and 2
Using the aramid fiber and Kevlar fiber shown in Table 1 (the same as in Examples 1 to 3), the surface shown in FIG. A resin-impregnated fiber bundle having a diameter of about 2 mm and a length of 25 mm was produced.

試験例1
図4に示す引抜試験用の測定サンプルを調製した。
羽根産業社製のドライモルタル1kg、水15mlを充分に混合して、試験用モルタルとした。
Test example 1
A measurement sample for the pull-out test shown in FIG. 4 was prepared.
1 kg of dry mortar manufactured by Hane Sangyo Co., Ltd. and 15 ml of water were mixed thoroughly to obtain a test mortar.

次に、一端開口部が封鎖された筒50(PP製,直径D=約6mm、長さL=約25mm)の内部に試験用モルタルを充填した。その後、さらに図示するように実施例・比較例で得られた樹脂含浸束(長さ25mm)のl1長さ(10mm)部分を差し込んで、モルタルが固化するまで放置した。 Next, the test mortar was filled in the inside of the cylinder 50 (made of PP, diameter D = about 6 mm, length L = about 25 mm) whose one end opening was sealed. Thereafter, as shown in the drawing, the l 1 length (10 mm) portion of the resin-impregnated bundle (length 25 mm) obtained in the examples and comparative examples was inserted and left until the mortar solidified.

引抜試験は、図4に示す筒50部分を固定し、棒52のl2長さ部分を固定して、引き抜き速度2mm/minで引っ張ったときの引き抜き荷重(N)を測定した。測定機器は、島津オートグラフAG2000G(島津製作所製)を用いた。結果を表1に示す。

Figure 2011162905
PP:ポリプロピレン(ノーブレンZ101A 住友化学株式会社製)
変性PP:マレイン酸変性ポリプロピレン(OREVAC CA100 アルケマ製)
アラミド繊維:Kevler49 (東レ・デュポン株式会社製)
玄武岩繊維:バサルトファイバーBCF13(Kamenny Vek社製) In the pull-out test, the cylinder 50 shown in FIG. 4 was fixed, the l 2 length of the rod 52 was fixed, and the pull-out load (N) when pulled at a pull-out speed of 2 mm / min was measured. Shimadzu Autograph AG2000G (manufactured by Shimadzu Corporation) was used as a measuring instrument. The results are shown in Table 1.
Figure 2011162905
PP: Polypropylene (Noblen Z101A manufactured by Sumitomo Chemical Co., Ltd.)
Modified PP: Maleic acid modified polypropylene (OREVAC CA100 Arkema)
Aramid fiber: Kevler49 (manufactured by Toray DuPont)
Basalt fiber: Basalt fiber BCF13 (Kamenny Vek)

実施例1と比較例1の引き抜き荷重の対比と、実施例2、3と比較例2の引き抜き荷重の対比から明らかなとおり、表面に凹凸が形成されている実施例の樹脂含浸繊維束を用いた方が、引き抜き荷重が大きかった。この結果は、表面に凹凸のある樹脂含浸繊維束の方が、モルタルと良く結合されているからであると考えられる。   The resin-impregnated fiber bundle of the example in which irregularities are formed on the surface is used as apparent from the comparison of the extraction load of Example 1 and Comparative Example 1 and the comparison of the extraction load of Examples 2, 3 and Comparative Example 2. The pull-out load was larger. This result is considered to be because the resin-impregnated fiber bundle having unevenness on the surface is better bonded to the mortar.

Claims (9)

(A)有機繊維及び無機繊維から選ばれる繊維材料に(B)熱可塑性樹脂が含浸され一体化され、表面に凹凸が形成された樹脂含浸繊維束であり、成形材料の補強用繊維材として用いる樹脂含浸繊維束。   (A) A resin-impregnated fiber bundle in which a fiber material selected from organic fibers and inorganic fibers is impregnated with (B) a thermoplastic resin and has irregularities formed on the surface thereof, and is used as a reinforcing fiber material for a molding material Resin-impregnated fiber bundle. (A)成分の繊維材料が直径5〜24μmのもので、樹脂含浸繊維束を形成する有機繊維又は無機繊維の本数が1000〜24,000本である請求項1記載の樹脂含浸繊維束。   The resin-impregnated fiber bundle according to claim 1, wherein the fiber material of component (A) has a diameter of 5 to 24 µm, and the number of organic fibers or inorganic fibers forming the resin-impregnated fiber bundle is 1000 to 24,000. 樹脂含浸繊維束が、円柱状で、直径が0.5〜4.0mm、長さが4〜50mmのものである請求項1又は2記載の水硬性材料の樹脂含浸繊維束。   The resin-impregnated fiber bundle of hydraulic material according to claim 1 or 2, wherein the resin-impregnated fiber bundle has a cylindrical shape, a diameter of 0.5 to 4.0 mm, and a length of 4 to 50 mm. (A)成分の有機繊維が、アラミド繊維、ポリアミド繊維(アラミド繊維を除く)、全芳香族ポリエステル繊維、セルロース繊維、レーヨン繊維から選ばれるものであり、
(A)成分の無機繊維が、ガラス繊維、炭素繊維、玄武岩繊維、炭化珪素繊維、ボロン繊維から選ばれるものである、請求項1〜3のいずれか1項記載の樹脂含浸繊維束。
(A) component organic fiber is selected from aramid fiber, polyamide fiber (excluding aramid fiber), wholly aromatic polyester fiber, cellulose fiber, rayon fiber,
The resin-impregnated fiber bundle according to any one of claims 1 to 3, wherein the inorganic fiber (A) is selected from glass fiber, carbon fiber, basalt fiber, silicon carbide fiber, and boron fiber.
樹脂含浸繊維束の表面の凹凸が、長さ方向に連続又は非連続に直線状に形成された凹凸である、請求項1〜4のいずれか1項記載の樹脂含浸繊維束。   The resin-impregnated fiber bundle according to any one of claims 1 to 4, wherein the unevenness on the surface of the resin-impregnated fiber bundle is an unevenness formed linearly continuously or discontinuously in the length direction. 樹脂含浸繊維束の表面の凹凸が、周方向に連続又は非連続に形成された凹凸である、請求項1〜4のいずれか1項記載の樹脂含浸繊維束。   The resin-impregnated fiber bundle according to any one of claims 1 to 4, wherein the unevenness on the surface of the resin-impregnated fiber bundle is an unevenness formed continuously or discontinuously in the circumferential direction. 樹脂含浸繊維束の表面の凹凸が、長さ方向に連続又は非連続に螺旋状に形成された凹凸である、請求項1〜4のいずれか1項記載の樹脂含浸繊維束。   The resin-impregnated fiber bundle according to any one of claims 1 to 4, wherein the unevenness on the surface of the resin-impregnated fiber bundle is an unevenness formed in a spiral shape continuously or discontinuously in the length direction. 樹脂含浸繊維束の表面の凹凸が、独立した複数の凹凸からなるものである、請求項1〜4のいずれか1項記載の樹脂含浸繊維束。   The resin-impregnated fiber bundle according to any one of claims 1 to 4, wherein the unevenness on the surface of the resin-impregnated fiber bundle comprises a plurality of independent unevennesses. 成形材料が、水硬性材料、合成及び天然樹脂、合成及び天然ゴム、セラミックス材料から選ばれるものである請求項1〜8のいずれか1項記載の樹脂含浸繊維束。   The resin-impregnated fiber bundle according to any one of claims 1 to 8, wherein the molding material is selected from hydraulic materials, synthetic and natural resins, synthetic and natural rubber, and ceramic materials.
JP2010026058A 2010-02-09 2010-02-09 Fiber material for reinforcing molding material Pending JP2011162905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026058A JP2011162905A (en) 2010-02-09 2010-02-09 Fiber material for reinforcing molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026058A JP2011162905A (en) 2010-02-09 2010-02-09 Fiber material for reinforcing molding material

Publications (1)

Publication Number Publication Date
JP2011162905A true JP2011162905A (en) 2011-08-25

Family

ID=44593931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026058A Pending JP2011162905A (en) 2010-02-09 2010-02-09 Fiber material for reinforcing molding material

Country Status (1)

Country Link
JP (1) JP2011162905A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051369A1 (en) * 2011-10-05 2013-04-11 ダイセルポリマー株式会社 Fiber-reinforced resin composition
JP2013129764A (en) * 2011-12-22 2013-07-04 Du Pont-Toray Co Ltd Fiber-reinforcing material and fiber-reinforced molded article
CN103265186A (en) * 2013-05-27 2013-08-28 黑龙江省科学院石油化学研究院 Preparation method of surface coating treating agent capable of improving strength of phosphate strengthened quartz fiber composite material and coating treatment method
JP2016188157A (en) * 2015-03-30 2016-11-04 公益財団法人鉄道総合技術研究所 Fiber for reinforcing concrete and concrete structure
CN108589356A (en) * 2018-07-02 2018-09-28 浙江石金玄武岩纤维股份有限公司 Produce the positioning device and localization method of basalt fibre particle rope
CN108708202A (en) * 2018-07-02 2018-10-26 浙江石金玄武岩纤维股份有限公司 Enhancing basalt fibre particle rope and netting
WO2019088062A1 (en) 2017-10-30 2019-05-09 ダイセルポリマー株式会社 Electromagnetic wave shielding molded article
CN110923947A (en) * 2018-09-18 2020-03-27 成都硕屋科技有限公司 Composite material and preparation method thereof
US10703019B2 (en) 2016-03-11 2020-07-07 Daicel Polymer Ltd. Resin-impregnated fiber bundle, compression molded article, and a method for producing the same
WO2021219501A1 (en) 2020-04-29 2021-11-04 ETH Zürich Bi- or multicomponent fibres for large composite parts
WO2023058448A1 (en) 2021-10-07 2023-04-13 東レ株式会社 Fiber-reinforced thermoplastic resin composition
US12122900B2 (en) 2017-10-30 2024-10-22 Daicel Polymer Ltd. Electromagnetic wave shielding molded article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275739A (en) * 2001-03-19 2002-09-25 Toray Ind Inc Method for producing cement-reinforcing fiber
JP2003055011A (en) * 2001-08-09 2003-02-26 Aisawa Construction Co Ltd Rod for reinforcing concrete and manufacturing method therefor
JP2003335559A (en) * 2002-05-17 2003-11-25 Nippon Electric Glass Co Ltd Concrete reinforcement material and concrete moldings material using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275739A (en) * 2001-03-19 2002-09-25 Toray Ind Inc Method for producing cement-reinforcing fiber
JP2003055011A (en) * 2001-08-09 2003-02-26 Aisawa Construction Co Ltd Rod for reinforcing concrete and manufacturing method therefor
JP2003335559A (en) * 2002-05-17 2003-11-25 Nippon Electric Glass Co Ltd Concrete reinforcement material and concrete moldings material using the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2764968A4 (en) * 2011-10-05 2015-05-20 Daicel Polymer Ltd Fiber-reinforced resin composition
WO2013051369A1 (en) * 2011-10-05 2013-04-11 ダイセルポリマー株式会社 Fiber-reinforced resin composition
KR101954432B1 (en) * 2011-10-05 2019-03-05 다이셀폴리머 주식회사 Fiber-reinforced resin composition
KR20140080481A (en) * 2011-10-05 2014-06-30 다이셀 폴리머 가부시끼가이샤 Fiber-reinforced resin composition
JP2013091775A (en) * 2011-10-05 2013-05-16 Daicel Polymer Ltd Fiber-reinforced resin composition
EP2764968A1 (en) * 2011-10-05 2014-08-13 Daicel Polymer Ltd. Fiber-reinforced resin composition
CN103813893A (en) * 2011-10-05 2014-05-21 大赛璐高分子株式会社 Fiber-reinforced resin composition
US9096750B2 (en) 2011-10-05 2015-08-04 Daicel Polymer Ltd. Fiber-reinforced resin composition
US20140343196A1 (en) * 2011-10-05 2014-11-20 Daicel Polymer Ltd. Fiber-reinforced resin composition
TWI558746B (en) * 2011-10-05 2016-11-21 戴西爾聚合物股份有限公司 Fiber-reinforced resin composition
JP2013129764A (en) * 2011-12-22 2013-07-04 Du Pont-Toray Co Ltd Fiber-reinforcing material and fiber-reinforced molded article
CN103265186A (en) * 2013-05-27 2013-08-28 黑龙江省科学院石油化学研究院 Preparation method of surface coating treating agent capable of improving strength of phosphate strengthened quartz fiber composite material and coating treatment method
JP2016188157A (en) * 2015-03-30 2016-11-04 公益財団法人鉄道総合技術研究所 Fiber for reinforcing concrete and concrete structure
US10703019B2 (en) 2016-03-11 2020-07-07 Daicel Polymer Ltd. Resin-impregnated fiber bundle, compression molded article, and a method for producing the same
US12122900B2 (en) 2017-10-30 2024-10-22 Daicel Polymer Ltd. Electromagnetic wave shielding molded article
WO2019088062A1 (en) 2017-10-30 2019-05-09 ダイセルポリマー株式会社 Electromagnetic wave shielding molded article
CN108589356A (en) * 2018-07-02 2018-09-28 浙江石金玄武岩纤维股份有限公司 Produce the positioning device and localization method of basalt fibre particle rope
CN108589356B (en) * 2018-07-02 2023-09-01 浙江石金玄武岩纤维股份有限公司 Positioning device and positioning method for producing basalt fiber particle ropes
CN108708202B (en) * 2018-07-02 2024-03-19 浙江石金玄武岩纤维股份有限公司 Basalt fiber particle rope and rope net for reinforcement
CN108708202A (en) * 2018-07-02 2018-10-26 浙江石金玄武岩纤维股份有限公司 Enhancing basalt fibre particle rope and netting
CN110923947A (en) * 2018-09-18 2020-03-27 成都硕屋科技有限公司 Composite material and preparation method thereof
WO2021219501A1 (en) 2020-04-29 2021-11-04 ETH Zürich Bi- or multicomponent fibres for large composite parts
CN115485423A (en) * 2020-04-29 2022-12-16 苏黎世联邦理工学院 Bi-or multicomponent fibers for large composite parts
CN115485423B (en) * 2020-04-29 2024-03-12 苏黎世联邦理工学院 Bicomponent or multicomponent fibers for large composite parts
WO2023058448A1 (en) 2021-10-07 2023-04-13 東レ株式会社 Fiber-reinforced thermoplastic resin composition
KR20240087714A (en) 2021-10-07 2024-06-19 도레이 카부시키가이샤 Fiber reinforced thermoplastic resin composition

Similar Documents

Publication Publication Date Title
JP2011162905A (en) Fiber material for reinforcing molding material
TWI494360B (en) Chopped carbon fibrous bundle, fabricating method of chopped carbon fibrous bundle, fabricating method of carbon fiber reinforced resin composition, fabricating method of pellet and fabricating method of article
TWI450917B (en) Manufacturing method of prepreg, prepreg and preform
JP6035129B2 (en) Composite FRP short wire for cement reinforcement and method for producing the same
CN1433443A (en) Oriented nanofibers embedded in polymer matrix
KR20170077189A (en) Thermoplastic composite, method for preparing thermoplastic composite, and injection-molded product
KR101886537B1 (en) Three-dimensional product having uniform property manufacturing method using Selective Laser Sintering 3D printing
Slapnik et al. Fused filament fabrication of Nd-Fe-B bonded magnets: Comparison of PA12 and TPU matrices
JP2013203941A (en) Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and automobile part that uses the carbon fiber-reinforced composite material
CN105431475A (en) Fiber-reinforced composite material and method for producing same
JP2011190549A (en) Fiber-mixed mat-shaped molded product and fiber-reinforced molded product
WO2013129323A1 (en) Fiber for reinforcing cement, and cured cement produced using same
US10858285B2 (en) Enhancement of reinforcing fibers, their applications, and methods of making same
CN104356585A (en) High-performance continuous carbon fiber reinforced ABS composite material and preparation method thereof
Kajaks et al. Some exploitation properties of wood plastic hybrid composites based on polypropylene and plywood production waste
EP3039060A1 (en) Overmolding with non-oriented fibers
KR20200109593A (en) Thermoplastic resin matrix fiber and carbon fiber-reinforced thermoplastic plastic composite having excellent impregnation property produced therefrom and manufacturing method thereof
JP2011057811A (en) Propylene based resin composition
KR20220139553A (en) Modified carbon fiber/ABS composites and manufacturing method of the same
Ohta et al. Mechanical properties of injection-moulded jute/glass fibre hybrid composites
CN108430748B (en) Composite sheet and method for manufacturing same
JPH04316807A (en) Long fiber reinforced resin pellet
NLN et al. High-performance molded composites using additively manufactured preforms with controlled fiber and pore morphology
CN111070469A (en) Method for preparing reinforced articles
Zhang et al. Designing and Fast 3D Printing of Continuous Carbon Fibers for Biomedical Applications

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20120912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130917