JP2011160686A - New variant of bacillus subtilis - Google Patents

New variant of bacillus subtilis Download PDF

Info

Publication number
JP2011160686A
JP2011160686A JP2010024571A JP2010024571A JP2011160686A JP 2011160686 A JP2011160686 A JP 2011160686A JP 2010024571 A JP2010024571 A JP 2010024571A JP 2010024571 A JP2010024571 A JP 2010024571A JP 2011160686 A JP2011160686 A JP 2011160686A
Authority
JP
Japan
Prior art keywords
region
seq
bacillus subtilis
strain
genome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010024571A
Other languages
Japanese (ja)
Other versions
JP5695325B2 (en
Inventor
Takuya Morimoto
拓也 森本
Yasushi Kageyama
泰 影山
Katsutoshi Ara
勝俊 荒
Naoki Ogasawara
直毅 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Nara Institute of Science and Technology NUC
Original Assignee
Kao Corp
Nara Institute of Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Nara Institute of Science and Technology NUC filed Critical Kao Corp
Priority to JP2010024571A priority Critical patent/JP5695325B2/en
Publication of JP2011160686A publication Critical patent/JP2011160686A/en
Application granted granted Critical
Publication of JP5695325B2 publication Critical patent/JP5695325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variant of Bacillus subtilis from which a large region of genome is deleted based on a wild strain, and to provide a method for producing a gene product by using the variant. <P>SOLUTION: The variant of the Bacillus subtilis has a genome structure obtained by deleting any one of the following regions in the genome of Bacillus subtilis 168 strain from the genome region of MGB874 strain of the variant of the Bacillus subtilis: (a) ybbU-ybfI region; (b) ydjM-cotA region; (c) yefA-yesX region; (d) yfiB-yfiX region; (e) yhcE-yhcU region; (f) yhaU-yhaL region; (g) yjbX-yjlB region; (h) xkdA-ykcC region; (i) bpr-ylmA region; (j) flgB-cheD region; (k) ynfF-ppsA region; (l) yoxC-yobO region; (m) spoVAF-spoIIAA region; (n) spoIIIAH-yqhV region; (o) ytvB-ytqB region; (p) yteA-ytaB region; (q) yuaJ-yugO region; (r) yusJ-mrgA region; (s) gerAA-yvrI region; (t) yvaM-yvbK region; (u) araE-yveK region; (v) yvdE-yvcP region; (w) gerBA-ywsC region; (x) ywrK-ywqM region; (y) spoIIID-ywoB region; (z) slp-ylaF region; (aa) licH-sigY region; (ab) yqeF-yrhK region; (ac) yuzE-yukJ region; and (ad) yncM-yndN region. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規な枯草菌変異株、及び当該枯草菌変異株を用いた目的遺伝子産物の製造方法に関する。   The present invention relates to a novel Bacillus subtilis mutant and a method for producing a target gene product using the Bacillus subtilis mutant.

微生物による有用物質の工業的生産は、アルコール飲料や味噌、醤油等の食品類をはじめとし、アミノ酸、有機酸、核酸関連物質、抗生物質、糖質、脂質、タンパク質等、その種類は多岐に渡っており、またその用途についても食品、医薬品、洗浄剤、化粧品等の日用品、或いは各種化成品原料に至るまで幅広い分野に広がっている。   The industrial production of useful substances by microorganisms includes a wide variety of types including foods such as alcoholic beverages, miso and soy sauce, as well as amino acids, organic acids, nucleic acid-related substances, antibiotics, carbohydrates, lipids, proteins, etc. In addition, its application has been extended to a wide range of fields from foods, pharmaceuticals, detergents, daily necessaries such as cosmetics to various chemical raw materials.

こうした微生物による有用物質の工業生産においては、その生産性の向上が重要な課題の一つであり、その手法として、突然変異等の遺伝学的手法による生産菌の育種が行われてきた。特に最近では、微生物遺伝学、バイオテクノロジーの発展により、遺伝子組換え技術等を用いたより効率的な生産菌の育種が行われるようになっている。さらに、近年のゲノム解析技術の急速な発展を受けて、対象とする微生物のゲノム情報を解読し、これらを積極的に産業に応用しようとする試みもなされている。   In industrial production of useful substances by such microorganisms, improvement of productivity is one of the important issues, and breeding of produced bacteria by genetic techniques such as mutation has been performed as a technique. Particularly recently, with the development of microbial genetics and biotechnology, more efficient breeding of production bacteria using genetic recombination techniques has been carried out. Furthermore, in response to the rapid development of genome analysis technology in recent years, attempts have been made to decode genome information of target microorganisms and actively apply them to industry.

近年、枯草菌については、枯草菌ゲノムに存在する約4100種類の遺伝子の破壊株が網羅的に研究され、271個の遺伝子が成育に必須であることが指摘されている(非特許文献1)。また、枯草菌等の胞子形成初期に関わる遺伝子やプロテアーゼ遺伝子、又は細胞壁或いは細胞膜中のテイコ酸へのD−アラニン付加に関わる遺伝子、更にはサーファクチンの生合成或いは分泌に関わる遺伝子を単独に欠失又は不活性化した菌株が構築されている(特許文献1〜8参照)。   In recent years, about Bacillus subtilis, about 4100 kinds of gene-disrupted strains present in the Bacillus subtilis genome have been comprehensively studied, and it has been pointed out that 271 genes are essential for growth (Non-patent Document 1). . In addition, the genes involved in the early stages of sporulation such as Bacillus subtilis, protease genes, genes involved in D-alanine addition to teichoic acid in the cell wall or cell membrane, and genes involved in biosynthesis or secretion of surfactin alone are missing. Lost or inactivated strains have been constructed (see Patent Documents 1 to 8).

枯草菌についてはまた、ゲノムの大領域あるいは遺伝子を欠失させた変異株の網羅的解析により、各種酵素の生産性に優れた変異株が見出されている。この研究で得られた枯草菌変異株の1つであるMGB874株は、枯草菌Bacillus subtilis Marburg No.168(枯草菌168株)に由来し、そのゲノムの合計874 kbが削除された変異株であるが、野生株である168株に比較して、タンパク質の分泌生産性が有意に向上している(特許文献9)。   As for Bacillus subtilis, mutants having excellent productivity of various enzymes have been found by comprehensive analysis of mutants having large genomic regions or genes deleted. The MGB874 strain, one of the Bacillus subtilis mutant strains obtained in this study, is derived from Bacillus subtilis Marburg No.168 (Bacillus subtilis 168), and is a mutant strain in which a total of 874 kb of the genome has been deleted. However, the protein secretion productivity is significantly improved as compared to the wild-type 168 strain (Patent Document 9).

一方、ゲノムの大領域欠失にも係らず野生型と比較して同等以上の遺伝子産物生産性を維持している微生物はロバスト性が低いため、遺伝子産物合成メカニズムの解析において、その解析をより容易にできるという特徴がある。例えば、上記MGB874株は874 kbもの長大な遺伝子の破壊株であり、遺伝子産物合成メカニズム解析のためのモデルとして有望である。   On the other hand, microorganisms that maintain the same or higher gene product productivity compared to the wild type in spite of large genomic deletions are less robust. It is easy to do. For example, the MGB874 strain is a gene disruption strain as long as 874 kb, and is promising as a model for analyzing the gene product synthesis mechanism.

しかしながら、目的遺伝子産物の工業的生産における更なる生産性の向上のために、生産性がより向上した枯草菌変異株が求められている。また、生物の遺伝子産物合成メカニズムのより詳細な解析のためには、野生型と同等の遺伝子産物の生産性を有しながら、一方で野生型と比較してできるだけ多くのゲノムを欠失した変異株が求められている。   However, there is a need for a Bacillus subtilis mutant strain with improved productivity in order to further improve productivity in industrial production of the target gene product. In addition, for more detailed analysis of the gene product synthesis mechanism of organisms, mutations that have the same gene product productivity as the wild type but have lost as much genome as possible compared to the wild type Stocks are sought.

特開昭58-190390号公報JP-A-58-190390 特開昭61-1381号公報JP 61-1381 国際公開第89/04866号パンフレットWO89 / 04866 pamphlet 特表平11-509096号公報Japanese National Patent Publication No. 11-509096 特許第3210315号公報Japanese Patent No. 3210315 特表2001-527401号公報Special table 2001-527401 特表2002−520017号公報Special Table 2002-520017 特表2001−503641号公報Special table 2001-503641 特開2007-130013号公報Japanese Unexamined Patent Publication No. 2007-130013

K. Kobayashi et al., Proc. Natl. Acad. Sci. USA., 100, 4678-4683, 2003K. Kobayashi et al., Proc. Natl. Acad. Sci. USA., 100, 4678-4683, 2003

本発明は、野生株に対してゲノムの大領域が欠失した枯草菌変異株、及び当該枯草菌変異株を用いた目的遺伝子産物の製造方法を提供することに関する。   The present invention relates to providing a Bacillus subtilis mutant strain in which a large region of the genome is deleted from a wild strain, and a method for producing a target gene product using the Bacillus subtilis mutant strain.

本発明者らは、枯草菌Bacillus subtilis Marburg No.168(枯草菌168株)に由来し、168株のゲノムの大領域が欠失した枯草菌変異株において、さらなるゲノム領域を欠失させることを試みた。その結果、野生株と比較してゲノムの大領域を欠失しているMGB874からさらにゲノムの大領域を欠失させた場合でも、なお生存能を維持し得る変異株を得ることに成功した。さらに本発明者らは、当該変異株に目的産物をコードする遺伝子を組み込むことにより、当該目的産物の生産性により優れた組換え枯草菌変異株を取得することに成功した。   The present inventors have found that in a Bacillus subtilis mutant derived from Bacillus subtilis Marburg No. 168 (Bacillus subtilis 168), a large region of the 168 genome has been deleted, further genomic regions are deleted. Tried. As a result, the inventors succeeded in obtaining a mutant strain that can maintain viability even when a large genomic region is further deleted from MGB874, which lacks a large genomic region compared to the wild strain. Furthermore, the present inventors have succeeded in obtaining a recombinant Bacillus subtilis mutant strain that is superior in productivity of the target product by incorporating a gene encoding the target product into the mutant strain.

すなわち、本発明は、枯草菌変異株MGB874株のゲノム領域からさらにゲノム領域を欠失させたゲノム構造を有する枯草菌変異株に係るものである。
本発明はまた、上記枯草菌変異株に目的遺伝子産物をコードする遺伝子が発現可能に導入された組換え枯草菌に係るものである。
本発明はまた、上記組換え枯草菌を用いる目的遺伝子産物の製造方法に係るものである。
That is, the present invention relates to a Bacillus subtilis mutant strain having a genome structure in which the genome region is further deleted from the genome region of the Bacillus subtilis mutant strain MGB874.
The present invention also relates to a recombinant Bacillus subtilis in which a gene encoding a target gene product has been introduced into the Bacillus subtilis mutant strain so that the gene can be expressed.
The present invention also relates to a method for producing a target gene product using the above recombinant Bacillus subtilis.

一態様において、本発明は、以下を提供する。
(1)枯草菌変異株MGB874株のゲノム領域から、枯草菌168株のゲノム上における以下の(a)〜(ad)で示される領域のうちのいずれか1が欠失したゲノム構造を有する枯草菌変異株:
(a)ybbU-ybfI領域;
(b)ydjM-cotA領域;
(c)yefA-yesX領域;
(d)yfiB-yfiX領域;
(e)yhcE-yhcU領域;
(f)yhaU-yhaL領域;
(g)yjbX-yjlB領域;
(h)xkdA-ykcC領域;
(i)bpr-ylmA領域;
(j)flgB-cheD領域;
(k)ynfF-ppsA領域;
(l)yoxC-yobO領域;
(m)spoVAF-spoIIAA領域;
(n)spoIIIAH-yqhV領域;
(o)ytvB-ytqB領域;
(p)yteA-ytaB領域;
(q)yuaJ-yugO領域;
(r)yusJ-mrgA領域;
(s)gerAA-yvrI領域;
(t)yvaM-yvbK領域;
(u)araE-yveK領域;
(v)yvdE-yvcP領域;
(w)gerBA-ywsC領域;
(x)ywrK-ywqM領域;
(y)spoIIID-ywoB領域;
(z)slp-ylaF領域;
(aa)licH-sigY領域;
(ab)yqeF-yrhK領域;
(ac)yuzE-yukJ領域;及び
(ad)yncM-yndN領域。
(2)前記(a)〜(ad)で示される領域が、下記の配列番号で示される一対のオリゴヌクレオチドセットにより挟み込まれる領域である、(1)記載の枯草菌変異株:
(a) 配列番号51と配列番号52;
(b) 配列番号53と配列番号54;
(c) 配列番号55と配列番号56;
(d) 配列番号57と配列番号58;
(e) 配列番号59と配列番号60;
(f) 配列番号61と配列番号62;
(g) 配列番号63と配列番号64;
(h) 配列番号65と配列番号66;
(i) 配列番号67と配列番号68;
(j) 配列番号69と配列番号70;
(k) 配列番号71と配列番号72;
(l) 配列番号73と配列番号74;
(m) 配列番号75と配列番号76;
(n) 配列番号77と配列番号78;
(o) 配列番号79と配列番号80;
(p) 配列番号81と配列番号82;
(q) 配列番号83と配列番号84;
(r) 配列番号85と配列番号86;
(s) 配列番号87と配列番号88;
(t) 配列番号89と配列番号90;
(u) 配列番号91と配列番号92;
(v) 配列番号93と配列番号94;
(w) 配列番号95と配列番号96;
(x) 配列番号97と配列番号98;
(y) 配列番号99と配列番号100;
(z) 配列番号101と配列番号102;
(aa) 配列番号103と配列番号104;
(ab) 配列番号105と配列番号106;
(ac) 配列番号107と配列番号108;
(ad) 配列番号109と配列番号110。
(3)枯草菌変異株MGB874株のゲノム領域から、前記(f)、(j)及び(m)で示される3領域が少なくとも欠失したゲノム構造を有する、(2)に記載の枯草菌変異株。
(4)(1)〜(3)のいずれか1に記載の枯草菌変異株に目的遺伝子産物をコードする遺伝子が発現可能に導入された組換え枯草菌。
(5)目的遺伝子産物をコードする遺伝子の上流に転写開始制御領域、翻訳開始制御領域及び分泌シグナル領域から選ばれる1以上の領域が作動可能に結合された、(4)記載の組換え枯草菌。
(6)転写開始制御領域、翻訳開始制御領域及び分泌シグナル領域からなる3領域が結合された、(5)記載の組換え枯草菌。
(7)分泌シグナル領域がバチルス(Bacillus)属細菌のセルラーゼ遺伝子由来のものであり、転写開始制御領域及び翻訳開始制御領域が当該セルラーゼ遺伝子の開始コドンから始まる長さ0.6〜1kbの上流領域由来のものである、(6)記載の組換え枯草菌。
(8)転写開始制御領域、翻訳開始制御領域及び分泌シグナル領域からなる3領域が、配列番号1で示される塩基配列の塩基番号1〜659の塩基配列からなるDNA断片、配列番号3で示される塩基配列からなるセルラーゼ遺伝子の塩基番号1〜696の塩基配列、又は当該塩基配列のいずれかと70%以上の同一性を有する塩基配列からなるDNA断片、上記いずれかの塩基配列からなるDNAとストリンジェントの条件でハイブリダイズするDNA断片若しくは当該塩基配列のいずれかの一部が欠失した塩基配列からなるDNA断片である、(6)記載の組換え枯草菌。
(9)目的遺伝子産物が異種タンパク質又はポリペプチドである、(4)〜(8)のいずれか1に記載の組換え枯草菌。
(10)(4)〜(9)のいずれか1に記載の組換え枯草菌を用いる目的遺伝子産物の製造方法。
In one aspect, the present invention provides the following.
(1) Bacillus having a genomic structure in which any one of the following regions (a) to (ad) shown in the genome of Bacillus subtilis 168 is deleted from the genome region of Bacillus subtilis mutant MGB874 Fungal mutant:
(a) ybbU-ybfI region;
(b) ydjM-cotA region;
(c) yefA-yesX region;
(d) yfiB-yfiX region;
(e) the yhcE-yhcU region;
(f) yhaU-yhaL region;
(g) yjbX-yjlB region;
(h) the xkdA-ykcC region;
(i) bpr-ylmA region;
(j) flgB-cheD region;
(k) ynfF-ppsA region;
(l) yoxC-yobO region;
(m) spoVAF-spoIIAA region;
(n) spoIIIAH-yqhV region;
(o) ytvB-ytqB region;
(p) the yteA-ytaB region;
(q) yuaJ-yugO region;
(r) yusJ-mrgA region;
(s) gerAA-yvrI region;
(t) yvaM-yvbK region;
(u) araE-yveK region;
(v) yvdE-yvcP region;
(w) gerBA-ywsC region;
(x) ywrK-ywqM region;
(y) spoIIID-ywoB region;
(z) slp-ylaF region;
(aa) licH-sigY region;
(ab) yqeF-yrhK region;
(ac) yuzE-yukJ region; and
(ad) yncM-yndN region.
(2) The Bacillus subtilis mutant strain according to (1), wherein the region represented by (a) to (ad) is a region sandwiched between a pair of oligonucleotide sets represented by the following SEQ ID NO:
(a) SEQ ID NO: 51 and SEQ ID NO: 52;
(b) SEQ ID NO: 53 and SEQ ID NO: 54;
(c) SEQ ID NO: 55 and SEQ ID NO: 56;
(d) SEQ ID NO: 57 and SEQ ID NO: 58;
(e) SEQ ID NO: 59 and SEQ ID NO: 60;
(f) SEQ ID NO: 61 and SEQ ID NO: 62;
(g) SEQ ID NO: 63 and SEQ ID NO: 64;
(h) SEQ ID NO: 65 and SEQ ID NO: 66;
(i) SEQ ID NO: 67 and SEQ ID NO: 68;
(j) SEQ ID NO: 69 and SEQ ID NO: 70;
(k) SEQ ID NO: 71 and SEQ ID NO: 72;
(l) SEQ ID NO: 73 and SEQ ID NO: 74;
(m) SEQ ID NO: 75 and SEQ ID NO: 76;
(n) SEQ ID NO: 77 and SEQ ID NO: 78;
(o) SEQ ID NO: 79 and SEQ ID NO: 80;
(p) SEQ ID NO: 81 and SEQ ID NO: 82;
(q) SEQ ID NO: 83 and SEQ ID NO: 84;
(r) SEQ ID NO: 85 and SEQ ID NO: 86;
(s) SEQ ID NO: 87 and SEQ ID NO: 88;
(t) SEQ ID NO: 89 and SEQ ID NO: 90;
(u) SEQ ID NO: 91 and SEQ ID NO: 92;
(v) SEQ ID NO: 93 and SEQ ID NO: 94;
(w) SEQ ID NO: 95 and SEQ ID NO: 96;
(x) SEQ ID NO: 97 and SEQ ID NO: 98;
(y) SEQ ID NO: 99 and SEQ ID NO: 100;
(z) SEQ ID NO: 101 and SEQ ID NO: 102;
(aa) SEQ ID NO: 103 and SEQ ID NO: 104;
(ab) SEQ ID NO: 105 and SEQ ID NO: 106;
(ac) SEQ ID NO: 107 and SEQ ID NO: 108;
(ad) SEQ ID NO: 109 and SEQ ID NO: 110.
(3) The Bacillus subtilis mutation according to (2), which has a genomic structure in which at least three regions represented by (f), (j) and (m) are deleted from the genomic region of the Bacillus subtilis mutant MGB874 stock.
(4) A recombinant Bacillus subtilis obtained by introducing a gene encoding a target gene product into the Bacillus subtilis mutant strain according to any one of (1) to (3) so as to allow expression.
(5) The recombinant Bacillus subtilis according to (4), wherein at least one region selected from a transcription initiation control region, a translation initiation control region and a secretion signal region is operably linked upstream of a gene encoding a target gene product .
(6) The recombinant Bacillus subtilis according to (5), wherein three regions comprising a transcription initiation control region, a translation initiation control region, and a secretory signal region are combined.
(7) A secretory signal region is derived from a cellulase gene of a bacterium belonging to the genus Bacillus, and a transcription initiation control region and a translation initiation control region start from the initiation codon of the cellulase gene and have an upstream region of 0.6 to 1 kb in length The recombinant Bacillus subtilis according to (6), which is derived from.
(8) A DNA fragment consisting of the base sequence of base numbers 1 to 659 of the base sequence shown in SEQ ID NO: 1, wherein the three regions consisting of the transcription start control region, translation start control region and secretory signal region are shown in SEQ ID NO: 3 A base fragment of base numbers 1 to 696 of a cellulase gene comprising a base sequence, a DNA fragment comprising a base sequence having 70% or more identity with any of the base sequences, a DNA comprising any of the above base sequences and a stringent The recombinant Bacillus subtilis according to (6), which is a DNA fragment that hybridizes under the conditions described above or a DNA fragment comprising a base sequence from which any part of the base sequence has been deleted.
(9) The recombinant Bacillus subtilis according to any one of (4) to (8), wherein the target gene product is a heterologous protein or polypeptide.
(10) A method for producing a target gene product using the recombinant Bacillus subtilis according to any one of (4) to (9).

本発明によれば、各種遺伝子産物の生産性に優れた枯草菌変異株が提供される。当該枯草菌変異株を用いることによって、生産性に優れた各種酵素やその他の有用物質の工業的生産が実現できる。当該枯草菌変異株はまた、高い遺伝子産物産生能を有する一方、ゲノム量が小さく細胞内機構がより単純化されていることから遺伝子産物合成機構におけるロバスト性がより低いため、各種遺伝子産物の産生メカニズム等の解明に有用な生物材料となり得る。   According to the present invention, a Bacillus subtilis mutant strain excellent in productivity of various gene products is provided. By using the Bacillus subtilis mutant strain, industrial production of various enzymes and other useful substances having excellent productivity can be realized. Although the Bacillus subtilis mutant strain also has high gene product production ability, it is less robust in the gene product synthesis mechanism due to the small amount of genome and the intracellular mechanism being simplified. It can be a useful biological material for elucidating the mechanism.

枯草菌のゲノム上から所定の領域を欠失させる方法の一例を示す模式図。The schematic diagram which shows an example of the method of deleting a predetermined area | region from the genome of Bacillus subtilis. 選択マーカー遺伝子カセットDNA断片の作製手順を示す模式図。The schematic diagram which shows the preparation procedure of a selection marker gene cassette DNA fragment. 枯草菌ゲノムから外来薬剤耐性遺伝子を除去する手順を示す模式図。The schematic diagram which shows the procedure which removes a foreign drug resistance gene from a Bacillus subtilis genome.

本発明において塩基配列及びアミノ酸配列の同一性はLipman-Pearson法 (Science,227,1435,1985)によって計算される。具体的には、遺伝情報処理ソフトウェアGenetyx-Win(ソフトウェア開発)のホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。   In the present invention, the identity of the base sequence and amino acid sequence is calculated by the Lipman-Pearson method (Science, 227, 1435, 1985). Specifically, it is calculated by performing an analysis with a unit size to compare (ktup) of 2 using a homology analysis (Search homology) program of genetic information processing software Genetyx-Win (software development).

本発明の枯草菌変異株を構築するための親微生物には、枯草菌変異株MGB874株が用いられる。MGB874株は、枯草菌Bacillus subtilis Marburg No.168(枯草菌168株)を野生株とし、そのゲノムの大量域、すなわちprophage6 (yoaV-yobO)領域、prophage1 (ybbU-ybdE)領域、prophage4 (yjcM-yjdJ)領域、PBSX (ykdA-xlyA)領域、prophage5 (ynxB-dut)領域、prophage3 (ydiM-ydjC)領域、spb (yodU-ypqP)領域、pks (pksA-ymaC)領域、skin (spoIVCB-spoIIIC)領域、pps (ppsE-ppsA)領域、prophage2 (ydcL-ydeJ)領域、ydcL-ydeK-ydhU領域、yisB-yitD領域、yunA-yurT領域、cgeE-ypmQ領域、yeeK-yesX領域、pdp-rocR領域、ycxB-sipU領域、SKIN-Pro7 (spoIVCB-yraK)領域、sbo-ywhH領域、yybP-yyaJ領域及びyncM-fosB領域を欠失させたものである(前記特許文献9)。これらの欠失領域はまた、表1に示す一対のオリゴヌクレオチドセットにより挟み込まれる領域として表すことができる。   The Bacillus subtilis mutant strain MGB874 is used as a parental microorganism for constructing the Bacillus subtilis mutant strain of the present invention. The MGB874 strain uses Bacillus subtilis Marburg No.168 (Bacillus subtilis 168 strain) as a wild strain, and its genome region is large, ie, prophage6 (yoaV-yobO) region, prophage1 (ybbU-ybdE) region, prophage4 (yjcM- yjdJ) region, PBSX (ykdA-xlyA) region, prophage5 (ynxB-dut) region, prophage3 (ydiM-ydjC) region, spb (yodU-ypqP) region, pks (pksA-ymaC) region, skin (spoIVCB-spoIIIC) Region, pps (ppsE-ppsA) region, prophage2 (ydcL-ydeJ) region, ydcL-ydeK-ydhU region, yisB-yitD region, yunA-yurT region, cgeE-ypmQ region, yeeK-yesX region, pdp-rocR region, The ycxB-sipU region, SKIN-Pro7 (spoIVCB-yraK) region, sbo-ywhH region, yybP-yyaJ region and yncM-fosB region are deleted (Patent Document 9). These deletion regions can also be represented as regions sandwiched by a pair of oligonucleotide sets shown in Table 1.

本発明において提供される新規な枯草菌変異株は、上記枯草菌変異株MGB874株のゲノム領域から、さらにゲノム領域を欠失させたゲノム構造を有する。具体的には、本発明の枯草菌変異株は、枯草菌168株のゲノム上における表2に示す欠失領域のうちの少なくとも1を、枯草菌変異株MGB874株のゲノム領域から欠失させたゲノム構造を有する。上記欠失領域としては、表2−1〜表2−2に示される遺伝子領域及び当該領域に相当する領域が挙げられる。   The novel Bacillus subtilis mutant strain provided in the present invention has a genomic structure in which the genomic region is further deleted from the genomic region of the Bacillus subtilis mutant MGB874 strain. Specifically, in the Bacillus subtilis mutant strain of the present invention, at least one of the deletion regions shown in Table 2 on the genome of Bacillus subtilis 168 strain was deleted from the genome region of Bacillus subtilis mutant MGB874 strain. Has a genomic structure. Examples of the deletion region include gene regions shown in Table 2-1 to Table 2-2 and regions corresponding to the regions.

枯草菌168株の全塩基配列及び遺伝子は既に報告されており、またインターネット公開されている(Nature, 390, 249-256, 1997及びBSORF Bacillus subtilis Genome Database [http://bacillus.genome.jp/], GenBank: AL009126.2 [http://www.ncbi.nlm.nih.gov/nuccore/38680335])。当業者は、これらの情報源から得た枯草菌168株のゲノム情報、例えばGenBank: AL009126.2 [http://www.ncbi.nlm.nih.gov/nuccore/38680335]に基づいて、MGB874株のゲノムから欠失させるべき上記表2に示した遺伝子領域を見出すことができる。ここで、欠失させるべき遺伝子領域は、公開されている枯草菌168株の遺伝子の塩基配列に対して1又は複数個の塩基における天然又は人工的に引き起こされた欠失、置換、挿入、付加等の変異を含み得る塩基配列を有し得る。変異し得る塩基の個数の範囲は、枯草菌168株のゲノムとの対応関係が認識できる限り特に限定されないが、例えば、枯草菌168株のゲノム領域の塩基配列に対して50%以上の同一性、好ましくは60%以上の同一性、より好ましくは70%以上の同一性、さらに好ましくは80%以上の同一性、さらにより好ましくは90%以上の同一性、なお好ましくは95%以上の同一性を有する範囲が挙げられる。上記「付加」には、塩基配列の一末端及び両末端への塩基の付加が含まれる。   The entire base sequence and gene of Bacillus subtilis 168 have been reported and published on the Internet (Nature, 390, 249-256, 1997 and BSORF Bacillus subtilis Genome Database [http://bacillus.genome.jp/ ], GenBank: AL009126.2 [http://www.ncbi.nlm.nih.gov/nuccore/38680335]). Those skilled in the art will be able to obtain MGB874 strain based on genomic information of Bacillus subtilis 168 strain obtained from these sources, for example, GenBank: AL009126.2 [http://www.ncbi.nlm.nih.gov/nuccore/38680335]. The gene regions shown in Table 2 above to be deleted from the genome can be found. Here, the gene region to be deleted is a natural or artificially induced deletion, substitution, insertion, or addition in one or more bases relative to the public base sequence of the Bacillus subtilis 168 gene. It may have a base sequence that may contain such mutations. The range of the number of bases that can be mutated is not particularly limited as long as the correspondence with the genome of Bacillus subtilis 168 can be recognized. For example, the identity of the base sequence of the genome region of Bacillus subtilis 168 is 50% or more. , Preferably more than 60% identity, more preferably more than 70% identity, more preferably more than 80% identity, even more preferably more than 90% identity, still more preferably more than 95% identity. The range which has is mentioned. The “addition” includes addition of a base to one end and both ends of a base sequence.

あるいは、表2に示す欠失領域としては、表2に示す一対のオリゴヌクレオチドセットにより挟み込まれる領域が挙げられる。すなわち、本発明の枯草菌変異株は、枯草菌変異株MGB874株のゲノム領域から、表2に示す一対のオリゴヌクレオチドセットにより挟み込まれる領域の少なくとも1を欠失させたゲノム構造を有する。上記表2に示す一対のオリゴヌクレオチドセットにより挟み込まれる領域とは、例えば、その領域の一方の端が表2−1〜表2−2に示す第一オリゴヌクレオチドの塩基配列及びその相補配列に隣接し、且つ他方の端が表2−1〜表2−2に示す第二オリゴヌクレオチドの塩基配列及びその相補配列に隣接する領域である。   Alternatively, examples of the deletion region shown in Table 2 include regions sandwiched between a pair of oligonucleotide sets shown in Table 2. That is, the Bacillus subtilis mutant strain of the present invention has a genomic structure in which at least one of the regions sandwiched between the pair of oligonucleotide sets shown in Table 2 is deleted from the genomic region of the Bacillus subtilis mutant strain MGB874. The region sandwiched between the pair of oligonucleotide sets shown in Table 2 above is, for example, that one end of the region is adjacent to the base sequence of the first oligonucleotide shown in Table 2-1 to Table 2-2 and its complementary sequence And the other end is a region adjacent to the base sequence of the second oligonucleotide shown in Table 2-1 to Table 2-2 and its complementary sequence.

本発明の枯草菌変異株はまた、枯草菌168株から直接、prophage6 (yoaV-yobO)領域、prophage1 (ybbU-ybdE)領域、prophage4 (yjcM-yjdJ)領域、PBSX (ykdA-xlyA)領域、prophage5 (ynxB-dut)領域、prophage3 (ydiM-ydjC)領域、spb (yodU-ypqP)領域、pks (pksA-ymaC)領域、skin (spoIVCB-spoIIIC)領域、pps (ppsE-ppsA)領域、prophage2 (ydcL-ydeJ)領域、ydcL-ydeK-ydhU領域、yisB-yitD領域、yunA-yurT領域、cgeE-ypmQ領域、yeeK-yesX領域、pdp-rocR領域、ycxB-sipU領域、SKIN-Pro7 (spoIVCB-yraK)領域、sbo-ywhH領域、yybP-yyaJ領域及びyncM-fosB領域、ならびに表2−1〜表2−2に示した欠失領域のうちの少なくとも1を欠失させることによって、作製することができる。   The Bacillus subtilis mutant strain of the present invention is also directly from the Bacillus subtilis 168 strain, the prophage6 (yoaV-yobO) region, prophage1 (ybbU-ybdE) region, prophage4 (yjcM-yjdJ) region, PBSX (ykdA-xlyA) region, prophage5 (ynxB-dut) region, prophage3 (ydiM-ydjC) region, spb (yodU-ypqP) region, pks (pksA-ymaC) region, skin (spoIVCB-spoIIIC) region, pps (ppsE-ppsA) region, prophage2 (ydcL) -ydeJ) region, ydcL-ydeK-ydhU region, yisB-yitD region, yunA-yurT region, cgeE-ypmQ region, yeeK-yesX region, pdp-rocR region, ycxB-sipU region, SKIN-Pro7 (spoIVCB-yraK) It can be prepared by deleting at least one of the region, sbo-ywhH region, yybP-yyaJ region and yncM-fosB region, and the deletion region shown in Table 2-1 to Table 2-2. .

本発明の枯草菌変異株の例としては、下記表3−1及び表3−2に示される枯草菌変異株が挙げられる。   Examples of Bacillus subtilis mutants of the present invention include Bacillus subtilis mutants shown in Tables 3-1 and 3-2 below.

上記で定義した枯草菌168株のゲノム領域に加えて、その他の領域を欠失したゲノム構造を有する枯草菌変異株も、本発明の枯草菌変異株に含まれる。欠失させるべきその他の領域としては、例えば、生育必須遺伝子を除く遺伝子領域及び非コード領域等の、ゲノム上から欠失しても菌の生存能力が維持され、且つ上述した目的遺伝子産物の生産能を低下させない領域が好ましい。   In addition to the genomic region of Bacillus subtilis strain 168 defined above, a Bacillus subtilis mutant strain having a genomic structure in which other regions are deleted is also included in the Bacillus subtilis mutant strain of the present invention. Other regions to be deleted include, for example, gene regions excluding essential growth genes and non-coding regions, etc., so that the viability of the bacteria can be maintained even when deleted from the genome, and the above-described target gene product is produced. A region that does not reduce the performance is preferred.

上述の欠失させるべき領域を枯草菌ゲノム上から欠失させる方法としては、特に限定されないが、例えば図1に示す方法を適用することができる。
すなわち、いわゆるSOE−PCR法(Gene,77,61 (1989))によって調製される欠失用DNA断片を挿入した欠失用プラスミドを用いた2重交差法によって、欠失させるべき領域を枯草菌ゲノム上から欠失させる。本方法で用いる欠失用DNA断片には、欠失させるべき領域の上流に隣接する約0.1〜3kb断片(上流断片と称する)と、同じく下流に隣接する約0.1〜3kb断片が結合したDNA断片(下流断片と称する)とを連結したDNA断片を用いることができるが、目的領域の欠失を確認するためには、当該上流断片と下流断片の間にクロラムフェニコール耐性遺伝子などの薬剤耐性マーカー遺伝子断片を結合させたDNA断片が好適に用いられる。
The method for deleting the region to be deleted from the Bacillus subtilis genome is not particularly limited. For example, the method shown in FIG. 1 can be applied.
That is, the region to be deleted is determined by the double crossover method using a deletion plasmid inserted with the deletion DNA fragment prepared by the so-called SOE-PCR method (Gene, 77, 61 (1989)). Delete from the genome. The deletion DNA fragment used in the present method includes an about 0.1 to 3 kb fragment adjacent to the upstream of the region to be deleted (referred to as upstream fragment) and an about 0.1 to 3 kb fragment adjacent to the downstream in the same manner. A DNA fragment ligated with a bound DNA fragment (referred to as a downstream fragment) can be used. In order to confirm the deletion of the target region, a chloramphenicol resistance gene is inserted between the upstream fragment and the downstream fragment. A DNA fragment combined with a drug resistance marker gene fragment such as is preferably used.

まず、1回目のPCRによって、欠失させるべき領域の上流断片A及び下流断片B、並びに必要に応じて薬剤耐性マーカー遺伝子断片Cmの3断片を調製する(図1)。この際、上流及び下流断片の調製のためには、結合対象となるDNA断片の末端10〜30塩基対の配列を付加したプライマーを設計する。例えば、上流断片A、薬剤耐性マーカー遺伝子断片Cm、及び下流断片Bをこの順で結合させる場合、上流断片Aの下流末端に位置する(アニールする)プライマーにおける5’末端に、薬剤耐性マーカー遺伝子断片Cmの上流側10〜30塩基に相当する配列を付加し(図1、プライマーDR1)、また下流断片Bの上流末端に位置する(アニールする)プライマーにおける5’末端に、薬剤耐性マーカー遺伝子断片Cmの下流側10〜30塩基に相当する配列を付加する(図1、プライマーDF2)。このように設計したプライマーセットを用いて上流断片A及び下流断片BをPCRで増幅した場合、増幅された上流断片A’の下流側には薬剤耐性マーカー遺伝子断片Cmの上流側に相当する領域が付加されることとなり、増幅された下流断片B’の上流側には薬剤耐性マーカー遺伝子断片Cmの下流側に相当する領域が付加されることとなる。   First, an upstream fragment A and a downstream fragment B of the region to be deleted and three drug resistance marker gene fragment Cm as necessary are prepared by the first PCR (FIG. 1). At this time, in order to prepare the upstream and downstream fragments, a primer added with a sequence of 10 to 30 base pairs at the end of the DNA fragment to be bound is designed. For example, when the upstream fragment A, the drug resistance marker gene fragment Cm, and the downstream fragment B are combined in this order, the drug resistance marker gene fragment is located at the 5 ′ end of the primer located at the downstream end of the upstream fragment A (annealed). A sequence corresponding to 10 to 30 bases upstream of Cm is added (FIG. 1, primer DR1), and at the 5 ′ end of the primer located at the upstream end of the downstream fragment B (annealed), the drug resistance marker gene fragment Cm A sequence corresponding to 10 to 30 bases downstream is added (FIG. 1, primer DF2). When the upstream fragment A and the downstream fragment B are amplified by PCR using the primer set designed in this way, a region corresponding to the upstream side of the drug resistance marker gene fragment Cm is present on the downstream side of the amplified upstream fragment A ′. Thus, a region corresponding to the downstream side of the drug resistance marker gene fragment Cm is added to the upstream side of the amplified downstream fragment B ′.

次に1回目のPCRで調製した上流断片A’、薬剤耐性マーカー遺伝子断片Cm、及び下流断片B’を混合して鋳型とし、上流断片の上流側に位置する(アニールする)プライマー(図1、プライマーDF1)及び下流断片の下流側に位置する(アニールする)プライマー(図1、プライマーDR2)からなる1対のプライマーを用いて2回目のPCRを行う。この2回目のPCRにより、上流断片A、薬剤耐性マーカー遺伝子断片Cm、及び下流断片Bをこの順で結合した欠失用DNA断片Dを増幅することができる(図1)。   Next, the upstream fragment A ′ prepared by the first PCR, the drug resistance marker gene fragment Cm, and the downstream fragment B ′ are mixed to serve as a template, and a primer located at the upstream side of the upstream fragment (annealed) (FIG. 1, A second PCR is performed using a pair of primers consisting of primer DF1) and a primer (annealed) located downstream of the downstream fragment (FIG. 1, primer DR2). By this second round of PCR, a deletion DNA fragment D in which the upstream fragment A, the drug resistance marker gene fragment Cm, and the downstream fragment B are joined in this order can be amplified (FIG. 1).

あるいは、上流断片及び下流断片を結合した欠失用DNA断片を増幅した後、当該欠失用DNA断片を薬剤耐性マーカー遺伝子を含むプラスミドに挿入することで、上流断片及び下流断片に加えて薬剤耐性マーカー遺伝子断片を有する欠失用DNA断片を調製することができる。   Alternatively, after amplifying a deletion DNA fragment in which the upstream fragment and the downstream fragment are combined, the deletion DNA fragment is inserted into a plasmid containing a drug resistance marker gene, so that the drug resistance is added to the upstream fragment and the downstream fragment. A deletion DNA fragment having a marker gene fragment can be prepared.

更に、上述の方法などによって得られる欠失用DNA断片を、通常の制限酵素とDNAリガーゼを用いて宿主菌内で増幅されないプラスミドDNA、又は温度感受性プラスミド等、容易に除去できるプラスミドDNAに挿入することによって、欠失導入用プラスミドを構築する。宿主菌内で増幅されないプラスミドDNAの例としては、例えば枯草菌を宿主とする場合、pUC18、pUC118、pBR322などが挙げられるが、これらに限定されるものではない。   Furthermore, the DNA fragment for deletion obtained by the above-mentioned method is inserted into plasmid DNA that cannot be easily amplified in a host bacterium using normal restriction enzymes and DNA ligase, or plasmid DNA that can be easily removed, such as a temperature-sensitive plasmid. Thus, a plasmid for introducing a deletion is constructed. Examples of plasmid DNA that is not amplified in the host bacterium include, but are not limited to, pUC18, pUC118, pBR322, and the like when Bacillus subtilis is used as the host.

次いで、欠失用プラスミドによる宿主菌の形質転換をコンピテントセル形質転換法(J. Bacteriol. 93, 1925 (1967))などの通常行われる手法によって行い、プラスミドに挿入された上流断片及び下流断片と、それらのゲノム上の相同領域との間での2重交差の相同組換えによって欠失用プラスミドが宿主菌ゲノムDNA内に融合することにより、欠失させるべき領域が薬剤耐性マーカー遺伝子に置き換えられた形質転換体が得られる(図1)。形質転換体の選択は、欠失用DNA断片中に存在するクロラムフェニコール耐性遺伝子などのマーカー遺伝子による薬剤耐性を指標に行えばよい。例えば、枯草菌をSPI培地(0.20%硫酸アンモニウム、1.40%リン酸水素二カリウム、0.60%リン酸二水素カリウム、0.10%クエン酸三ナトリウム二水和物、0.50%グルコース、0.02%カザミノ酸(Difco)、5mM硫酸マグネシウム、0.25μM塩化マンガン、50μg/mlトリプトファン)において37℃で、生育度(OD600)の値が1程度になるまで振盪培養する。振盪培養後、培養液の一部を9倍量のSPII培地(0.20%硫酸アンモニウム、1.40%リン酸水素二カリウム、0.60%リン酸二水素カリウム、0.10%クエン酸三ナトリウム二水和物、0.50%グルコース、0.01%カザミノ酸(Difco)、5mM硫酸マグネシウム、0.40μM塩化マンガン、5μg/mlトリプトファン)に接種し、更に生育度(OD600)の値が0.4程度になるまで振盪培養することで、枯草菌のコンピテントセルを調製する。次いで調製したコンピテントセル懸濁液(SPII培地における培養液)100μLに上記DNA断片を含む溶液(上記SOE−PCRの反応液)5μLを添加し、37℃で1時間振盪培養後、抗生物質(クロラムフェニコール等)を含むLB寒天培地(1%トリプトン、0.5%酵母エキス、1%NaCl、1.5%寒天)に全量を塗沫する。37℃における静置培養の後、生育したコロニーを形質転換体として分離する。形質転換体のゲノムDNAを抽出し、これを鋳型DNAとしたPCRにより、目的の領域削除が行われていることを確認することができる。ゲノムDNAの抽出は、斉藤と三浦(Saito & Miura)の方法[Saito & Miura Biochem. Biophys. Acta. 72, 619-629 (1963)]、あるいは、市販のゲノムDNA抽出キット、例えば、UltraClean Microbial DNA Isolation Kit(MO BIO Laboratories, Inc.)を用いて行うことができる。   Next, transformation of the host bacterium with the deletion plasmid is performed by a conventional method such as the competent cell transformation method (J. Bacteriol. 93, 1925 (1967)), and the upstream and downstream fragments inserted into the plasmid. And the homologous recombination between the two homologous regions on the genome and the deletion plasmid is fused into the genomic DNA of the host fungus by the double crossover homologous recombination, so that the region to be deleted is replaced with a drug resistance marker gene. The obtained transformant is obtained (FIG. 1). The transformant may be selected using drug resistance by a marker gene such as a chloramphenicol resistance gene present in the DNA fragment for deletion as an index. For example, Bacillus subtilis can be added to SPI medium (0.20% ammonium sulfate, 1.40% dipotassium hydrogen phosphate, 0.60% potassium dihydrogen phosphate, 0.10% trisodium citrate dihydrate, 0.50 Incubate with shaking at 37 ° C. in% glucose, 0.02% casamino acid (Difco), 5 mM magnesium sulfate, 0.25 μM manganese chloride, 50 μg / ml tryptophan until the value of growth (OD600) is about 1. After shaking culture, a portion of the culture broth was added to 9 times the amount of SPII medium (0.20% ammonium sulfate, 1.40% dipotassium hydrogen phosphate, 0.60% potassium dihydrogen phosphate, 0.10% tricitrate citrate). Sodium dihydrate, 0.50% glucose, 0.01% casamino acid (Difco), 5 mM magnesium sulfate, 0.40 μM manganese chloride, 5 μg / ml tryptophan), and the growth degree (OD600) is A competent cell of Bacillus subtilis is prepared by shaking culture to about 0.4. Next, 5 μL of the solution containing the above DNA fragment (the reaction solution of the above SOE-PCR) was added to 100 μL of the prepared competent cell suspension (culture medium in SPII medium), and after shaking culture at 37 ° C. for 1 hour, antibiotics ( Spread the entire amount on LB agar medium (1% tryptone, 0.5% yeast extract, 1% NaCl, 1.5% agar) containing chloramphenicol. After static culture at 37 ° C., the grown colonies are isolated as transformants. By extracting the genomic DNA of the transformant and using this as a template DNA, it can be confirmed that the target region has been deleted. Genomic DNA can be extracted by the method of Saito & Miura (Saito & Miura Biochem. Biophys. Acta. 72, 619-629 (1963)) or a commercially available genomic DNA extraction kit such as UltraClean Microbial DNA. Isolation Kit (MO BIO Laboratories, Inc.) can be used.

かくして得られた形質転換体から、さらに、ゲノムDNAに挿入された外来薬剤耐性マーカー遺伝子を除去する。除去の手順としては、特に限定されないが、SOE−PCR法(Gene,77,61 (1989))により調製されるDNA断片を用いた2段階相同組換え法を用いることができる(図3参照)。以下にその手順を説明する。   From the transformant thus obtained, the foreign drug resistance marker gene inserted into the genomic DNA is further removed. The removal procedure is not particularly limited, but a two-step homologous recombination method using a DNA fragment prepared by the SOE-PCR method (Gene, 77, 61 (1989)) can be used (see FIG. 3). . The procedure will be described below.

はじめに、第1相同組換えのためのDNA断片(供与体DNA)を調製する。調製の方法としては、特に限定されないが、上述したSOE−PCR法、及びプラスミド上で所望の断片を結合させる方法等が挙げられる。供与体DNAとしては、例えば、除去すべき外来薬剤耐性マーカー遺伝子領域(すなわち、欠失された領域)の上流に隣接する約0.1〜3kb断片(上流断片)及び同じく下流に隣接する約0.1〜3kb断片が順に結合したDNA断片(下流断片)と、当該外来薬剤耐性マーカー遺伝子下流領域のDNA断片とが結合した断片を用いることができる。好適には、当該下流断片とマーカー遺伝子下流領域断片との間に、相同組換えの指標となる別のマーカー遺伝子等が挿入されたDNA断片が用いられる(図3)。   First, a DNA fragment (donor DNA) for the first homologous recombination is prepared. Although it does not specifically limit as a preparation method, The method etc. which bind | bond a desired fragment on the SOE-PCR method mentioned above and a plasmid, etc. are mentioned. Examples of the donor DNA include an about 0.1 to 3 kb fragment (upstream fragment) adjacent to the upstream of the foreign drug resistance marker gene region to be removed (ie, the deleted region) and about 0 adjacent to the downstream. A fragment in which a DNA fragment (downstream fragment) in which .1 to 3 kb fragments are sequentially bound and a DNA fragment in the downstream region of the foreign drug resistance marker gene is bound can be used. Preferably, a DNA fragment in which another marker gene or the like serving as an index of homologous recombination is inserted between the downstream fragment and the marker gene downstream region fragment is used (FIG. 3).

次いで、調製された供与体DNAをコンピテントセル形質転換法などの通常行われる手法によって形質転換体に導入し、形質転換体ゲノムDNAの当該上流断片及び外来薬剤耐性マーカー遺伝子下流領域に相当する領域との間に相同組換えを起こさせる(第1相同組換え)。所望の相同組換えが生じた形質転換体は、供与体DNA中に挿入した別のマーカー遺伝子による薬剤耐性を指標に選択することができる。第1相同組換えが適切に生じた形質転換体のゲノムDNAでは、上流断片、下流断片、必要に応じて別のマーカー遺伝子、外来薬剤耐性マーカー遺伝子下流領域、及び下流断片が順番に配置している(図3参照)。このような配置を有するゲノムDNAにおいては、上記2つの下流断片同士の間で自然誘発的に相同組換えが起こり得る(ゲノム内相同組換え)。このゲノム内相同組換えによって、当該2つの下流断片の間に位置していた領域が欠失することにより、外来薬剤耐性マーカー遺伝子が形質転換体ゲノムから除去される。目的通りにゲノム内相同組換えを起こした形質転換体は薬剤に対する耐性能を失っているため、薬剤感受性となった菌株を選択することで目的の形質転換体を得ることができる。得られた菌株からゲノムDNAを抽出し、PCR法などによって目的遺伝子の欠失を確認することができる。   Subsequently, the prepared donor DNA is introduced into the transformant by a conventional method such as competent cell transformation method, and the region corresponding to the upstream fragment of the transformant genomic DNA and the downstream region of the foreign drug resistance marker gene And homologous recombination between them (first homologous recombination). A transformant in which the desired homologous recombination has occurred can be selected using as an index the drug resistance due to another marker gene inserted into the donor DNA. In the genomic DNA of a transformant in which the first homologous recombination has occurred appropriately, an upstream fragment, a downstream fragment, and if necessary, another marker gene, a foreign drug resistance marker gene downstream region, and a downstream fragment are arranged in order. (See FIG. 3). In genomic DNA having such an arrangement, homologous recombination can occur spontaneously between the two downstream fragments (intragenomic homologous recombination). Due to this intra-genomic homologous recombination, the region located between the two downstream fragments is deleted, whereby the foreign drug resistance marker gene is removed from the transformant genome. Since a transformant that has undergone homologous recombination within the genome as intended has lost its resistance to drugs, the target transformant can be obtained by selecting a strain that has become drug-sensitive. Genomic DNA can be extracted from the obtained strain, and deletion of the target gene can be confirmed by PCR or the like.

目的の欠失株を選択する際、薬剤耐性から感受性に変化した菌株を直接選択することは難しく、またゲノム内での相同組換えは約10-4以下の低い頻度で生じるものと考えられる。そこで、目的欠失株を効率的に取得するためには薬剤感受性株の存在比率を高める方法やある条件下で致死に働く遺伝子を利用して目的欠失株を選択する方法などの工夫を施すことが望ましい。 When selecting a target deletion strain, it is difficult to directly select a strain that has changed from drug resistance to sensitivity, and homologous recombination in the genome is considered to occur at a low frequency of about 10 −4 or less. Therefore, in order to obtain target deletion strains efficiently, devise methods such as increasing the abundance ratio of drug-sensitive strains and selecting target deletion strains using genes that are lethal under certain conditions. It is desirable.

薬剤感受性株の濃縮方法としては、例えばアンピシリンなどのペニシリン系抗生物質が、増殖細胞に対して殺菌的に作用し、一方、非増殖細胞には作用しないことを利用した濃縮法(Methods in Molecular Genetics, Cold Spring Harbor Labs, (1970))などが挙げられる。アンピシリンなどによる濃縮を行う場合、例えばテトラサイクリンやクロラムフェニコールなどの様に宿主細胞に対して静菌的に作用する薬剤に対する耐性遺伝子の欠失に関して有効である。こうした静菌的作用の薬剤を適量含む適当な培地において、当該薬剤耐性遺伝子を保持する耐性株は増殖可能であり、当該薬剤耐性遺伝子を欠失した感受性株は増殖も死滅もしない。この様な条件下において適当な濃度のアンピシリンなどのペニシリン系抗生物質を添加して培養を行うと、増殖しようとする耐性株が死滅する一方、感受性株はアンピシリンなどの作用を受けず、結果として感受性株の存在比率が高まることになる。この様な濃縮操作を行った培養液を適当な寒天培地に塗抹、培養し、出現したコロニーのマーカー薬剤に対する耐性の有無をレプリカ法などによって確認することにより、効率的に感受性株を選択することが可能となる。   As a method for concentrating drug-sensitive strains, for example, a method of concentration utilizing methods that penicillin antibiotics such as ampicillin act on bactericidal cells while not acting on non-proliferating cells (Methods in Molecular Genetics). Cold Spring Harbor Labs, (1970)). In the case of concentration using ampicillin or the like, it is effective for deletion of a resistance gene for a drug that acts bacteriostatically on host cells such as tetracycline and chloramphenicol. In an appropriate medium containing an appropriate amount of such a bacteriostatic agent, a resistant strain carrying the drug resistance gene can grow, and a sensitive strain lacking the drug resistance gene does not grow or die. Under such conditions, when a suitable concentration of penicillin antibiotics such as ampicillin is added and cultured, resistant strains to be grown are killed, while sensitive strains are not affected by ampicillin or the like, resulting in The proportion of sensitive strains will increase. To efficiently select sensitive strains by smearing and culturing such a concentrated culture solution on an appropriate agar medium, and confirming the presence or absence of resistance to the marker drug of the colonies that appeared by replica method etc. Is possible.

あるいは、目的欠失株の選択方法として、ある条件下で働く致死遺伝子を利用することもできる。致死遺伝子としては例えば、chpA遺伝子(リボヌクレアーゼをコードする遺伝子)及びccdB遺伝子(DNAジャイレースの阻害剤をコードする遺伝子)等の細胞増殖阻害タンパク質をコードする遺伝子等を利用することができる。イソプロピル−β−D−チオガラクトピラノシド(IPTG)の存在下において発現誘導するspacプロモーターなどの発現誘導型プロモーターの下流にchpA遺伝子等致死遺伝子を連結し、供与体DNA中の2つの下流断片の間に挿入しておくことでchpA遺伝子等致死遺伝子を必要に応じて発現させることができる。したがって、第1相同組換えで生じた形質転換体をIPTGが含まれる培地で培養することにより、chpA遺伝子等の致死遺伝子が発現する細胞は死滅し、第2相同組み換え工程でchpA遺伝子等の致死遺伝子を脱落した細胞は増殖し生育することができるため、コロニー形成の有無を指標として所望の形質転換体を選択することができる(図3参照)。   Alternatively, a lethal gene that works under certain conditions can be used as a method for selecting a target deletion strain. As the lethal gene, for example, genes encoding cell growth inhibitory proteins such as chpA gene (gene encoding ribonuclease) and ccdB gene (gene encoding an inhibitor of DNA gyrase) can be used. Two lethal genes such as chpA gene are linked downstream of an expression-inducing promoter such as spac promoter that induces expression in the presence of isopropyl-β-D-thiogalactopyranoside (IPTG), and two downstream fragments in the donor DNA A lethal gene such as chpA gene can be expressed as necessary by inserting it between. Therefore, by culturing a transformant generated by the first homologous recombination in a medium containing IPTG, cells expressing a lethal gene such as the chpA gene are killed, and lethal such as the chpA gene is killed in the second homologous recombination step. Since a cell from which a gene has been dropped can proliferate and grow, a desired transformant can be selected using the presence or absence of colony formation as an index (see FIG. 3).

以上のようにして、ゲノム上の所定の領域を単独で欠失したゲノム構造を有する枯草菌変異株を作製することができる。複数の領域を欠失したゲノム構造を有する枯草菌変異株は、上記工程を繰り返すことにより得ることができるが、いわゆる、LP(lysis of protoplasts)形質転換方法によって作製することもできる。LP形質転換法は、「T. Akamatsu及びJ. Sekiguchi, “Archives of Microbiology”, 1987年, 第146巻, p.353-357」及び「T. Akamatsu及びH. Taguchi, “Bioscience, Biotechnology, and Biochemistry”, 2001年, 第65巻,第4号, p.823-829」を参照することで利用することができる。   As described above, a Bacillus subtilis mutant strain having a genome structure in which a predetermined region on the genome is deleted alone can be produced. A Bacillus subtilis mutant strain having a genomic structure in which a plurality of regions are deleted can be obtained by repeating the above steps, but can also be prepared by a so-called LP (lysis of protoplasts) transformation method. LP transformation methods are described in “T. Akamatsu and J. Sekiguchi,“ Archives of Microbiology ”, 1987, 146, p.353-357” and “T. Akamatsu and H. Taguchi,“ Bioscience, Biotechnology, and Biochemistry ”, 2001, Vol. 65, No. 4, p. 823-829”.

斯くして得られた本発明の枯草菌変異株は、親株である枯草菌変異株MGB874株と比較してゲノムの大領域を欠失しているにもかかわらず、その生存能を維持している。また、本発明の枯草菌変異株は、親株と比較して同等以上の遺伝子産物生産能を有する。従って、本発明の枯草菌変異株は、遺伝子産物産生能を有する一方、ゲノム大領域の欠失によりゲノム量が小さいために細胞内機構がより単純化されているので、各種遺伝子産物の産生メカニズム等の解明に有用な生物材料となり得る。また、本発明の枯草変異株に目的遺伝子産物をコードする遺伝子を発現可能に導入することにより、当該目的遺伝子産物の生産性が向上した本発明の組換え枯草菌を得ることができる。   The Bacillus subtilis mutant strain of the present invention thus obtained maintains its viability even though it lacks a large region of the genome compared to the parent strain Bacillus subtilis mutant MGB874. Yes. Moreover, the Bacillus subtilis mutant strain of the present invention has the same or higher gene product producing ability than the parent strain. Therefore, the Bacillus subtilis mutant strain of the present invention has the ability to produce gene products, but since the amount of genome is small due to deletion of the large genome region, the intracellular mechanism is further simplified, so the production mechanism of various gene products It can be a biological material useful for elucidation of Moreover, the recombinant Bacillus subtilis of the present invention in which the productivity of the target gene product is improved can be obtained by introducing the gene encoding the target gene product into the Bacillus subtilis mutant of the present invention in an expressible manner.

本明細書において、微生物へ遺伝子を「発現可能に導入する」とは、当該微生物内で当該遺伝子が発現され得るようにその遺伝子を導入することをいう。例えば、適切な位置に目的の遺伝子が組み込まれた発現ベクターや、転写開始制御領域や翻訳開始領域等の制御領域と連結された目的遺伝子を含むベクターを、一般的な形質転換法を用いて微生物に取り込ませることによって、当該微生物へ目的遺伝子を「発現可能に導入する」ことができる。あるいは、微生物ゲノム上の制御領域の下流に、目的遺伝子を含むDNA断片と当該制御領域下流に相同な領域とを結合させたDNA断片を直接組み込むことによって、当該遺伝子を本発明の枯草菌変異株へ発現可能に導入することができる。上記に例示したような細胞へ遺伝子を発現可能に導入するための種々の手法は、当業者に周知である。   In the present specification, “introducing a gene into a microorganism so that the gene can be expressed” refers to introducing the gene so that the gene can be expressed in the microorganism. For example, an expression vector in which a target gene is incorporated at an appropriate position, or a vector containing a target gene linked to a control region such as a transcription initiation control region or a translation start region can be transformed into a microorganism using a general transformation method. The target gene can be “expressably introduced” into the microorganism. Alternatively, a Bacillus subtilis mutant of the present invention can be obtained by directly incorporating a DNA fragment containing a target gene downstream of a control region on the microbial genome and a homologous region downstream of the control region. It can be introduced so that it can be expressed. Various techniques for introducing a gene into a cell as exemplified above so as to be expressed are well known to those skilled in the art.

したがって、一態様において、本発明の枯草菌変異株に導入される目的遺伝子産物をコードする遺伝子は、その上流に当該遺伝子の転写、翻訳、分泌に関わる制御領域、即ち、プロモーター及び転写開始点を含む転写開始制御領域、リボソーム結合部位及び開始コドンを含む翻訳開始領域並びに分泌シグナルペプチド領域から選ばれる1以上の領域と作動可能に連結されていることが好ましい。より好ましくは、転写開始制御領域、翻訳開始制御領域及び分泌シグナル領域からなる3領域が、更に好ましくは、分泌シグナルペプチド領域がバチルス(Bacillus)属細菌のセルラーゼ遺伝子由来のものであり、転写開始制御領域及び翻訳開始制御領域が当該セルラーゼ遺伝子の開始コドンから始まる長さ0.6〜1kbの上流領域であるものが、目的遺伝子産物をコードする遺伝子の上流に作動可能に連結されている。   Therefore, in one embodiment, a gene encoding a target gene product to be introduced into the Bacillus subtilis mutant of the present invention has upstream a regulatory region involved in transcription, translation, and secretion of the gene, that is, a promoter and a transcription start point. It is preferably operably linked to at least one region selected from a transcription initiation control region containing, a ribosome binding site and a translation initiation region containing an initiation codon, and a secretory signal peptide region. More preferably, the three regions consisting of a transcription initiation control region, a translation initiation control region, and a secretion signal region, and more preferably, the secretion signal peptide region is derived from a cellulase gene of a bacterium belonging to the genus Bacillus. The region and the translation initiation control region, which is an upstream region having a length of 0.6 to 1 kb starting from the initiation codon of the cellulase gene, are operably linked upstream of the gene encoding the target gene product.

本明細書において、転写開始制御領域、翻訳開始領域、又は分泌シグナルと遺伝子との「作動可能な連結」とは、上記制御領域が遺伝子の転写又は翻訳を誘導し得るように、又は遺伝子にコードされたタンパク質又はペプチドが分泌シグナルの働きにより分泌されるように、連結されていることをいう。上記制御領域又は分泌シグナルと遺伝子との「作動可能な連結」の手順は、当業者に周知である。   In the present specification, “operational linkage” between a transcription initiation control region, a translation initiation region, or a secretion signal and a gene means that the control region can induce transcription or translation of the gene, or is encoded in the gene. It is linked so that the produced protein or peptide is secreted by the action of a secretion signal. The procedure of “operable linkage” between the control region or secretion signal and a gene is well known to those skilled in the art.

例えば、本発明の枯草菌変異株に導入される目的遺伝子産物をコードする遺伝子は、その構造遺伝子が、特開2000−210081号公報や特開平4−190793号公報等に記載されているバチルス(Bacillus)属細菌、すなわちKSM-S237株(FERM BP-7875)、又はKSM-64株(FERM BP-2886)由来のセルラーゼ遺伝子の転写開始制御領域、翻訳開始領域及び分泌シグナルペプチド領域が目的遺伝子産物と作動可能に連結されていることが望ましい。より具体的には、配列番号1で示される塩基配列の塩基番号1〜659の塩基配列、配列番号3で示される塩基配列からなるセルラーゼ遺伝子の塩基番号1〜696の塩基配列からなるDNA断片、当該塩基配列に対して70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、さらにより好ましくは98%以上の同一性を有する塩基配列からなり、且つ遺伝子の転写、翻訳、分泌に関わる機能を有するDNA断片、又は上記いずれかの塩基配列からなるDNAとストリンジェントの条件でハイブリダイズし且つ遺伝子の転写、翻訳、分泌に関わる機能を有するDNA、或いは上記いずれかの塩基配列の一部が欠失した塩基配列からなり且つ遺伝子の転写、翻訳、分泌に関わる機能を有するDNA断片が、目的遺伝子産物の構造遺伝子と作動可能に連結されていることが望ましい。尚、ここで、上記塩基配列の一部が欠失した塩基配列からなるDNA断片とは、上記塩基配列の一部、好ましくは数個(例えば、1〜50個、好ましくは1〜30個、より好ましくは1〜20個、さらに好ましくは1〜10個)の塩基を欠失しているが、遺伝子の転写、翻訳、分泌に関わる機能を有するDNA断片を意味する。また此処で言うストリンジェントな条件とは、例えば[Molecular cloning-a Laboratory manual 2nd edition(Sambrookら、1989)]に記載の条件等が挙げられる。例えば、6×SSC(1×SSCの組成:0.15M塩化ナトリウム、0.015Mクエン酸ナトリウム、pH7.0)、0.5%SDS、5×デンハート及び100mg/mLニシン精子DNAを含む溶液にプローブとともに65℃で8〜16時間恒温し、ハイブリダイズさせる条件が挙げられる。   For example, the gene encoding the target gene product to be introduced into the Bacillus subtilis mutant strain of the present invention is a Bacillus (described in JP 2000-210081, JP 4-190793, etc.). Bacillus) bacteria, ie, KSM-S237 strain (FERM BP-7875) or KSM-64 strain (FERM BP-2886) cellulase gene transcription initiation regulatory region, translation initiation region and secretory signal peptide region are the target gene products It is desirable to be operatively connected to each other. More specifically, a DNA fragment comprising the base sequence of base numbers 1 to 659 of the base sequence represented by SEQ ID NO: 1, the base sequence of base numbers 1 to 696 of the cellulase gene comprising the base sequence of SEQ ID NO: 3, 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, and even more preferably 98% or more of the nucleotide sequence. A DNA fragment having a function related to transcription, translation, or secretion, or a DNA that hybridizes with any of the above nucleotide sequences under stringent conditions and has a function related to transcription, translation, or secretion of a gene, or any of the above DNA fragment comprising a nucleotide sequence in which a part of the nucleotide sequence is deleted and having a function related to gene transcription, translation and secretion It is desirable that is operably linked to the structural gene of the target gene product. Here, a DNA fragment consisting of a base sequence from which a part of the base sequence has been deleted means a part of the base sequence, preferably several (for example, 1 to 50, preferably 1 to 30, More preferably, it means a DNA fragment having a function related to transcription, translation and secretion of a gene. The stringent conditions referred to herein include, for example, the conditions described in [Molecular cloning-a Laboratory manual 2nd edition (Sambrook et al., 1989)]. For example, in a solution containing 6 × SSC (composition of 1 × SSC: 0.15M sodium chloride, 0.015M sodium citrate, pH 7.0), 0.5% SDS, 5 × Denhart and 100 mg / mL herring sperm DNA A condition for hybridization with a probe at 65 ° C. for 8 to 16 hours is mentioned.

導入する目的遺伝子産物をコードする遺伝子は特に限定されず、内在性の遺伝子であっても、異種遺伝子であってもよい。例えば、導入する遺伝子としては、収縮タンパク質、輸送タンパク質、シグナルタンパク質、生体防御タンパク質、受容体タンパク質、構造タンパク質、遺伝子調節タンパク質、酵素、及び貯蔵タンパク質等のタンパク質をコードする遺伝子、ならびに機能性RNA等のノンコーディングRNAをコードする遺伝子が挙げられる。   The gene encoding the target gene product to be introduced is not particularly limited, and may be an endogenous gene or a heterologous gene. For example, genes to be introduced include contractile proteins, transport proteins, signal proteins, biological defense proteins, receptor proteins, structural proteins, gene regulatory proteins, enzymes, genes encoding proteins such as storage proteins, functional RNA, etc. And a gene encoding the non-coding RNA.

一態様において、導入する遺伝子は、異種タンパク質又はポリペプチドをコードする遺伝子である。異種タンパク質又はポリペプチド遺伝子としては、洗剤、食品、繊維、飼料、化学品、医療、診断、研究などの各種分野において有用なあらゆるタンパク質又はポリペプチド、例えば、酵素、生理活性ペプチド、マーカー、シグナル伝達物質、構造タンパク質、各種調節などをコードする遺伝子が挙げられる。また、上記酵素としては、機能別に列挙すると、酸化還元酵素(Oxidoreductase)、転移酵素(Transferase)、加水分解酵素(Hydrolase)、脱離酵素(Lyase)、異性化酵素(Isomerase)、合成酵素(Ligase/Synthetase)等が挙げられるが、好適にはセルラーゼ、α−アミラーゼ、プロテアーゼ等の加水分解酵素が挙げられる。   In one embodiment, the introduced gene is a gene encoding a heterologous protein or polypeptide. As a heterologous protein or polypeptide gene, any protein or polypeptide useful in various fields such as detergent, food, fiber, feed, chemicals, medicine, diagnosis, research, etc., for example, enzyme, bioactive peptide, marker, signal transduction Examples include genes encoding substances, structural proteins, and various types of regulation. In addition, the enzymes described above are classified according to their functions: oxidoreductase, transferase, hydrolase, lyase, isomerase, isomerase, and ligase. / Synthetase), etc., preferably hydrolyzing enzymes such as cellulase, α-amylase, protease and the like.

セルラーゼとしては、例えば、多糖加水分解酵素の分類(Biochem. J., 280, 309, 1991)中でファミリー5に属するセルラーゼが挙げられ、中でも微生物由来、好ましくはBacillus属細菌由来のセルラーゼが好適に挙げられる。より具体的な例として、配列番号2で示されるアミノ酸配列からなるBacillus属細菌KSM-S237株(FERM BP-7875)由来のアルカリセルラーゼ、又は、配列番号4で示されるアミノ酸配列からなるBacillus属細菌KSM-64株(FERM BP-2886)由来のアルカリセルラーゼ、或いは、当該アミノ酸配列と70%、好ましくは80%、より好ましくは90%以上、さらに好ましくは95%以上、さらにより好ましくは98%以上の同一性を有するアミノ酸配列からなるセルラーゼ、又は配列番号2又は配列番号4で示されるアミノ酸配列において1若しくは数個のアミノ酸が置換、欠失、挿入若しくは付加されたアミノ酸配列からなるアルカリセルラーゼが挙げられる。   Cellulases include, for example, cellulases belonging to Family 5 in the classification of polysaccharide hydrolases (Biochem. J., 280, 309, 1991). Among them, cellulases derived from microorganisms, preferably derived from bacteria belonging to the genus Bacillus are preferred. Can be mentioned. As a more specific example, an alkaline cellulase derived from the Bacillus bacterium strain KSM-S237 (FERM BP-7875) comprising the amino acid sequence represented by SEQ ID NO: 2 or a Bacillus bacterium comprising the amino acid sequence represented by SEQ ID NO: 4 Alkaline cellulase derived from KSM-64 strain (FERM BP-2886) or the amino acid sequence and 70%, preferably 80%, more preferably 90% or more, still more preferably 95% or more, even more preferably 98% or more. A cellulase comprising an amino acid sequence having the same identity, or an alkaline cellulase comprising an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added in the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4 It is done.

α−アミラーゼの具体例としては、微生物由来のα−アミラーゼが挙げられ、好ましくはBacillus属細菌由来の液化型アミラーゼが好適に挙げられる。より具体的な例として、配列番号5で示されるアミノ酸配列からなるBacillus属細菌KSM-K38株(FERM BP-6946)由来のアルカリアミラーゼ、或いは当該アミノ酸配列と70%、好ましくは80%、より好ましくは90%以上、さらに好ましくは95%以上、さらにより好ましくは98%以上の同一性を有するアミノ酸配列からなるアミラーゼ、又は配列番号5で示されるアミノ酸配列において1若しくは数個のアミノ酸が置換、欠失、挿入若しくは付加されたアミノ酸配列からなるアルカリアミラーゼが挙げられる。   Specific examples of α-amylase include α-amylase derived from microorganisms, and preferably liquefied amylase derived from Bacillus bacteria. As a more specific example, alkaline amylase derived from the Bacillus genus bacterium KSM-K38 strain (FERM BP-6946) consisting of the amino acid sequence represented by SEQ ID NO: 5, or 70%, preferably 80%, more preferably the amino acid sequence. Is an amylase comprising an amino acid sequence having 90% or more, more preferably 95% or more, and even more preferably 98% or more identity, or one or several amino acids are substituted or missing in the amino acid sequence shown in SEQ ID NO: 5. Examples include alkaline amylase consisting of a deleted, inserted or added amino acid sequence.

プロテアーゼの具体例としては、微生物由来、好ましくはBacillus属細菌由来のセリンプロテアーゼや金属プロテアーゼ等が好適に挙げられる。より具体的な例として、配列番号6で示されるアミノ酸配列からなるバチルス クラウジ(Bacillus clausii)KSM-KP43株(FERM BP-6532)由来のアルカリプロテアーゼ、或いは当該アミノ酸配列と70%、好ましくは80%、より好ましくは90%以上、さらに好ましくは95%以上、さらにより好ましくは98%以上の同一性を有するアミノ酸配列からなるプロテアーゼ、又は配列番号6で示されるアミノ酸配列において1若しくは数個のアミノ酸が置換、欠失、挿入若しくは付加されたアミノ酸配列からなるアルカリプロテアーゼが挙げられる。   Specific examples of proteases include serine proteases, metal proteases and the like derived from microorganisms, preferably from Bacillus bacteria. As a more specific example, an alkaline protease derived from the Bacillus clausii strain KSM-KP43 (FERM BP-6532) consisting of the amino acid sequence shown in SEQ ID NO: 6, or 70%, preferably 80% with the amino acid sequence. More preferably 90% or more, still more preferably 95% or more, and even more preferably 98% or more, a protease comprising an amino acid sequence, or one or several amino acids in the amino acid sequence represented by SEQ ID NO: 6 Examples include alkaline protease consisting of an amino acid sequence substituted, deleted, inserted or added.

本明細書において、「1若しくは数個のアミノ酸が置換、欠失、挿入若しくは付加されたアミノ酸配列」には、1〜50個、好ましくは1〜30個、より好ましくは1〜20個、さらに好ましくは1〜10個のアミノ酸が置換、欠失、挿入若しくは付加されたアミノ酸配列が含まれ、上記「付加」には、アミノ酸配列の一末端及び両末端へのアミノ酸の付加が含まれる。   In the present specification, the “amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added” has 1 to 50, preferably 1 to 30, more preferably 1 to 20, Preferably, an amino acid sequence in which 1 to 10 amino acids are substituted, deleted, inserted or added is included, and the “addition” includes addition of amino acids to one end and both ends of the amino acid sequence.

別の一態様において、導入する遺伝子は、ノンコーディングRNAをコードする遺伝子である。ノンコーディングRNAは、DNAから転写された後タンパク質に翻訳されないRNAである。ノンコーディングRNAとしては、機能性RNA,例えば、制御配列を含む非翻訳領域、tRNA、rRNA、mRNA型ncRNA(mRNA−like non−coding RNA)、snRNA(small nuclear RNA)、snoRNA(small nucleolar RNA)、miRNA(microRNA)、stRNA(Small Temporal RNA)、siRNA(short−interfering RNA)等が挙げられる。これらのノンコーディングRNAは、細胞の発現制御、発生、分化、その他生命活動に関わる多種多様なメカニズムを担っており、研究、医療、診断、創薬、品種改良や農薬生産等の農業、水産及び畜産分野、化学品製造等において利用可能である。   In another embodiment, the introduced gene is a gene encoding a non-coding RNA. Non-coding RNA is RNA that is transcribed from DNA and not translated into protein. Non-coding RNAs include functional RNAs such as untranslated regions including regulatory sequences, tRNAs, rRNAs, mRNA-type ncRNAs (mRNA-like non-coding RNAs), snRNAs (small nuclear RNAs), snRNAs (small nuclear RNAs). , MiRNA (microRNA), stRNA (Small Temporal RNA), siRNA (short-interfering RNA) and the like. These non-coding RNAs are responsible for a wide variety of mechanisms related to cell expression control, development, differentiation, and other life activities, including research, medicine, diagnosis, drug discovery, breeding and agricultural production such as agricultural production, It can be used in the livestock field and chemical production.

本発明の組換え枯草菌を用いた目的遺伝子産物の生産は、当該菌株を同化性の炭素源、窒素源、その他の必須成分を含む培地に接種し、通常の微生物培養法にて培養し、培養終了後、当該目的遺伝子産物を採取、及び必要に応じて精製することにより行えばよい。そして、後記実施例に示すように、目的遺伝子産物の生産性は、親株である枯草菌変異株MGB874株を用いた場合と比較して、その向上が達成されている。   Production of the target gene product using the recombinant Bacillus subtilis of the present invention is to inoculate the strain into a medium containing an assimilable carbon source, nitrogen source, and other essential components, and cultured by a normal microbial culture method. After completion of the culture, the target gene product may be collected and purified as necessary. And as shown in the below-mentioned Example, the improvement of the productivity of a target gene product is achieved compared with the case where the Bacillus subtilis mutant MGB874 strain which is a parent strain is used.

以下、実施例を用いて本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例で使用したプライマーを表4に記載し、その塩基配列を表5−1〜表5−7に記載する。   The primer used in the Example is described in Table 4, and the base sequence is described in Table 5-1 to Table 5-7.

〔実施例1〕ゲノム領域の単独欠失株の作製
本実施例では、枯草菌MGB874株のゲノム上の様々な領域を欠失させた変異株を製造した。またそのフローを図1に示した。
[Example 1] Preparation of a single deletion strain of the genomic region In this example, mutant strains in which various regions on the genome of Bacillus subtilis MGB874 strain were deleted were produced. The flow is shown in FIG.

<R25領域の単独欠失株の作製>
枯草菌変異株MGB874株ゲノム上の表2に示したR25領域を欠失対象領域として、当該領域をMGB874株ゲノムから欠失させた。
<Preparation of a single deletion strain of R25 region>
Using the R25 region shown in Table 2 on the genome of the Bacillus subtilis mutant MGB874 strain as a deletion target region, the region was deleted from the MGB874 strain genome.

図1に示すように、MGB874株から抽出したゲノムDNAを鋳型とし、25-DF1(配列番号155)と25-DR1(配列番号157)、及び、25-DF2(配列番号156)と25-DR2(配列番号158)の各プライマーセットを用いて、ゲノム上のR25領域の上流に隣接する0.5kb断片(A)、及び下流に隣接する0.5kb断片(B)をPCRにより増幅した。また、プラスミドpDLT3(Morimoto et al., 2002)を鋳型として、rPCR-CmF(配列番号351)とrPCR-CmR(配列番号352)のプライマーのセットを用いてクロラムフェニコール耐性遺伝子を含む1.0kb断片(Cm)を、PCRによって調製した。得られた3つの増幅DNA断片をSOE−PCR法(例えば、Gene, 77, 61 (1989)参照)によって結合し、結合欠失用DNA断片を作製した。   As shown in FIG. 1, genomic DNA extracted from the MGB874 strain was used as a template, 25-DF1 (SEQ ID NO: 155) and 25-DR1 (SEQ ID NO: 157), 25-DF2 (SEQ ID NO: 156) and 25-DR2 Using each primer set of (SEQ ID NO: 158), a 0.5 kb fragment (A) adjacent to the upstream of the R25 region on the genome and a 0.5 kb fragment (B) adjacent to the downstream were amplified by PCR. In addition, the plasmid pDLT3 (Morimoto et al., 2002) is used as a template to contain a chloramphenicol resistance gene using a primer set of rPCR-CmF (SEQ ID NO: 351) and rPCR-CmR (SEQ ID NO: 352). A 0 kb fragment (Cm) was prepared by PCR. The obtained three amplified DNA fragments were ligated by the SOE-PCR method (see, for example, Gene, 77, 61 (1989)) to prepare a DNA fragment for ligation deletion.

上述のように取得された欠失用DNA断片供与体DNAを用いて、MGB874株を形質転換した。形質転換の条件は、コンピテントセル形質転換方法(例えば、J. Bacteriol. 93, 192 (1967)参照)に従い、1μg以上のPCR産物(欠失用DNA断片供与体DNA)を400μlのコンピテントセルに加え、更に1.5時間培養した。10ppmのクロラムフェニコールを含むLB寒天培地に塗布し、生育したコロニーを相同組み換え(図1参照)による形質転換体として分離した。取得した株を、MGB874-R25::cm株とした。   The MGB874 strain was transformed with the deletion DNA fragment donor DNA obtained as described above. The conditions for transformation are in accordance with a competent cell transformation method (see, for example, J. Bacteriol. 93, 192 (1967)), and 1 μg or more of the PCR product (DNA fragment donor DNA for deletion) is added to 400 μl of competent cells. In addition, the cells were further cultured for 1.5 hours. This was applied to an LB agar medium containing 10 ppm of chloramphenicol, and the grown colonies were isolated as transformants by homologous recombination (see FIG. 1). The acquired strain was designated as MGB874-R25 :: cm strain.

<その他の各単独欠失株の作製>
上述したR25領域の単独欠失株の作製手順に準じて、R02領域、R07領域、R08領域、R10N領域、R12領域、R13領域、R15領域、R16領域、R20N領域、R21領域、R22領域、R23領域、R25領域、R26領域、R30領域、R31領域、R32領域、R33領域、R34領域、R35領域、R36領域、R37領域、R39領域、R40領域、R41領域、R45領域、R49A領域、R50N領域、R53領域、Rd22領域(まとめてR*領域と称する)の各単独欠失株を作製した。上記のR*領域の単独欠失株を構築する場合、R25領域単独欠失株の作製と同様の方法により、表4および表5−1〜5−7に記載の各領域単独欠失株作製用プライマーセットを用いて欠失用DNA断片を作製し、R*領域の単独欠失株を作製した。
枯草菌変異株MGB874株ゲノムから、R*領域を単独で欠失した株を、MGB874-R*::cm株とした。
<Preparation of other individual deletion strains>
In accordance with the procedure for producing a single deletion strain of R25 region described above, R02 region, R07 region, R08 region, R10N region, R12 region, R13 region, R15 region, R16 region, R20N region, R21 region, R22 region, R23 Region, R25 region, R26 region, R30 region, R31 region, R32 region, R33 region, R34 region, R35 region, R36 region, R37 region, R39 region, R40 region, R41 region, R45 region, R49A region, R50N region, Each single deletion strain of R53 region and Rd22 region (collectively referred to as R * region) was prepared. When constructing a single deletion strain of the above R * region, each region single deletion strain described in Table 4 and Tables 5-1 to 5-7 was prepared in the same manner as the preparation of the R25 region single deletion strain. A deletion DNA fragment was prepared using the primer set for the preparation, and a single deletion strain of the R * region was prepared.
A strain in which the R * region alone was deleted from the genome of the Bacillus subtilis mutant MGB874 strain was designated as an MGB874-R * :: cm strain.

〔実施例2〕選択マーカー遺伝子カセットの作製
先ず、枯草菌168株aprE遺伝子領域にスペクチノマイシン耐性遺伝子、lacI遺伝子、Pspac-chpA遺伝子を含むDNA断片を挿入した枯草菌168(aprE::spec, lacI, Pspac-chpA, cm)株を以下のように作製した。
[Example 2] Preparation of selectable marker gene cassette First, Bacillus subtilis 168 (aprE :: spec, in which a DNA fragment containing a spectinomycin resistance gene, lacI gene, and Pspac-chpA gene was inserted into the Bacillus subtilis 168 aprE gene region. (lacI, Pspac-chpA, cm) strain was prepared as follows.

図2に示すように、枯草菌発現ベクターpO2HCを鋳型として、ベクター中のlacIからspacプロモーターを含む該プロモーター下流のSD配列までの領域を、pO2HC-lacF(配列番号355)及びpO2HC-lacR(配列番号356)のプライマーセットを用いてPCR法により増幅した。また、大腸菌W3110株のゲノムを鋳型として、chpA-F(配列番号358)及びchpA-R(配列番号359)のプライマーセットを用いて、ゲノム中のchpA遺伝子の開始コドンから終止コドンまでの領域をPCR法により増幅した。得られた二つの増幅DNA断片をSOE−PCR法(例えば、Gene, 77, 61 (1989)参照)によって結合し、結合DNA断片を作製した。
次に、上記で作製したDNA断片を制限酵素ApaI及びBamHIで消化し、制限酵素処理断片を得た。同様に、ベクターpAPNC213(スペクチノマイシン耐性遺伝子含有)を制限酵素ApaI及びBamHIで消化し、制限酵素処理断片を得た。こうして得られた制限酵素処理断片を、DNAライゲースを用いて結合した。
得られた環状DNAを用いて枯草菌168株を形質転換した。100μg/mlのスペクチノマイシンを含むLB寒天平板培地で培養して、目的の形質転換体を選択し、168(aprE::spec, lacI, Pspac-chpA)株を構築した。
次に、得られた168(aprE::spec, lacI, Pspac-chpA)株の染色体DNAを鋳型として、APNC-Fプライマー(配列番号357)とchpA-Rプライマー(配列番号359)を用いてPCRによりDNA断片を増幅した(図2参照)。増幅したDNA断片を選択マーカー遺伝子カセットと称する。
As shown in FIG. 2, using the Bacillus subtilis expression vector pO2HC as a template, the region from lacI to the SD sequence downstream of the promoter containing the spac promoter is designated as pO2HC-lacF (SEQ ID NO: 355) and pO2HC-lacR (sequence). No. 356) was amplified by PCR using the primer set. In addition, the region from the start codon to the stop codon of the chpA gene in the genome using the primer set of chpA-F (SEQ ID NO: 358) and chpA-R (SEQ ID NO: 359) using the genome of Escherichia coli W3110 as a template. Amplified by PCR. The obtained two amplified DNA fragments were combined by the SOE-PCR method (see, for example, Gene, 77, 61 (1989)) to prepare a combined DNA fragment.
Next, the DNA fragment prepared above was digested with restriction enzymes ApaI and BamHI to obtain restriction enzyme-treated fragments. Similarly, the vector pAPNC213 (containing spectinomycin resistance gene) was digested with restriction enzymes ApaI and BamHI to obtain restriction enzyme-treated fragments. The restriction enzyme-treated fragments thus obtained were ligated using DNA ligase.
The resulting circular DNA was used to transform Bacillus subtilis 168 strain. The cells were cultured on an LB agar plate medium containing 100 μg / ml of spectinomycin, and the target transformant was selected to construct strain 168 (aprE :: spec, lacI, Pspac-chpA).
Next, PCR was performed using the obtained 168 (aprE :: spec, lacI, Pspac-chpA) strain chromosomal DNA as a template and using APNC-F primer (SEQ ID NO: 357) and chpA-R primer (SEQ ID NO: 359). The DNA fragment was amplified by (see FIG. 2). The amplified DNA fragment is referred to as a selectable marker gene cassette.

〔実施例3〕単独領域欠失株のゲノムへの外来配列除去用DNAコンストラクトの挿入
本実施例では、上記で構築した単独領域欠失株MGB874-R25::cm株、および、MGB874-R*::cm株の各ゲノムへ外来配列除去用DNAコンストラクトを挿入した変異株を製造した。本実施例のフローを図3に示した。
[Example 3] Insertion of DNA construct for removing foreign sequence into genome of single region deletion strain In this example, single region deletion strain MGB874-R25 :: cm strain constructed above and MGB874-R * A mutant was prepared by inserting a DNA construct for exogenous sequence removal into each genome of the :: cm strain. The flow of this example is shown in FIG.

<R25領域単独欠失株のゲノムへの外来配列除去用DNAコンストラクトの挿入>
R25領域単独欠失株であるMGB874-R25::cm株のゲノムへ外来配列除去用DNAコンストラクトを挿入した変異株を以下のように製造した。図3に示した供与体DNAを表4および表5−1〜5−7に示すプライマーを用いて以下のように構築した。
<Insertion of DNA construct for removing foreign sequence into genome of R25 region-only deletion strain>
A mutant strain in which a DNA construct for exogenous sequence removal was inserted into the genome of the MGB874-R25 :: cm strain, which is a single R25 region-deleted strain, was produced as follows. The donor DNA shown in FIG. 3 was constructed as follows using the primers shown in Table 4 and Tables 5-1 to 5-7.

<供与体DNAの作製>
また、枯草菌168株の染色体DNAを鋳型として、欠失対象領域の5’外側領域(断片A)、欠失対象領域の3’外側領域(断片B)の2断片を、それぞれ25-DF1(配列番号155)と25-DR1.2(配列番号316)、及び25-DF2.2(配列番号315)と25-DR2(配列番号158)のプライマーセットを用いてPCRにより増幅した(図3)。また、プラスミドpSM5022 (Mol. Microbiol. 6, 309 ,1992)を鋳型としてCm-F(del)(配列番号353)とCm-R(del)(配列番号354)のプライマーセットを用いてPCRによりクロラムフェニコール耐性遺伝子(断片Cm)を増幅した(図3)。
<Preparation of donor DNA>
Also, using the chromosomal DNA of Bacillus subtilis 168 strain as a template, two fragments of the 5 ′ outer region (fragment A) of the deletion target region and the 3 ′ outer region (fragment B) of the deletion target region were each 25-DF1 ( Amplified by PCR using primer sets of SEQ ID NO: 155) and 25-DR1.2 (SEQ ID NO: 316), and 25-DF2.2 (SEQ ID NO: 315) and 25-DR2 (SEQ ID NO: 158) (FIG. 3) . In addition, the plasmid pSM5022 (Mol. Microbiol. 6, 309, 1992) was used as a template to clone by PCR using a primer set of Cm-F (del) (SEQ ID NO: 353) and Cm-R (del) (SEQ ID NO: 354). The lamphenicol resistance gene (fragment Cm) was amplified (FIG. 3).

これらPCRによって得られた選択マーカー遺伝子カセット、5’外側領域(断片A)、3’外側領域(断片B)及びクロラムフェニコール耐性遺伝子の内部配列(断片‘Cm’)の4断片、並びに、25-DF1(配列番号155)とCm-R(del) (配列番号354)のプライマーセットを用いてSOE−PCR法(Gene, 77, 61 (1989))を行った。これにより、図3に示すように、5’外側領域(断片A)、3’外側領域(断片B)、選択マーカー遺伝子カセット及びクロラムフェニコール耐性遺伝子上流欠失配列(断片‘Cm’)がこの順で配置したDNA断片を取得することができた。本実施例では、このDNA断片を供与体DNAとして使用した。   Selectable marker gene cassettes obtained by these PCRs, 5 'outer region (fragment A), 3' outer region (fragment B) and 4 fragments of the internal sequence of the chloramphenicol resistance gene (fragment 'Cm'), and SOE-PCR (Gene, 77, 61 (1989)) was performed using a primer set of 25-DF1 (SEQ ID NO: 155) and Cm-R (del) (SEQ ID NO: 354). Thereby, as shown in FIG. 3, the 5 ′ outer region (fragment A), the 3 ′ outer region (fragment B), the selectable marker gene cassette and the chloramphenicol resistance gene upstream deletion sequence (fragment “Cm”) DNA fragments arranged in this order could be obtained. In this example, this DNA fragment was used as donor DNA.

<形質転換>
上述のように取得された供与体DNAを用いて、R25領域単独欠失株(MGB874-R25::cm株)を形質転換した。形質転換の条件は、コンピテントセル形質転換方法(例えば、J. Bacteriol. 93, 192 (1967)参照)に従い、1μg以上のPCR産物(供与体DNA)を400μlのコンピテントセルに加え、更に1.5時間培養し第1相同組み換え(図3)を行った。
<Transformation>
The donor DNA obtained as described above was used to transform an R25 region-only deletion strain (MGB874-R25 :: cm strain). According to the transformation method for competent cells (see, for example, J. Bacteriol. 93, 192 (1967)), 1 μg or more of PCR product (donor DNA) was added to 400 μl of competent cells, and 1 The first homologous recombination (FIG. 3) was performed after 5 hours of culture.

形質転換体を、組み換えにより導入されたスペクチノマイシン耐性遺伝子を用いて選択した。具体的には、上記形質転換処理後の細胞を100μg/mlのスペクチノマイシンを含むLB寒天平板培地にて、37℃で一晩培養し、コロニーを形成し、生存可能な菌株を取得した。この培養によって、相同組み換えによって供与体DNAが組み込まれてスペクチノマイシン耐性を獲得した枯草菌のみが生育し、コロニーを形成することとなる。
取得した株を、MGB874(R25::R25B, spec, lacI, Pspac-chpA,‘cm')株とした。
Transformants were selected using a recombinantly introduced spectinomycin resistance gene. Specifically, the cells after the above transformation treatment were cultured overnight at 37 ° C. on an LB agar plate medium containing 100 μg / ml spectinomycin to form colonies, and viable strains were obtained. By this culture, only Bacillus subtilis that has acquired the spectinomycin resistance by incorporating the donor DNA by homologous recombination grows and forms a colony.
The acquired strain was designated as MGB874 (R25 :: R25B, spec, lacI, Pspac-chpA, 'cm') strain.

<R*領域単独欠失株のゲノムへの外来配列除去用DNAコンストラクトの挿入>
上述したR25領域単独欠失株のゲノムへの外来配列除去用DNAコンストラクトの挿入手順に準じて、図3で説明した方法により表4および表5−1〜5−7に記載のプライマーを使用し、R*領域の単独欠失株であるMGB874-R*::cm株の各ゲノムへ外来配列除去用DNAコンストラクトを挿入した。供与体DNAの作製のための欠失対象領域の5’外側領域(断片A)及び3’外側領域(断片B)の断片の増幅には、各R*領域に対し、それぞれ*-DF1と*-DR1.2、及び*-DF2.2と*-DR2のプライマーセットを用いた(例えば、R21領域の場合、それぞれ21-DF1と21-DR1.2、及び21-DF2.2と21-DR2のプライマーセットを用いた)。
取得した株をMGB874(R*::R*B, spec, lacI, Pspac-chpA,‘cm’)株とした。
<Insertion of DNA construct for removing foreign sequences into the genome of R * region-only deletion strain>
According to the procedure for inserting the DNA construct for removing foreign sequences into the genome of the R25 region-only deletion strain described above, the primers described in Table 4 and Tables 5-1 to 5-7 were used according to the method described in FIG. The DNA construct for removing foreign sequences was inserted into each genome of the MGB874-R * :: cm strain, which is a single deletion strain of the R * region. For the amplification of the 5 ′ outer region (fragment A) and 3 ′ outer region (fragment B) of the deletion target region for preparation of donor DNA, * -DF1 and * -DR1.2, and * -DF2.2 and * -DR2 primer sets (for example, 21-DF1 and 21-DR1.2 and 21-DF2.2 and 21-DR2 for the R21 region, respectively) The primer set was used.
The obtained strain was designated as MGB874 (R * :: R * B, spec, lacI, Pspac-chpA, 'cm') strain.

〔実施例3〕多重領域欠失株の構築
本実施例では、上記で構築した各単独欠失株ゲノムへの外来配列除去用DNAコンストラクト挿入株を利用して、多重領域欠失株を構築した。
[Example 3] Construction of a multi-region deletion strain In this example, a multi-region deletion strain was constructed using the DNA construct insertion strain for exogenous sequence removal to each single deletion strain genome constructed above. .

<MGB874(R25::R25B, spec, lacI, Pspac-chpA,‘cm’)株のゲノム内相同組換え>
MGB874(R25::R25B, spec, lacI, Pspac-chpA,‘cm’)株を、LB液体培地で一晩培養した。培養液を希釈後、1mM IPTGを添加したLB寒天プレートに塗布した結果、コロニー形成が確認された。IPTG含有LB寒天プレート上で生存し、コロニー形成が確認されたこれらの形質転換枯草菌は、ゲノム内相同組み換えによって外来配列除去用DNAコンストラクト及びクロラムフェニコール耐性遺伝子(断片‘Cm’)がゲノムDNAから欠失したものである(図3参照)。
さらに、本実施例では、以上の実験により得られた形質転換枯草菌の単コロニーについて、欠失対象領域(R25領域)の欠失を、表4および表5−1〜5−7に示す25-checkFプライマー(配列番号255)と25-checkRプライマー(配列番号256)を用いて確認した(図3)。本実験で取得された株をRGF880株と命名した。
<Homologous recombination in the genome of MGB874 (R25 :: R25B, spec, lacI, Pspac-chpA, 'cm') strain>
MGB874 (R25 :: R25B, spec, lacI, Pspac-chpA, 'cm') strain was cultured overnight in LB liquid medium. After dilution of the culture solution, it was applied to an LB agar plate supplemented with 1 mM IPTG, and colony formation was confirmed. Those transformed Bacillus subtilis that survived on the IPTG-containing LB agar plate and confirmed colony formation had a DNA construct for removing foreign sequences and a chloramphenicol resistance gene (fragment 'Cm') by genome homologous recombination. It has been deleted from DNA (see FIG. 3).
Furthermore, in this example, the deletion of the deletion target region (R25 region) is shown in Table 4 and Tables 5-1 to 5-7 for the single colony of transformed Bacillus subtilis obtained by the above experiment. This was confirmed using a -checkF primer (SEQ ID NO: 255) and a 25-checkR primer (SEQ ID NO: 256) (FIG. 3). The strain obtained in this experiment was named RGF880 strain.

<RGF880株ゲノムからのR21領域の欠失>
RGF880株ゲノムから、表2に示したR21領域を欠失させる実験を行った。
MGB874-R21::cm株のゲノムへ外来配列除去用DNAコンストラクトを挿入して構築した株MGB874(R21::R21B, spec, lacI, Pspac-chpA,‘cm’)のゲノムDNAを抽出し、RGF880株に対して形質転換実験を行った。形質転換の条件は、コンピテントセル形質転換方法(例えば、J. Bacteriol. 93, 192 (1967)参照)に従い、1μg以上のPCR産物(供与体DNA)を400μlのコンピテントセルに加え、更に1.5時間培養した。10ppmのクロラムフェニコールを含むLB寒天培地に塗布し、生育したコロニーを相同組み換え(図3参照)による形質転換体として分離した。取得した株を、RGF880(R21::R21B, spec, lacI, Pspac-chpA,‘cm’)とした。
<Deletion of R21 region from RGF880 strain genome>
An experiment was conducted to delete the R21 region shown in Table 2 from the genome of the RGF880 strain.
The genomic DNA of strain MGB874 (R21 :: R21B, spec, lacI, Pspac-chpA, 'cm') constructed by inserting a DNA construct for exogenous sequence insertion into the genome of MGB874-R21 :: cm strain was extracted, and RGF880 Transformation experiments were performed on the strains. According to the transformation method for competent cells (see, for example, J. Bacteriol. 93, 192 (1967)), 1 μg or more of PCR product (donor DNA) was added to 400 μl of competent cells, and 1 Incubated for 5 hours. This was applied to an LB agar medium containing 10 ppm of chloramphenicol, and the grown colonies were isolated as transformants by homologous recombination (see FIG. 3). The acquired strain was designated as RGF880 (R21 :: R21B, spec, lacI, Pspac-chpA, 'cm').

RGF880(R21::R21B, spec, lacI, Pspac-chpA,‘cm’)株を、LB液体培地で一晩培養した。培養液を希釈後、1mM IPTGを添加したLB寒天プレートに塗布した結果、コロニー形成が確認された。IPTG含有LB寒天プレート上で生存し、コロニー形成が確認されたこれらの形質転換枯草菌は、ゲノム内相同組み換えによって外来配列除去用DNAコンストラクト及びクロラムフェニコール耐性遺伝子(断片‘Cm’)がゲノムDNAから欠失したものである(図3参照)。
さらに、本実施例では、以上の実験により得られた形質転換枯草菌の単コロニーについて、欠失対象領域(R21領域)の欠失を、表4および表5−1〜5−7に示す21-checkFプライマー(配列番号249)と21-checkRプライマー(配列番号250)を用いて確認した(図3)。本実験で取得された株をRGF905株と命名した。
RGF880 (R21 :: R21B, spec, lacI, Pspac-chpA, 'cm') strain was cultured overnight in LB liquid medium. After dilution of the culture solution, it was applied to an LB agar plate supplemented with 1 mM IPTG, and colony formation was confirmed. Those transformed Bacillus subtilis that survived on the IPTG-containing LB agar plate and confirmed colony formation had a DNA construct for removing foreign sequences and a chloramphenicol resistance gene (fragment 'Cm') by genome homologous recombination. It has been deleted from DNA (see FIG. 3).
Further, in this example, deletion of the deletion target region (R21 region) is shown in Table 4 and Tables 5-1 to 5-7 for the single colony of transformed Bacillus subtilis obtained by the above experiment. This was confirmed using a -checkF primer (SEQ ID NO: 249) and a 21-checkR primer (SEQ ID NO: 250) (FIG. 3). The strain obtained in this experiment was named RGF905 strain.

<各領域削除株ゲノムからのR*領域の欠失>
RGF880株ゲノムから、R21領域を欠失させる実験と同様の方法により、更に多重欠失株の構築を行った。対象とする領域削除株をRGFx株として、RGFx株ゲノムからR*領域を欠失させる実験を以下のように行った。
<Deletion of R * region from each region deleted strain genome>
Multiple deletion strains were constructed from the RGF880 strain genome in the same manner as in the experiment for deleting the R21 region. An experiment for deleting the R * region from the genome of the RGFx strain was performed as follows, with the target region-deleted strain as the RGFx strain.

MGB874-R*::cm株のゲノムへ外来配列除去用DNAコンストラクトを挿入して構築した株MGB874(R*::R*B, spec, lacI, Pspac-chpA,‘cm’)のゲノムDNAを抽出し、領域削除株RGFx株に対して形質転換実験を行った。形質転換の条件は、コンピテントセル形質転換方法(例えば、J. Bacteriol. 93, 192 (1967)参照)に従い、1μg以上のPCR産物(供与体DNA)を400μlのコンピテントセルに加え、更に1.5時間培養した。10ppmのクロラムフェニコールを含むLB寒天培地に塗布し、生育したコロニーを相同組み換え(図3参照)による形質転換体として分離した。取得した株を、RGFx(R*::R*B, spec, lacI, Pspac-chpA,‘cm’)とした。   The genomic DNA of strain MGB874 (R * :: R * B, spec, lacI, Pspac-chpA, 'cm') constructed by inserting a DNA construct for removing foreign sequences into the genome of MGB874-R * :: cm strain Extraction and transformation experiments were performed on the region deleted strain RGFx. According to the transformation method for competent cells (see, for example, J. Bacteriol. 93, 192 (1967)), 1 μg or more of PCR product (donor DNA) was added to 400 μl of competent cells, and 1 Incubated for 5 hours. This was applied to an LB agar medium containing 10 ppm of chloramphenicol, and the grown colonies were isolated as transformants by homologous recombination (see FIG. 3). The acquired strain was designated as RGFx (R * :: R * B, spec, lacI, Pspac-chpA, ‘cm’).

RGFx (R*::R*B, spec, lacI, Pspac-chpA,‘cm’)株を、LB液体培地で一晩培養した。培養液を希釈後、1mM IPTGを添加したLB寒天プレートに塗布した結果、コロニー形成が確認された。IPTG含有LB寒天プレート上で生存し、コロニー形成が確認されたこれらの形質転換枯草菌は、ゲノム内相同組み換えによって外来配列除去用DNAコンストラクト及びクロラムフェニコール耐性遺伝子(断片‘Cm’)がゲノムDNAから欠失したものである(図3参照)。
さらに、本実施例では、以上の実験により得られた形質転換枯草菌の単コロニーについて、欠失対象領域(R*領域)の欠失を、表4および表5−1〜5−7に示す*-checkFプライマーと*-checkRプライマーを用いて確認した(図3)。
以上の実験を繰り返し、表2に示す本発明の枯草菌変異株を構築した。
RGFx (R * :: R * B, spec, lacI, Pspac-chpA, 'cm') strains were cultured overnight in LB liquid medium. After dilution of the culture solution, it was applied to an LB agar plate supplemented with 1 mM IPTG, and colony formation was confirmed. Those transformed Bacillus subtilis that survived on the IPTG-containing LB agar plate and confirmed colony formation had a DNA construct for removing foreign sequences and a chloramphenicol resistance gene (fragment 'Cm') by genome homologous recombination. It has been deleted from DNA (see FIG. 3).
Furthermore, in the present Example, deletion of a deletion object area | region (R * area | region) is shown to Table 4 and Tables 5-1 to 5-7 about the single colony of the transformed Bacillus subtilis obtained by the above experiment. It confirmed using * -checkF primer and * -checkR primer (FIG. 3).
The above experiment was repeated to construct Bacillus subtilis mutants of the present invention shown in Table 2.

〔実施例4〕組換え枯草菌の作製および目的遺伝子産物生産性評価
実施例1〜3により作製した本発明の枯草菌変異株RGF916株、RGF933株、RGF1042株、RGF1323株、RGF1334株、RGF1351株、GF1368株、及び、RGF1370に、目的遺伝子産物コードする遺伝子を導入した組換え枯草菌株を作製し、目的遺伝子産物の生産能を評価した。本例では、枯草菌変異株に導入する目的遺伝子産物として、アルカリセルラーゼを使用した。
[Example 4] Production of recombinant Bacillus subtilis and evaluation of target gene product productivity The Bacillus subtilis mutants RGF916, RGF933, RGF1042, RGF1323, RGF1334, RGF1351 of the present invention prepared according to Examples 1 to 3 A recombinant Bacillus subtilis strain in which the gene encoding the target gene product was introduced into the GF1368 strain and RGF1370 was produced, and the ability to produce the target gene product was evaluated. In this example, alkaline cellulase was used as the target gene product to be introduced into the Bacillus subtilis mutant.

<アルカリセルラーゼ分泌生産評価>
アルカリセルラーゼ分泌生産性評価は以下の様に行った。即ち、バチルス エスピー(Bacillus sp.)KSM-S237株(FERM BP-7875)由来のアルカリセルラーゼ遺伝子(特開2000−210081号公報)断片(3.1 kb)がシャトルベクターpHY300PLKのBamHI制限酵素切断点に挿入された組換えプラスミドpHY-S237を、プロトプラスト形質転換法によって各菌株に導入した。これによって得られた組換え菌株を10mLのLB培地で一夜37℃で振盪培養を行い、更にこの培養液0.05mLを50mLの2×L−マルトース培地(2%トリプトン、1%酵母エキス、1%NaCl、7.5%マルトース、7.5ppm硫酸マンガン4−5水和物、15ppmテトラサイクリン)に接種し、30℃にて3日間振盪培養を行った。遠心分離によって菌体を除いた培養液上清のアルカリセルラーゼ活性を測定し、培養によって菌体外に分泌生産されたアルカリセルラーゼの量を求めた。
<Alkaline cellulase secretion production evaluation>
Evaluation of alkaline cellulase secretion productivity was performed as follows. That is, an alkaline cellulase gene fragment (3.1 kb) derived from Bacillus sp. KSM-S237 strain (FERM BP-7875) was inserted into the BamHI restriction enzyme cleavage point of shuttle vector pHY300PLK. The resulting recombinant plasmid pHY-S237 was introduced into each strain by protoplast transformation. The recombinant strain thus obtained was subjected to shaking culture in 10 mL of LB medium overnight at 37 ° C., and 0.05 mL of this culture solution was further added to 50 mL of 2 × L-maltose medium (2% tryptone, 1% yeast extract, 1% % NaCl, 7.5% maltose, 7.5 ppm manganese sulfate 4-5 hydrate, 15 ppm tetracycline), followed by shaking culture at 30 ° C. for 3 days. The alkaline cellulase activity of the culture supernatant from which the cells were removed by centrifugation was measured, and the amount of alkaline cellulase secreted and produced outside the cells by the culture was determined.

セルラーゼ活性測定については、1/7.5Mリン酸緩衝液(pH7.4、和光純薬)で適宜希釈したサンプル溶液50μLに0.4mM p-nitrophenyl-β-D-cellotrioside(生化学工業)を50μL加えて混和し、30℃にて反応を行った際に遊離するp−ニトロフェノール量を420nmにおける吸光度(OD420nm)変化により定量した。1分間に1μmolのp-ニトロフェノールを遊離させる酵素量を1Uとした。   For cellulase activity measurement, 0.4 mM p-nitrophenyl-β-D-cellotrioside (Seikagaku Corporation) was added to 50 μL of a sample solution appropriately diluted with 1 / 7.5 M phosphate buffer (pH 7.4, Wako Pure Chemical Industries, Ltd.). 50 μL was added and mixed, and the amount of p-nitrophenol released upon reaction at 30 ° C. was quantified by the change in absorbance at 420 nm (OD 420 nm). The amount of enzyme that liberates 1 μmol of p-nitrophenol per minute was defined as 1 U.

<結果>
アルカリセルラーゼについて、分泌生産能を表6にまとめた。なお、表6において、各種酵素の分泌生産能は、親株であるMGB874株に各遺伝子を同様に導入した場合の酵素生産量を100としたときの相対値で示している。
<Result>
Table 6 summarizes the secretory productivity of alkaline cellulase. In Table 6, the secretory production ability of various enzymes is shown as a relative value when the amount of enzyme produced when each gene is similarly introduced into the parent strain MGB874 is 100.

表6に示したように、本発明の組換え枯草菌である、RGF916株、RGF933株、RGF1042株、RGF1334株、RGF1351株、RGF1368株、RGF1370株では、MGB874株よりアルカリセルラーゼの分泌生産性が向上していることが明らかとなった。   As shown in Table 6, the RGF916 strain, RGF933 strain, RGF1042, RGF1334 strain, RGF1351 strain, RGF1368 strain, and RGF1370 strain, which are the recombinant Bacillus subtilis of the present invention, have a secretion productivity of alkaline cellulase from the MGB874 strain. It became clear that it was improving.

Claims (10)

枯草菌変異株MGB874株のゲノム領域から、枯草菌168株のゲノム上における以下の(a)〜(ad)で示される領域のうちのいずれか1が欠失したゲノム構造を有する枯草菌変異株:
(a)ybbU- ybfI領域;
(b)ydjM-cotA領域;
(c)yefA-yesX領域;
(d)yfiB-yfiX領域;
(e)yhcE-yhcU領域;
(f)yhaU-yhaL領域;
(g)yjbX-yjlB領域;
(h)xkdA-ykcC領域;
(i)bpr-ylmA領域;
(j)flgB-cheD領域;
(k)ynfF-ppsA領域;
(l)yoxC-yobO領域;
(m)spoVAF-spoIIAA領域;
(n)spoIIIAH-yqhV領域;
(o)ytvB-ytqB領域;
(p)yteA-ytaB領域;
(q)yuaJ-yugO領域;
(r)yusJ-mrgA領域;
(s)gerAA-yvrI領域;
(t)yvaM-yvbK領域;
(u)araE-yveK領域;
(v)yvdE-yvcP領域;
(w)gerBA-ywsC領域;
(x)ywrK-ywqM領域;
(y)spoIIID-ywoB領域;
(z)slp-ylaF領域;
(aa)licH-sigY領域;
(ab)yqeF-yrhK領域;
(ac)yuzE-yukJ領域;及び
(ad)yncM-yndN領域。
Bacillus subtilis mutant strain having a genomic structure in which any one of the following regions (a) to (ad) shown in the genome of Bacillus subtilis 168 strain is deleted from the genome region of Bacillus subtilis mutant strain MGB874 :
(a) ybbU-ybfI region;
(b) ydjM-cotA region;
(c) yefA-yesX region;
(d) yfiB-yfiX region;
(e) the yhcE-yhcU region;
(f) yhaU-yhaL region;
(g) yjbX-yjlB region;
(h) the xkdA-ykcC region;
(i) bpr-ylmA region;
(j) flgB-cheD region;
(k) ynfF-ppsA region;
(l) yoxC-yobO region;
(m) spoVAF-spoIIAA region;
(n) spoIIIAH-yqhV region;
(o) ytvB-ytqB region;
(p) the yteA-ytaB region;
(q) yuaJ-yugO region;
(r) yusJ-mrgA region;
(s) gerAA-yvrI region;
(t) yvaM-yvbK region;
(u) araE-yveK region;
(v) yvdE-yvcP region;
(w) gerBA-ywsC region;
(x) ywrK-ywqM region;
(y) spoIIID-ywoB region;
(z) slp-ylaF region;
(aa) licH-sigY region;
(ab) yqeF-yrhK region;
(ac) yuzE-yukJ region; and
(ad) yncM-yndN region.
前記(a)〜(ad)で示される領域が、下記の配列番号で示される一対のオリゴヌクレオチドセットにより挟み込まれる領域である、請求項1記載の枯草菌変異株:
(a) 配列番号51と配列番号52;
(b) 配列番号53と配列番号54;
(c) 配列番号55と配列番号56;
(d) 配列番号57と配列番号58;
(e) 配列番号59と配列番号60;
(f) 配列番号61と配列番号62;
(g) 配列番号63と配列番号64;
(h) 配列番号65と配列番号66;
(i) 配列番号67と配列番号68;
(j) 配列番号69と配列番号70;
(k) 配列番号71と配列番号72;
(l) 配列番号73と配列番号74;
(m) 配列番号75と配列番号76;
(n) 配列番号77と配列番号78;
(o) 配列番号79と配列番号80;
(p) 配列番号81と配列番号82;
(q) 配列番号83と配列番号84;
(r) 配列番号85と配列番号86;
(s) 配列番号87と配列番号88;
(t) 配列番号89と配列番号90;
(u) 配列番号91と配列番号92;
(v) 配列番号93と配列番号94;
(w) 配列番号95と配列番号96;
(x) 配列番号97と配列番号98;
(y) 配列番号99と配列番号100;
(z) 配列番号101と配列番号102;
(aa) 配列番号103と配列番号104;
(ab) 配列番号105と配列番号106;
(ac) 配列番号107と配列番号108;
(ad) 配列番号109と配列番号110。
The Bacillus subtilis mutant strain according to claim 1, wherein the region represented by (a) to (ad) is a region sandwiched between a pair of oligonucleotide sets represented by the following SEQ ID NOs:
(a) SEQ ID NO: 51 and SEQ ID NO: 52;
(b) SEQ ID NO: 53 and SEQ ID NO: 54;
(c) SEQ ID NO: 55 and SEQ ID NO: 56;
(d) SEQ ID NO: 57 and SEQ ID NO: 58;
(e) SEQ ID NO: 59 and SEQ ID NO: 60;
(f) SEQ ID NO: 61 and SEQ ID NO: 62;
(g) SEQ ID NO: 63 and SEQ ID NO: 64;
(h) SEQ ID NO: 65 and SEQ ID NO: 66;
(i) SEQ ID NO: 67 and SEQ ID NO: 68;
(j) SEQ ID NO: 69 and SEQ ID NO: 70;
(k) SEQ ID NO: 71 and SEQ ID NO: 72;
(l) SEQ ID NO: 73 and SEQ ID NO: 74;
(m) SEQ ID NO: 75 and SEQ ID NO: 76;
(n) SEQ ID NO: 77 and SEQ ID NO: 78;
(o) SEQ ID NO: 79 and SEQ ID NO: 80;
(p) SEQ ID NO: 81 and SEQ ID NO: 82;
(q) SEQ ID NO: 83 and SEQ ID NO: 84;
(r) SEQ ID NO: 85 and SEQ ID NO: 86;
(s) SEQ ID NO: 87 and SEQ ID NO: 88;
(t) SEQ ID NO: 89 and SEQ ID NO: 90;
(u) SEQ ID NO: 91 and SEQ ID NO: 92;
(v) SEQ ID NO: 93 and SEQ ID NO: 94;
(w) SEQ ID NO: 95 and SEQ ID NO: 96;
(x) SEQ ID NO: 97 and SEQ ID NO: 98;
(y) SEQ ID NO: 99 and SEQ ID NO: 100;
(z) SEQ ID NO: 101 and SEQ ID NO: 102;
(aa) SEQ ID NO: 103 and SEQ ID NO: 104;
(ab) SEQ ID NO: 105 and SEQ ID NO: 106;
(ac) SEQ ID NO: 107 and SEQ ID NO: 108;
(ad) SEQ ID NO: 109 and SEQ ID NO: 110.
枯草菌変異株MGB874株のゲノム領域から、前記(f)、(j)及び(m)で示される3領域が少なくとも欠失したゲノム構造を有する、請求項2に記載の枯草菌変異株。   The Bacillus subtilis mutant according to claim 2, wherein the Bacillus subtilis mutant MGB874 has a genome structure in which at least three regions represented by (f), (j) and (m) are deleted from the genome region of the MGB874 strain. 請求項1〜3のいずれか1項記載の枯草菌変異株に目的遺伝子産物をコードする遺伝子が発現可能に導入された組換え枯草菌。   A recombinant Bacillus subtilis obtained by introducing a gene encoding a target gene product into the Bacillus subtilis mutant strain according to any one of claims 1 to 3. 目的遺伝子産物をコードする遺伝子の上流に転写開始制御領域、翻訳開始制御領域及び分泌シグナル領域から選ばれる1以上の領域が作動可能に結合された、請求項4記載の組換え枯草菌。   The recombinant Bacillus subtilis according to claim 4, wherein at least one region selected from a transcription initiation control region, a translation initiation control region and a secretion signal region is operably linked upstream of a gene encoding a target gene product. 転写開始制御領域、翻訳開始制御領域及び分泌シグナル領域からなる3領域が結合された、請求項5記載の組換え枯草菌。   The recombinant Bacillus subtilis according to claim 5, wherein three regions comprising a transcription initiation control region, a translation initiation control region, and a secretory signal region are combined. 分泌シグナル領域がバチルス(Bacillus)属細菌のセルラーゼ遺伝子由来のものであり、転写開始制御領域及び翻訳開始制御領域が当該セルラーゼ遺伝子の開始コドンから始まる長さ0.6〜1kbの上流領域由来のものである、請求項6記載の組換え枯草菌。   The secretory signal region is derived from a cellulase gene of a bacterium belonging to the genus Bacillus, and the transcription initiation control region and the translation initiation control region are derived from an upstream region of 0.6 to 1 kb in length starting from the start codon of the cellulase gene The recombinant Bacillus subtilis according to claim 6, which is 転写開始制御領域、翻訳開始制御領域及び分泌シグナル領域からなる3領域が、配列番号1で示される塩基配列の塩基番号1〜659の塩基配列からなるDNA断片、配列番号3で示される塩基配列からなるセルラーゼ遺伝子の塩基番号1〜696の塩基配列、又は当該塩基配列のいずれかと70%以上の同一性を有する塩基配列からなるDNA断片、上記いずれかの塩基配列からなるDNAとストリンジェントの条件でハイブリダイズするDNA断片若しくは当該塩基配列のいずれかの一部が欠失した塩基配列からなるDNA断片である、請求項6記載の組換え枯草菌。   Three regions comprising a transcription initiation control region, a translation initiation control region and a secretion signal region are composed of a DNA fragment comprising the base sequence of base numbers 1 to 659 of the base sequence represented by SEQ ID NO: 1, and the base sequence represented by SEQ ID NO: 3 A DNA fragment comprising a base sequence of base numbers 1 to 696 of the cellulase gene, or a base sequence having 70% or more identity with any of the base sequences, under stringent conditions with DNA comprising any of the above base sequences The recombinant Bacillus subtilis according to claim 6, wherein the recombinant Bacillus subtilis is a DNA fragment comprising a hybridizing DNA fragment or a base sequence from which any part of the base sequence is deleted. 目的遺伝子産物が異種タンパク質又はポリペプチドである、請求項4〜8のいずれか1項記載の組換え枯草菌。   The recombinant Bacillus subtilis according to any one of claims 4 to 8, wherein the target gene product is a heterologous protein or polypeptide. 請求項4〜9のいずれか1項記載の組換え枯草菌を用いる目的遺伝子産物の製造方法。   The manufacturing method of the target gene product using the recombinant Bacillus subtilis of any one of Claims 4-9.
JP2010024571A 2010-02-05 2010-02-05 New Bacillus subtilis mutant Active JP5695325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010024571A JP5695325B2 (en) 2010-02-05 2010-02-05 New Bacillus subtilis mutant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024571A JP5695325B2 (en) 2010-02-05 2010-02-05 New Bacillus subtilis mutant

Publications (2)

Publication Number Publication Date
JP2011160686A true JP2011160686A (en) 2011-08-25
JP5695325B2 JP5695325B2 (en) 2015-04-01

Family

ID=44592112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024571A Active JP5695325B2 (en) 2010-02-05 2010-02-05 New Bacillus subtilis mutant

Country Status (1)

Country Link
JP (1) JP5695325B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135214A (en) * 2010-12-24 2012-07-19 Kao Corp Method for producing protein using recombinant microorganism
JP2015156844A (en) * 2014-02-25 2015-09-03 花王株式会社 Bacillus subtilis variant and method for producing of dipicolinic acid using the same
US11661605B2 (en) * 2018-01-12 2023-05-30 Kao Corporation Production method for protein

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130013A (en) * 2005-10-13 2007-05-31 Kao Corp New bacillus subtilis mutant strain
JP2009171886A (en) * 2008-01-23 2009-08-06 Kao Corp New bacillus subtilis mutant and method for producing protein
JP2010178705A (en) * 2009-02-06 2010-08-19 Kao Corp Bacillus subtilis variant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130013A (en) * 2005-10-13 2007-05-31 Kao Corp New bacillus subtilis mutant strain
JP2009171886A (en) * 2008-01-23 2009-08-06 Kao Corp New bacillus subtilis mutant and method for producing protein
JP2010178705A (en) * 2009-02-06 2010-08-19 Kao Corp Bacillus subtilis variant

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6011032018; Nature, 1997年, 第390巻, 249-256ページ、補遺 *
JPN6011032020; 平成15年度産業技術研究開発事業 新エネルギー・産業技術総合開発機構委託 「エネルギー使用合理化技術(産 *
JPN6013027286; DNA Res. Vol. 15, 2008, p. 73-81 *
JPN6014020732; Biotechnol.Appl.Biochem Vol.46, 2007, pp.169-178 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135214A (en) * 2010-12-24 2012-07-19 Kao Corp Method for producing protein using recombinant microorganism
JP2015156844A (en) * 2014-02-25 2015-09-03 花王株式会社 Bacillus subtilis variant and method for producing of dipicolinic acid using the same
US11661605B2 (en) * 2018-01-12 2023-05-30 Kao Corporation Production method for protein

Also Published As

Publication number Publication date
JP5695325B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP2006296268A (en) Recombinant microorganism
JP5226958B2 (en) Recombinant microorganism
JP5753419B2 (en) Gene-deficient strain and protein production method using the same
JP4915728B2 (en) Recombinant microorganism
JP5695325B2 (en) New Bacillus subtilis mutant
JP5513759B2 (en) Method for producing protein or polypeptide
JP4850011B2 (en) Recombinant microorganism
EP2451954B1 (en) Modified promoter
JP4839143B2 (en) Recombinant microorganism
JP4832153B2 (en) Recombinant microorganism
JP2007049987A (en) Host microorganism
JP2006345860A (en) Recombinant bacillus bacterium
JP5361428B2 (en) Bacillus subtilis mutant
JP5881352B2 (en) σD factor suppression release strain and protein production method using the same
JP4842749B2 (en) Recombinant microorganism
JP4839169B2 (en) Recombinant microorganism
JP6791623B2 (en) Recombinant microorganisms and their use
JP5841749B2 (en) Recombinant microorganism
JP5520498B2 (en) Method for producing protein or polypeptide
JP5829802B2 (en) Recombinant Bacillus subtilis
JP4861659B2 (en) Recombinant microorganism
JP5474448B2 (en) Mutated Bacillus bacteria
JP4842751B2 (en) Recombinant microorganism
JP4842750B2 (en) Recombinant microorganism
JP4685521B2 (en) Recombinant microorganism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150206

R150 Certificate of patent or registration of utility model

Ref document number: 5695325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250