JP2011159870A - Design condition calculating device, optimizing method for warpage and stress of board, and optimization program for warpage and stress of board - Google Patents

Design condition calculating device, optimizing method for warpage and stress of board, and optimization program for warpage and stress of board Download PDF

Info

Publication number
JP2011159870A
JP2011159870A JP2010021417A JP2010021417A JP2011159870A JP 2011159870 A JP2011159870 A JP 2011159870A JP 2010021417 A JP2010021417 A JP 2010021417A JP 2010021417 A JP2010021417 A JP 2010021417A JP 2011159870 A JP2011159870 A JP 2011159870A
Authority
JP
Japan
Prior art keywords
warpage
stress
data
calculating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010021417A
Other languages
Japanese (ja)
Inventor
Ichiro Hirata
一郎 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2010021417A priority Critical patent/JP2011159870A/en
Publication of JP2011159870A publication Critical patent/JP2011159870A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To calculate design condition, when an electronic component is to be solder-bonded to the surface of a printed board. <P>SOLUTION: A design condition calculation device includes a data import section 21 for importing at least shape data and arranged data of the printed board and the electronic component sent from an input device 1; a model-generating section 22 for generating model data of the printed board, by adding material characteristic value to each of the data imported by the data import section 21; a warpage direction calculating section 23 for calculating the warpage direction of the printed board, based on the model data generated by the model generating section 22; a warpage stress calculating section 24 for calculating the warpage amount of the printed board and the stress of the solder bonded position, based on the model data generated by the model generating section 22; and an optimization section 25 for calculating designing conditions with which the balance between the warpage amount of the printed board calculated by the warpage calculating section 24 in the warpage direction of the printed board calculated by the warpage direction calculating section 23 and the stress of the solder bonded position can be maintained at an optimal balance. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、設計条件算出装置、基板の反りと応力の最適化方法、及び基板の反りと応力の最適化プログラムに関する。特に本発明は、プリント基板の表面に電子部品をはんだ接合する際の設計条件を算出する設計条件算出装置、基板の反りと応力の最適化方法、及び基板の反りと応力の最適化プログラムに関する。   The present invention relates to a design condition calculation apparatus, a substrate warpage and stress optimization method, and a substrate warpage and stress optimization program. In particular, the present invention relates to a design condition calculation apparatus for calculating a design condition for soldering an electronic component to the surface of a printed circuit board, a method for optimizing the warpage and stress of the board, and a program for optimizing the warpage and stress of the board.

近年、電子機器の軽・薄・短・小化が急速に進んでいる。それに伴い、電子部品とこれを実装するプリント配線基板も薄くする必要がある。しかしながら、部品や基板が薄くなると曲げ剛性が低下し、反りの増大が大きな課題となっている。また、応力による破壊や剥離は、薄くなっても依然として大きな問題である。   In recent years, electronic devices are rapidly becoming lighter, thinner, shorter, and smaller. Accordingly, it is necessary to make the electronic component and the printed wiring board on which the electronic component is mounted thinner. However, as components and substrates become thinner, bending rigidity decreases, and an increase in warpage is a major issue. In addition, breaking and peeling due to stress are still a big problem even if it becomes thin.

反りと応力の問題は、電子機器にとって大きな問題である。まず、反りがリフロー工程で閾値以上に発生すれば、はんだでプリント配線基板と電子機器の電極同士が電気的に接続されないか、または不完全な状態(未融合)で接合されることになる。完全に接続されない場合には、リフロー後の電気検査で発見できるが歩留りは低下するという問題があり、また、未融合の場合には、出荷後にリコールとなり、その被害額は膨大なものとなる。さらに、接続は完全であってもリフロー後に反りが残留していれば、電子機器の筐体への組み込みが難しくなり、ここでも歩留りは低下してしまう。このように、反りは薄型化の傾向著しい電子機器にとって大敵となっている。一方、応力に関しては、プリント配線基板の反りの発生を熱プレスと呼ばれる方法などで平坦になるよう矯正すると発生することになり、はんだ部に残留応力が生じていると、設計時に予想したはんだ接続寿命よりも大幅に寿命が短くなるという問題が生じる。以上のように、電子機器にとって、反りと応力は同時に解決しなければならない大きな課題となっている。   The problem of warpage and stress is a big problem for electronic devices. First, if warpage occurs above a threshold value in the reflow process, the printed wiring board and the electrodes of the electronic device are not electrically connected to each other by solder, or are joined in an incomplete state (unfused). If it is not completely connected, it can be found by electrical inspection after reflow, but there is a problem that the yield decreases. If it is not fused, it will be recalled after shipment, and the damage amount will be enormous. Furthermore, even if the connection is complete, if warping remains after reflow, it is difficult to incorporate the electronic device into the housing, and the yield is reduced here. In this way, warping is a major enemy for electronic devices that are remarkably thin. On the other hand, with regard to stress, the warpage of the printed wiring board will occur if it is corrected to be flat by a method called hot press, etc., and if the residual stress is generated in the solder part, the solder connection expected at the time of design There arises a problem that the lifetime is significantly shorter than the lifetime. As described above, for electronic devices, warping and stress are major issues that must be solved simultaneously.

これら問題を解決するには、反りの発生を抑え、かつ、応力を低下できるような最適構造を見出す必要がある。しかし、これまでに行われた検討によれば、反りと応力にはトレードオフの関係が見られ、応力を低減させると反りが増大し、逆に反りを低減させると応力(この場合は面内応力が支配的となる)が増大するという結果が非特許文献1などで発表されており、両者を同時に低減させることは非常に難しいという問題があった。このような背景技術において、反りと応力を設計段階で予測し低減させるため、電子部品をプリント配線基板へ実装する際の反り挙動を定量的かつ高精度で予測する試みが行われてきており、関連する企業、大学、研究機関などでは、有限要素法(FEM(Finite Element Method))を用いたシミュレーションによる予測技術や、多層ばり理論を用いた研究がされており、例えば、特許文献1では非特許文献1の多層ばり理論をベースとしたシステムを開発しており、非特許文献2では、このシステムを用いて反りの最適値を求める究明が行われている。   In order to solve these problems, it is necessary to find an optimum structure capable of suppressing the occurrence of warpage and reducing the stress. However, according to the studies conducted so far, there is a trade-off relationship between warpage and stress. When stress is reduced, warpage increases. Conversely, when warpage is reduced, stress (in this case, in-plane The result that stress is dominant) has been published in Non-Patent Document 1 and the like, and there was a problem that it was very difficult to reduce both at the same time. In such background technology, in order to predict and reduce warpage and stress at the design stage, attempts have been made to quantitatively and highly accurately predict warpage behavior when mounting electronic components on a printed circuit board. Related companies, universities, research institutes, and the like conduct research using a prediction technique based on simulation using a finite element method (FEM (Finite Element Method)) and multilayer beam theory. A system based on the multilayer beam theory of Patent Document 1 has been developed, and in Non-Patent Document 2, investigations have been made to obtain an optimal value of warpage using this system.

特開2006−278803号公報JP 2006-278803 A

尾田 十八、「多層ばり理論によるプリント基板の応力・変形の評価」、日本機械学會論文集.A編、社団法人日本機械学会、平成5年7月25日、第59巻、第563号、p.203−208J. Oda, “Evaluation of Stress and Deformation of Printed Circuit Boards by Multilayer Beam Theory”, Nippon Mechanics Journal. Volume A, Japan Society of Mechanical Engineers, July 25, 1993, Vol. 59, No. 563, p. 203-208 平田 一郎、「多層基板の反り応力算出ツールの開発および応力極小値発生原因の究明」、エレクトロニクス実装学術講演大会講演論文集、社団法人エレクトロニクス実装学会、平成17年4月20日、Vol.19、p.93−94Ichiro Hirata, “Development of warpage stress calculation tool for multilayer substrate and investigation of cause of stress minimum value”, Electronics Packaging Conference Lecture Collection, Japan Institute of Electronics Packaging, April 20, 2005, Vol. 19, p. 93-94

非特許文献2に記載の多層基板の反り応力算出ツールによると、反りの極小化に主眼が置かれており、応力の結果も検討されている。しかしながら、非特許文献2では、反りと応力とを同時に最適化するまでには至っていない。また、FEMを用いた研究でも要素分割したモデルの寸法変更が難しく、最適化するには繰り返しモデル変更する必要があるため、同時最適化については殆ど取り組まれていないのが現状である。さらに、前記、多層ばり理論から反りと応力との関係を理論的に考察すると、非特許文献1の式(11)より、反りの低減には基板の曲率を減少させる(曲げ剛性を増加)必要があるが、曲率を減少させることは応力の増加になるため、反りと応力とのトレードオフ関係は発生メカニズムに起因する根源的なものであり、両者を同時に低減させることは困難であることが推察できる。   According to the warpage stress calculation tool for a multilayer substrate described in Non-Patent Document 2, the focus is on minimizing warpage, and the results of stress are also being studied. However, in Non-Patent Document 2, it has not yet been possible to optimize warpage and stress at the same time. Further, even in research using FEM, it is difficult to change the dimensions of a model in which elements are divided, and it is necessary to change the model repeatedly for optimization. Further, when theoretically examining the relationship between warpage and stress from the multi-layered beam theory, it is necessary to reduce the curvature of the substrate (increase the bending rigidity) to reduce the warp according to Equation (11) of Non-Patent Document 1. However, reducing the curvature results in an increase in stress, so the trade-off relationship between warpage and stress is fundamental due to the generation mechanism, and it may be difficult to reduce both at the same time. I can guess.

上記課題を解決するために、本発明の第1の形態によると、プリント基板の表面に電子部品をはんだ接合する際の設計条件を算出する設計条件算出システムであって、入力装置から送られてくるプリント基板、及びこれにはんだ接合する電子部品の少なくとも形状データと配置データと取り込むデータ取込部と、データ取込部が取り込んだ各データに材料特性値を加え、プリント基板のモデルデータを生成するモデル生成部と、モデル生成部が生成したモデルデータに基づいて、プリント基板の反り方向を算出する反り方向算出部と、モデル生成部が生成したモデルデータに基づいて、プリント基板の反り量と、はんだ接合された箇所の応力とを算出する反り応力算出部と、反り方向算出部が算出したプリント基板の反り方向における反り応力算出部が算出したプリント基板の反り量と、はんだ接合された箇所の応力とのバランスが最適なバランスとなり得る設計条件を算出する最適化部とを備える。   In order to solve the above-described problem, according to the first aspect of the present invention, there is provided a design condition calculation system for calculating a design condition when soldering an electronic component to the surface of a printed circuit board, which is sent from an input device. Generate at least the shape data and arrangement data of the printed printed circuit board and the electronic components to be soldered to it, the data acquisition unit to be acquired, and the material characteristic value to each data acquired by the data acquisition unit to generate the model data of the printed circuit board A warp direction calculation unit that calculates a warp direction of the printed circuit board based on the model data generated by the model generation unit, and a warpage amount of the printed circuit board based on the model data generated by the model generation unit. The warp stress calculation unit that calculates the stress of the soldered portion and the warp response in the warp direction of the printed circuit board calculated by the warp direction calculation unit Comprising the amount of warpage of the printed circuit board calculator has calculated, the optimization unit balance between the stress point that is solder bonded to calculate design conditions that may be optimal balance.

本発明の第2の形態によると、プリント配線基板及びこれにはんだ接合する電子部品の中で検討対象部品を指定する第1の工程と、基板の反り方向を算出する第2の工程と、検討対象として指定した電子部品が基板の圧縮側に配置されているか否かを判断する第3の工程と、基板反りとはんだ部の応力とを算出する第4工程と、算出したはんだ部の最大応力が閾値内か否かを判断する第5の工程と、算出した基板の反りが閾値内か否かを判断する第6の工程と、モデルを変更する第7の工程とを備える。   According to the second aspect of the present invention, the first step of designating a component to be examined among the printed wiring board and the electronic component to be soldered thereto, the second step of calculating the warping direction of the substrate, and the examination A third step of determining whether or not an electronic component designated as a target is disposed on the compression side of the substrate; a fourth step of calculating the substrate warpage and the stress of the solder portion; and the calculated maximum stress of the solder portion. Includes a fifth step of determining whether or not the calculated warpage of the substrate is within the threshold, and a seventh step of changing the model.

本発明の第3の形態によると、プリント配線基板及びこれにはんだ接合する電子部品の形状データと配置データに基づいて基板方向を算出するステップと、モデルデータに基づいて基板の反りとはんだ部の応力を算出するステップと、算出した結果に基づいて最適化するステップとをコンピュータに実行させる。   According to the third aspect of the present invention, the step of calculating the board direction based on the shape data and the arrangement data of the printed wiring board and the electronic components soldered to the printed circuit board, and the warpage of the board and the solder portion based on the model data. Causing the computer to execute a step of calculating the stress and a step of optimizing based on the calculated result.

なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。   The above summary of the invention does not enumerate all the necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.

以上の説明から明らかなように、この発明によれば、プリント基板の反りとはんだ接合部分の応力とのバランスが最適となるような設計条件を算出することができるため、トレードオフの関係にある反りと応力について、はんだ接続寿命の注意が特に必要な電子部品を、圧縮応力が発生する側に移すことにより、接続寿命に影響する応力の閾値が上がり、ある程度応力を高めて反りを低減できる。その結果、反りと応力が原因となる歩留り低下や接続寿命の低下を解決することができる。   As is clear from the above description, according to the present invention, the design condition can be calculated so that the balance between the warpage of the printed circuit board and the stress of the solder joint portion is optimal, and therefore there is a trade-off relationship. Regarding warpage and stress, by moving an electronic component that requires special attention to the solder connection life to the side where compressive stress is generated, the threshold of stress that affects the connection life is increased, and the warpage can be reduced by increasing the stress to some extent. As a result, it is possible to solve a decrease in yield and a decrease in connection life caused by warpage and stress.

また、本発明によれば、解析時間を要するFEMを用いることなく、多層ばり理論を用いると共に、反りの方向には、等価弾性率、等価熱膨張係数、及びバイメタル理論を用いることにより、設計の初期段階で素早く問題を解決することができる。   Further, according to the present invention, the multilayer beam theory is used without using the FEM which requires analysis time, and the design can be performed by using the equivalent elastic modulus, the equivalent thermal expansion coefficient, and the bimetal theory in the warping direction. The problem can be solved quickly at an early stage.

本発明の第1の実施の形態を示すブロック図である。It is a block diagram which shows the 1st Embodiment of this invention. 本発明の基板反り方向算出から最適化までの詳細フローチャートである。It is a detailed flowchart from the board | substrate curvature direction calculation to optimization of this invention. 本発明のプログラムの構成を示すブロック図である。It is a block diagram which shows the structure of the program of this invention. 多層基板から2層基板を作成するための説明図である。It is explanatory drawing for producing a 2 layer board | substrate from a multilayer substrate.

以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the scope of claims, and all combinations of features described in the embodiments are included. It is not necessarily essential for the solution of the invention.

図1は、データ処理装置2のブロック構成の一例を示す。データ処理装置2は、データ取込部21、モデル生成部22、反り方向算出部23、反り応力算出部24、及び最適化部25を備える。   FIG. 1 shows an example of a block configuration of the data processing device 2. The data processing device 2 includes a data capturing unit 21, a model generation unit 22, a warp direction calculation unit 23, a warp stress calculation unit 24, and an optimization unit 25.

データ処理装置2は、入力装置1から基板または電子部品の形状と配置データをデータ取込部21により取込み、データに印加温度、弾性率E、熱膨張係数αなどの材料特性値を材料ライブラリ等から選択してモデル生成部22により付加する。次に、モデルを反り方向算出部23で反り方向を算出し、さらにモデルの基板の反り量と電子部品とのはんだ接合部に生じる応力とを最適化部25により算出する。ここで、反り方向算出部23では多層基板をバイメタルと見なして算出し、また、反り応力算出部24では多層ばり理論を用いて算出する。さらに、算出した基板反り方向、基板反り量、はんだ部応力を基に、最適化部25で反りと応力を最適化できる設計条件(寸法、層厚さ、材料特性、配置等)を算出する。また、データ処理装置2で処理されたデータは記憶装置3に記憶され、結果は出力装置4により出力される。   The data processing device 2 takes in the shape and arrangement data of the substrate or the electronic component from the input device 1 by the data take-in unit 21, and sets material characteristic values such as applied temperature, elastic modulus E, and thermal expansion coefficient α in the data in the material library or the like. Is selected by the model generation unit 22. Next, the warping direction calculation unit 23 calculates the warping direction of the model, and the optimization unit 25 calculates the amount of warping of the model board and the stress generated in the solder joint portion of the electronic component. Here, the warp direction calculation unit 23 calculates the multi-layer substrate as a bimetal, and the warp stress calculation unit 24 calculates the multi-layer beam theory. Furthermore, based on the calculated substrate warp direction, substrate warp amount, and solder part stress, design conditions (dimension, layer thickness, material characteristics, arrangement, etc.) that can optimize the warp and stress by the optimization unit 25 are calculated. The data processed by the data processing device 2 is stored in the storage device 3 and the result is output by the output device 4.

次に、本発明の第2の最良の形態について図面を参照して詳細に説明する。図3を参照すると、本発明の第2の実施の形態は、本発明の第1の実施の形態と同様に、入力装置、データ処理装置、記憶装置、出力装置を備える。反り方向及び反り量と応力算出プログラム5は、データ処理装置2に読み込まれたデータの処理、動作を制御し、記憶装置3にデータ処理装置2から各処理における処理結果が記憶される。以上のように、データ処理装置2は反り方向及び反り量と応力算出プログラム5の制御により、第1の実施の形態におけるデータ処理装置2による処理と同一の処理を実行する。   Next, the second best mode of the present invention will be described in detail with reference to the drawings. Referring to FIG. 3, the second embodiment of the present invention includes an input device, a data processing device, a storage device, and an output device, as in the first embodiment of the present invention. The warpage direction, warpage amount, and stress calculation program 5 control the processing and operation of data read into the data processing device 2, and the processing results of each processing from the data processing device 2 are stored in the storage device 3. As described above, the data processing device 2 executes the same processing as the processing by the data processing device 2 in the first embodiment under the control of the warping direction and the warpage amount and the stress calculation program 5.

次に、本発明において特に重要である反り方向算出から最適化までの詳細フローチャートを図2に示す。入力したモデルデータの内、はんだ接続寿命に特に注意を払う電子部品を検討対象として指定する工程A1を通り、電子部品を実装するプリント基板の現段階での反り方向を算出する工程A2へ進む。次に、検討対象部品のはんだ接続部に圧縮応力が発生しているか否かを判断する工程A3へ進む。ここでは、まだはんだ接続部の応力は算出せず、後述する等価弾性率と等価熱膨張係数、及びバイメタルの反りの式により、検討対象部品を搭載する面が凹部(圧縮側)となっているか否かで判断する。ここで否となった場合には、モデルを変更する工程A7へ進み、圧縮側ならば、基板の反り量とはんだ部の応力値を算出する工程A4に進み、この工程では、後述する多層ばり理論を使用する。次に、工程A4で算出したはんだ部応力が閾値内か否かを判断する工程A5に進み、否となった場合には、モデルを変更する工程A7へ進み、閾値内であれば工程A6に進む。基板の反りが閾値内か否かを判断する工程A6では、否の場合、モデルを変更する工程A7へ進み、閾値内であれば、処理を終了する。   Next, FIG. 2 shows a detailed flowchart from the warp direction calculation to optimization which is particularly important in the present invention. In the input model data, the process proceeds to a process A1 in which an electronic component that pays particular attention to the solder connection life is specified as an examination target, and the process proceeds to a process A2 in which the warping direction of the printed circuit board on which the electronic component is mounted is calculated. Next, it progresses to process A3 which judges whether the compressive stress has generate | occur | produced in the solder connection part of the component for examination. Here, the stress of the solder joint is not yet calculated, and the surface on which the target component is mounted is a recess (compression side) according to the later-described equivalent elastic modulus, equivalent thermal expansion coefficient, and bimetal warpage formula. Judge by no. If the result is NO, the process proceeds to step A7 for changing the model, and if it is on the compression side, the process proceeds to step A4 for calculating the warpage amount of the substrate and the stress value of the solder portion. Use theory. Next, the process proceeds to a process A5 for determining whether or not the solder part stress calculated in the process A4 is within the threshold value. If not, the process proceeds to the process A7 for changing the model. move on. In step A6 for determining whether the warpage of the substrate is within the threshold value, if not, the process proceeds to step A7 for changing the model, and if it is within the threshold value, the process is terminated.

ここで、基板の反り方向を算出する工程A2で使用する等価弾性率とバイメタル理論について概要を説明する。プリント配線基板において、任意の厚さ方向で2分割を行い、各分割された領域を等価な弾性率に置き換え、1層ずつの層と見なすことにより、バイメタル式を使用することができる。

Figure 2011159870
ここでEは等価弾性率、E1、E2、E3、はそれぞれ各層の弾性率、また、V1、V2、V3はそれぞれの層の体積である。このような方法を用いれば、多層のプリント配線基板であっても2層として扱うことができるようになるが、あくまでも等価な値であり、基板の反りの向きを短時間に求める目的で使用している。なお、熱膨張係数に対しても同様に等価熱膨張係数が求められる。 Here, an outline of the equivalent elastic modulus and bimetal theory used in step A2 for calculating the warping direction of the substrate will be described. In the printed wiring board, the bimetal type can be used by dividing the divided area into two in an arbitrary thickness direction, replacing each divided area with an equivalent elastic modulus, and considering each layer as one layer.
Figure 2011159870
Here, E is the equivalent elastic modulus, E1, E2, and E3 are the elastic moduli of the respective layers, and V1, V2, and V3 are the volumes of the respective layers. If such a method is used, even a multilayer printed wiring board can be handled as two layers, but it is an equivalent value to the last, and is used for the purpose of obtaining the direction of warping of the board in a short time. ing. Similarly, an equivalent thermal expansion coefficient is obtained for the thermal expansion coefficient.

次に、バイメタル理論としては、チモシェンコの理論が最も厳密であり、h=a1+ a2、m=a1/a2、n=E1/E2とおくと、

Figure 2011159870
Figure 2011159870
Figure 2011159870
ここで、E1、E2はバイメタルのそれぞれの層の弾性率、a1、a2はそれぞれの層の厚さ、α1、α2はそれぞれの層の線膨張係数、Lはバイメタルの長さ、T0は初期温度、T1は最終温度、さらに、ρはプリント配線基板の曲率、Wはプリント配線基板のたわみである。図4においては、等価弾性率EをE1、破線Aの下部の層33はE2とすればよい。 Next, as bimetal theory, Timoshenko's theory is the strictest, and h = a1 + a2, m = a1 / a2, and n = E1 / E2.
Figure 2011159870
Figure 2011159870
Figure 2011159870
Here, E1 and E2 are the elastic moduli of the respective layers of the bimetal, a1 and a2 are the thicknesses of the respective layers, α1 and α2 are the linear expansion coefficients of the respective layers, L is the length of the bimetal, and T0 is the initial temperature. , T1 is the final temperature, ρ is the curvature of the printed wiring board, and W is the deflection of the printed wiring board. In FIG. 4, the equivalent elastic modulus E may be E1, and the lower layer 33 of the broken line A may be E2.

さらに、非特許文献1に記載の多層ばり理論について概要を説明する。n層の連続ばりが変形した場合を考える。各層の厚さを曲率半径に比べ微小であると考え、

Figure 2011159870
Furthermore, an outline of the multilayer beam theory described in Non-Patent Document 1 will be described. Consider the case where the n-layer continuous beam is deformed. Think of the thickness of each layer as small as the radius of curvature,
Figure 2011159870

ここで、R1、R2・・は各層の曲率半径、Rは代表曲率半径である。また、多層ばりの接着面でのひずみの連続条件、及び各層に生じる軸力Pi、曲げモーメントMiの釣り合い式は、

Figure 2011159870
Figure 2011159870
Here, R1, R2,... Are curvature radii of each layer, and R is a representative curvature radius. In addition, the continuous condition of the strain on the bonding surface of the multilayer beam, and the balance formula of the axial force Pi and bending moment Mi generated in each layer are as follows:
Figure 2011159870
Figure 2011159870

ここで、{ε}はひずみベクトル、{P}は軸力ベクトル、〔K〕は剛性マトリックス、yは多層ばりにおける中立点(応力ゼロの位置)であり、以下の関係が成り立つ。

Figure 2011159870
Figure 2011159870
Here, {ε} is a strain vector, {P} is an axial force vector, [K] is a stiffness matrix, and y is a neutral point (position of zero stress) in a multilayer beam, and the following relationship is established.
Figure 2011159870
Figure 2011159870

また、多層ばりの伸びを無視し(L´=L)し、n層ばりに生ずるたわみをδとすれば、

Figure 2011159870
Further, ignoring the elongation of the multi-layer beam (L ′ = L) and letting the deflection generated in the n-layer beam be δ,
Figure 2011159870

よって、たわみδは式(5)より曲率Rを求め、式(10)に代入すれば算出でき、このマトリックスタイプの式をプログラム化することにより、FEMによるシミュレーションを行わずに多層基板の反りを短時間で算出でき、さらに、変位から各層に発生する応力も算出できる。しかし、層数が増加するとFEMによる解析に比べれば計算時間は短いものの、解析マシンへの負担は増加してしまう。本特許の特徴の一つは、検討対象としている電子部品がプリント配線基板の凹側(圧縮応力側)にあるのか、または、凸側(引張り応力側)にあるのかを判断する段階では、等価弾性率と等価熱膨張係数、及びバイメタルの反りの式を用いてマシンへの負担を大幅に軽減できることである。   Therefore, the deflection δ can be calculated by calculating the curvature R from the equation (5) and substituting it into the equation (10). By programming this matrix type equation, the warp of the multilayer substrate can be performed without performing the FEM simulation. It can be calculated in a short time, and the stress generated in each layer can be calculated from the displacement. However, when the number of layers increases, the calculation time is short compared with the analysis by FEM, but the burden on the analysis machine increases. One of the features of this patent is that it is equivalent at the stage of determining whether the electronic component under consideration is on the concave side (compressive stress side) or the convex side (tensile stress side) of the printed wiring board. The load on the machine can be greatly reduced by using the equation of elastic modulus, equivalent thermal expansion coefficient, and bimetal warpage.

他の発明を実施するための最良の形態としては、例えば、電子部品とプリント配線基板とを接続するはんだ層に、補強のためアンダーフィルと呼ばれる樹脂を充填すると弾性率は変化する。このような場合には、まず、式(1)を同一層内の各材料に対して用いて等価弾性率を算出することにより、同一層に複数の材料が使用されている場合にも最適化できるという効果もある。   As the best mode for carrying out the invention, for example, when a solder layer connecting an electronic component and a printed wiring board is filled with a resin called an underfill for reinforcement, the elastic modulus changes. In such a case, optimization is performed even when a plurality of materials are used in the same layer by calculating the equivalent elastic modulus using Equation (1) for each material in the same layer. There is also an effect that can be done.

次に、本発明の第1の実施例を、図面を参照して説明する。かかる実施例は本発明の第1の実施の形態に対応するものである。本実施例は、入力装置1としてキーボードとマウスを、データ処理装置2としてパーソナル・コンピュータを、記憶装置3として、磁気ディスク記憶装置を、出力装置4としてディスプレイを備えており、データ処理装置2は、データ取込部21と、モデル生成部22と、反り方向算出部23と、反り応力算出部24と、最適化部25とから構成されている。入力装置1から基板と電子部品とはんだの形状データと位置データとを、データ取込部21により取込み、ヤング率E、熱膨張係数αなどの材料特性値を材料ライブラリなどから選択してモデル生成部22により付加する。次に、基板モデルに温度を印加して反り方向を算出する部23で算出し、基板と電子部品とはんだモデルとから、基板の反り量とはんだ部の応力を算出する部24により算出する。ここで、反り方向算出部23では等価弾性率と等価熱膨張係数、及びバイメタル式を用い、反り応力算出部24では多層ばり理論を用いて反り量と応力とを算出する。さらに、算出した反りの向き及び反り量と応力とから、反りの閾値以下ではんだ接続部の長寿命化に最も良い反りと応力になる様、最適化部25で最適化条件を算出する。また、データ処理装置2で処理されたデータは記憶装置3に記憶され、結果は出力装置4により出力される。   Next, a first embodiment of the present invention will be described with reference to the drawings. This example corresponds to the first embodiment of the present invention. In this embodiment, a keyboard and a mouse are provided as the input device 1, a personal computer is provided as the data processing device 2, a magnetic disk storage device is provided as the storage device 3, and a display is provided as the output device 4. The data acquisition unit 21, the model generation unit 22, the warp direction calculation unit 23, the warp stress calculation unit 24, and the optimization unit 25 are configured. The data acquisition unit 21 captures the shape data and position data of the board, electronic component, and solder from the input device 1, and selects material characteristic values such as Young's modulus E and thermal expansion coefficient α from a material library or the like to generate a model. It is added by the part 22. Next, the calculation is performed by the unit 23 that calculates the warping direction by applying temperature to the substrate model, and the calculation is performed by the unit 24 that calculates the warpage amount of the substrate and the stress of the solder portion from the substrate, the electronic component, and the solder model. Here, the warp direction calculation unit 23 uses the equivalent elastic modulus, the equivalent thermal expansion coefficient, and the bimetal equation, and the warp stress calculation unit 24 calculates the warp amount and the stress using multilayer beam theory. Further, the optimization condition is calculated by the optimizing unit 25 so that the warp and the stress are the best for extending the life of the solder connection portion below the warp threshold from the calculated warp direction, warp amount and stress. The data processed by the data processing device 2 is stored in the storage device 3 and the result is output by the output device 4.

ここで、図4を用い、基板の反り方向の算出方法について詳細に説明する。図4は31、32、33の3層モデルの例であり第1層、第2層、第3層とする。ここで任意の厚さで2分割を行う。この例では、破線Aの部分で分割しており、バイメタルの式(3)によれば、破線A上部の厚さがa1、下部の厚さがa2となり、上部は第1層と第2層、それと第3層の一部が含まれることになる。また、破線Aの下部は第3層の残りの部分1層のみとなっている。この層構成に対してバイメタルの式(3)を応用するためには、線Aの上部を1層と見なす必要があるため、等価弾性率の式(1)を用いる。本例では、線Aの上部の等価弾性率はバイメタルの式(3)のE1、下部はE2として算出できる。また、線膨張係数α1、α2についても式(1)と同じ方法で算出することができ、すなわち、式(1)おける各層の弾性率E1、E2、E3の代わりに各層の線膨張係数α1、α2、α3を入れることにより算出することができる。   Here, a method for calculating the warping direction of the substrate will be described in detail with reference to FIG. FIG. 4 shows an example of a three-layer model of 31, 32, and 33, which is a first layer, a second layer, and a third layer. Here, it is divided into two at an arbitrary thickness. In this example, it is divided at the portion of the broken line A. According to the bimetal equation (3), the thickness of the upper part of the broken line A is a1, the thickness of the lower part is a2, and the upper part is the first layer and the second layer. And that part of the third layer will be included. Further, the lower part of the broken line A is only the remaining part 1 layer of the third layer. In order to apply the bimetal equation (3) to this layer structure, it is necessary to consider the upper part of the line A as one layer, so the equation (1) of the equivalent elastic modulus is used. In this example, the equivalent elastic modulus at the upper part of the line A can be calculated as E1 in the bimetal equation (3), and the lower part can be calculated as E2. Further, the linear expansion coefficients α1 and α2 can also be calculated by the same method as the formula (1), that is, instead of the elastic moduli E1, E2, and E3 of each layer in the formula (1), the linear expansion coefficients α1, It can be calculated by adding α2 and α3.

本発明によれば、電子部品あるいは電子機器を短期間に開発していく必要のある設計部門において、電子機器の製作時及びリフローでプリント配線基板に実装する際発生する反りと応力とを、設計初期段階で予想し、反りの低減とはんだ接続部の長寿命対策を施すための支援ツールといった用途に適用できる。   According to the present invention, in a design department where it is necessary to develop an electronic component or an electronic device in a short time, the warpage and stress generated when the electronic device is manufactured and mounted on a printed wiring board by reflow are designed. Predicted at the initial stage, it can be applied to applications such as a support tool for reducing warpage and taking measures for long life of solder joints.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the description of the scope of claims that embodiments with such changes or improvements can be included in the technical scope of the present invention.

1 入力装置
2 データ処理装置
3 記憶装置
4 出力装置
5 反り方向算出プログラムと反りと応力算出プログラム
21 データ取込部
22 モデル生成部
23 反り方向算出部
24 反り応力算出部
25 最適化部
31 第1層
32 第2層
33 第3層
1 Input Device 2 Data Processing Device 3 Storage Device 4 Output Device 5 Warpage Direction Calculation Program and Warpage and Stress Calculation Program 21 Data Capture Unit 22 Model Generation Unit 23 Warpage Direction Calculation Unit 24 Warp Stress Calculation Unit 25 Optimization Unit 31 First Layer 32 Second layer 33 Third layer

Claims (4)

プリント基板の表面に電子部品をはんだ接合する際の設計条件を算出する設計条件算出システムであって、
入力装置から送られてくるプリント基板、及びこれにはんだ接合する電子部品の少なくとも形状データと配置データと取り込むデータ取込部と、
前記データ取込部が取り込んだ各データに材料特性値を加え、前記プリント基板のモデルデータを生成するモデル生成部と、
前記モデル生成部が生成したモデルデータに基づいて、前記プリント基板の反り方向を算出する反り方向算出部と、
前記モデル生成部が生成したモデルデータに基づいて、前記プリント基板の反り量と、前記はんだ接合された箇所の応力とを算出する反り応力算出部と、
前記反り方向算出部が算出した前記プリント基板の反り方向における前記反り応力算出部が算出した前記プリント基板の反り量と、前記はんだ接合された箇所の応力とのバランスが最適なバランスとなり得る設計条件を算出する最適化部と
を備える設計条件算出装置。
A design condition calculation system for calculating a design condition when soldering an electronic component to the surface of a printed circuit board,
A data fetching unit for fetching at least shape data and arrangement data of a printed circuit board sent from an input device and electronic components soldered thereto;
Adding a material characteristic value to each data captured by the data capturing unit, and generating a model data of the printed circuit board; and
Based on the model data generated by the model generation unit, a warp direction calculation unit that calculates the warp direction of the printed circuit board;
Based on the model data generated by the model generation unit, the amount of warpage of the printed circuit board, and a warp stress calculation unit that calculates the stress of the soldered portion,
The design condition that the balance between the warpage amount of the printed circuit board calculated by the warpage stress calculation unit in the warp direction of the printed circuit board calculated by the warp direction calculation unit and the stress of the soldered portion can be an optimal balance. A design condition calculation apparatus comprising: an optimization unit that calculates
前記反り方向算出部は、前記基板の反り方向を算出する方法として、等価弾性率の式、等価熱膨張率の式、及びバイメタルの反りの式を用いる
請求項1に記載の設計条件算出装置。
The design condition calculation apparatus according to claim 1, wherein the warpage direction calculation unit uses an equivalent elastic modulus equation, an equivalent thermal expansion coefficient equation, and a bimetal warpage equation as a method of calculating the warpage direction of the substrate.
プリント配線基板及びこれにはんだ接合する電子部品の中で検討対象部品を指定する第1の工程と、
前記基板の反り方向を算出する第2の工程と、
前記検討対象として指定した電子部品が基板の圧縮側に配置されているか否かを判断する第3の工程と、
前記基板反りと前記はんだ部の応力とを算出する第4工程と、
前記算出したはんだ部の最大応力が閾値内か否かを判断する第5の工程と、
前記算出した基板の反りが閾値内か否かを判断する第6の工程と、
モデルを変更する第7の工程と
を備える基板の反りと応力の最適化方法。
A first step of designating a component to be examined among printed circuit boards and electronic components to be soldered to the printed circuit board;
A second step of calculating a warping direction of the substrate;
A third step of determining whether or not the electronic component designated as the examination target is disposed on the compression side of the substrate;
A fourth step of calculating the substrate warpage and the stress of the solder part;
A fifth step of determining whether or not the calculated maximum stress of the solder portion is within a threshold;
A sixth step of determining whether the calculated substrate warpage is within a threshold;
A substrate warping and stress optimization method comprising: a seventh step of changing the model.
プリント配線基板及びこれにはんだ接合する電子部品の形状データと配置データに基づいて基板方向を算出するステップと、
前記モデルデータに基づいて基板の反りとはんだ部の応力を算出するステップと、
前記算出した結果に基づいて最適化するステップと
をコンピュータに実行させる基板の反りと応力の最適化プログラム。
Calculating the board direction based on the shape data and arrangement data of the printed wiring board and the electronic components soldered to the printed wiring board; and
Calculating the warpage of the substrate and the stress of the solder part based on the model data;
A program for optimizing warpage and stress of a substrate, which causes a computer to execute an optimization step based on the calculated result.
JP2010021417A 2010-02-02 2010-02-02 Design condition calculating device, optimizing method for warpage and stress of board, and optimization program for warpage and stress of board Pending JP2011159870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021417A JP2011159870A (en) 2010-02-02 2010-02-02 Design condition calculating device, optimizing method for warpage and stress of board, and optimization program for warpage and stress of board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021417A JP2011159870A (en) 2010-02-02 2010-02-02 Design condition calculating device, optimizing method for warpage and stress of board, and optimization program for warpage and stress of board

Publications (1)

Publication Number Publication Date
JP2011159870A true JP2011159870A (en) 2011-08-18

Family

ID=44591562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021417A Pending JP2011159870A (en) 2010-02-02 2010-02-02 Design condition calculating device, optimizing method for warpage and stress of board, and optimization program for warpage and stress of board

Country Status (1)

Country Link
JP (1) JP2011159870A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103785A (en) * 2010-11-08 2012-05-31 Fujitsu Ltd Mounting substrate analysis device, mounting substrate analysis method and mounting substrate analysis program
US9568405B2 (en) 2013-11-29 2017-02-14 International Business Machines Corporation Method, apparatus, and structure for determining interposer thickness
JP2020514873A (en) * 2017-09-07 2020-05-21 エルジー・ケム・リミテッド Monoframe structural analysis tool and monoframe design method
WO2021111762A1 (en) * 2019-12-05 2021-06-10 三菱電機株式会社 Substrate-design assistance device, substrate-design assistance method, and program
WO2023201618A1 (en) * 2022-04-21 2023-10-26 京东方科技集团股份有限公司 Circuit board, light-emitting substrate, backlight module, display panel, and display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103785A (en) * 2010-11-08 2012-05-31 Fujitsu Ltd Mounting substrate analysis device, mounting substrate analysis method and mounting substrate analysis program
US9568405B2 (en) 2013-11-29 2017-02-14 International Business Machines Corporation Method, apparatus, and structure for determining interposer thickness
JP2020514873A (en) * 2017-09-07 2020-05-21 エルジー・ケム・リミテッド Monoframe structural analysis tool and monoframe design method
WO2021111762A1 (en) * 2019-12-05 2021-06-10 三菱電機株式会社 Substrate-design assistance device, substrate-design assistance method, and program
JPWO2021111762A1 (en) * 2019-12-05 2021-06-10
JP7204946B2 (en) 2019-12-05 2023-01-16 三菱電機株式会社 Board design support device, board design support method and program
WO2023201618A1 (en) * 2022-04-21 2023-10-26 京东方科技集团股份有限公司 Circuit board, light-emitting substrate, backlight module, display panel, and display device

Similar Documents

Publication Publication Date Title
Lall et al. Smeared-property models for shock-impact reliability of area-array packages
JP2011159870A (en) Design condition calculating device, optimizing method for warpage and stress of board, and optimization program for warpage and stress of board
Rajmane et al. Failure mechanisms of boards in a thin wafer level chip scale package
WO2010021287A1 (en) Substrate warpage predicting method, substrate warpage predicting system, and substrate warpage predicting program
Makeev et al. Methods to measure interlaminar tensile modulus of composites
Dale et al. Fatigue life of Sn3. 0Ag0. 5Cu solder alloy under combined cyclic shear and constant tensile/compressive loads
JPWO2009044699A1 (en) 3D substrate warp analysis system, 3D substrate warp analysis device, 3D substrate warp analysis method and program.
Salahouelhadj et al. Analysis of warpage of a flip-chip BGA package under thermal loading: Finite element modelling and experimental validation
Wu et al. Investigation and prediction of solder joint failure analysis for ball grid array package subject to mechanical bending environment
Lee Finite element modelling of printed circuit boards (PCBs) for structural analysis
Chung et al. Thermo-mechanical analyses of printed board assembly during reflow process for warpage prediction
Islam et al. Bending analysis of glass fiber reinforced epoxy composites/copper-clad laminates for multi-layer printed circuit boards
Libot et al. Experimental SAC305 Shear Stress–Strain Hysteresis Loop Construction Using Hall's One-Dimensional Model Based on Strain Gages Measurements
Marsavina et al. Analysis of Printed Circuit Boards strains using finite element analysis and digital image correlation
Soman et al. Reliability study and finite element modeling of a wearable sensor patch (WSP) to monitor ECG signals
Gomez et al. Damage mechanics modeling of concurrent thermal and vibration loading on electronics packaging
Falk et al. Experimental determination of strain distribution on Printed Circuit Boards using Digital image correlation
Ohguchi et al. Evaluation of time-independent and time-dependent strains of lead-free solder by stepped ramp loading test
Fellner et al. Cyclic mechanical behavior of thin layers of copper: A theoretical and numerical study
Roggeman et al. Joint level test methods for solder pad cratering investigations
Obaid et al. Test Method Development to Quantify the In Situ Elastic and Plastic Behavior of 62% Sn–36% Pb–2% Ag Solder Ball Arrays in Commercial Area Array Packages at− 40° C, 23° C, and 125° C
Hutapea et al. Reducing warpage of printed circuit boards by using wavy traces
Lall et al. Thermo-mechanical deformation in flexible-board assemblies during reflow and post-assembly usage
JP5934171B2 (en) Method for determining thickness of interposer, computer program, interposer, and chip mounting structure
Ptchelintsev Automated modeling and fatigue analysis of flexible printed circuits