JP2011161635A - Laminate white film for light reflector - Google Patents

Laminate white film for light reflector Download PDF

Info

Publication number
JP2011161635A
JP2011161635A JP2010023174A JP2010023174A JP2011161635A JP 2011161635 A JP2011161635 A JP 2011161635A JP 2010023174 A JP2010023174 A JP 2010023174A JP 2010023174 A JP2010023174 A JP 2010023174A JP 2011161635 A JP2011161635 A JP 2011161635A
Authority
JP
Japan
Prior art keywords
layer
film
support layer
white film
high void
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010023174A
Other languages
Japanese (ja)
Other versions
JP5468927B2 (en
Inventor
Yasusuke Nakanishi
庸介 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2010023174A priority Critical patent/JP5468927B2/en
Publication of JP2011161635A publication Critical patent/JP2011161635A/en
Application granted granted Critical
Publication of JP5468927B2 publication Critical patent/JP5468927B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate white film for light reflector which prevents occurrence of crack in the stretching of the film and has practically sufficient reflection performance in a visible light region. <P>SOLUTION: The laminate white film for light reflector comprises a high void layer, a thin supporting layer provided on one surface of the high void layer and a thick supporting layer provided on the other surface of the high void layer. The thin supporting layer and the thick supporting layer are formed from a polyester composition containing 0.1-10 wt.% inert particle, and the high void layer is formed from the polyester composition having 52-60 wt.% void forming material. When total thickness of the thin supporting layer and thick supporting layer is defined as 100%, the thickness of the thin supporting layer is 5-30% and the thickness of the thick supporting layer is 95-70%. The total thickness of the thin supporting layer and the thick supporting layer occupies 5-20% of total thickness of the laminate white film. The thickness of the high void layer occupies 95-80% of total thickness of the laminate white film and the total thickness of the laminate white film is 175-300 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光源の反射板として用いられる光反射板用積層白色フィルムに関する。   The present invention relates to a laminated white film for a light reflector used as a reflector for a light source.

液晶表示装置のバックライトユニットには、表示装置の背面に光源を置くバックライト方式と、側面に光源を置くサイドライト方式があり、いずれの方式においても光源からの光が画面の背面へ逃げるのを防ぐために背面に反射板が設置される。この反射板には、高い反射率を備えることが要求される。この反射板として、フィルムの内部に微細な気泡を含有するポリエステルの白色フィルムが用いられている。   The backlight unit of a liquid crystal display device has a backlight method in which a light source is placed on the back surface of the display device and a sidelight method in which a light source is placed on the side surface. In either method, light from the light source escapes to the back surface of the screen. In order to prevent this, a reflector is installed on the back. This reflector is required to have a high reflectance. A polyester white film containing fine bubbles inside the film is used as the reflector.

特開昭63−62104号公報JP 63-62104 A 特公平8−16175号公報Japanese Patent Publication No. 8-16175 特開2000−37835号公報JP 2000-37835 A 特開2005−125700号公報JP 2005-125700 A 特開2004−50479号公報JP 2004-50479 A

光反射板用フィルムの反射率を上げるためには、白色無機粒子を多量に含有する未延伸フィルムを延伸することでフィルム内部に微細なボイドを発生させるとよい。しかし、白色無機粒子を多量に含有させ多数の微細なボイドを含有するようにした高ボイド層は、延伸時に高ボイド層が割れてしまう問題があるため、白色無機粒子を添加する濃度に限界がある。割れを防ぐためには支持層を設ける方法が有効であるが、例えば片面にだけ支持層を設けた二層積層フィルムとすると、高ボイド層を反射面に用いることで光線反射率は向上するが、この二層積層フィルムは支持層に被覆されていない高ボイド層をフィルム表面に有するため、高ボイド層の割れの問題が顕在化し、生産性が低下する。
本発明は、フィルムの延伸時に割れが発生せず、実用上十分な可視光領域の反射性能を備えた光反射板用積層白色フィルムを提供することを目的とする。
In order to increase the reflectance of the light reflecting plate film, it is preferable to generate fine voids inside the film by stretching an unstretched film containing a large amount of white inorganic particles. However, the high void layer containing a large amount of white inorganic particles and containing a large number of fine voids has a problem that the high void layer is cracked during stretching, so there is a limit to the concentration at which the white inorganic particles are added. is there. In order to prevent cracking, a method of providing a support layer is effective.For example, when a two-layer laminated film is provided with a support layer only on one side, the light reflectance is improved by using a high void layer on the reflection surface, Since this two-layer laminated film has a high void layer not covered with a support layer on the film surface, the problem of cracking of the high void layer becomes obvious and productivity is lowered.
An object of the present invention is to provide a laminated white film for a light reflecting plate that does not generate a crack when the film is stretched and has a practically sufficient reflection performance in the visible light region.

すなわち本発明は、高ボイド層ならびに、高ボイド層の一方の面に設けられた薄い支持層および高ボイド層の他方の面に設けられた厚い支持層からなる積層白色フィルムであり、薄い支持層および厚い支持層は不活性粒子を0.1〜10重量%含有するポリエステル組成物からなり、高ボイド層は、ボイド形成物質52〜60重量%を含有するポリエステル組成物からなり、薄い支持層と厚い支持層との合計厚みを100%としたときに薄い支持層は5〜30%の厚みであり、厚い支持層は95〜70%の厚みであり、薄い支持層と厚い支持層との合計厚みは、積層白色フィルムの全体厚みの5〜20%を占め、高ボイド層の厚みは、積層白色フィルムの全体厚みの95〜80%を占め、積層白色フィルムの全体厚みが175〜300μmであることを特徴とする、光反射板用積層白色フィルムである。   That is, the present invention is a laminated white film comprising a high void layer, a thin support layer provided on one surface of the high void layer, and a thick support layer provided on the other surface of the high void layer. And the thick support layer consists of a polyester composition containing 0.1 to 10% by weight of inert particles, and the high void layer consists of a polyester composition containing 52 to 60% by weight of a void-forming substance, When the total thickness with the thick support layer is 100%, the thin support layer has a thickness of 5 to 30%, the thick support layer has a thickness of 95 to 70%, and the total of the thin support layer and the thick support layer. The thickness accounts for 5 to 20% of the total thickness of the laminated white film, the thickness of the high void layer accounts for 95 to 80% of the total thickness of the laminated white film, and the total thickness of the laminated white film is 175 to 300 μm. Characterized Rukoto a laminate white film for a light reflective plate.

本発明によれば、フィルムの延伸時に割れが発生せず、実用上十分な可視光領域の反射性能を備えた光反射板用積層白色フィルムを提供することができる。   According to the present invention, it is possible to provide a laminated white film for a light reflecting plate that does not generate a crack when the film is stretched and has a practically sufficient reflection performance in the visible light region.

以下、本発明を詳細に説明する。
本発明の光反射板用積層白色フィルムは、高ボイド層の一方の面に設けられた薄い支持層および高ボイド層の他方の面に設けられた厚い支持層からなる。
Hereinafter, the present invention will be described in detail.
The laminated white film for a light reflecting plate of the present invention comprises a thin support layer provided on one surface of the high void layer and a thick support layer provided on the other surface of the high void layer.

[高ボイド層]
高ボイド層はボイド形成物質52〜60重量%を含有するポリエステル組成物からなり、好ましくはボイド形成物質52〜60重量%およびイソフタル酸共重合ポリエチレンテレフタレート48〜40重量%からなる。
高ボイド層のポリエステル組成物のボイド形成物質が52重量%未満であると十分な反射率および輝度を得ることができない。60重量%を超えると安定した製膜ができない。
高ボイド層の厚みは、積層白色フィルムの全体厚みの95〜80%、好ましくは93〜82%を占める。高ボイド層の厚み割合が95%を超えると安定した製膜ができず、80%未満であると十分な反射率と輝度を得ることができない。
[High void layer]
The high void layer comprises a polyester composition containing 52-60% by weight void forming material, preferably 52-60% by weight void forming material and 48-40% by weight isophthalic acid copolymerized polyethylene terephthalate.
When the void forming substance of the polyester composition of the high void layer is less than 52% by weight, sufficient reflectance and luminance cannot be obtained. If it exceeds 60% by weight, stable film formation cannot be achieved.
The thickness of the high void layer accounts for 95 to 80%, preferably 93 to 82% of the total thickness of the laminated white film. If the thickness ratio of the high void layer exceeds 95%, stable film formation cannot be achieved, and if it is less than 80%, sufficient reflectance and luminance cannot be obtained.

本発明の光反射板用積層白色フィルムでは、延伸時に、高ボイド層のボイド形成物質と共重合ポリエチレンテレフタレートとの界面で剥離が起こり、高ボイド層に多数の微細なボイドが形成される。高ボイド層のボイド体積率は、好ましくは30〜80%、さらに好ましくは35〜75%、特に好ましくは40〜70%である。この範囲であれば高い反射率を備えながら強度を維持した高ボイド層を得ることができる。   In the laminated white film for a light reflecting plate of the present invention, peeling occurs at the interface between the void-forming substance of the high void layer and the copolymerized polyethylene terephthalate during stretching, and many fine voids are formed in the high void layer. The void volume ratio of the high void layer is preferably 30 to 80%, more preferably 35 to 75%, and particularly preferably 40 to 70%. Within this range, it is possible to obtain a high void layer having high reflectivity and maintaining strength.

[ボイド形成物質]
高ボイド層のボイド形成物質としては、無機粒子、有機粒子のいずれも用いることができる。無機粒子としては、硫酸バリウム、炭酸カルシウム、二酸化珪素、酸化チタンの粒子を例示することができる。有機粒子としては、シリコーン、アクリルの粒子を例示することができる。ボイド形成物質は、単独で用いてもよく、2種以上を併用してもよい。
[Void-forming substance]
As the void forming substance of the high void layer, either inorganic particles or organic particles can be used. Examples of the inorganic particles include barium sulfate, calcium carbonate, silicon dioxide, and titanium oxide particles. Examples of the organic particles include silicone and acrylic particles. Void forming substances may be used alone or in combination of two or more.

高い反射性や耐熱性を得ることができることから、ボイド形成物質としては、無機粒子を用いることが好ましく、なかでもポリエステルポリマー中に安定して分散させることができ、製膜性がよく、かつ良好な反射率を得ることができることから、硫酸バリウム粒子が特に好ましい。   Since it is possible to obtain high reflectivity and heat resistance, it is preferable to use inorganic particles as the void-forming substance, and among them, it can be stably dispersed in the polyester polymer, and the film forming property is good and good. Barium sulfate particles are particularly preferred because a high reflectance can be obtained.

[高ボイド層のイソフタル酸共重合ポリエチレンテレフタレート]
高ボイド層のイソフタル酸共重合ポリエチレンテレフタレートにおけるイソフタル酸成分の共重合量は、好ましくは6〜18モル%、さらに好ましくは8〜16モル%である。この範囲の共重合量であることで、良好な製膜性で高い反射率のフィルムを得ることができる。
[High-void layer isophthalic acid copolymerized polyethylene terephthalate]
The copolymerization amount of the isophthalic acid component in the isophthalic acid copolymerized polyethylene terephthalate of the high void layer is preferably 6 to 18 mol%, more preferably 8 to 16 mol%. When the amount of copolymerization is within this range, a film having good film forming properties and high reflectance can be obtained.

[支持層]
薄い支持層および厚い支持層は、不活性粒子を0.1〜10重量%含有するポリエステル組成物からなり、好ましくは不活性粒子0.1〜10重量%およびイソフタル酸共重合ポリエチレンテレフタレート99.9〜90重量%のポリエステル組成物からなる。支持層のポリエステル組成物の不活性粒子が0.1重量%未満であると十分な滑り性を得ることができず、またエッジライト型のバックライトユニットに組み込んだ場合に導光板との貼り付きが生じる。10重量%を超えると高ボイド層を支える支持層としての強度を保つことができず、フィルムの破断に繋がる。
[Support layer]
The thin support layer and the thick support layer comprise a polyester composition containing 0.1 to 10% by weight of inert particles, preferably 0.1 to 10% by weight of inert particles and isophthalic acid copolymerized polyethylene terephthalate 99.9. It consists of ˜90% by weight of a polyester composition. If the inert particles of the polyester composition of the support layer are less than 0.1% by weight, sufficient slipperiness cannot be obtained, and when it is incorporated into an edge light type backlight unit, it adheres to the light guide plate. Occurs. If it exceeds 10% by weight, the strength as a support layer for supporting the high void layer cannot be maintained, which leads to breakage of the film.

薄い支持層と厚い支持層との合計厚みは、積層白色フィルムの全体厚みの5〜20%を占める。5%未満であると支持層が破断して製膜が困難になることがある。他方、20%を超えると十分に高い光線反射率を得ることができない。   The total thickness of the thin support layer and the thick support layer occupies 5 to 20% of the total thickness of the laminated white film. If it is less than 5%, the support layer may break and film formation may be difficult. On the other hand, if it exceeds 20%, a sufficiently high light reflectance cannot be obtained.

薄い支持層と厚い支持層との合計厚みを100%としたときに薄い支持層は5〜30%の厚みであり、厚い支持層は95〜70%の厚みである。薄い支持層の厚みが5%未満であり、厚い支持層の厚みが95%を超えると支持層が破断して積層白色フィルムに割れが発生することがある。他方、薄い支持層の厚みが30%超え、厚い支持層の厚みが70%未満であると薄い支持層側の面から光線反射率を測定したときに十分に高い光線反射率を得ることができない。   When the total thickness of the thin support layer and the thick support layer is 100%, the thin support layer has a thickness of 5 to 30%, and the thick support layer has a thickness of 95 to 70%. If the thickness of the thin support layer is less than 5% and the thickness of the thick support layer exceeds 95%, the support layer may break and cracks may occur in the laminated white film. On the other hand, when the thickness of the thin support layer exceeds 30% and the thickness of the thick support layer is less than 70%, a sufficiently high light reflectance cannot be obtained when the light reflectance is measured from the surface on the thin support layer side. .

[不活性粒子]
支持層の不活性粒子の平均粒径は、好ましくは0.1〜5μm、さらに好ましくは0.5〜3μm、特に好ましくは0.6〜2μmである。0.1μm未満であると粒子の凝集が生じ易く好ましくなく、5μmを超えると粗大突起となりフィルム破断に繋がることがあり好ましくない。
[Inert particles]
The average particle diameter of the inert particles in the support layer is preferably 0.1 to 5 μm, more preferably 0.5 to 3 μm, and particularly preferably 0.6 to 2 μm. If the thickness is less than 0.1 μm, the particles are likely to be aggregated, and if it exceeds 5 μm, coarse protrusions are formed and the film may be broken.

支持層の不活性粒子としては、無機物質の粒子を用いることができ、例えば、酸化アルミニウム、硫酸バリウム、炭酸カルシウム、二酸化珪素、酸化チタンの粒子を例示することができる。不活性粒子の平均粒径は、例えば0.3〜3μmである。
支持層の不活性粒子は、高ボイド層のボイド形成物質として用いることのできる無機粒子と同じ材質であってもよく、同じ平均粒径であってもよい。
As the inert particles of the support layer, particles of an inorganic substance can be used. For example, particles of aluminum oxide, barium sulfate, calcium carbonate, silicon dioxide, and titanium oxide can be exemplified. The average particle diameter of the inert particles is, for example, 0.3 to 3 μm.
The inert particles of the support layer may be the same material as the inorganic particles that can be used as the void-forming substance of the high void layer, or may have the same average particle size.

[支持層のイソフタル酸共重合ポリエチレンテレフタレート]
支持層のイソフタル酸共重合ポリエチレンテレフタレートに含まれるイソフタル酸成分は、好ましくは0.1〜2.9モル%、さらに好ましくは0.1〜2.5モル%である。この範囲のイソフタル酸成分含有量であることで、無機粒子の分散性が悪化することなく、良好な寸法安定性を得ることができ、また高ボイド層に十分なボイドを形成させるのに必要な延伸応力を延伸時にかけることができる。
[Support layer isophthalic acid copolymer polyethylene terephthalate]
The isophthalic acid component contained in the isophthalic acid copolymerized polyethylene terephthalate of the support layer is preferably 0.1 to 2.9 mol%, more preferably 0.1 to 2.5 mol%. When the content of the isophthalic acid component is within this range, good dimensional stability can be obtained without deteriorating the dispersibility of the inorganic particles, and it is necessary to form a sufficient void in the high void layer. Stretching stress can be applied during stretching.

[厚み]
本発明の積層白色フィルムの全体厚みが175〜300μm、好ましくは180〜280μmである。175μm未満であると反射率が低下する。300μmを超えるとこれ以上厚くしても反射率の上昇が望めず、また安定した製膜性が得られない。
[Thickness]
The total thickness of the laminated white film of the present invention is 175 to 300 μm, preferably 180 to 280 μm. If it is less than 175 μm, the reflectivity is lowered. If the thickness exceeds 300 μm, an increase in reflectance cannot be expected even if the thickness is increased beyond this, and stable film-forming properties cannot be obtained.

[平均反射率]
本発明の光反射板用積層白色フィルムは、薄い支持層側から測定した光線反射率が98.8%以上である。反射率が98.8%未満であるとバックライトユニットに組み込んだときに十分な輝度を得ることができない。
[Average reflectance]
The laminated white film for a light reflecting plate of the present invention has a light reflectance measured from the thin support layer side of 98.8% or more. When the reflectance is less than 98.8%, sufficient luminance cannot be obtained when the backlight unit is incorporated.

[製造方法]
以下、本発明の光反射板用積層白色フィルムを製造する方法の一例を説明する。なお、ガラス転移温度をTg、融点をTmと略することがある。
高ボイド層に用いるボイド形成物質の粒子を含有するポリエステル組成物を得るためには、粒子を多量添加したマスターペレットを製造し、これらと、粒子を含有しないか少量含有するポリエステルのペレットとを混練して、所定量を含有させる方法を用いることができる。
[Production method]
Hereinafter, an example of a method for producing the laminated white film for a light reflecting plate of the present invention will be described. The glass transition temperature may be abbreviated as Tg and the melting point may be abbreviated as Tm.
In order to obtain a polyester composition containing void-forming substance particles used in the high void layer, master pellets containing a large amount of particles are produced and kneaded with polyester pellets containing no or a small amount of particles. Thus, a method of containing a predetermined amount can be used.

本発明では、製膜時のフィルターとして線径15μm以下のステンレス鋼細線よりなる平均目開き10〜100μm、好ましくは平均目開き20〜50μmの不織布型フィルターを用い、ポリエステル組成物を濾過することが好ましい。この濾過を行うことにより、一般的には凝集して粗大凝集粒子となりやすい粒子の凝集を抑えて、粗大異物の少ない白色フィルムを得ることができる。   In the present invention, the polyester composition can be filtered by using a nonwoven fabric type filter having an average opening of 10 to 100 μm, preferably an average opening of 20 to 50 μm made of a stainless steel fine wire having a wire diameter of 15 μm or less as a filter during film formation. preferable. By performing this filtration, it is possible to obtain a white film with few coarse foreign matters by suppressing the aggregation of particles that generally tend to agglomerate into coarse agglomerated particles.

ダイから溶融したポリエステル組成物をフィードブロックを用いた同時多層押出し法により、積層未延伸シートを製造する。すなわち高ボイド層を構成するポリエステル組成物の溶融物と、支持層を構成するポリエステル組成物の溶融物とを、フィードブロックを用いて支持層/高ボイド層/支持層となるように積層し、ダイに展開して押出しを実施する。この時、フィードブロックで積層されたポリエステル組成物物は、積層された形態を維持している。   A laminated unstretched sheet is produced from the polyester composition melted from the die by a simultaneous multilayer extrusion method using a feed block. Specifically, the melt of the polyester composition constituting the high void layer and the melt of the polyester composition constituting the support layer are laminated to form a support layer / high void layer / support layer using a feed block, Deploy on a die and extrude. At this time, the polyester composition laminated by the feed block maintains the laminated form.

ダイより押出された未延伸シートは、キャスティングドラムで冷却固化され、未延伸フィルムとなる。この未延伸フィルムをロール加熱、赤外線加熱等で加熱し、縦方向に延伸して縦延伸フィルムを得る。この延伸は、2個以上のロールの周速差を利用して行うのが好ましい。   The unstretched sheet extruded from the die is cooled and solidified by a casting drum to form an unstretched film. This unstretched film is heated by roll heating, infrared heating or the like, and stretched in the longitudinal direction to obtain a longitudinally stretched film. This stretching is preferably performed by utilizing a difference in peripheral speed between two or more rolls.

延伸温度は、ポリエステルのTg以上の温度、好ましくはTg〜(Tg+70℃)の温度範囲とする。縦延伸の倍率は2.5〜3.2倍、好ましくは2.6〜3.1倍とする。2.5倍未満であるとフィルムの厚み斑が悪くなり、また高ボイド層に十分なボイドを形成するのに必要な延伸応力が掛からず、十分な反射率が得られない、3.2倍を超えると製膜中に破断が発生し易くなる。   The stretching temperature is a temperature equal to or higher than the Tg of the polyester, preferably a temperature range of Tg to (Tg + 70 ° C.). The ratio of longitudinal stretching is 2.5 to 3.2 times, preferably 2.6 to 3.1 times. If the thickness is less than 2.5 times, the uneven thickness of the film is deteriorated, and the stretching stress necessary for forming a sufficient void in the high void layer is not applied, and sufficient reflectance cannot be obtained. If it exceeds, breakage tends to occur during film formation.

縦延伸後のフィルムは、続いて、横延伸、熱固定、熱弛緩の処理を順次施して二軸配向フィルムとするが、これら処理はフィルムを走行させながら行う。横延伸の処理はポリエステルのTgより高い温度から始め、(Tg+5℃)〜(Tg+70℃)の温度まで昇温しながら行う。横延伸過程での昇温は連続的でも段階的(逐次的)でもよいが、通常逐次的に昇温する。例えばテンターの横延伸ゾーンをフィルム走行方向に沿って複数に分け、ゾーン毎に所定温度の加熱媒体を流すことで昇温する。横延伸の倍率は、好ましくは3.0〜4.0倍、さらに好ましくは3.1〜3.9倍である。3.0倍未満とするとフィルムの厚み斑が悪くるため好ましくなく、4.0倍を超えると製膜中に破断が発生し易くなり好ましくない。   Subsequently, the film after longitudinal stretching is subjected to lateral stretching, heat setting, and thermal relaxation in order to form a biaxially oriented film. These processes are performed while the film is running. The transverse stretching treatment starts from a temperature higher than the Tg of the polyester and is performed while raising the temperature to a temperature of (Tg + 5 ° C.) to (Tg + 70 ° C.). The temperature increase in the transverse stretching process may be continuous or stepwise (sequential), but the temperature is generally increased sequentially. For example, the transverse stretching zone of the tenter is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium having a predetermined temperature for each zone. The transverse stretching ratio is preferably 3.0 to 4.0 times, more preferably 3.1 to 3.9 times. If it is less than 3.0 times, the thickness unevenness of the film is poor, which is not preferable, and if it exceeds 4.0 times, breakage tends to occur during film formation, which is not preferable.

横延伸後のフィルムは両端を把持したまま(Tm−20℃)〜(Tm−100℃)で定幅または10%以下の幅減少下で熱処理して熱収縮率を低下させるのがよい。これより高い温度であるとフィルムの平面性が悪くなり、厚み斑が大きくなり好ましくない。また、熱処理温度が(Tm−100℃)より低いと熱収縮率が大きくなることがある。また、熱固定後フィルム温度を常温に戻す過程で把持しているフィルムの両端を切り落し、フィルム縦方向の引き取り速度を調整し、縦方向に弛緩させることができる。弛緩させる手段としてはテンター出側のロール群の速度を調整する。弛緩させる割合として、テンターのフィルムライン速度に対してロール群の速度ダウンを行い、好ましくは0.1〜1.5%、さらに好ましくは0.2〜1.2%、特に好ましくは0.3〜1.0%の速度ダウンを実施してフィルムを弛緩(この値を「弛緩率」という)して、弛緩率をコントロールすることによって縦方向の熱収縮率を調整する。また、フィルム横方向は両端を切り落すまでの過程で幅減少させて、所望の熱収縮率を得ることもできる。   The film after transverse stretching is preferably heat treated with a constant width or a decrease in width of 10% or less while holding both ends (Tm-20 ° C.) to (Tm-100 ° C.) to reduce the thermal shrinkage. When the temperature is higher than this, the flatness of the film is deteriorated, and the thickness unevenness becomes large, which is not preferable. On the other hand, if the heat treatment temperature is lower than (Tm-100 ° C.), the thermal shrinkage rate may increase. Further, both ends of the film being gripped in the process of returning the film temperature to room temperature after heat setting can be cut off to adjust the take-up speed in the vertical direction of the film and relax in the vertical direction. As a means for relaxing, the speed of the roll group on the tenter exit side is adjusted. As the rate of relaxation, the speed of the roll group is reduced with respect to the film line speed of the tenter, preferably 0.1 to 1.5%, more preferably 0.2 to 1.2%, particularly preferably 0.3. The film is relaxed by performing a speed reduction of ˜1.0% (this value is referred to as “relaxation rate”), and the longitudinal heat shrinkage rate is adjusted by controlling the relaxation rate. Further, the width of the film in the horizontal direction can be reduced in the process until both ends are cut off, so that a desired heat shrinkage rate can be obtained.

なお、ガラス転移点(Tg)および融点(Tm)は、次のとおり測定する。すなわち、サンプル約20mgを測定用のアルミニウム製パンに封入して示差走査熱量測定装置(TA Instruments社製、2100 DSC)に装着し、25℃から20℃/分の速度で290℃まで昇温させ、290℃で3分間保持した後取り出し、直ちに氷の上に移して急冷する。このパンを再度、示差走査熱量測定装置に装着し、25℃から20℃/分の速度で昇温させてTg(℃)およびTm(℃)を測定する。
ここでは、フィルムを逐次二軸延伸法によって延伸する場合を例に詳細に説明したが、逐次二軸延伸法、同時二軸延伸法のいずれの方法で延伸してもよい。
The glass transition point (Tg) and melting point (Tm) are measured as follows. That is, about 20 mg of a sample is sealed in an aluminum pan for measurement and attached to a differential scanning calorimeter (TA Instruments, 2100 DSC), and the temperature is raised from 25 ° C. to 290 ° C. at a rate of 20 ° C./min. Hold at 290 ° C. for 3 minutes, then remove, immediately transfer onto ice and quench. The pan is again mounted on the differential scanning calorimeter, and the temperature is increased from 25 ° C. to 20 ° C./min to measure Tg (° C.) and Tm (° C.).
Here, the case where the film is stretched by the sequential biaxial stretching method has been described in detail as an example, but the film may be stretched by any of the sequential biaxial stretching method and the simultaneous biaxial stretching method.

以下、実施例により本発明を詳述する。なお、測定、評価は以下の方法で行った。
(1)積層フィルムの全体厚み
積層白色フィルムのサンプルをスピンドル検出器(安立電気(株)製K107C)にはさみ、デジタル差動電子マイクロメーター(安立電気(株)製K351)にて、異なる位置で厚みを10点測定し、平均値を求めフィルムの全体厚みとした。
Hereinafter, the present invention will be described in detail by way of examples. Measurement and evaluation were performed by the following methods.
(1) Total thickness of laminated film A sample of a laminated white film is sandwiched between spindle detectors (K107C manufactured by Anritsu Electric Co., Ltd.) and at different positions with a digital differential electronic micrometer (K351 manufactured by Anritsu Electric Co., Ltd.). The thickness was measured at 10 points, and the average value was obtained as the total thickness of the film.

(2)各層の厚み
積層白色フィルムのサンプルを長手方向2mm、幅方向2cmに切り出し、包埋カプセルに固定後、エポキシ樹脂(リファインテック(株)製エポマウント)にて包埋した。包埋されたサンプルをミクロトーム(LEICA製ULTRACUT UCT)で幅方向に垂直に切断、5nm厚の薄膜切片にした。光学顕微鏡を用いて観察撮影し、写真から各層の厚み比を測定し、積層白色フィルムの全体厚みから計算して、各層の厚みを求めた。
(2) Thickness of each layer A sample of the laminated white film was cut into 2 mm in the longitudinal direction and 2 cm in the width direction, fixed to an embedding capsule, and then embedded with an epoxy resin (Epomount manufactured by Refine Tech Co., Ltd.). The embedded sample was cut perpendicularly in the width direction with a microtome (LETAC ULTRACUT UCT) to form a 5 nm thick thin film slice. The film was observed and photographed using an optical microscope, the thickness ratio of each layer was measured from the photograph, and the thickness of each layer was determined by calculating from the total thickness of the laminated white film.

(3)延伸性
縦方向2.5〜3.2倍、横方向3.0〜4.0倍に延伸してフィルムを製膜し、この際に安定して製膜できるか否かを観察し、下記基準で評価した。
◎: 4時間以上安定して製膜できる
○: 1時間以上4時間未満の間に切断が発生するが、比較的安定して製膜できる
×: 1時間未満に切断が発生し、安定して製膜ができない
(3) Stretchability A film is formed by stretching 2.5 to 3.2 times in the longitudinal direction and 3.0 to 4.0 times in the transverse direction, and it is observed whether or not the film can be stably formed at this time. And evaluated according to the following criteria.
◎: Film can be stably formed for 4 hours or more ○: Cutting occurs between 1 hour and less than 4 hours, but film can be formed relatively stably ×: Cutting occurs stably and less than 1 hour Can not form a film

(4)光線反射率
島津製作所(株)製分光光度計UV−3101PCを用い、JIS−K7105測定法Bに従って全光線反射率を求めた。測定条件は、スキャン速度200nm/秒、スリット幅20nm、サンプリングピッチ2.0nmとし、標準白色板は硫酸バリウムを用いた。波長400nm〜700nmでの光線反射率を、その波長範囲内で平均して全光線反射率とした。測定は、薄い支持層側の面について行った。
(4) Light reflectance The total light reflectance was calculated | required according to JIS-K7105 measuring method B using Shimadzu Corporation spectrophotometer UV-3101PC. The measurement conditions were a scan speed of 200 nm / second, a slit width of 20 nm, a sampling pitch of 2.0 nm, and barium sulfate was used as the standard white plate. The light reflectance at wavelengths of 400 nm to 700 nm was averaged within the wavelength range to obtain total light reflectance. The measurement was performed on the surface on the thin support layer side.

(5)平均粒径
粒度分布計(堀場製作所製LA−950)にて、粒子の粒度分布を求め、d50での粒子径を平均粒径とした。
(5) Average particle size The particle size distribution of the particles was determined with a particle size distribution meter (LA-950, manufactured by Horiba, Ltd.), and the particle size at d50 was defined as the average particle size.

[実施例1]
テレフタル酸ジメチル132重量部、イソフタル酸ジメチル18重量部(ポリエステルの酸成分に対して12モル%)、エチレングリコール96重量部、ジエチレングリコール3.0重量部、酢酸マンガン0.05重量部、酢酸リチウム0.012重量部を精留塔、留出コンデンサを備えたフラスコに仕込み、撹拌しながら150〜235℃に加熱しメタノールを留出させエステル交換反応を行った。メタノールが留出した後、リン酸トリメチル0.03重量部、二酸化ゲルマニウム0.04重量部を添加し、反応物を反応器に移した。ついで撹拌しながら反応器内を徐々に0.5mmHgまで減圧するとともに290℃まで昇温し重縮合反応を行った。得られた共重合ポリエステルのジエチレングリコール成分量は2.5重量%、ゲルマニウム元素量は50ppm、リチウム元素量は5ppmであった。この共重合ポリエステルのペレットとこの共重合ポリエステルに平均粒径1.2μmの硫酸バリウム粒子を60重量%の濃度となるように含有させたマスターペレットを用い、これらのペレットの配合比率を調整することで、表1に示す割合で硫酸バリウム粒子を含有する高ボイド層用の組成物を得た。
[Example 1]
132 parts by weight of dimethyl terephthalate, 18 parts by weight of dimethyl isophthalate (12 mol% based on the acid component of the polyester), 96 parts by weight of ethylene glycol, 3.0 parts by weight of diethylene glycol, 0.05 part by weight of manganese acetate, 0 parts of lithium acetate .012 parts by weight were charged into a rectifying column and a flask equipped with a distillation condenser, and heated to 150 to 235 ° C. with stirring to distill methanol to conduct a transesterification reaction. After the methanol was distilled off, 0.03 part by weight of trimethyl phosphate and 0.04 part by weight of germanium dioxide were added, and the reaction product was transferred to the reactor. Subsequently, while stirring, the pressure in the reactor was gradually reduced to 0.5 mmHg and the temperature was raised to 290 ° C. to carry out a polycondensation reaction. The obtained copolymer polyester had a diethylene glycol component amount of 2.5% by weight, a germanium element amount of 50 ppm, and a lithium element amount of 5 ppm. Using the copolyester pellets and master pellets containing barium sulfate particles having an average particle size of 1.2 μm in the copolyester to a concentration of 60% by weight, adjusting the blending ratio of these pellets Thus, a composition for a high void layer containing barium sulfate particles in the ratio shown in Table 1 was obtained.

また、前記共重合ポリエステルのペレットと、この共重合ポリエステルに平均粒径1.2μmの硫酸バリウム粒子を60重量%の濃度となるように含有させたマスターペレットとを用い、これらのペレットの配合比率を調整することで、硫酸バリウム粒子を5重量%含有する支持層用のポリエステル組成物を得た。
高ボイド層用の組成物を芯層(A層)用に280℃に加熱された押出機に共重し、支持層用のポリエステル組成物を薄い支持層(B1層)用および厚い支持層(B2層)用に280℃に加熱された押出機に供給し、B1/A/B2となるような3層フィードブロック装置を使用して合流させ、その積層状態を保持したままダイスよりシート状に成形した。
Further, using the copolymer polyester pellets and master pellets containing barium sulfate particles having an average particle diameter of 1.2 μm in the copolymer polyester so as to have a concentration of 60% by weight, the mixing ratio of these pellets Was adjusted to obtain a polyester composition for a support layer containing 5% by weight of barium sulfate particles.
The composition for the high void layer is placed on an extruder heated to 280 ° C. for the core layer (A layer), and the polyester composition for the support layer is used for the thin support layer (B1 layer) and the thick support layer ( B2 layer) is supplied to an extruder heated to 280 ° C. and merged using a three-layer feed block device that becomes B1 / A / B2, and is kept in a sheet form from a die while maintaining its laminated state. Molded.

さらにこのシートを表面温度25℃の冷却ドラムで冷却固化した未延伸フィルムを、95℃にて加熱し長手方向(縦方向)に2.8倍で延伸し、25℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き120℃に加熱された雰囲気中で長手に垂直な方向(横方向)に3.4倍に延伸した。その後テンター内で215℃の温度で熱固定を行い、その後、縦方向に0.5%、横方向に2.0%弛緩を行い、室温まで冷やして、二軸延伸フィルムを得た。得られたフィルムの反射板用積層白色フィルムの物性を評価した。結果を表1にまとめる。   Further, an unstretched film obtained by cooling and solidifying this sheet with a cooling drum having a surface temperature of 25 ° C. was heated at 95 ° C., stretched 2.8 times in the longitudinal direction (longitudinal direction), and cooled with a roll group at 25 ° C. Subsequently, while holding both ends of the longitudinally stretched film with clips, the film was drawn to a tenter and stretched 3.4 times in a direction perpendicular to the longitudinal direction (lateral direction) in an atmosphere heated to 120 ° C. Thereafter, heat setting was performed at a temperature of 215 ° C. in a tenter, and thereafter, relaxation was carried out by 0.5% in the longitudinal direction and 2.0% in the transverse direction, followed by cooling to room temperature to obtain a biaxially stretched film. The physical property of the laminated white film for reflectors of the obtained film was evaluated. The results are summarized in Table 1.

[実施例2〜5および比較例1〜6]
芯層(A層)の組成物を表1に示す不活性粒子含有量のポリエステル組成物に変更し、フィルムの層構成を表1記載のとおりに変更した以外は実施例1と同様にして二軸延伸フィルムを得た。得られたフィルムの反射板用積層白色フィルムの物性を評価した。結果を表1にまとめる。
[Examples 2 to 5 and Comparative Examples 1 to 6]
The same procedure as in Example 1 was repeated except that the composition of the core layer (A layer) was changed to a polyester composition having an inert particle content shown in Table 1, and the layer structure of the film was changed as shown in Table 1. An axially stretched film was obtained. The physical property of the laminated white film for reflectors of the obtained film was evaluated. The results are summarized in Table 1.

Figure 2011161635
Figure 2011161635

本発明の光反射板用積層白色フィルムは、液晶テレビなどの表示装置の背面に光源を置くバックライト方式の液晶表示用や照明用などの反射フィルムとして好適に用いることができる。この場合、高い光線反射率を得ることができることから、薄い支持層側を反射面として用いることが好ましい。   The laminated white film for a light reflecting plate of the present invention can be suitably used as a reflective film for a backlight type liquid crystal display or illumination for placing a light source on the back of a display device such as a liquid crystal television. In this case, since a high light reflectance can be obtained, it is preferable to use the thin support layer side as a reflecting surface.

Claims (3)

高ボイド層ならびに、高ボイド層の一方の面に設けられた薄い支持層および高ボイド層の他方の面に設けられた厚い支持層からなる積層白色フィルムであり、薄い支持層および厚い支持層は不活性粒子を0.1〜10重量%含有するポリエステル組成物からなり、高ボイド層は、ボイド形成物質52〜60重量%を含有するポリエステル組成物からなり、薄い支持層と厚い支持層との合計厚みを100%としたときに薄い支持層は5〜30%の厚みであり、厚い支持層は95〜70%の厚みであり、薄い支持層と厚い支持層との合計厚みは、積層白色フィルムの全体厚みの5〜20%を占め、高ボイド層の厚みは、積層白色フィルムの全体厚みの95〜80%を占め、積層白色フィルムの全体厚みが175〜300μmであることを特徴とする、光反射板用積層白色フィルム。   A laminated white film consisting of a high void layer and a thin support layer provided on one side of the high void layer and a thick support layer provided on the other side of the high void layer. The thin support layer and the thick support layer are The high void layer is made of a polyester composition containing 52 to 60% by weight of a void-forming substance and contains a thin support layer and a thick support layer. When the total thickness is 100%, the thin support layer is 5 to 30% thick, the thick support layer is 95 to 70% thick, and the total thickness of the thin support layer and the thick support layer is laminated white. The total thickness of the film accounts for 5 to 20%, the thickness of the high void layer accounts for 95 to 80% of the total thickness of the laminated white film, and the total thickness of the laminated white film is 175 to 300 μm. , Laminated white film for light reflection plate. 高ボイド層はボイド形成物質52〜60重量%およびイソフタル酸共重合ポリエチレンテレフタレート48〜40重量%からなり、薄い支持層および厚い支持層は不活性粒子0.1〜10重量%およびイソフタル酸共重合ポリエチレンテレフタレート99.9〜90重量%からなる、請求項1記載の光反射板用積層白色フィルム。   The high void layer comprises 52-60% by weight voiding material and 48-40% by weight isophthalic acid copolymerized polyethylene terephthalate, and the thin and thick support layers comprise 0.1-10% by weight inert particles and isophthalic acid copolymer. The laminated white film for a light reflector according to claim 1, comprising 99.9 to 90% by weight of polyethylene terephthalate. 薄い支持層側を反射面として用い、薄い支持層側から測定した光線反射率が98.8%以上である、請求項1記載の光反射板用積層白色フィルム。   The laminated white film for a light reflector according to claim 1, wherein the thin support layer side is used as a reflection surface, and the light reflectance measured from the thin support layer side is 98.8% or more.
JP2010023174A 2010-02-04 2010-02-04 Laminated white film for light reflector Expired - Fee Related JP5468927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010023174A JP5468927B2 (en) 2010-02-04 2010-02-04 Laminated white film for light reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010023174A JP5468927B2 (en) 2010-02-04 2010-02-04 Laminated white film for light reflector

Publications (2)

Publication Number Publication Date
JP2011161635A true JP2011161635A (en) 2011-08-25
JP5468927B2 JP5468927B2 (en) 2014-04-09

Family

ID=44592914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010023174A Expired - Fee Related JP5468927B2 (en) 2010-02-04 2010-02-04 Laminated white film for light reflector

Country Status (1)

Country Link
JP (1) JP5468927B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088716A (en) * 2011-10-20 2013-05-13 Teijin Dupont Films Japan Ltd Polyester film for reflection plate
JP2013088715A (en) * 2011-10-20 2013-05-13 Teijin Dupont Films Japan Ltd Polyester film for reflection plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098811A (en) * 2000-09-25 2002-04-05 Toray Ind Inc White laminated polyester film for reflecting member of surface light source
JP2006021373A (en) * 2004-07-07 2006-01-26 Toray Ind Inc White polyester film
JP2006327019A (en) * 2005-05-26 2006-12-07 Toyobo Co Ltd Laminated polypropylene type film
JP2009040045A (en) * 2007-07-19 2009-02-26 Toray Ind Inc White polyester film
JP2009042421A (en) * 2007-08-08 2009-02-26 Toray Ind Inc White polyester film for liquid crystal display reflector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098811A (en) * 2000-09-25 2002-04-05 Toray Ind Inc White laminated polyester film for reflecting member of surface light source
JP2006021373A (en) * 2004-07-07 2006-01-26 Toray Ind Inc White polyester film
JP2006327019A (en) * 2005-05-26 2006-12-07 Toyobo Co Ltd Laminated polypropylene type film
JP2009040045A (en) * 2007-07-19 2009-02-26 Toray Ind Inc White polyester film
JP2009042421A (en) * 2007-08-08 2009-02-26 Toray Ind Inc White polyester film for liquid crystal display reflector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088716A (en) * 2011-10-20 2013-05-13 Teijin Dupont Films Japan Ltd Polyester film for reflection plate
JP2013088715A (en) * 2011-10-20 2013-05-13 Teijin Dupont Films Japan Ltd Polyester film for reflection plate

Also Published As

Publication number Publication date
JP5468927B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5319435B2 (en) White film for light reflector
JP5926512B2 (en) White reflective film
TWI488743B (en) Reflector with white film
KR101524992B1 (en) White reflective film
JP4734237B2 (en) Method for producing laminated film for reflector
JP2010224446A (en) White film for reflection film of backlight unit of liquid crystal display device
JP2013088715A (en) Polyester film for reflection plate
JP5468927B2 (en) Laminated white film for light reflector
JP5021974B2 (en) Laminated film
JP2007328150A (en) White reflection film
JP5635229B2 (en) Reflective film for liquid crystal display
JP5230998B2 (en) Polyester film
JP4563822B2 (en) Biaxially oriented laminated film
JP5108271B2 (en) Biaxially stretched laminated polyester film
JP5722937B2 (en) White reflective film
JP5782222B2 (en) Reflective film for liquid crystal display
JP5456962B2 (en) Laminated film
TWI575192B (en) White reflective film
JP2007322875A (en) Reflection film
JP5108438B2 (en) Polyester film for reflector
JP2010044321A (en) Reflecting film for liquid crystal display device
KR20170104455A (en) White reflective film for direct surface light source and direct surface light source using same
JP5495344B2 (en) White reflective film
JP5905915B2 (en) White reflective film
JP5702482B2 (en) White reflective film

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110630

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140130

R150 Certificate of patent or registration of utility model

Ref document number: 5468927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees