JP2011161588A - Load measuring device for machine tool - Google Patents

Load measuring device for machine tool Download PDF

Info

Publication number
JP2011161588A
JP2011161588A JP2010029153A JP2010029153A JP2011161588A JP 2011161588 A JP2011161588 A JP 2011161588A JP 2010029153 A JP2010029153 A JP 2010029153A JP 2010029153 A JP2010029153 A JP 2010029153A JP 2011161588 A JP2011161588 A JP 2011161588A
Authority
JP
Japan
Prior art keywords
encoder
load
detected
sensor assembly
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010029153A
Other languages
Japanese (ja)
Other versions
JP5552828B2 (en
Inventor
Ichiu Tanaka
一宇 田中
Koichiro Ono
浩一郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010029153A priority Critical patent/JP5552828B2/en
Publication of JP2011161588A publication Critical patent/JP2011161588A/en
Application granted granted Critical
Publication of JP5552828B2 publication Critical patent/JP5552828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a structure for accurately measuring an average value of loads applied to a spindle 12 of a machine tool using a cutting tool 16 provided with a plurality of cutting parts 22 at equal intervals in a circumferential direction, even if an expensive CPU having extremely fast processing speed is not used. <P>SOLUTION: The loads applied to the spindle 12 are determined based on information on a phase of an output signal of a sensor assembly 6c opposing a detecting part to an outer peripheral surface of an encoder 4a. Detected surfaces of the encoder 4a are provided at equal intervals in the circumferential direction in a state in which a plurality of pairs of detected parts having different characteristics from those in adjacent parts in the circumferential direction in a part of the circumferential direction are inclined to the applying direction of each load to be measured. The number m/n obtained by dividing the number m of the cutting parts 22 provided in the cutting tool 16 by the number n of the pairs of the detected parts existing in the detected surfaces of the encoder 4a is not an integer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、フライス盤、マシニングセンタ等の各種工作機械の主軸の如く、荷重を受けつつ高速で回転する回転軸に加わる荷重を精度良く測定できる装置を、低コストで実現すべく発明したものである。   The present invention was invented to realize a device capable of accurately measuring a load applied to a rotating shaft that rotates at high speed while receiving a load, such as a spindle of various machine tools such as a milling machine and a machining center.

工作機械の主軸は、先端部に刃物等の工具を固定した状態で高速回転し、加工台上に固定した被加工物に、切削等の加工を施す。前記主軸を回転自在に支持したヘッドは、この被加工物の加工の進行に伴って、所定方向に所定量だけ移動し、この被加工物を、所定の寸法及び形状に加工する。この様な加工作業時、前記ヘッドの移動速度を適正にする事が、加工能率を確保しつつ、前記工具の耐久性及び前記被加工物の品質を確保する為に必要である。前記移動速度が速過ぎると、前記工具に無理な力が加わり、この工具の耐久性が損なわれるだけでなく、前記被加工物の表面性状が悪化したり、著しい場合にはこの被加工物に亀裂等の損傷が発生する。逆に、前記移動速度が遅過ぎると、前記被加工物の加工能率が徒に悪化する。   The spindle of the machine tool rotates at a high speed with a tool such as a blade fixed at the tip, and performs processing such as cutting on the workpiece fixed on the processing table. The head that rotatably supports the main shaft moves by a predetermined amount in a predetermined direction as the workpiece is processed, and processes the workpiece into a predetermined size and shape. In such a machining operation, it is necessary to make the moving speed of the head appropriate in order to ensure the durability of the tool and the quality of the workpiece while ensuring the machining efficiency. If the moving speed is too high, an excessive force is applied to the tool, not only the durability of the tool is impaired, but also the surface property of the workpiece is deteriorated, Damage such as cracks occurs. On the contrary, when the moving speed is too slow, the processing efficiency of the workpiece is easily deteriorated.

前記ヘッドの移動速度の適正値は一定ではなく、工具の種類(大きさ)、被加工物の材質や形状により大きく変わる為、前記移動速度を一定としたまま、この移動速度を適正値に維持する事は難しい。この為、前記工具を固定した回転軸に加わる荷重を測定する事により、前記移動速度を適正値に調節する事が、従来から知られている。即ち、工具により被加工物に切削等の加工を施す際には、加工抵抗により、この工具を固定した回転軸に荷重が加わる。この加工抵抗、延いてはこの回転軸に加わる荷重は、前記移動速度が速くなる程大きくなり、逆に、この移動速度が遅くなる程小さくなる。そこで、前記荷重が所定範囲に収まる様に、前記移動速度を調節すれば、この移動速度を適正範囲に収める事ができる。   The appropriate value of the moving speed of the head is not constant, but varies greatly depending on the type (size) of the tool and the material and shape of the workpiece. Therefore, the moving speed is kept constant while keeping the moving speed constant. It is difficult to do. For this reason, it is conventionally known to adjust the moving speed to an appropriate value by measuring the load applied to the rotating shaft to which the tool is fixed. That is, when a work such as cutting is performed on a workpiece with a tool, a load is applied to the rotating shaft to which the tool is fixed due to the processing resistance. The machining resistance, and hence the load applied to the rotating shaft, increases as the moving speed increases, and conversely decreases as the moving speed decreases. Therefore, if the moving speed is adjusted so that the load falls within a predetermined range, the moving speed can be kept within an appropriate range.

又、この移動速度等、他の条件を同じとした場合に前記荷重は、前記工具の切削性(切れ味)が劣化する程大きくなる。そこで、前記移動速度との関係で前記荷重の大小を観察すれば、前記工具が寿命に達した事を知る事ができて、寿命に達した不良工具で加工を継続する事による、歩留まりの悪化を防止できる。又、前記荷重を、前記移動速度等、他の加工条件と関連付けて継続的に観察する事により、最適な加工条件を見出して、省エネルギ化や工具の長寿命化に繋げる事もできる。更に、継続的観察により、工具破損等の事故発生時に、その原因を特定する事もできる。   In addition, when other conditions such as the moving speed are the same, the load increases as the cutting property (sharpness) of the tool deteriorates. Therefore, by observing the magnitude of the load in relation to the moving speed, it is possible to know that the tool has reached the end of its life, and deterioration in yield due to continuing processing with a defective tool that has reached the end of its life. Can be prevented. In addition, by continuously observing the load in association with other machining conditions such as the moving speed, it is possible to find the optimum machining conditions and lead to energy saving and long tool life. Furthermore, by continuous observation, the cause of an accident such as tool breakage can be identified.

この様な目的で、工作機械の主軸等の回転軸に加わる荷重を測定する為の装置として、特許文献1に記載された発明装置が、従来から知られている。この特許文献1に記載された発明装置は、水晶圧電式の荷重センサを複数個、荷重の作用方向に対して直列に配置し、この荷重センサの測定信号に基づいて、切削工具を支持固定した回転軸(スピンドル)に加わる荷重(切削抵抗)を測定する様に構成している。この様な特許文献1に記載された従来装置の場合、高価な水晶圧電式の荷重センサを使用する為、荷重測定装置全体としてのコストが嵩む事が避けられない。   For such a purpose, an invention apparatus described in Patent Document 1 has been conventionally known as an apparatus for measuring a load applied to a rotating shaft such as a main shaft of a machine tool. In the invention apparatus described in Patent Document 1, a plurality of quartz piezoelectric load sensors are arranged in series with respect to the direction of the load, and the cutting tool is supported and fixed based on the measurement signal of the load sensor. The load (cutting resistance) applied to the rotating shaft (spindle) is measured. In the case of such a conventional device described in Patent Document 1, since an expensive quartz piezoelectric load sensor is used, it is inevitable that the cost of the entire load measuring device increases.

一方、特許文献2〜4には、水晶圧電式の荷重センサに比べて低コストで調達できる、磁気式のエンコーダとセンサ組立体とにより構成する、荷重測定装置付転がり軸受ユニットに関する発明が記載されている。図12〜14は、前記特許文献2〜4に記載される等により、従来から知られている荷重測定装置付転がり軸受ユニットの1例を示している。この従来から知られている荷重測定装置付転がり軸受ユニットは、使用時にも回転しない外輪1の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転するハブ2を、複列に配置された転動体3、3を介して、回転自在に支持している。これら各転動体3、3には、両列同士の間で互いに逆向きの(図示の場合には背面組み合わせ型の)接触角と共に、予圧を付与している。   On the other hand, Patent Documents 2 to 4 describe inventions relating to a rolling bearing unit with a load measuring device, which includes a magnetic encoder and a sensor assembly, which can be procured at a lower cost than a quartz piezoelectric load sensor. ing. 12 to 14 show an example of a conventionally known rolling bearing unit with a load measuring device as described in Patent Documents 2 to 4 and the like. This conventionally known rolling bearing unit with a load measuring device is arranged on the inner diameter side of the outer ring 1 that does not rotate even when in use, and the hubs 2 that rotate together with the wheels in a state where the wheels are supported and fixed during use are arranged in double rows. The rolling elements 3 and 3 are supported so as to be rotatable. A preload is applied to each of the rolling elements 3 and 3 together with a contact angle that is opposite to each other (in the illustrated case, a rear combination type).

又、上記ハブ2の内端部には、円筒状のエンコーダ4を、上記ハブ2と同心に支持固定している。又、上記外輪1の内端開口を塞ぐ有底円筒状のカバー5の内側に、1対のセンサ組立体6a、6bを支持すると共に、これら両センサ組立体6a、6bの検出部を、上記エンコーダ4の被検出面である外周面に近接対向させている。このうちのエンコーダ4は、磁性金属板製である。被検出面である、このエンコーダ4の外周面の先半部(軸方向内半部)には、透孔7、7(第一特性部)と柱部8、8(第二特性部)とを、円周方向に関して交互に且つ等間隔で配置している。これら各透孔7、7と各柱部8、8との境界は、上記エンコーダ4の軸方向に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、上記エンコーダ4の軸方向中間部を境に互いに逆方向としている。従って、上記各透孔7、7と上記各柱部8、8とは、軸方向中間部が円周方向に関して最も突出した「く」字形となっている。そして、上記境界の傾斜方向が互いに異なる、上記被検出面の軸方向外半部と軸方向内半部とのうち、軸方向外半部を第一の特性変化部9とし、軸方向内半部を第二の特性変化部10としている。   A cylindrical encoder 4 is supported and fixed concentrically with the hub 2 at the inner end portion of the hub 2. Further, a pair of sensor assemblies 6a and 6b are supported inside a bottomed cylindrical cover 5 that closes the inner end opening of the outer ring 1, and the detection portions of both the sensor assemblies 6a and 6b are provided as described above. The encoder 4 is placed in close proximity to the outer peripheral surface, which is the detected surface. Of these, the encoder 4 is made of a magnetic metal plate. In the first half (axially inner half) of the outer peripheral surface of the encoder 4, which is a detected surface, through holes 7 and 7 (first characteristic part) and column parts 8 and 8 (second characteristic part) Are arranged alternately and at equal intervals in the circumferential direction. The boundaries between the through holes 7 and 7 and the pillars 8 and 8 are inclined at the same angle with respect to the axial direction of the encoder 4, and the inclined direction with respect to the axial direction is set to the intermediate portion in the axial direction of the encoder 4. The directions are opposite to each other. Accordingly, each of the through holes 7 and 7 and each of the column portions 8 and 8 has a "<" shape with the axially intermediate portion protruding most in the circumferential direction. And among the axially outer half part and the axially inner half part of the detected surface, the inclination directions of the boundaries are different from each other, the axially outer half part is defined as the first characteristic changing part 9, and the axially inner half part is formed. This portion is the second characteristic changing portion 10.

又、上記1対のセンサ組立体6a、6bはそれぞれ、永久磁石と、検出部を構成する磁気検出素子とから成る。これら両センサ組立体6a、6bは、上記カバー5の内側に支持固定した状態で、一方のセンサ組立体6aの検出部を上記第一の特性変化部9に、他方のセンサ組立体6bの検出部を上記第二の特性変化部10に、それぞれ近接対向させている。これら両センサ組立体6a、6bの検出部が上記両特性変化部9、10に対向する位置は、上記エンコーダ4の円周方向に関して同じ位置としている。又、上記外輪1とハブ2との間にアキシアル荷重が作用しない状態で、上記各透孔7、7及び柱部8、8の軸方向中間部で円周方向に関して最も突出した部分(境界の傾斜方向が変化する部分)が、上記両センサ組立体6a、6bの検出部同士の間の丁度中央位置に存在する様に、各部材の設置位置を規制している。   Each of the pair of sensor assemblies 6a and 6b includes a permanent magnet and a magnetic detection element constituting a detection unit. These two sensor assemblies 6a and 6b are supported and fixed inside the cover 5, and the detection part of one sensor assembly 6a is used as the first characteristic changing part 9 and the detection of the other sensor assembly 6b. The part is made to face and oppose the second characteristic changing part 10. The positions where the detection parts of both the sensor assemblies 6a and 6b face both the characteristic change parts 9 and 10 are the same with respect to the circumferential direction of the encoder 4. Further, in the state where an axial load does not act between the outer ring 1 and the hub 2, the portion that protrudes most in the circumferential direction in the axial direction intermediate portion of each of the through holes 7 and 7 and the column portions 8 and 8 (boundary boundary) The position where each member is installed is regulated so that the portion where the inclination direction changes) is just at the center position between the detection parts of the two sensor assemblies 6a, 6b.

上述の様に構成する状態量測定装置付転がり軸受ユニットの場合、上記外輪1とハブ2との間にアキシアル荷重が作用し、これら外輪1とハブ2とがアキシアル方向に相対変位すると、上記両センサ組立体6a、6bの出力信号が変化する位相がずれる。即ち、上記外輪1とハブ2との間にアキシアル荷重が作用していない、中立状態では、上記両センサ組立体6a、6bの検出部は、図14の(A)の実線イ、イ上、即ち、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、上記両センサ組立体6a、6bの出力信号の位相は、同図の(C)に示す様に一致する。   In the case of a rolling bearing unit with a state quantity measuring device configured as described above, when an axial load acts between the outer ring 1 and the hub 2 and the outer ring 1 and the hub 2 are relatively displaced in the axial direction, The phase in which the output signals of the sensor assemblies 6a and 6b change is shifted. That is, in the neutral state in which an axial load is not applied between the outer ring 1 and the hub 2, the detecting portions of the sensor assemblies 6a and 6b are shown by solid lines A and B in FIG. That is, it faces a portion that is shifted from the most protruding portion by the same amount in the axial direction. Therefore, the phases of the output signals of the two sensor assemblies 6a and 6b coincide with each other as shown in FIG.

これに対して、上記エンコーダ4を固定したハブ2に、図14の(A)で下向きのアキシアル荷重が作用した場合には、上記両センサ組立体6a、6bの検出部は、図14の(A)の破線ロ、ロ上、即ち、上記最も突出した部分からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ組立体6a、6bの出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ4を固定したハブ2に、図14の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ組立体6a、6bの検出部は、図14の(A)の鎖線ハ、ハ上、即ち、上記最も突出した部分からの軸方向に関するずれが、前述の場合と逆方向に互いに異なる部分に対向する。この状態では上記両センサ組立体6a、6bの出力信号の位相は、同図の(D)に示す様にずれる。   On the other hand, when a downward axial load is applied to the hub 2 to which the encoder 4 is fixed as shown in FIG. 14A, the detecting portions of the sensor assemblies 6a and 6b are shown in FIG. A) is opposed to the broken lines B and B, that is, the portions that are different from each other in the axial direction from the most protruding portion. In this state, the phases of the output signals of the two sensor assemblies 6a and 6b are shifted as shown in FIG. Further, when an upward axial load is applied to the hub 2 to which the encoder 4 is fixed as shown in FIG. 14A, the detecting portions of the sensor assemblies 6a and 6b are shown in FIG. A shift in the axial direction from the chain line C, C, that is, from the most projecting portion is opposed to different portions in the opposite direction. In this state, the phases of the output signals of the sensor assemblies 6a and 6b are shifted as shown in FIG.

上述の様に、特許文献2〜4に記載される等により従来から知られている構造の場合には、上記両センサ組立体6a、6bの出力信号の位相が、上記外輪1とハブ2との間に加わるアキシアル荷重の作用方向(これら外輪1とハブ2とのアキシアル方向の相対変位の方向)に応じた向きにずれる。又、このアキシアル荷重(相対変位)により上記両センサ組立体6a、6bの出力信号の位相がずれる程度は、このアキシアル荷重(相対変位)が大きくなる程大きくなる。従って、上記両センサ組立体6a、6bの出力信号の位相ずれの有無、ずれが存在する場合にはその向き及び大きさに基づいて、上記外輪1とハブ2とのアキシアル方向の相対変位の向き及び大きさ、並びに、これら外輪1とハブ2との間に作用しているアキシアル荷重の作用方向及び大きさを求められる。尚、上記両センサ組立体6a、6bの出力信号の位相差に基づいて上記アキシアル方向の相対変位及び荷重を算出する処理は、図示しない演算器により行う。この為、この演算器には、予め理論計算や実験により調べておいた、上記位相差と上記アキシアル方向の相対変位及び荷重との関係を、計算式やマップ等の型式で組み込んでおく。   As described above, in the case of a structure conventionally known as described in Patent Documents 2 to 4, the phases of the output signals of the two sensor assemblies 6a and 6b are the same as that of the outer ring 1 and the hub 2. It shifts in the direction according to the direction of action of the axial load applied between them (the direction of relative displacement between the outer ring 1 and the hub 2 in the axial direction). Further, the degree to which the phase of the output signals of the sensor assemblies 6a and 6b is shifted due to the axial load (relative displacement) increases as the axial load (relative displacement) increases. Therefore, the direction of relative displacement in the axial direction between the outer ring 1 and the hub 2 based on the presence and absence of the phase shift of the output signals of the sensor assemblies 6a and 6b and the direction and magnitude of the shift, if any. And the magnitude, and the direction and magnitude of the axial load acting between the outer ring 1 and the hub 2 are obtained. The processing for calculating the relative displacement and the load in the axial direction based on the phase difference between the output signals of the two sensor assemblies 6a and 6b is performed by a calculator (not shown). For this reason, the relationship between the phase difference, the relative displacement in the axial direction, and the load, which has been examined in advance by theoretical calculation or experiment, is incorporated in this arithmetic unit by a model such as a calculation formula or a map.

又、特許文献2には、エンコーダの軸方向に対する傾斜方向が互いに異なる1対の凹溝をこのエンコーダの回転方向に隣り合わせて対として(「ハ」字形に)配置した構造も記載されている。この様なエンコーダの被検出面にセンサの検出部を対向させると、このエンコーダを固定した回転軸に作用する荷重に基づく、前記被検出面と検出部との(回転方向以外の)相対変位に基づいて、前記センサの出力信号が変化するタイミングが1周期の間でずれる。従って、単一のセンサのみで、前記出力信号の1周期に対する上記タイミングの比に基づき、前記回転軸に作用する荷重を求める事ができる。   Patent Document 2 also describes a structure in which a pair of concave grooves having different inclination directions with respect to the axial direction of the encoder are arranged as a pair (in a “C” shape) adjacent to each other in the rotational direction of the encoder. When the detection unit of the sensor is opposed to the detection surface of such an encoder, the relative displacement (other than the rotation direction) between the detection surface and the detection unit based on the load acting on the rotating shaft to which the encoder is fixed is caused. Based on this, the timing at which the output signal of the sensor changes is shifted within one cycle. Therefore, the load acting on the rotating shaft can be obtained by using only a single sensor based on the ratio of the timing to one cycle of the output signal.

上述した従来構造の場合、自動車の車輪を支持する為の車輪支持用転がり軸受ユニットに加わるアキシアル荷重を測定し、走行安定性の為の制御を行う事を考慮している。この様な場合に、この車輪支持用転がり軸受ユニットに加わるアキシアル荷重の値が、車輪支持部の構造等、本来の測定すべきアキシアル荷重以外の要因で、規則的に変化する事は無い。これに対して、工作機械の回転軸(主軸)の場合には、先端部に支持固定した加工工具の種類によっては、この回転軸に加わる荷重が規則的(正弦波的)に変化する。例えば、ドリルやエンドミル等の切削工具(加工工具)の場合、外周面や先端面に複数の切削部(加工部)を、円周方向に関して等間隔に設けている。これら各切削部の総てが被加工物の被加工面を均等に切削等の加工をし続けるのであれば、前記切削工具の形状に起因して、前記回転軸に加わる荷重が変動する事は無い。但し、実際の場合には、前記各切削部の総てが被加工物の被加工面を均等に切削加工する事は希であり、前記切削工具の形状に起因して、前記回転軸に加わる荷重が規則的に変動する。   In the case of the above-described conventional structure, it is considered that the axial load applied to the wheel supporting rolling bearing unit for supporting the wheel of the automobile is measured and control for running stability is performed. In such a case, the value of the axial load applied to the wheel-supporting rolling bearing unit does not change regularly due to factors other than the axial load to be measured, such as the structure of the wheel support portion. On the other hand, in the case of a rotating shaft (main shaft) of a machine tool, the load applied to the rotating shaft changes regularly (sinusoidally) depending on the type of processing tool supported and fixed at the tip. For example, in the case of a cutting tool (working tool) such as a drill or an end mill, a plurality of cutting parts (working parts) are provided at equal intervals in the circumferential direction on the outer peripheral surface or the tip surface. If all of these cutting parts continue to process the work surface of the work piece evenly, the load applied to the rotating shaft may fluctuate due to the shape of the cutting tool. No. However, in the actual case, it is rare that all of the respective cutting parts cut the work surface of the work piece evenly, and due to the shape of the cutting tool, it is added to the rotating shaft. The load fluctuates regularly.

図15は、外周面に10箇所の切削部を有するエンドミル(ドリルでも同様)を工作機械の回転軸の先端部に、この回転軸と同心に結合固定し、この回転軸を定速で回転させつつ、被加工物に向け定速で前進させて、この被加工物に切削加工を施した場合に於ける、前記回転軸に関する物理量の変動状況を示している。図15のうちの(A)はこの回転軸に加わる荷重の変動状況を、(B)はこの回転軸の変位状況を、それぞれ表している。荷重と変位とは比例するので、図15の(A)(B)は、縦軸の値が異なるだけで、実質的に同じ図である。   FIG. 15 shows an end mill (similar to a drill) having 10 cutting parts on the outer peripheral surface, coupled and fixed to the tip of a rotating shaft of a machine tool concentrically with the rotating shaft, and rotating the rotating shaft at a constant speed. While the workpiece is advanced at a constant speed toward the workpiece and the workpiece is subjected to cutting, the physical quantity fluctuation state with respect to the rotating shaft is shown. (A) in FIG. 15 represents the fluctuation state of the load applied to the rotating shaft, and (B) represents the displacement state of the rotating shaft. Since the load and the displacement are proportional, (A) and (B) in FIG. 15 are substantially the same except that the values on the vertical axis are different.

前記図15の(A)(B)に示す様に、被加工物を複数の切削部を有する切削工具により加工する場合には、本来は回転軸に加わる荷重が一定となるべき、定速回転、定速前進状態でも、この回転軸に加わる荷重が規則的に変動する。この為、荷重測定のタイミングを考慮しないと、前記図15の(A)(B)に示した変動に基づき、前記回転軸に加わる荷重の測定精度が悪化する。例えば、前述の図13〜14に示した荷重測定の為の構造で、エンコーダ4の外周面に設ける(1周当りの)前記透孔7、7の数を、前記切削工具の切削部の数と同じ10個とした場合、例えば前記図15の(A)(B)に黒丸印で示した部分(測定点)で、前記センサ組立体6a、6bの出力信号の位相差を求め、この位相差に基づいて、前記回転軸に加わる荷重を求める事になる。前記図15の(A)(B)の黒丸印で示した部分は、正弦波上の同じ位相部分である。この為、上述の様に、前記透孔7、7の数を、前記切削工具の切削部の数と同じ10個とした場合には、前記図15の(A)(B)の記載から明らかな通り、δなる値(DC成分のオフセット)が、前記変動に基づく誤差成分となる。   As shown in FIGS. 15A and 15B, when a workpiece is machined with a cutting tool having a plurality of cutting portions, a constant speed rotation should be performed so that the load applied to the rotating shaft should be constant. Even in a constant speed forward state, the load applied to the rotating shaft fluctuates regularly. For this reason, if the timing of the load measurement is not taken into account, the measurement accuracy of the load applied to the rotating shaft is deteriorated based on the fluctuations shown in FIGS. For example, in the structure for measuring a load shown in FIGS. 13 to 14 described above, the number of the through holes 7 and 7 (per one circumference) provided on the outer peripheral surface of the encoder 4 is the number of cutting parts of the cutting tool. 15, for example, the phase difference between the output signals of the sensor assemblies 6 a and 6 b is obtained at the portions (measurement points) indicated by black circles in FIGS. Based on the phase difference, the load applied to the rotating shaft is obtained. The parts indicated by black circles in FIGS. 15A and 15B are the same phase part on the sine wave. For this reason, as described above, when the number of the through holes 7 is set to 10 which is the same as the number of the cutting parts of the cutting tool, it is apparent from the description of FIGS. 15A and 15B. As is apparent, the value δ (DC component offset) is an error component based on the variation.

特許文献2〜4に示した様に、エンコーダ4の被検出面に存在する透孔7、7及び柱部8、8等の被検出部の組数の数を、前記切削工具の切削部の数よりも十分に多く(自動車の車輪支持用の荷重測定装置付転がり軸受ユニットの場合の様に数十個と)し、荷重測定を複数回行ってその平均値を取れば、前記誤差成分δの影響を排除できる。但し、工作機械の回転軸(主軸)の回転速度は、自動車用車輪の回転速度よりも桁違いに速い為、センサの出力信号を入力した演算器(CPU)の処理速度を考慮した場合、前記被検出部の組数の数を、前記切削部の数を越えて多くする事は難しい。極端に処理速度が速い高価なCPUを使用せずに工作機械の回転軸に加わる荷重を測定する事を考慮した場合、工作機械用荷重測定装置を構成するエンコーダでは、前記被検出部の組数は、1桁からせいぜい10組程度とする事が現実的である。   As shown in Patent Documents 2 to 4, the number of sets of detected portions such as the through holes 7 and 7 and the column portions 8 and 8 existing on the detected surface of the encoder 4 is determined by the cutting portion of the cutting tool. If the average value is obtained by performing load measurement a plurality of times (several tens as in the case of a rolling bearing unit with a load measuring device for supporting wheels of an automobile), the error component δ Can be eliminated. However, since the rotational speed of the rotating shaft (main shaft) of the machine tool is orders of magnitude faster than the rotational speed of the wheels for automobiles, the processing speed of the arithmetic unit (CPU) that has input the sensor output signal is taken into account. It is difficult to increase the number of sets of detected parts beyond the number of cutting parts. In consideration of measuring the load applied to the rotating shaft of the machine tool without using an expensive CPU having an extremely fast processing speed, the encoder constituting the load measuring device for machine tools uses the number of sets of the detected parts. It is realistic to set the number from 1 digit to at most about 10 sets.

ところが、前記エンコーダの被検出面に設けた被検出部の組数を1桁からせいぜい10組程度とした場合には、前記切削工具の切削部の数mとこの被検出部の組数nとが一致(m=n)したり、この切削工具の切削部の数mがこの被検出部の組数nの整数倍(m/n=整数)となる場合が生じる。これら両数m、nが一致した場合は勿論、これら両数の比m/nが整数の場合も、前記誤差成分δの影響を排除できない。前記被検出部の組数nを前記切削工具の切削部の数mよりも多くすれば、仮にこれら両数n、mの比n/mが2以上の整数となっても、荷重測定を複数回行ってその平均値を取る事により前記誤差成分δの影響を排除できる。但し、前記被検出部の組数nは、上述の様な理由により多くする事は難しい為、現実的な対応方法とは言えない。又、回転方向に関して、切削工具とセンサの検出部との位相を適切に規制し、図15に示した測定点を正弦波曲線の中央位置にすれば、前記誤差成分δが生じる事を防止する事は、不可能ではない。但し、工具交換の度に前記位相を一致させる事は、何らかの位置決め用の印や、位置決め用の係合部を設けたとしても面倒で、やはり現実的な対応方法とは言えない。   However, when the number of detected portions provided on the detected surface of the encoder is from one digit to at most about 10 sets, the number m of cutting portions of the cutting tool and the number n of sets of detected portions are: May coincide (m = n), or the number m of cutting parts of the cutting tool may be an integral multiple of the number n of sets of detected parts (m / n = integer). The influence of the error component δ cannot be excluded not only when the numbers m and n match, but also when the ratio m / n of these numbers is an integer. If the number n of sets of detected parts is larger than the number m of cutting parts of the cutting tool, even if the ratio n / m between these numbers n and m is an integer of 2 or more, a plurality of load measurements are performed. The influence of the error component δ can be eliminated by repeating the operation and taking the average value. However, since it is difficult to increase the number n of the detected parts for the reasons described above, it cannot be said that it is a realistic countermeasure. Further, if the phase between the cutting tool and the sensor detection portion is appropriately regulated with respect to the rotation direction and the measurement point shown in FIG. 15 is set to the center position of the sine wave curve, the occurrence of the error component δ is prevented. Things are not impossible. However, it is troublesome to make the phase coincide each time the tool is changed, even if some positioning mark or positioning engaging portion is provided, and it cannot be said that it is a realistic countermeasure.

本発明は、上述の様な事情に鑑みて、極端に処理速度が速い高価なCPUを使用しなくても、複数の切削部(加工部)を円周方向に関して等間隔に設けた切削工具(加工工具)を使用する工作機械の回転軸(主軸)に加わる荷重を、精度良く測定できる工作機械用荷重測定装置を実現すべく発明したものである。   In view of the circumstances as described above, the present invention provides a cutting tool in which a plurality of cutting parts (working parts) are provided at equal intervals in the circumferential direction without using an expensive CPU with extremely high processing speed. The present invention has been invented to realize a machine tool load measuring apparatus capable of accurately measuring a load applied to a rotating shaft (main shaft) of a machine tool using a machining tool.

本発明の工作機械用荷重測定装置は、ハウジングと、回転軸と、切削工具(加工工具)と、エンコーダと、センサユニットと、演算器とを備える。
このうちのハウジングは回転しない。
又、前記回転軸は、それぞれが予圧を付与された複数の転がり軸受により、前記ハウジングの内側に回転自在に支持されている。
又、前記切削工具(加工工具)は、前記回転軸の先端部に、この回転軸と同心に支持固定されたもので、複数の切削部(加工部)を円周方向に関して等間隔に設けている。
又、前記エンコーダは、前記回転軸の一部に支持固定されたもので、この回転軸と同心の被検出面を有する。
又、前記センサユニットは、少なくとも1個のセンサ組立体を備えたもので、前記被検出面に検出部を対向させた状態で前記ハウジングに、直接又は他の部材を介して支持されている。
又、前記演算器は、前記センサユニットの出力信号を処理するもので、このセンサユニットの出力信号の位相に関する情報に基づいて、前記回転軸に作用する荷重を求める。
更に、本発明の工作機械用荷重測定装置では、前記エンコーダの被検出面は、円周方向の一部に、特性が円周方向に関して隣り合う部分と異なる複数組の被検出部を、それぞれ測定すべき荷重の作用方向に関して傾斜した状態で、円周方向に関して等間隔に設けている。
そして、前記切削工具(加工工具)に設けられた切削部(加工部)の数mを、前記エンコーダの被検出面に存在する被検出部の組数nで除した数m/nが、整数ではない。
The load measuring apparatus for machine tools of this invention is provided with a housing, a rotating shaft, a cutting tool (processing tool), an encoder, a sensor unit, and a calculator.
Of these, the housing does not rotate.
The rotating shaft is rotatably supported inside the housing by a plurality of rolling bearings each provided with a preload.
The cutting tool (processing tool) is supported and fixed at the tip of the rotating shaft concentrically with the rotating shaft, and a plurality of cutting portions (working portions) are provided at equal intervals in the circumferential direction. Yes.
The encoder is supported and fixed to a part of the rotating shaft and has a detected surface concentric with the rotating shaft.
The sensor unit includes at least one sensor assembly, and is supported on the housing directly or via another member in a state where the detection portion faces the detection surface.
The computing unit processes an output signal of the sensor unit, and obtains a load acting on the rotating shaft based on information on the phase of the output signal of the sensor unit.
Furthermore, in the machine tool load measuring apparatus according to the present invention, the detected surface of the encoder measures a plurality of sets of detected portions that are part of the circumferential direction and have different characteristics from the adjacent portions in the circumferential direction. In the state inclined with respect to the acting direction of the load to be applied, it is provided at equal intervals in the circumferential direction.
Then, the number m / n obtained by dividing the number m of the cutting parts (working parts) provided in the cutting tool (working tool) by the number n of the detected parts existing on the detection surface of the encoder is an integer. is not.

上述の様に構成する本発明の工作機械用荷重測定装置を実施する場合に好ましくは、例えば請求項2に記載した発明の様に、前記エンコーダを磁性材製とする。
そして、前記被検出部を、このエンコーダの被検出面の幅方向に形成された、前記センサユニットを構成する前記センサ組立体の検出部との距離が残部と異なる除肉部若しくは突条部である距離変化部とし、この距離変化部の少なくとも一部を、測定すべき荷重の作用方向に対して傾斜した形状とする。
又、前記センサ組立体を、前記被検出面と前記検出部とが対向する方向に着磁された永久磁石と、この永久磁石の着磁方向両端面のうちでこの被検出面と対向する端面に配置されたホール素子、磁気抵抗素子等の磁気検出素子と、この磁気検出素子が検出する磁束密度の変化を表す信号を出力するICとを備えたものとする。
更に、前記演算器を、前記センサ組立体の出力信号に基づいて、前記回転軸に作用する荷重を求めるものとする。
When implementing the machine tool load measuring apparatus of the present invention configured as described above, the encoder is preferably made of a magnetic material, as in the invention described in claim 2, for example.
And the said to-be-detected part is formed in the width direction of the to-be-detected surface of this encoder. A certain distance changing portion is used, and at least a part of the distance changing portion is inclined with respect to the acting direction of the load to be measured.
Further, the sensor assembly includes a permanent magnet that is magnetized in a direction in which the detected surface and the detection unit face each other, and an end surface that faces the detected surface among both end surfaces of the permanent magnet in the magnetization direction. And a magnetic detection element such as a magnetoresistive element, and an IC that outputs a signal representing a change in magnetic flux density detected by the magnetic detection element.
Further, the computing unit obtains a load acting on the rotating shaft based on an output signal of the sensor assembly.

上述の様な請求項2に記載した発明を実施する場合に、例えば請求項3に記載した発明の様に、センサユニットを、単一のセンサ組立体を備えたものとする。この場合に、このセンサ組立体は、前記エンコーダの回転に伴う距離変化部の通過に伴って出力信号を変化させるもので、回転軸に加わる荷重に伴う前記磁気検出素子と前記エンコーダとの相対変位に伴って、1周期の間で前記出力信号が変化するタイミングがずれるものとする。そして、前記演算器が荷重を求める為に使用する位相に関する情報を、前記出力信号の1周期に対する上記タイミングの比とする。
この様な請求項3に記載した発明を実施する場合に、例えば請求項4に記載した発明の様に、前記エンコーダを円筒状に造られたものとして、このエンコーダを前記回転軸に外嵌固定する。そして、前記被検出面を、このエンコーダの外周面とする。又、前記距離変化部を、この外周面に形成された複数の凹溝若しくは突条とする。これら各凹溝若しくは各突条は、前記エンコーダの軸方向に対する傾斜方向が互いに異なる1対の凹溝若しくは突条をこのエンコーダの回転方向に隣り合わせて対としたものであり、単一のセンサ組立体の検出部がこれら各凹溝若しくは各突条に対向しており、前記1対の凹溝若しくは突条を1組とする被検出部の組数をnとする。
In carrying out the invention described in claim 2 as described above, for example, as in the invention described in claim 3, the sensor unit is provided with a single sensor assembly. In this case, the sensor assembly changes an output signal with the passage of the distance changing portion accompanying the rotation of the encoder, and the relative displacement between the magnetic detection element and the encoder due to the load applied to the rotating shaft. Accordingly, it is assumed that the timing at which the output signal changes during one period shifts. Then, the information regarding the phase used by the computing unit for obtaining the load is the ratio of the timing to one period of the output signal.
When carrying out the invention described in claim 3, for example, as in the invention described in claim 4, it is assumed that the encoder is formed in a cylindrical shape, and the encoder is externally fixed to the rotary shaft. To do. The detected surface is the outer peripheral surface of the encoder. The distance changing portion is a plurality of concave grooves or ridges formed on the outer peripheral surface. Each of these concave grooves or protrusions is a pair of concave grooves or protrusions that are different from each other in the inclination direction with respect to the axial direction of the encoder and are adjacent to each other in the rotational direction of the encoder. A three-dimensional detection unit is opposed to each of the concave grooves or protrusions, and the number of detection target units including one pair of the pair of concave grooves or protrusions is n.

上述の様に構成する本発明の工作機械用荷重測定装置によれば、極端に処理速度が速い高価なCPUを使用しなくても、複数の切削部(加工部)を円周方向に関して等間隔に設けた切削工具(加工工具)を使用する工作機械の回転軸(主軸)に加わる荷重の平均値を、精度良く測定できる。
即ち、複数の切削部を備えた切削工具を回転軸の先端部に結合固定した状態で被加工物の加工を行うと、この切削工具を介してこの回転軸に加わる荷重は細かく変動する。工作機械の回転軸の送り速度等を制御するには、この細かく変動する値ではなく、平均値を求める必要がある。前記切削工具の切削部の数mがエンコーダの被検出面に設けた被検出部の組数nの整数倍の場合には、前述した様に、前記平均値中に、前記変動に基づく誤差成分δが入り込み易く、入り込んだ場合には、これを除去できない。
According to the machine tool load measuring apparatus of the present invention configured as described above, a plurality of cutting parts (working parts) are equally spaced in the circumferential direction without using an expensive CPU with extremely high processing speed. The average value of the load applied to the rotating shaft (main shaft) of the machine tool that uses the cutting tool (working tool) provided in can be measured with high accuracy.
That is, when a workpiece is processed in a state where a cutting tool having a plurality of cutting portions is coupled and fixed to the tip portion of the rotating shaft, the load applied to the rotating shaft through the cutting tool varies finely. In order to control the feed speed of the rotating shaft of the machine tool, it is necessary to obtain an average value instead of this finely varying value. When the number m of the cutting parts of the cutting tool is an integral multiple of the number n of the detected parts provided on the detected surface of the encoder, as described above, the error component based on the variation is included in the average value as described above. δ is easy to enter, and when it enters, it cannot be removed.

これに対して本発明の場合には、前記切削工具の切削部の数mがエンコーダの被検出面に設けた被検出部の組数nの整数倍ではない(m/n≠整数)為、前記誤差成分の影響を除去して、前記平均値を精度良く求められる。即ち、本発明の場合でも、或る1組の被検出部を利用して測定した1回の荷重測定の結果には、前述の図15に正弦波曲線で示した様な荷重変動の影響が出る可能性が高い。但し、前記「m/n≠整数」なる要件を満たす為、この影響の程度及び方向、即ち、前記誤差成分δの大きさ、並びに、当該誤差成分δが平均値に足される状態で生じるか、逆に平均値から減じる状態で生じるかは、測定毎に異なる。この為、連続して求めた複数の測定値の平均値を求めれば、前記誤差成分δの影響をなくすか、又は減じて、前記平均値を精度良く求められる。連続して求めた複数の測定値の平均値を求める事で、前記回転軸に加わる荷重の平均値を求めるタイミングが多少遅れるが、本発明の対象となる工作機械用荷重測定装置に関して、この遅れが問題になる事はない。この理由は、工作機械の回転軸(主軸)の回転速度は数万min-1にも達する為、この回転軸が数回転する間の平均値を求めるとしても、それに要する時間は数msec乃至は数十msec程度に過ぎない事による。この様に平均値を求める為に要する時間が、極く短時間で済むのに対して、前記回転軸の送り速度の制御等は、数百msec乃至は数sec毎に行えば十分であり、工具の寿命検出等に関しては、これよりも遥かに長い時間的余裕がある為である。以上の理由により、本発明によれば、前記回転軸に加わる荷重の平均値を、測定のタイミングに関して特に問題を生じる事なく、精度良く求められる。 On the other hand, in the case of the present invention, the number m of cutting parts of the cutting tool is not an integral multiple of the number n of detected parts provided on the detected surface of the encoder (m / n ≠ integer). The average value can be obtained with high accuracy by removing the influence of the error component. That is, even in the case of the present invention, the influence of the load fluctuation as shown by the sine wave curve in FIG. 15 described above is included in the result of one load measurement measured using a certain set of detected parts. There is a high possibility of going out. However, in order to satisfy the requirement “m / n ≠ integer”, the degree and direction of this influence, that is, the magnitude of the error component δ, and whether the error component δ is added to the average value or not. Conversely, whether it occurs in a state where it is subtracted from the average value differs depending on the measurement. Therefore, if an average value of a plurality of measurement values obtained continuously is obtained, the average value can be obtained with high accuracy by eliminating or reducing the influence of the error component δ. The timing for obtaining the average value of the load applied to the rotating shaft is somewhat delayed by obtaining the average value of a plurality of measurement values obtained continuously, but this delay is related to the machine tool load measuring device that is the subject of the present invention. Will not be a problem. The reason is that the rotational speed of the rotating shaft (main shaft) of the machine tool reaches several tens of thousands min −1 , so even if an average value is calculated during several rotations of the rotating shaft, the time required for it is several milliseconds to Because it is only about several tens of milliseconds. In this way, the time required for obtaining the average value is very short, whereas it is sufficient to control the feed speed of the rotating shaft every several hundreds of milliseconds or several seconds. This is because there is a much longer time for detecting the tool life. For the above reasons, according to the present invention, the average value of the load applied to the rotating shaft can be obtained with high accuracy without causing any particular problems with respect to the timing of measurement.

本発明の実施の形態の第1例を示す要部断面図。FIG. 3 is a cross-sectional view of a main part showing a first example of an embodiment of the present invention. 図1のイ部拡大図。FIG. エンコーダを取り出して示す斜視図。The perspective view which takes out and shows an encoder. センサユニットを取り出して、検出部を被覆する以前の状態(A)と被覆した後の状態(B)とで示す斜視図。The perspective view which takes out a sensor unit and shows with the state (A) before coat | covering a detection part, and the state (B) after coat | covering. センサ組立体を取り出して示す略斜視図。The schematic perspective view which takes out and shows a sensor assembly. 荷重測定の原理を説明する為の模式図。The schematic diagram for demonstrating the principle of load measurement. 本発明の実施の形態の第2例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 2nd example of embodiment of this invention. エンコーダを取り出して示す斜視図。The perspective view which takes out and shows an encoder. センサユニットを取り出して、検出部を被覆する以前の状態(A)と被覆した後の状態(B)とで示す斜視図。The perspective view which takes out a sensor unit and shows with the state (A) before coat | covering a detection part, and the state (B) after coat | covering. センサ組立体を取り出して示す略斜視図。The schematic perspective view which takes out and shows a sensor assembly. 荷重測定の原理を説明する為の模式図。The schematic diagram for demonstrating the principle of load measurement. 車輪支持用転がり軸受ユニットに加わるアキシアル荷重を測定する為に考えられた、従来構造の1例を示す断面図。Sectional drawing which shows one example of the conventional structure considered in order to measure the axial load added to the rolling bearing unit for wheel support. エンコーダの被検出面の一部を径方向から見た図。The figure which looked at a part of the to-be-detected surface of an encoder from radial direction. アキシアル荷重に基づくエンコーダの変位により、1対のセンサ組立体の出力信号同士の間に位相差が生じる状況を説明する為の模式図。The schematic diagram for demonstrating the condition where a phase difference arises between the output signals of a pair of sensor assembly by the displacement of the encoder based on an axial load. 回転軸の先端部に結合固定した切削工具の形状に起因し、この回転軸に加わる荷重及びこの回転軸の変位が変動して、荷重測定に誤差が生じる状況を説明する為の線図。FIG. 5 is a diagram for explaining a situation in which an error occurs in load measurement due to fluctuations in the load applied to the rotary shaft and the displacement of the rotary shaft due to the shape of the cutting tool coupled and fixed to the tip of the rotary shaft.

[実施の形態の第1例]
図1〜6は、請求項1〜4に対応する、本発明の実施の形態の第1例を示している。工作機械のハウジング(主軸頭)11の内径側に主軸12を、多列転がり軸受ユニット13により回転自在に支持すると共に、電動モータ14により、前記主軸12を回転駆動自在としている。前記多列転がり軸受ユニット13を構成する複数個の転がり軸受15a〜15dのうち、先端寄りに配置した2個の転がり軸受15a、15bと、基端寄りに配置した2個の転がり軸受15c、15dとには、互いに逆向きの接触角を付与すると共に、これら各転がり軸受15a〜15dに、予圧を付与している。そして、前記主軸12を前記ハウジング11に対して、ラジアル荷重及び両方向のスラスト荷重を支承する状態で、がたつきなく、回転自在に支持している。前記工作機械の運転時には、前記主軸12の先端部(図1の左端部)に、テーパコーン等の結合治具を介してこの主軸12と同心に結合固定した、エンドミル、ドリル等の切削工具16を、高速で回転しつつ被加工物に押し付け、この被加工物に、切削等の加工を施す。この様にして加工を施す際に、前記主軸12には、この被加工物に前記切削工具16を押し付ける事の反作用として、各方向の荷重が加わる。図1に示した構造では、このうち、前記主軸12の軸方向に一致する、アキシアル方向の荷重を求められる様にしている。
[First example of embodiment]
FIGS. 1-6 has shown the 1st example of embodiment of this invention corresponding to Claims 1-4. A spindle 12 is rotatably supported by a multi-row rolling bearing unit 13 on the inner diameter side of a machine tool housing (spindle head) 11, and the spindle 12 is rotatably driven by an electric motor 14. Among the plurality of rolling bearings 15a to 15d constituting the multi-row rolling bearing unit 13, two rolling bearings 15a and 15b arranged near the distal end and two rolling bearings 15c and 15d arranged near the proximal end. In addition to applying contact angles opposite to each other, a preload is applied to each of the rolling bearings 15a to 15d. The main shaft 12 is supported rotatably with respect to the housing 11 in a state in which a radial load and a thrust load in both directions are supported. When the machine tool is in operation, a cutting tool 16 such as an end mill or a drill, which is coupled and fixed concentrically to the main shaft 12 via a coupling jig such as a taper cone, is attached to the tip of the main shaft 12 (the left end in FIG. 1). The workpiece is pressed against the workpiece while rotating at a high speed, and the workpiece is subjected to machining such as cutting. When machining is performed in this manner, loads in each direction are applied to the main shaft 12 as a reaction of pressing the cutting tool 16 against the workpiece. In the structure shown in FIG. 1, the axial load corresponding to the axial direction of the main shaft 12 can be obtained.

この為に本例の構造の場合には、前記主軸12の中間部先端寄り部分で、前記多列転がり軸受ユニット13を構成する転がり軸受15b、15c同士の間に、図3に示す様なエンコーダ4aを外嵌固定すると共に、前記ハウジング11に、図2、4、5に示す様なセンサユニット17を支持固定している。このうちのエンコーダ4aは、内輪間座を兼ねるもので、鋼等の磁性金属により造り、全体を円筒状としている。そして、被検出面である前記エンコーダ4aの外周面に前記センサユニット17の検出部を近接対向させ、このセンサユニット17の出力信号中に含まれる、位相に関する情報に基づいて、前記主軸12に作用するアキシアル荷重を求める様にしている。   For this reason, in the case of the structure of this example, an encoder as shown in FIG. 3 is provided between the rolling bearings 15b and 15c constituting the multi-row rolling bearing unit 13 at a portion near the tip of the intermediate portion of the main shaft 12. The sensor unit 17 as shown in FIGS. 2, 4, and 5 is supported and fixed to the housing 11. Of these, the encoder 4a also serves as an inner ring spacer, is made of a magnetic metal such as steel, and has a cylindrical shape as a whole. Then, the detection unit of the sensor unit 17 is brought close to and opposed to the outer peripheral surface of the encoder 4a, which is a detection surface, and acts on the main shaft 12 based on the phase-related information contained in the output signal of the sensor unit 17. The axial load to be calculated is determined.

本例の工作機械用荷重測定装置の場合には、コスト低減及び小型化の面から、単一のセンサ組立体6cの出力信号のタイミング比α/L(出力信号が1回変化する周期/出力信号が2回変化する周期)により、前記エンコーダ4a(を固定した前記主軸12)に加わるアキシアル荷重を求める様にしている。この為に使用する前記センサ組立体6cは、前記エンコーダ4aの被検出面の性状に基づき、出力信号が1周期の途中で変化するもので、ホールIC24a、24b、磁気抵抗素子等の磁気検出素子の背面(前記エンコーダ4aの外周面と対向する検出部と反対側の面)に、永久磁石18を配置して前記センサ組立体6cとし、このセンサ組立体6cを合成樹脂製のホルダ19の先端部に包埋保持して、前記センサユニット17を構成している。前記永久磁石18の着磁方向は、前記センサ組立体6cを構成する前記磁気検出素子が、前記エンコーダ4aの被検出面に対向している方向とする。そして、これらセンサ組立体6cとエンコーダ4aとの相対変位に伴って、前記1周期の間で変化するタイミング(1周期の初めから途中で変化する瞬間迄の時間)がずれるものとする。尚、前記1対のホール素子24a、24bは差動式ホールICとして機能して、前記エンコーダ4aの被検出面の性状変化を、高精度に検出する。この為に、前記両ホール素子24a、24bを、前記エンコーダ4aの回転方向に配列している。必要とする精度が高くない場合には、1個のホール素子で代用できる。   In the case of the load measuring device for machine tools of this example, from the viewpoint of cost reduction and miniaturization, the timing ratio α / L of the output signal of the single sensor assembly 6c (period / output at which the output signal changes once) The axial load applied to the encoder 4a (the main shaft 12 to which the encoder 4a is fixed) is obtained according to the cycle in which the signal changes twice. The sensor assembly 6c used for this purpose has an output signal that changes in the middle of one cycle based on the property of the surface to be detected of the encoder 4a. Magnetic sensing elements such as Hall ICs 24a and 24b and magnetoresistive elements A permanent magnet 18 is arranged on the back surface (the surface opposite to the detection portion facing the outer peripheral surface of the encoder 4a) to form the sensor assembly 6c, and this sensor assembly 6c is used as the tip of a holder 19 made of synthetic resin. The sensor unit 17 is configured by being embedded and held in a part. The magnetization direction of the permanent magnet 18 is a direction in which the magnetic detection element constituting the sensor assembly 6c faces the detection surface of the encoder 4a. Then, it is assumed that the timing that changes during the one cycle (the time from the beginning of one cycle to the moment when it changes midway) shifts with the relative displacement between the sensor assembly 6c and the encoder 4a. The pair of Hall elements 24a and 24b function as a differential Hall IC to detect a change in the property of the detection surface of the encoder 4a with high accuracy. For this purpose, the Hall elements 24a and 24b are arranged in the rotation direction of the encoder 4a. If the required accuracy is not high, one Hall element can be substituted.

この為に、前記エンコーダ4aの外周面に、それぞれが特許請求の範囲に記載した被検出部であり、同じく距離変化部である、複数組の被検出用特性変化組み合わせ部20、20を、周方向に関して等間隔に、それぞれ前記アキシアル荷重の測定方向に一致する前記被検出面の幅方向である、前記エンコーダ4aの軸方向に形成している。前記各被検出用特性変化組み合わせ部20、20は、この軸方向に対する傾斜方向が互いに異なる1対の特性変化部である、それぞれが直線状の凹溝21a、21bを、前記エンコーダ4aの周方向に離隔した状態で設けている。この様な凹溝21a、21bを形成した、このエンコーダ4aの外周面に検出部である前記磁気検出素子を近接対向させた、前記センサ組立体6cの出力信号は、このセンサ組立体6cの検出部が対向する部分(検出部の直前部分)を前記各凹溝21a、21bが通過する(前記センサ組立体6cの検出部がこれら各凹溝21a、21bを形成した、前記エンコーダ4aの外周面を走査する)のに伴って変化する(パルス信号を出力する)。又、この変化のタイミング(パルスが発生する位相)は、前記センサ組立体6cの検出部が、前記エンコーダ4aの外周面のうち、軸方向に関して何れの部分を走査するかによって変化する。そして、この変化に基づいて、前記エンコーダ4a(を外嵌した前記主軸12)の軸方向変位量を求められる。この点に就いて、図6により説明する。   For this purpose, a plurality of sets of detected characteristic change combination units 20 and 20, each of which is a detected unit described in the claims and is also a distance changing unit, are arranged on the outer peripheral surface of the encoder 4 a. They are formed at equal intervals in the axial direction of the encoder 4a, which is the width direction of the detected surface that coincides with the measurement direction of the axial load. Each of the detected characteristic change combination parts 20 and 20 is a pair of characteristic change parts whose inclination directions with respect to the axial direction are different from each other. Each of the detected characteristic change combination parts 20 and 20 has a linear concave groove 21a and 21b in the circumferential direction of the encoder 4a. It is provided in a separated state. An output signal of the sensor assembly 6c in which the magnetic detection element as the detection portion is brought close to and opposed to the outer peripheral surface of the encoder 4a in which the concave grooves 21a and 21b are formed is detected by the sensor assembly 6c. The respective concave grooves 21a and 21b pass through a portion (a portion immediately before the detection portion) facing each other (the outer peripheral surface of the encoder 4a in which the detection portion of the sensor assembly 6c has formed the respective concave grooves 21a and 21b). (The pulse signal is output). The timing of the change (the phase at which the pulse is generated) varies depending on which part of the outer peripheral surface of the encoder 4a is scanned in the axial direction of the sensor assembly 6c. Based on this change, the axial displacement amount of the encoder 4a (the main shaft 12 with the outer fitting) can be obtained. This point will be described with reference to FIG.

例えば、前記エンコーダ4aを外嵌した前記主軸12にアキシアル荷重が加わらず、このエンコーダ4aが軸方向中立位置に存在する場合、前記センサ組立体6cの検出部は、図6の(A)に実線aで示す様に、前記エンコーダ4aの外周面のうちで、ほぼ軸方向中央部を走査する。この結果、前記センサ組立体6cの出力信号は、例えば、図6の(C)に示す様に変化する。   For example, when an axial load is not applied to the main shaft 12 fitted with the encoder 4a and the encoder 4a is in the neutral position in the axial direction, the detection unit of the sensor assembly 6c is shown by a solid line in FIG. As indicated by a, the central portion in the axial direction is scanned on the outer peripheral surface of the encoder 4a. As a result, the output signal of the sensor assembly 6c changes, for example, as shown in FIG.

これに対して、前記エンコーダ4a(を外嵌固定した前記主軸12)に、図6の(A)で下向きのアキシアル荷重が作用し、前記エンコーダ4aが、この図6の(A)で下方に変位すると、前記センサ組立体6cの検出部は、図6の(A)に鎖線bで示す様に、このエンコーダ4aの外周面のうちで、軸方向片側{図6の(A)の上側}に偏った部分を走査する。この結果、前記センサ組立体6cの出力信号は、例えば、図6の(B)に示す様に変化する。アキシアル荷重の作用方向が逆向きの場合には、前記出力信号は、逆方向に変化する。尚、工作機械用の主軸12の場合、アキシアル荷重の作用方向は一定である場合が多い。そこで、アキシアル荷重が加わらない状態で、前記センサ組立体6cの検出部が前記エンコーダ4aの外周面の軸方向一端側を走査し、前記アキシアル荷重が大きくなるに従って、前記センサ6cの走査位置が軸方向他端側に変位する事にしても良い。   On the other hand, a downward axial load acts on the encoder 4a (the main shaft 12 to which the outer fitting is fixed) in FIG. 6A, and the encoder 4a moves downward in FIG. 6A. When displaced, the detecting portion of the sensor assembly 6c, as indicated by a chain line b in FIG. 6 (A), is axially one side {upper side of FIG. 6 (A)} on the outer peripheral surface of the encoder 4a. The part which is biased to is scanned. As a result, the output signal of the sensor assembly 6c changes as shown in FIG. 6B, for example. When the acting direction of the axial load is reverse, the output signal changes in the reverse direction. In the case of the main spindle 12 for machine tools, the acting direction of the axial load is often constant. Therefore, in a state where an axial load is not applied, the detection portion of the sensor assembly 6c scans one axial end side of the outer peripheral surface of the encoder 4a, and as the axial load increases, the scanning position of the sensor 6c becomes an axis. You may decide to displace to the direction other end side.

これら図6の(B)(C)に記載した各周期α、β、Lのうち、全周期Lは、円周方向に隣り合う1対の被検出用特性変化組み合わせ部20、20に関する、前記センサ組立体6cの出力信号の周期である。具体的には、回転方向前側(図6の左側)の被検出用特性変化組み合わせ部20に関する所定部分(図示の例では、この被検出用特性変化組み合わせ部20を構成する1対の凹溝21a、21bのうち、回転方向前側の凹溝21aの回転方向後端縁)での、前記出力信号の立ち上がり部から、回転方向後側(図6の右側)の被検出用特性変化組み合わせ部20に関する同等部分での前記出力信号の立ち上がり部までの時間である。又、第一部分周期αは、回転方向前側の被検出用特性変化組み合わせ部20を構成する1対の凹溝21a、21bのうち、回転方向前側の凹溝21aに関する(前記所定部分での)前記出力信号の立ち上がり部から、回転方向後側の凹溝21bに関する前記出力信号の立ち上がり部までの時間である。更に、第二部分周期βは、回転方向前側の被検出用特性変化組み合わせ部20を構成する1対の凹溝21a、21bのうち、回転方向後側の凹溝21bに関する前記出力信号の立ち上がり部から、回転方向後側の被検出用特性変化組み合わせ部20を構成する1対の凹溝21a、21bのうち、回転方向前側の凹溝21aに関する(前記同等部分での)前記出力信号の立ち上がり部までの時間である。   Among the periods α, β, and L described in FIGS. 6B and 6C, the entire period L relates to the pair of detected characteristic change combination units 20 and 20 adjacent to each other in the circumferential direction. This is the period of the output signal of the sensor assembly 6c. Specifically, a predetermined portion (in the illustrated example, a pair of concave grooves 21a constituting the detected characteristic change combination unit 20 on the detected characteristic change combination unit 20 on the front side in the rotation direction (left side in FIG. 6). , 21b, the detected characteristic change combination unit 20 on the rear side in the rotational direction (right side in FIG. 6) from the rising portion of the output signal at the rotational direction rear end edge of the concave groove 21a on the front side in the rotational direction. This is the time until the rising edge of the output signal in the equivalent part. The first partial period α is related to the concave groove 21a on the front side in the rotational direction (in the predetermined portion) of the pair of concave grooves 21a and 21b constituting the detected characteristic change combination portion 20 on the front side in the rotational direction. This is the time from the rising edge of the output signal to the rising edge of the output signal related to the concave groove 21b on the rear side in the rotation direction. Further, the second partial period β is the rising portion of the output signal related to the concave groove 21b on the rear side in the rotational direction among the pair of concave grooves 21a and 21b constituting the detected characteristic change combination unit 20 on the front side in the rotational direction. From the pair of concave grooves 21a and 21b constituting the detected characteristic change combination section 20 on the rear side in the rotational direction, the rising portion of the output signal related to the concave groove 21a on the front side in the rotational direction (at the same portion) It is time until.

前記各周期α、β、Lのうちの全周期Lは、前記第一部分周期αと前記第二部分周期βとの和(L=α+β)になる。又、前記タイミング比は、α/L(又はβ/L)となる。尚、前記各周期のうちの全周期Lは、出力信号が2回変化する周期(2パルス分の周期)であり、前記エンコーダ4aの回転速度が一定である限り、一定である。又、前記第一部分周期α及び前記第二部分周期βが、前記出力信号が1回変化する周期(1パルス分の周期)であり、前記エンコーダ4aの回転速度が一定であっても、このエンコーダ4aの軸方向位置が変化すると変化する。   The total period L of the periods α, β, and L is the sum of the first partial period α and the second partial period β (L = α + β). The timing ratio is α / L (or β / L). The total period L of each period is a period in which the output signal changes twice (a period corresponding to two pulses), and is constant as long as the rotation speed of the encoder 4a is constant. The first partial period α and the second partial period β are periods in which the output signal changes once (period for one pulse), and even if the rotational speed of the encoder 4a is constant, the encoder It changes when the axial position of 4a changes.

図6から明らかな通り、前記タイミング比α/L又はβ/L(出力信号が1回変化する周期/出力信号が2回変化する周期)は、前記エンコーダ6cの軸方向位置に伴って変化し、このタイミング比α/L又はβ/Lの変化量は、この軸方向位置の変化量(軸方向変位量)が大きくなる程大きくなる。又、この軸方向変位量は、前記エンコーダ4aを外嵌固定した、前記主軸12に加わるアキシアル荷重が大きくなる程大きくなる。又、このアキシアル荷重に基づく前記軸方向変位量は、前記多列転がり軸受ユニット13を構成する前記各転がり軸受15a〜15dのうち、前記アキシアル荷重を支承する転がり軸受の剛性が大きくなる程小さくなる。又、このアキシアル荷重と前記軸方向変位量との関係は、この剛性を勘案した計算により、或は既知のアキシアル荷重と軸方向変位量との関係を測定する実験により、予め求めておく事ができる。従って、図1〜6に示す様な構造を採用すれば、低コストで、しかも小型に構成できる構造で、工作機械の主軸12に加わるアキシアル荷重を求められる。   As is apparent from FIG. 6, the timing ratio α / L or β / L (cycle in which the output signal changes once / cycle in which the output signal changes twice) changes with the axial position of the encoder 6c. The amount of change in the timing ratio α / L or β / L increases as the amount of change in the axial position (the amount of axial displacement) increases. Further, the axial displacement amount increases as the axial load applied to the main shaft 12 with the encoder 4a fitted and fixed increases. The axial displacement amount based on the axial load decreases as the rigidity of the rolling bearing that supports the axial load among the rolling bearings 15a to 15d constituting the multi-row rolling bearing unit 13 increases. . Further, the relationship between the axial load and the axial displacement amount may be obtained in advance by calculation taking this rigidity into account, or by an experiment measuring the relationship between the known axial load and axial displacement amount. it can. Therefore, if a structure as shown in FIGS. 1 to 6 is employed, an axial load applied to the spindle 12 of the machine tool can be obtained with a structure that can be configured at a low cost and in a small size.

上述の説明から明らかな通り、本例の工作機械用荷重測定装置によれば、前記各被検出用特性変化組み合わせ部20、20を、前記エンコーダ4aの外周面のn箇所に設けたとすれば、前記主軸12に加わるアキシアル荷重を、この主軸12が1回転する間にn回求められる。一方、この主軸12の先端部に結合固定した前記切削工具16の先端面又は外周面には、m箇所の切削部22、22が存在する。そして、これらm箇所の切削部22、22に基づいて、前記主軸12に加わる荷重が、前述の図15に破線で示した様に、この主軸12が1回転する間に、m回変動する。この変動に基づいて、前記主軸12に加わる荷重の測定値の平均値に誤差を生じない様にするべく、前記切削工具16に設けられた切削部22、22の数mを、前記エンコーダ4aの外周面に設けた前記各被検出用特性変化組み合わせ部20、20の組数nの非整数倍(m/n≠整数)としている。
この為に本例の場合には、前述した理由により、極端に処理速度が速い高価なCPUを使用しなくても、複数の切削部22、22を円周方向に関して等間隔に設けた前記切削工具16を先端部に結合固定した、前記主軸12に加わるアキシアル荷重の平均値を、精度良く測定できる。
As is clear from the above description, according to the machine tool load measuring apparatus of this example, if each of the detected characteristic change combination portions 20, 20 is provided at n locations on the outer peripheral surface of the encoder 4a, The axial load applied to the main shaft 12 is obtained n times while the main shaft 12 rotates once. On the other hand, m cutting portions 22, 22 exist on the distal end surface or the outer peripheral surface of the cutting tool 16 coupled and fixed to the distal end portion of the main shaft 12. The load applied to the main shaft 12 fluctuates m times during one rotation of the main shaft 12 as indicated by the broken line in FIG. Based on this variation, in order not to cause an error in the average value of the measured values of the load applied to the main shaft 12, the number m of the cutting portions 22 and 22 provided in the cutting tool 16 is determined by the encoder 4a. A non-integer multiple (m / n ≠ integer) of the number n of sets of the detected characteristic change combination units 20 and 20 provided on the outer peripheral surface.
For this reason, in the case of the present example, for the reasons described above, the cutting in which the plurality of cutting portions 22 and 22 are provided at equal intervals in the circumferential direction without using an expensive CPU with extremely high processing speed. The average value of the axial load applied to the spindle 12 with the tool 16 coupled and fixed to the tip can be accurately measured.

[実施の形態の第2例]
図7〜11は、請求項1、2に対応する、本発明の実施の形態の第2例を示している。本例の場合も、上述した実施の形態の第1例の場合と同様に、主軸12の軸方向に一致する、アキシアル方向の荷重を求められる様にしている。この為に本例の場合には、前記主軸13の中間部先端寄り部分で、多列転がり軸受ユニット13(全体構成に就いては前述の図1参照)を構成する転がり軸受15b、15c同士の間に、図8に示す様なエンコーダ4bを外嵌固定すると共に、ハウジング11に、センサユニット17aを支持固定している。このうちのエンコーダ4bは、鋼等の磁性金属により全体を円筒状としたもので、被検出面であるこのエンコーダ4bの外周面に、前記センサユニット17aの検出部を、径方向に近接対向させている。そして、このセンサユニット17aの出力信号中に含まれる、位相に関する情報に基づいて、前記主軸13に作用するアキシアル荷重を求める様に構成している。
[Second Example of Embodiment]
FIGS. 7-11 has shown the 2nd example of embodiment of this invention corresponding to Claim 1,2. In the case of this example as well, as in the case of the first example of the above-described embodiment, a load in the axial direction that matches the axial direction of the main shaft 12 is obtained. For this reason, in the case of this example, the rolling bearings 15b, 15c constituting the multi-row rolling bearing unit 13 (refer to FIG. In the meantime, an encoder 4 b as shown in FIG. 8 is externally fitted and fixed, and a sensor unit 17 a is supported and fixed to the housing 11. Of these, the encoder 4b is entirely cylindrical with a magnetic metal such as steel, and the detection portion of the sensor unit 17a is made to face the outer peripheral surface of the encoder 4b, which is the detection surface, in the radial direction. ing. And it is comprised so that the axial load which acts on the said spindle 13 may be calculated | required based on the information regarding the phase contained in the output signal of this sensor unit 17a.

この為に本例の場合には、前記エンコーダ4bの外周面の一部に、径方向に見た形状が「く」字形であって、それぞれが特許請求の範囲に記載した被検出部であり距離変化部でもある、凹溝23、23を形成している。これら各凹溝23、23は、全体として前記エンコーダ4bの外周面の幅方向(このエンコーダ4bの軸方向)に設けられているが、各部分は、この幅方向に対し傾斜している。又、傾斜方向は、幅方向片半部と同他半部とで、互いに逆に(但し、傾斜角度の絶対値は両半部同士の間で互いに等しく)している。尚、本例の場合も、前記エンコーダ4bに、内輪間座としての機能を持たせている。   For this reason, in the case of this example, a part of the outer peripheral surface of the encoder 4b has a “<” shape when viewed in the radial direction, and each is a detected portion described in the claims. Concave grooves 23 and 23, which are also distance changing portions, are formed. Each of the concave grooves 23 and 23 is provided in the width direction of the outer peripheral surface of the encoder 4b as a whole (the axial direction of the encoder 4b), but each portion is inclined with respect to the width direction. Also, the inclination direction is opposite to each other in the width direction half and the other half (however, the absolute value of the inclination angle is equal between the two halves). Also in this example, the encoder 4b is provided with a function as an inner ring spacer.

一方、前記センサユニット17aは、合成樹脂製のホルダ19aの先端部に、1対のセンサ組立体6a、6bを支持固定して成る。
これら両センサ組立体6a、6bはそれぞれ、図10、11に示す様に、1個の永久磁石18aと、1対のホール素子24a、24bと、IC25とを備える。
このうちの永久磁石18aは、前記エンコーダ4bの外周面と前記センサユニット17aの検出部とが対向する方向である、このエンコーダ4bの径方向に着磁されている。本例の場合には、図10に示す様に、前記両センサ組立体6a、6bに組み込む永久磁石18a、18aの着磁方向を互いに同じ(前記エンコーダ4bの径方向に関して内側をN極、外側をS極)としている。
On the other hand, the sensor unit 17a is formed by supporting and fixing a pair of sensor assemblies 6a and 6b to the tip of a holder 19a made of synthetic resin.
Each of these sensor assemblies 6a and 6b includes a permanent magnet 18a, a pair of Hall elements 24a and 24b, and an IC 25, as shown in FIGS.
Of these, the permanent magnet 18a is magnetized in the radial direction of the encoder 4b, which is the direction in which the outer peripheral surface of the encoder 4b and the detection unit of the sensor unit 17a face each other. In the case of this example, as shown in FIG. 10, the magnetizing directions of the permanent magnets 18a and 18a incorporated in the two sensor assemblies 6a and 6b are the same (the inner side is the N pole and the outer side in the radial direction of the encoder 4b). Is S pole).

又、前記両ホール素子24a、24bは、前記永久磁石18aの着磁方向両端面のうちで、前記エンコーダ4bの外周面と対向する、N極側の端面に、前記主軸12の回転方向(図10、11の左右方向)に離隔して配置している。前記永久磁石18aの直径は、前記両ホール素子24a、24bをこの永久磁石18aの端面に配置できる程度に十分に大きくしている。そして、この永久磁石18aを、前記両ホール素子24a、24bに掛け渡した状態で設けている。尚、前記両ホール素子24a、24bは、互いに同じ特性を有する(同種のものを使用する)。   Further, the hall elements 24a and 24b are arranged in the direction of rotation of the main shaft 12 on the end face on the N pole side facing the outer peripheral surface of the encoder 4b among the both end faces in the magnetization direction of the permanent magnet 18a (see FIG. 10 and 11 in the left-right direction). The diameter of the permanent magnet 18a is sufficiently large so that the Hall elements 24a and 24b can be disposed on the end face of the permanent magnet 18a. And this permanent magnet 18a is provided in the state hung over both said Hall elements 24a and 24b. The Hall elements 24a and 24b have the same characteristics (use the same type).

又、前記IC25は、前記両ホール素子24a、24bが検出する磁束密度(実際には、この磁束密度の差に応じて変化する電圧信号)の差を求め、更にこの差を表す信号と互いに異なる2種類の閾値とを比較する事で生成したディジタル信号を、前記センサ組立体6a(6b)の出力信号として出力する。即ち、このセンサ組立体6a(6b)は、前述した実施の形態の第1例の場合と同様に、磁気検出素子として、特許文献5や非特許文献1、2等により従来から広く知られている差動式ホールICの原理を利用し、前記各凹溝23、23の周方向端縁の位置を精度良く求められる様にしている。そして、図11の(A)(B)に示す様に、これら各凹溝23、23の片半部を走査するセンサ組立体6aの出力信号と、同じく他半部を走査するセンサ組立体6bの出力信号との間の位相差に基づき、前記エンコーダ4bを外嵌固定した主軸12に加わるアキシアル荷重を測定可能としている。前記位相差に基づいてこのアキシアル荷重を求める原理は、前述の図13〜14に示した従来構造の場合と同様である。   The IC 25 obtains a difference in magnetic flux density detected by the Hall elements 24a and 24b (actually, a voltage signal that changes in accordance with the difference in magnetic flux density), and further differs from a signal representing this difference. A digital signal generated by comparing the two kinds of threshold values is output as an output signal of the sensor assembly 6a (6b). That is, this sensor assembly 6a (6b) has been widely known as a magnetic detection element from Patent Document 5, Non-Patent Documents 1 and 2, etc., as in the case of the first example of the embodiment described above. By utilizing the principle of the differential Hall IC, the positions of the circumferential edges of the concave grooves 23 and 23 can be obtained with high accuracy. Then, as shown in FIGS. 11A and 11B, the output signal of the sensor assembly 6a that scans one half of each of the grooves 23 and 23, and the sensor assembly 6b that scans the other half as well. The axial load applied to the main shaft 12 to which the encoder 4b is externally fitted and fixed can be measured based on the phase difference from the output signal. The principle of obtaining this axial load based on the phase difference is the same as that of the conventional structure shown in FIGS.

この様な本例の構造の場合も、前記各凹溝23、23を前記エンコーダ4bの外周面のn箇所に設けたとすれば、前記主軸12に加わるアキシアル荷重を、この主軸12が1回転する間にn回求められる。この主軸12の先端部に結合固定した前記切削工具16の先端面及び外周面にm箇所の切削部22、22(図1参照)が存在すれば、前記主軸12に加わる荷重が、この主軸12が1回転する間に、m回変動する事も、前述した実施の形態の第1例の場合と同様である。そこで、本例の場合も、前記切削工具16に設けられた切削部22、22の数mを、前記エンコーダ4bの外周面に設けた前記各凹溝23、23の組数nの非整数倍(m/n≠整数)として、前記変動に基づいて、前記主軸12に加わる荷重の平均値に誤差を生じない様にしている。
この為に本例の場合も、前述した実施の形態の第1例と同様に、極端に処理速度が速い高価なCPUを使用しなくても、前記主軸12に加わる荷重の平均値を、精度良く測定できる。
In the case of the structure of this example as well, if each of the concave grooves 23 and 23 is provided at n locations on the outer peripheral surface of the encoder 4b, the main shaft 12 makes one rotation of the axial load applied to the main shaft 12. N times in between. If m cutting portions 22 and 22 (see FIG. 1) are present on the front end surface and the outer peripheral surface of the cutting tool 16 coupled and fixed to the front end portion of the main shaft 12, a load applied to the main shaft 12 is applied to the main shaft 12. It is the same as in the case of the first example of the above-described embodiment that it fluctuates m times during one rotation. Therefore, also in this example, the number m of the cutting parts 22 and 22 provided in the cutting tool 16 is a non-integer multiple of the number n of sets of the concave grooves 23 and 23 provided on the outer peripheral surface of the encoder 4b. As (m / n ≠ integer), an error is not caused in the average value of the load applied to the main shaft 12 based on the variation.
Therefore, in the case of this example as well, as in the first example of the above-described embodiment, the average value of the load applied to the spindle 12 can be obtained without using an expensive CPU with extremely high processing speed. Can measure well.

本発明を実施する場合に、主軸等の回転軸に、この回転軸と同心に外嵌固定したエンコーダの被検出面を軸方向側面とし、この被検出面にセンサの検出部を軸方向に対向させれば、前記回転軸に加わるラジアル荷重を求められる。   When practicing the present invention, the detected surface of an encoder externally fitted and fixed to a rotating shaft such as a main shaft is defined as an axial side surface, and the detection portion of the sensor is opposed to the detected surface in the axial direction. If it does, the radial load added to the said rotating shaft will be calculated | required.

1 外輪
2 ハブ
3 転動体
4、4a、4b エンコーダ
5 カバー
6a、6b、6c センサ組立体
7 透孔
8 柱部
9 第一特性変化部
10 第二特性変化部
11 ハウジング
12 主軸
13 多列転がり軸受ユニット
14 電動モータ
15a、15b、15c、15d 転がり軸受
16 切削工具
17、17a センサユニット
18、18a 永久磁石
19、19a ホルダ
20 被検出用特性変化組み合わせ部
21a、21b 凹溝
22 切削部
23 凹溝
24a、24b ホール素子
25 IC
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Rolling element 4, 4a, 4b Encoder 5 Cover 6a, 6b, 6c Sensor assembly 7 Through-hole 8 Column part 9 First characteristic change part 10 Second characteristic change part 11 Housing 12 Main shaft 13 Multi-row rolling bearing Unit 14 Electric motor 15a, 15b, 15c, 15d Rolling bearing 16 Cutting tool 17, 17a Sensor unit 18, 18a Permanent magnet 19, 19a Holder 20 Characteristic change combination part for detection 21a, 21b Groove 22 Cutting part 23 Groove 24a 24b Hall element 25 IC

特開2002−187048号公報JP 2002-187048 A 特開2006−317420号公報JP 2006-317420 A 特開2008−39155号公報JP 2008-39155 A 特開2008−64731号公報JP 2008-64731 A 特開平8−220200号公報JP-A-8-220200

旭化成株式会社のホームページ、“ホールICの動作原理:ホールIC:製品紹介:旭化成の磁気センサ”、[online]、[平成21年8月13日検索]、インターネット<URL:http://www.asahi-kasei.co.jp/ake/jp/product/ic/outline.html>Asahi Kasei Corporation website, “Hall IC operating principle: Hall IC: Product introduction: Asahi Kasei magnetic sensor”, [online], [August 13, 2009 search], Internet <URL: http: // www. asahi-kasei.co.jp/ake/jp/product/ic/outline.html> ローム株式会社のホームページ、“交番磁界検出ホールIC”、[online]、[平成21年8月13日検索]、インターネット<URL:http://www.rohm.co.jp/products/databook/sensor/pdf/bu52040hfv-j.pdf>ROHM Co., Ltd. homepage, “Alternating magnetic field detection Hall IC”, [online], [Search August 13, 2009], Internet <URL: http://www.rohm.co.jp/products/databook/sensor /pdf/bu52040hfv-j.pdf>

Claims (4)

回転しないハウジングと、それぞれが予圧を付与された複数の転がり軸受により、このハウジングの内側に回転自在に支持された回転軸と、この回転軸の先端部にこの回転軸と同心に支持固定された、複数の切削部を円周方向に関して等間隔に設けた切削工具と、前記回転軸の一部に支持固定された、この回転軸と同心の被検出面を有するエンコーダと、この被検出面に検出部を対向させた状態で前記ハウジングに、直接又は他の部材を介して支持された少なくとも1個のセンサ組立体と、このセンサ組立体の出力信号を処理する演算器とを備え、この演算器は、このセンサ組立体の出力信号の位相に関する情報に基づいて、前記回転軸に作用する荷重を求める工作機械用荷重測定装置であって、前記エンコーダの被検出面は、円周方向の一部に、特性が円周方向に関して隣り合う部分と異なる複数組の被検出部を、それぞれ測定すべき荷重の作用方向に関して傾斜した状態で、円周方向に関して等間隔に設けられており、前記切削工具に設けられた切削部の数mを、前記エンコーダの被検出面に存在する被検出部の組数nで除した数m/nが、整数ではない事を特徴とする工作機械用荷重測定装置。   A non-rotating housing and a plurality of rolling bearings each provided with a preload, a rotating shaft rotatably supported inside the housing, and supported and fixed concentrically with the rotating shaft at the tip of the rotating shaft A cutting tool in which a plurality of cutting parts are provided at equal intervals in the circumferential direction, an encoder having a detected surface concentric with the rotating shaft, which is supported and fixed to a part of the rotating shaft, and the detected surface At least one sensor assembly supported directly or via another member on the housing in a state where the detection unit is opposed to the housing, and an arithmetic unit for processing an output signal of the sensor assembly. The machine is a machine tool load measuring device that obtains a load acting on the rotating shaft based on information relating to the phase of the output signal of the sensor assembly. In addition, a plurality of sets of detected parts having different characteristics from those adjacent to each other in the circumferential direction are provided at equal intervals in the circumferential direction in a state where they are inclined with respect to the acting direction of the load to be measured. A machine tool load measuring device characterized in that the number m / n obtained by dividing the number m of cutting parts provided in the number by the number n of sets of detected parts existing on the detected surface of the encoder is not an integer. . エンコーダが磁性材製であり、被検出部が、このエンコーダの被検出面の幅方向に形成された、センサ組立体の検出部との距離が残部と異なる除肉部若しくは突条部である距離変化部であって、この距離変化部は、少なくとも一部が、測定すべき荷重の作用方向に対して傾斜した形状を有するものであり、
前記センサ組立体は、前記被検出面と前記検出部とが対向する方向に着磁された永久磁石と、この永久磁石の着磁方向両端面のうちでこの被検出面と対向する端面に配置された磁気検出素子と、この磁気検出素子が検出する磁束密度の変化を表す信号を出力するICとを備えたものであり、
演算器は、前記センサ組立体の出力信号に基づいて回転軸に作用する荷重を求める、請求項1に記載した工作機械用荷重測定装置。
The encoder is made of a magnetic material, and the detected portion is formed in the width direction of the detected surface of the encoder, and the distance between the detected portion and the detecting portion of the sensor assembly is a thinned portion or a protruding portion that is different from the remaining portion. The distance changing portion is a changing portion, and at least a part thereof has a shape inclined with respect to the acting direction of the load to be measured,
The sensor assembly is disposed on a permanent magnet that is magnetized in a direction in which the detection surface and the detection unit face each other, and an end surface that faces the detection surface among both end surfaces in the magnetization direction of the permanent magnet. And an IC for outputting a signal representing a change in magnetic flux density detected by the magnetic detection element,
The machine tool load measuring device according to claim 1, wherein the computing unit obtains a load acting on the rotating shaft based on an output signal of the sensor assembly.
単一のセンサ組立体を備えており、このセンサ組立体は、エンコーダの回転に伴う距離変化部の通過に伴って出力信号を変化させるものであり、回転軸に加わる荷重に伴う前記センサ組立体と前記エンコーダとの相対変位に伴って、1周期の間で前記出力信号が変化するタイミングがずれるものであり、荷重を求める為に使用する位相に関する情報が、前記出力信号の1周期に対する上記タイミングの比である、請求項2に記載した工作機械用荷重測定装置。   The sensor assembly includes a single sensor assembly, and the sensor assembly changes an output signal according to the passage of the distance changing portion accompanying the rotation of the encoder, and the sensor assembly according to the load applied to the rotating shaft. As the relative displacement between the encoder and the encoder, the timing at which the output signal changes during one period shifts, and information regarding the phase used to determine the load is the timing for one period of the output signal. The load measuring apparatus for machine tools according to claim 2, wherein エンコーダが円筒状に造られたものであって回転軸に外嵌固定されており、被検出面がこのエンコーダの外周面であり、距離変化部が、この外周面に形成された複数の凹溝若しくは突条であって、これら各凹溝若しくは突条は、このエンコーダの軸方向に対する傾斜方向が互いに異なる1対の凹溝若しくは突条をこのエンコーダの回転方向に隣り合わせて対としたものであり、単一のセンサ組立体の検出部がこれら各凹溝若しくは各突条に対向しており、前記1対の凹溝若しくは突条を1組とする被検出部の組数がnである、請求項3に記載した工作機械用荷重測定装置。   The encoder is formed in a cylindrical shape and is externally fixed to the rotating shaft, the detected surface is the outer peripheral surface of the encoder, and the distance changing portion is a plurality of concave grooves formed on the outer peripheral surface. Alternatively, each of the grooves or ridges is a pair of grooves or ridges having different inclination directions with respect to the axial direction of the encoder and adjacent to each other in the rotational direction of the encoder. The detection part of the single sensor assembly is opposed to each of the concave grooves or the ridges, and the number of detected parts including the pair of concave grooves or ridges as one set is n. The load measuring device for machine tools according to claim 3.
JP2010029153A 2010-02-12 2010-02-12 Load measuring device for machine tools Expired - Fee Related JP5552828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010029153A JP5552828B2 (en) 2010-02-12 2010-02-12 Load measuring device for machine tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029153A JP5552828B2 (en) 2010-02-12 2010-02-12 Load measuring device for machine tools

Publications (2)

Publication Number Publication Date
JP2011161588A true JP2011161588A (en) 2011-08-25
JP5552828B2 JP5552828B2 (en) 2014-07-16

Family

ID=44592884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029153A Expired - Fee Related JP5552828B2 (en) 2010-02-12 2010-02-12 Load measuring device for machine tools

Country Status (1)

Country Link
JP (1) JP5552828B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104551031A (en) * 2014-12-26 2015-04-29 杭州三共机械有限公司 Lathe tool table with random-angle positioning function and operating method of lathe tool table

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751999A (en) * 1993-08-06 1995-02-28 Fanuc Ltd Tool breakage detecting method
JPH0985586A (en) * 1995-09-28 1997-03-31 Mitsubishi Materials Corp Detecting device and method for cutting state of rotational cutting tool
JP2003170335A (en) * 2001-11-30 2003-06-17 Union Tool Co Method and device for measuring rotary cutting tool
JP2004322306A (en) * 2003-04-07 2004-11-18 Nsk Ltd Main spindle unit
JP2006317420A (en) * 2004-05-26 2006-11-24 Nsk Ltd Rolling bearing unit with load measuring unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751999A (en) * 1993-08-06 1995-02-28 Fanuc Ltd Tool breakage detecting method
JPH0985586A (en) * 1995-09-28 1997-03-31 Mitsubishi Materials Corp Detecting device and method for cutting state of rotational cutting tool
JP2003170335A (en) * 2001-11-30 2003-06-17 Union Tool Co Method and device for measuring rotary cutting tool
JP2004322306A (en) * 2003-04-07 2004-11-18 Nsk Ltd Main spindle unit
JP2006317420A (en) * 2004-05-26 2006-11-24 Nsk Ltd Rolling bearing unit with load measuring unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104551031A (en) * 2014-12-26 2015-04-29 杭州三共机械有限公司 Lathe tool table with random-angle positioning function and operating method of lathe tool table

Also Published As

Publication number Publication date
JP5552828B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
EP1550813B1 (en) Rolling element bearing unit with sensor and hub unit with sensor
US9823145B2 (en) Bearing nut for measuring the rotational speed of a shaft connected to a turbomachine and associated measuring device
JP5601091B2 (en) Spindle device for machine tool
JP4165260B2 (en) Rolling bearing unit with sensor
JP5552828B2 (en) Load measuring device for machine tools
JP5391969B2 (en) Rotating shaft load measuring device
EP1407854A2 (en) Method for machining a surface and simultaneously measuring parameters of the surface being machined
JP5589875B2 (en) Verification method and verification device for axial load measuring device for rotating shaft
JP6941594B2 (en) How to monitor and measure the preload of spindle bearings
EP3076149B1 (en) Enhancement of precision in determining a contact angle in a ball bearing
JP6191161B2 (en) Encoder
JP5742392B2 (en) Physical quantity measuring device for rotating machine, machine tool, and automobile
JP5446957B2 (en) Temperature measuring device for rotating shaft
JP5696417B2 (en) Physical quantity measuring device for rotating members
JP5742265B2 (en) Physical quantity measuring device for rotating member, machine tool and vehicle
JP2010216654A (en) Bearing assembly
JP5098379B2 (en) Bearing load measuring device
JP5541054B2 (en) Physical quantity measuring device for rotating members
JP2012200844A (en) Method for forming chatter stability limit diagram
JP2006226809A (en) Load detector and load detection method
JP2005133891A (en) Preload measuring method and device for bearing
JP5407878B2 (en) Physical quantity measuring device for rotating shaft
JP4957357B2 (en) Rotational support device state quantity measuring device
JP5691579B2 (en) Physical quantity measuring device for rotating member, machine tool, and automobile
JP5640831B2 (en) Rotating machine with compression strain measuring device and machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5552828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees