JP2011157720A - Method for constructing railway reinforced concrete rigid-frame structure viaduct - Google Patents

Method for constructing railway reinforced concrete rigid-frame structure viaduct Download PDF

Info

Publication number
JP2011157720A
JP2011157720A JP2010020142A JP2010020142A JP2011157720A JP 2011157720 A JP2011157720 A JP 2011157720A JP 2010020142 A JP2010020142 A JP 2010020142A JP 2010020142 A JP2010020142 A JP 2010020142A JP 2011157720 A JP2011157720 A JP 2011157720A
Authority
JP
Japan
Prior art keywords
floor slab
support
axis direction
bridge axis
shaped steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010020142A
Other languages
Japanese (ja)
Other versions
JP5405337B2 (en
Inventor
Genji Ishimura
玄二 石村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SRG TAKAMIYA KK
Fujita Corp
Hirose and Co Ltd
Original Assignee
SRG TAKAMIYA KK
Fujita Corp
Hirose and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SRG TAKAMIYA KK, Fujita Corp, Hirose and Co Ltd filed Critical SRG TAKAMIYA KK
Priority to JP2010020142A priority Critical patent/JP5405337B2/en
Publication of JP2011157720A publication Critical patent/JP2011157720A/en
Application granted granted Critical
Publication of JP5405337B2 publication Critical patent/JP5405337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for constructing a railway reinforced concrete rigid-frame structure viaduct, which is advantageous to the shortening of a construction period and a reduction in construction cost. <P>SOLUTION: The railway reinforced concrete rigid-frame structure viaduct 10 includes a footing beam 12, a plurality of column sections 14, and a floor slab 16, The column section 14 is erected from the footing beam 12. The floor slab 16 is laid between upper portions of the column sections 14 and coupled to the column sections 14. Supporting structures 20 are erected from foundation structure sections 12 in the state of facing both side surfaces of each of the column sections 14 in a bridge-axis direction, respectively. A plurality of pieces of first H-shaped steel 34 and a plurality of pieces of second H-shaped steel 36 are installed in such a manner as to be laid between the upper portions of the supporting structures 20. Supports 38 are mounted on the first H-shaped steel 34 and the second H-shaped steel 36, respectively. A form for the floor slab is mounted on the support 38. Reinforcements are assembled in the form for the floor slab; and concrete is poured into the form for the floor slab, so as to form the floor slab 16 coupled to the upper portion of the column section 14. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は鉄道RCラーメン構造高架橋の構築方法に関する。   The present invention relates to a method for constructing a railway RC rigid frame structure viaduct.

従来、鉄道RCラーメン構造高架橋の構築方法として、地中梁から立設され橋脚を構成する柱部の間の地盤全域に枠組式支保工を設け、次いで、枠組式支保工に床版用型枠を取り付け、次いで、床版用型枠内に鉄筋を組み立てる。そして、床版用型枠内にコンクリートを打設し、各柱部に結合された床版を形成する。そして、床版を形成したのち、床版用型枠、枠組式支保工を解体除去するものが知られている(特許文献1の図15乃至図17参照)。   Conventionally, as a method of constructing a railway RC rigid frame structure viaduct, a frame-type support is provided on the entire ground between the pillars that are erected from the underground beam and constitute the pier, and then the formwork for the floor slab is added to the frame-type support And then assemble the rebar in the floor slab formwork. And concrete is cast in the formwork for floor slabs, and the floor slab couple | bonded with each pillar part is formed. And after forming a floor slab, what dismantles and removes the form for a floor slab and a frame type support work is known (refer to Drawing 15 thru / or Drawing 17 of patent documents 1).

特開2008−274637号公報JP 2008-274637 A

したがって、従来方法では、柱部の間の地盤全域にわたって次のような工程を予め行う必要がある。
地中梁を埋め戻す工程。
地盤が軟弱な場合にはセメント改良を行う工程。
水平でない地盤を水平に整地する(不陸整正を行う)工程。
地盤を転圧して締め固める工程。
地盤に鉄板あるいはシートパイル、敷板を設置する工程。
したがって、枠組式支保工を設置する地盤に対して行う作業に多大な時間と人手がかかる不利がある。
また、床版の下方に位置する地盤の全域にわたって枠組式支保工が必要となるため、枠組式支保工に要する部品コストが多大なものとなり、さらに枠組式支保工の組み立ておよび解体除去に多大な時間と人手がかかる不利がある。
本発明はこのような事情に鑑みなされたものであり、その目的は、施工期間の短縮および施工コストの低減を図る上で有利な鉄道RCラーメン構造高架橋の構築方法を提供することにある。
Therefore, in the conventional method, it is necessary to perform the following process in advance over the entire ground between the pillars.
The process of backfilling underground beams.
A process to improve cement when the ground is soft.
The process of leveling the ground that is not horizontal (performing leveling).
The process of compacting the ground by rolling.
The process of installing an iron plate, sheet pile, or flooring on the ground.
Therefore, there is a disadvantage that it takes a lot of time and manpower to work on the ground where the frame-type support is installed.
In addition, since frame type support work is required over the entire ground located below the floor slab, the cost of parts required for the frame type support work is great, and further, it is great for assembly and dismantling of the frame type support work. There is a disadvantage that takes time and manpower.
This invention is made | formed in view of such a situation, The objective is to provide the construction method of a railway RC ramen structure viaduct advantageous in shortening a construction period and reducing construction cost.

上述の目的を達成するため、本発明は、地中に施工された基礎構造部と、前記基礎構造部から立設された橋脚としての複数の柱部と、前記各柱部の上部間に掛け渡されかつ前記各柱部に結合され軌道が敷設される床版とを備え、前記床版の下部は、前記柱部の上方に位置する箇所に下方に膨出形成された膨出部と、前記膨出部以外の箇所に形成された平坦な下面とで構成された鉄道RCラーメン構造高架橋の構築方法であって、橋軸方向における各柱部の両側面に対向させてそれぞれ前記基礎構造部から支持構造体を立設させる工程と、前記支持構造体の上部間に、前記床版の前記下面を形成する床版用型枠の箇所を支持するように、橋軸方向と直交する方向に間隔をおき橋軸方向に沿って延在する複数の第1のH型鋼を掛け渡して設置する工程と、前記支持構造体の上部間に、前記床版の前記膨出部の下面を形成する床版用型枠の箇所を支持するように、橋軸方向に間隔をおき橋軸方向と直交する方向に沿って延在する複数の第2のH型鋼を掛け渡して設置する工程と、前記第1のH型鋼および前記第2のH型鋼の上に支保工を取り付ける工程と、前記支保工に床版用型枠を取り付ける工程と、前記床版用型枠内に鉄筋を組み立てると共に前記床版用型枠内にコンクリートを打設することにより前記柱部の上部に結合された前記床版を形成する工程と、前記コンクリートが固化したのち前記第1、第2のH型鋼、前記床版用型枠、前記支保工、前記支持構造体を解体除去する工程とを含むことを特徴とする。
また本発明は、地中に施工された基礎構造部と、前記基礎構造部から立設された橋脚としての複数の柱部と、前記各柱部の上部間に掛け渡されかつ前記各柱部に結合され軌道が敷設される床版とを備え、前記床版の下部は、前記柱部の上方に位置する箇所に下方に膨出形成された膨出部と、前記膨出部以外の箇所に形成された平坦な下面とで構成された鉄道RCラーメン構造高架橋の構築方法であって、橋軸方向における各柱部の両側面で前記柱部の上部寄り箇所に支持ブラケットを設ける工程と、前記支持ブラケットの上部間に、前記床版の前記下面を形成する床版用型枠の箇所を支持するように、橋軸方向と直交する方向に間隔をおき橋軸方向に沿って延在する複数の第1のH型鋼を掛け渡して設置する工程と、前記支持ブラケットの上部間に、前記床版の前記膨出部の下面を形成する床版用型枠の箇所を支持するように、橋軸方向に間隔をおき橋軸方向と直交する方向に沿って延在する複数の第2のH型鋼を掛け渡して設置する工程と、前記第1のH型鋼および前記第2のH型鋼の上に支保工を取り付ける工程と、前記支保工に床版用型枠を取り付ける工程と、前記床版用型枠内に鉄筋を組み立てると共に前記床版用型枠内にコンクリートを打設することにより前記柱部の上部に結合された前記床版を形成する工程と、前記コンクリートが固化したのち前記第1、第2のH型鋼、前記床版用型枠、前記支保工、前記支持ブラケットを解体除去する工程と含むことを特徴とする。
In order to achieve the above-mentioned object, the present invention hangs between a foundation structure constructed in the ground, a plurality of pillars as bridge piers erected from the foundation structure, and an upper part of each pillar. A floor slab that is passed and coupled to each of the pillars and on which a track is laid, and a lower part of the floor swell is formed bulging downward at a location located above the pillar; and A method for constructing a railway RC rigid frame viaduct composed of a flat lower surface formed at a location other than the bulging portion, wherein each foundation structure portion is opposed to both side surfaces of each column portion in a bridge axis direction. The support structure is erected from the upper portion of the support structure, and the portion of the floor slab form that forms the lower surface of the floor slab is supported between the upper portion of the support structure in a direction orthogonal to the bridge axis direction. A plurality of first H-shaped steels that extend along the axis of the bridge are spaced and installed. And at an interval in the bridge axis direction so as to support the location of the floor slab form that forms the lower surface of the bulging portion of the floor slab between the upper parts of the support structure, and perpendicular to the bridge axis direction Spanning and installing a plurality of second H-shaped steels extending along the direction of mounting, mounting a support on the first H-shaped steel and the second H-shaped steel, and the support Attaching a floor slab form to the floor slab, and assembling a reinforcing bar in the floor slab form and placing concrete in the floor slab form to join the floor slab And a step of dismantling and removing the first and second H-shaped steel, the floor slab formwork, the support work, and the support structure after the concrete is solidified. .
Further, the present invention provides a foundation structure portion constructed in the ground, a plurality of pillar portions as piers erected from the foundation structure portion, and spanned between the upper portions of the pillar portions and the pillar portions. A floor slab coupled to the track, and a lower part of the floor slab is formed at a position above the pillar part and bulges downward, and a place other than the bulge part A method for constructing a railway RC rigid frame viaduct composed of a flat lower surface formed in the step of providing support brackets at locations near the upper part of the column part on both side surfaces of each column part in the bridge axis direction; The upper part of the support bracket extends along the bridge axis direction with an interval in a direction orthogonal to the bridge axis direction so as to support the place of the floor slab form forming the lower surface of the floor slab. A step of installing a plurality of first H-shaped steel members on the support bracket; In between, a plurality of portions extending along a direction orthogonal to the bridge axis direction with a gap in the bridge axis direction so as to support a portion of the floor slab form forming the lower surface of the bulge portion of the floor slab A step of overhanging and installing the second H-shaped steel, a step of attaching a supporting work on the first H-shaped steel and the second H-shaped steel, and a step of attaching a formwork for floor slab to the supporting work And assembling reinforcing bars in the floor slab form and forming concrete in the floor slab form to form the floor slab connected to the upper part of the column part; and A step of disassembling and removing the first and second H-shaped steel, the formwork for floor slab, the support work, and the support bracket after solidification.

本発明によれば、基礎構造部から立設された支持構造体の上部間に、または、基礎構造部から立設された柱部の支持ブラケット間に、複数の第1のH型鋼、第2のH型鋼を掛け渡して設置し、これら第1のH型鋼、第2のH型鋼を利用して支保工、床版用型枠を取り付け、鉄筋が組み立てられた床版用型枠内にコンクリートを打設することにより床版を形成するようにした。
そのため、従来の枠組式支保工を用いる方法に比較して、支保工を設置するために地盤に対して行う各種作業が不要となり、また、床版の下方に位置する地盤の全域にわたって支保工を設置する必要が無いため、支保工に要する部品コストを削減でき、枠組式支保工の組み立ておよび解体除去に要する時間と人手を大幅に削減する上でも有利となる。
According to the present invention, the plurality of first H-shaped steels, the second steels between the upper portions of the support structures standing from the foundation structure or between the support brackets of the pillars standing from the foundation structure. The H-shaped steel is installed and the first H-shaped steel and the second H-shaped steel are used to mount the support and floor slab formwork, and the concrete in the floor slab formwork where the reinforcing bars are assembled. A floor slab was formed by casting.
Therefore, compared with the conventional method using a frame-type support, various work to be performed on the ground to install the support is not required, and support is performed over the entire ground located below the slab. Since there is no need for installation, the cost of parts required for the support work can be reduced, which is advantageous in significantly reducing the time and manpower required to assemble and dismantle the frame-type support work.

第1の実施の形態における鉄道RCラーメン構造高架橋10の構成を示す正面図である。It is a front view which shows the structure of the railway RC frame structure viaduct 10 in 1st Embodiment. 図1の平面図である。It is a top view of FIG. 図1のA部分に対応する柱部、支持構造体、H型鋼の配置を示す平面図である。It is a top view which shows arrangement | positioning of the pillar part corresponding to A part of FIG. 1, a support structure, and H-shaped steel. 基礎構造部上に配置された敷桁の配置を示す平面図である。It is a top view which shows arrangement | positioning of the girder arrange | positioned on a foundation structure part. 図3のAA線断面図である。It is AA sectional view taken on the line of FIG. 図3のBB線断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 3. 第2の実施の形態おける鉄道RCラーメン構造高架橋の構成を示す正面図である。It is a front view which shows the structure of the railway RC ramen structure viaduct in 2nd Embodiment. 図7のA部分に対応する柱部、支持構造体、H型鋼の配置を示す平面図である。It is a top view which shows arrangement | positioning of the pillar part corresponding to A part of FIG. 7, a support structure, and H-shaped steel. 図8のAA線断面図である。It is AA sectional view taken on the line of FIG. 図8のBB線断面図である。It is BB sectional drawing of FIG.

(第1の実施の形態)
次に本発明の実施の形態について図面を参照して説明する。
まず、本発明の構築方法によって構築された鉄道RCラーメン構造高架橋10の構成について説明し、次いで、鉄道RCラーメン構造高架橋10(以下高架橋10という)の構築方法について説明する。
図1に示すように、高架橋10は、地中梁12と、複数の柱部14と、床版16とを備える。
(First embodiment)
Next, embodiments of the present invention will be described with reference to the drawings.
First, the construction of the railway RC rigid frame structure viaduct 10 constructed by the construction method of the present invention will be described, and then the construction method of the railway RC rigid frame structure viaduct 10 (hereinafter referred to as viaduct 10) will be described.
As shown in FIG. 1, the viaduct 10 includes an underground beam 12, a plurality of pillars 14, and a floor slab 16.

地中梁12は、図4に示すように、基礎構造部を構成するもので、互いに平行する2つの梁部1202と、この2つの梁部1202を連結する複数の連結部1204とを備える。
2つの梁部1202は、橋軸方向に延在しており、橋軸方向と直交する方向に間隔をおいて設けられている。
連結部1204は、橋軸方向にほぼ等間隔をおいて設けられ、橋軸方向と直交する方向に延在している。
As shown in FIG. 4, the underground beam 12 constitutes a foundation structure portion, and includes two beam portions 1202 that are parallel to each other and a plurality of connecting portions 1204 that connect the two beam portions 1202.
The two beam portions 1202 extend in the bridge axis direction, and are provided at intervals in a direction orthogonal to the bridge axis direction.
The connecting portions 1204 are provided at substantially equal intervals in the bridge axis direction and extend in a direction perpendicular to the bridge axis direction.

柱部14は、地中梁12から立設されており、本実施の形態では、図4に示すように、梁部1202と連結部1204とが交差する地中梁12の箇所から立設されている。
したがって、橋軸方向において各柱部14はほぼ等間隔をおいて立設されている。
本実施の形態では、柱部14は断面矩形状を呈している。
地中梁12および柱部14は、鉄筋を組み立てた型枠内にコンクリートを打設し、コンクリートを固化させるなど従来公知のさまざまな構築方法によって構築されるものである。
The column portion 14 is erected from the underground beam 12, and in this embodiment, as shown in FIG. 4, the column portion 14 is erected from the portion of the underground beam 12 where the beam portion 1202 and the connecting portion 1204 intersect. ing.
Therefore, the pillar portions 14 are erected at substantially equal intervals in the bridge axis direction.
In the present embodiment, the pillar portion 14 has a rectangular cross section.
The underground beam 12 and the column portion 14 are constructed by various conventionally known construction methods such as placing concrete in a formwork assembled with reinforcing bars and solidifying the concrete.

図6に示すように、床版16は、各柱部14の上部間に掛け渡されかつ各柱部14に結合されている。
床版16の上面には、幅方向に間隔をおいて、梁部1602が膨出形成され、この梁部1602は床版16の長さ方向の全長にわたって延在している。これら梁部1602の上面にそれぞれ軌道が敷設される。
図1に示すように、床版16の下部は、柱部14の上方に位置する箇所に下方に膨出形成された膨出部1604と、膨出部1604以外の箇所に形成された平坦な下面1606とで構成されている。
なお、図5、図6において符号1608は床版16の幅方向の両側から立設され床版16の長さ方向の全長にわたって延在する防音壁を示す。
As shown in FIG. 6, the floor slab 16 is spanned between the upper portions of the column portions 14 and is coupled to the column portions 14.
On the upper surface of the floor slab 16, a beam portion 1602 bulges out at an interval in the width direction, and this beam portion 1602 extends over the entire length of the floor slab 16. Tracks are laid on the upper surfaces of these beam portions 1602, respectively.
As shown in FIG. 1, the lower portion of the floor slab 16 has a bulging portion 1604 that bulges downward at a location located above the column portion 14 and a flat portion formed at a location other than the bulging portion 1604. It consists of a lower surface 1606.
5 and 6, reference numeral 1608 denotes a soundproof wall that is erected from both sides in the width direction of the floor slab 16 and extends over the entire length of the floor slab 16.

次に、高架橋10の構築方法について説明する。
以下では、地中梁12および複数の柱部14の構築が完了しているものとして説明する。
図1、図4に示すように、橋軸方向における各柱部14の両側面に対向させてそれぞれ基礎構造部12から支持構造体20を立設させる。なお、本実施の形態では、図1に示すように、両側面の支持構造体20間を、さらに別の支持構造体21で連結し支持構造体20を補強している。
本実施の形態では、支持構造体20は、敷桁2002と、支柱2004とを含んで構成されたピン結合構造である。
図1、図4に示すように、敷桁2002は、橋軸方向における各柱部14の両側で、橋軸方向と直交する方向に沿って2つの梁部1202の間に掛け渡されたH型鋼で構成されている。
支柱2004は、橋軸方向と直交する方向に間隔をおいた敷桁2002の箇所から複数立設され、複数の支柱2004相互は、水平材や斜材で連結されている。
支柱2004としては、パイプ支柱、鋼製支柱、四角支柱、ベント材など従来公知の部材が使用可能である。
Next, a method for constructing the viaduct 10 will be described.
In the following description, it is assumed that the construction of the underground beam 12 and the plurality of column portions 14 has been completed.
As shown in FIGS. 1 and 4, the support structure 20 is erected from the foundation structure portion 12 so as to face both side surfaces of each column portion 14 in the bridge axis direction. In the present embodiment, as shown in FIG. 1, the support structures 20 on both side surfaces are connected by another support structure 21 to reinforce the support structure 20.
In the present embodiment, the support structure 20 is a pin coupling structure configured to include a roof girder 2002 and a support column 2004.
As shown in FIG. 1 and FIG. 4, the roof girder 2002 is hung between the two beam portions 1202 along the direction orthogonal to the bridge axis direction on both sides of each column part 14 in the bridge axis direction. It is made of steel.
A plurality of struts 2004 are erected from a place of a cross girder 2002 spaced in a direction orthogonal to the bridge axis direction, and the plurality of struts 2004 are connected to each other by a horizontal material or a diagonal material.
As the strut 2004, a conventionally known member such as a pipe strut, a steel strut, a square strut, or a vent material can be used.

次いで、図5、図6に示すように、各支持構造体20にジャッキ22を取り付ける。本実施の形態では、各支持構造体20の上端部にジャッキ22を取り付ける。このジャッキ22は、後述する第1のH型鋼34、第2のH型鋼36の上下方向の位置を調整するものであり、また、解体作業時に第1のH型鋼34、第2のH型鋼36を降下させるものである。
なお、ジャッキ22を取り付ける箇所は支持構造体20の上端部に限定されるものではなく、支持構造体20の中間部あるいは下端部であってもよく、要するに第1のH型鋼34、第2のH型鋼36の上下方向の位置を調整できればよい。
これにより、支持構造体20と第1のH型鋼34、第2のH型鋼36との間にそれぞれジャッキ22が設けられることになる。なお、ジャッキ22が支持構造体20の上端部に取り付けられた状態でジャッキ22の高さ調整を予め行っておく。
このようなジャッキ22として、従来公知のさまざまなジャッキが使用可能である。
Next, as shown in FIGS. 5 and 6, a jack 22 is attached to each support structure 20. In the present embodiment, a jack 22 is attached to the upper end portion of each support structure 20. The jack 22 adjusts the vertical position of a first H-shaped steel 34 and a second H-shaped steel 36, which will be described later, and the first H-shaped steel 34 and the second H-shaped steel 36 during disassembly work. Is to lower.
Note that the position where the jack 22 is attached is not limited to the upper end portion of the support structure 20, and may be an intermediate portion or a lower end portion of the support structure 20. In short, the first H-shaped steel 34, the second It suffices if the vertical position of the H-shaped steel 36 can be adjusted.
As a result, the jacks 22 are respectively provided between the support structure 20 and the first H-shaped steel 34 and the second H-shaped steel 36. The height of the jack 22 is adjusted in advance in a state where the jack 22 is attached to the upper end portion of the support structure 20.
As such a jack 22, various conventionally known jacks can be used.

次いで、図5、図6に示すように、各支持構造体20の上端部にジャッキ22を取り付ける。このジャッキ22は、後述する第1のH型鋼34、第2のH型鋼36の上下方向の位置を調整するものであり、また、解体作業時に第1のH型鋼34、第2のH型鋼36を降下させるものである。
これにより、支持構造体20と第1のH型鋼34、第2のH型鋼36との間にそれぞれジャッキ22が設けられることになる。なお、ジャッキ22が支持構造体20の上端部に取り付けられた状態でジャッキ22の高さ調整を予め行っておく。
このようなジャッキ22として、従来公知のさまざまなジャッキが使用可能である。
Next, as shown in FIGS. 5 and 6, a jack 22 is attached to the upper end portion of each support structure 20. The jack 22 adjusts the vertical position of a first H-shaped steel 34 and a second H-shaped steel 36, which will be described later, and the first H-shaped steel 34 and the second H-shaped steel 36 during disassembly work. Is to lower.
As a result, the jacks 22 are respectively provided between the support structure 20 and the first H-shaped steel 34 and the second H-shaped steel 36. The height of the jack 22 is adjusted in advance in a state where the jack 22 is attached to the upper end portion of the support structure 20.
As such a jack 22, various conventionally known jacks can be used.

次いで、図5に示すように、支持構造体20の上部間に、図示しない床版用型枠が床版16の下面1606を形成する箇所を支持するように、橋軸方向と直交する方向に間隔をおき橋軸方向に沿って延在する複数の第1のH型鋼34を掛け渡して設置する。言い換えると、膨出部1604に干渉しない箇所において、橋軸方向と直交する方向に間隔をおき橋軸方向に沿って延在する複数の第1のH型鋼34を支持構造体20の上部間に掛け渡して設置する。
本実施の形態では、図3、図5に示すように、各ジャッキ22の上部に橋軸方向と平行に延在する複数の枕桁26を橋軸方向と直交する方向に間隔をおいて掛け渡す。
次いで、各枕桁26の上に高さ位置調整用のスペーサ部材28をそれぞれ取り付ける。
次いで、各スペーサ部材28の上に橋軸方向と直交する方向に沿って延在する複数の受桁30を橋軸方向に間隔をおいて掛け渡す。
そして、主桁としての複数の第1のH型鋼34を、橋軸方向と直交する方向に間隔をおい各受桁30の上に掛け渡し、各第1のH型鋼34を橋軸方向に延在させる。
Next, as shown in FIG. 5, in a direction orthogonal to the bridge axis direction, a floor slab form (not shown) supports a portion where the lower surface 1606 of the floor slab 16 is formed between the upper parts of the support structure 20. A plurality of first H-shaped steels 34 extending along the bridge axis direction are spaced and installed. In other words, at a location that does not interfere with the bulging portion 1604, a plurality of first H-shaped steels 34 that are spaced in the direction orthogonal to the bridge axis direction and extend along the bridge axis direction are disposed between the upper portions of the support structure 20. Overhang and install.
In this embodiment, as shown in FIGS. 3 and 5, a plurality of pillow girders 26 extending in parallel with the bridge axis direction are hung on the upper portions of the jacks 22 at intervals in a direction perpendicular to the bridge axis direction. hand over.
Next, a spacer member 28 for height position adjustment is attached on each pillow girder 26.
Next, a plurality of receiving girders 30 extending along a direction orthogonal to the bridge axis direction are hung on the spacer members 28 at intervals in the bridge axis direction.
Then, a plurality of first H-shaped steels 34 as main girders are spanned on each receiving beam 30 with a spacing in a direction perpendicular to the bridge axis direction, and each first H-shaped steel 34 is extended in the bridge axis direction. Let it be.

次いで、図6に示すように、支持構造体20の上部間に、前記の床版用型枠が床版16の膨出部1604の下面を形成する箇所を支持するように、橋軸方向に間隔をおき橋軸方向と直交する方向に沿って延在する複数の第2のH型鋼36を掛け渡して設置する。
本実施の形態では、図3、図6に示すように、各ジャッキ22の上部に橋軸方向と平行に延在する複数の枕桁26を橋軸方向と直交する方向に間隔をおいて掛け渡す。
次いで、主桁としての複数の第2のH型鋼36を、橋軸方向に間隔をおいて各枕桁26の上に掛け渡し、各第2のH型鋼36を橋軸方向と直交する方向に延在させる。
Next, as shown in FIG. 6, between the upper parts of the support structure 20, the floor slab formwork is supported in the direction of the bridge axis so as to support the portion where the lower surface of the bulging portion 1604 of the floor slab 16 is formed. A plurality of second H-shaped steels 36 that extend along a direction orthogonal to the bridge axis direction are installed over the space.
In the present embodiment, as shown in FIGS. 3 and 6, a plurality of pillow girders 26 extending in parallel with the bridge axis direction are hung on the upper portions of the jacks 22 at intervals in a direction perpendicular to the bridge axis direction. hand over.
Next, a plurality of second H-shaped steels 36 as main girders are spanned on each pillow girder 26 at intervals in the bridge axis direction, and each second H-shaped steel 36 is arranged in a direction orthogonal to the bridge axis direction. Extend.

次いで、第1のH型鋼34および第2のH型鋼36の上に支保工38を取り付ける。支保工はベニヤ板材3802、根太材3804(図1参照)など従来公知の部材を用いて構成される。
次いで、支保工38に前記の床版用型枠を取り付ける。
次いで、前記の床版用型枠内に鉄筋を組み立てると共に床版用型枠内にコンクリートを打設し、養生することによりコンクリートを固化させ、これにより柱部14の上部に結合された床版16を形成する。
Next, a support work 38 is attached on the first H-shaped steel 34 and the second H-shaped steel 36. The support work is configured by using a conventionally known member such as a veneer plate 3802 and a joist 3804 (see FIG. 1).
Next, the floor slab form is attached to the support work 38.
Next, assembling the reinforcing bars in the above-mentioned floor slab formwork, placing concrete in the floor slab formwork, curing the concrete, thereby solidifying the concrete, and thereby connecting the top part of the column 14 16 is formed.

コンクリートが固化したのち第1、第2H型鋼34、36、床版用型枠、支保工、支持構造体20を解体除去する。
この場合、各ジャッキ22を下降させることで、第1、第2H型鋼34、36と共に床版用型枠、支保工を同時に降下させ、床版16の下面1606および膨出部1604の下面と、床版用型枠との間に空間を形成する。
そして、この空間を利用して床版用型枠を解体除去し、次いで支保工を解体除去する。
次いで、第1、第2H型鋼34、36を橋軸方向と直交する方向で水平方向に移動させ除去する。
次いで、受桁30を橋軸方向と直交する方向で水平方向に移動させて除去し、スペーサ部材28を取り外して除去し、枕桁26を橋軸方向と直交する方向で水平方向に移動させ除去する。
次いで、支持構造体20を解体除去する。
なお、地中梁12の埋め戻しは、地中梁12および複数の柱部14の構築が完了したのちに行ってもよく、あるいは、床版16の構築途中に行ってもよく、あるいは、床版16の構築が完了したのちに行ってもよい。
After the concrete is solidified, the first and second H-shaped steels 34 and 36, the formwork for floor slab, the support work, and the support structure 20 are dismantled and removed.
In this case, by lowering each jack 22, the floor slab formwork and the supporting work are simultaneously lowered together with the first and second H-shaped steels 34 and 36, and the lower surface 1606 of the floor slab 16 and the lower surface of the bulging portion 1604, A space is formed between the floor slab formwork.
And the formwork for floor slabs is dismantled and removed using this space, and then the support work is dismantled and removed.
Next, the first and second H-shaped steels 34 and 36 are removed by moving in the horizontal direction in a direction orthogonal to the bridge axis direction.
Next, the receiving girder 30 is removed by moving it horizontally in the direction perpendicular to the bridge axis direction, the spacer member 28 is removed and removed, and the pillow girder 26 is moved in the direction perpendicular to the bridge axis direction and removed. To do.
Next, the support structure 20 is disassembled and removed.
The backfilling of the underground beam 12 may be performed after the construction of the underground beam 12 and the plurality of column portions 14 is completed, or may be performed during the construction of the floor slab 16, or the floor It may be performed after the construction of the plate 16 is completed.

以上説明したように本実施の形態によれば、地中梁12から立設された支持構造体20の上部間に複数の第1のH型鋼34、第2のH型鋼36を掛け渡して設置し、これら第1のH型鋼34、第2のH型鋼36を利用して支保工38、床版用型枠を取り付け、鉄筋が組み立てられた床版用型枠内にコンクリートを打設することにより床版を形成するようにした。
そのため、従来の枠組式支保工を用いる方法に比較して、支保工を設置するために地盤に対して行う各種作業が不要となり、時間と人手を大幅に削減する上で有利となる。
また、従来の枠組式支保工を用いる方法に比較して、床版の下方に位置する地盤の全域にわたって支保工を設置する必要が無いため、支保工に要する部品コストを削減でき、枠組式支保工の組み立ておよび解体除去に要する時間と人手を大幅に削減する上でも有利となる。
したがって、施工期間の短縮および施工コストの低減を図る上で有利となる。
As described above, according to the present embodiment, a plurality of first H-shaped steel 34 and second H-shaped steel 36 are installed across the upper portion of the support structure 20 erected from the underground beam 12. Then, using the first H-shaped steel 34 and the second H-shaped steel 36, the support work 38 and the floor slab form are attached, and the concrete is placed in the floor slab form in which the reinforcing bars are assembled. A floor slab was formed.
Therefore, as compared with the conventional method using a frame-type support work, various operations to be performed on the ground to install the support work become unnecessary, which is advantageous in greatly reducing time and manpower.
In addition, compared to the conventional method using a frame-type support, it is not necessary to install a support over the entire ground located below the floor slab, so the parts cost required for the support can be reduced, and the frame-type support This is also advantageous for greatly reducing the time and labor required for assembly and dismantling of the work.
Therefore, it is advantageous in shortening the construction period and reducing the construction cost.

(第2の実施の形態)
次に図7乃至図10を参照して第2の実施の形態について説明する。
なお、以下の実施の形態において第1の実施の形態と同様の部分、部材には同一の符号を付してその説明を省略する。
高架橋10は、地中梁12と、複数の柱部14と、床版16とを含んで構成され、第1の実施の形態と同様な構成である。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS.
In the following embodiments, the same parts and members as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
The viaduct 10 includes an underground beam 12, a plurality of pillars 14, and a floor slab 16, and has the same configuration as that of the first embodiment.

高架橋10の構築方法について説明する。
以下では、地中梁12および複数の柱部14の構築が完了しているものとして説明する。
図7に示すように、橋軸方向における各柱部14の両側面で柱部14の上部寄り箇所に支持ブラケット40を設ける。
支持ブラケット40の柱部14への取り付けは、柱部14に予め形成されたアンカーを用いて行うなど、従来公知のさまざまな取り付け構造が採用可能である。
次いで、図9、図10に示すように、各支持ブラケット40の上端部にジャッキ22を取り付ける。このジャッキ22は、第1の実施の形態と同様で、後述するように第1のH型鋼34、第2のH型鋼36の上下方向の位置を調整するものであり、また、解体作業時に第1のH型鋼34、第2のH型鋼36を降下させるものである。
これにより、支持ブラケット40と第1のH型鋼34、第2のH型鋼36との間にそれぞれジャッキ22が設けられることになる。なお、ジャッキ22が支持ブラケット40の上端部に取り付けられた状態でジャッキ22の高さ調整を予め行っておく。
A method for constructing the viaduct 10 will be described.
In the following description, it is assumed that the construction of the underground beam 12 and the plurality of column portions 14 has been completed.
As shown in FIG. 7, support brackets 40 are provided at positions closer to the top of the column portion 14 on both side surfaces of each column portion 14 in the bridge axis direction.
Various attachment structures known in the art can be employed such as attaching the support bracket 40 to the pillar portion 14 using an anchor formed in advance on the pillar portion 14.
Next, as shown in FIGS. 9 and 10, the jack 22 is attached to the upper end of each support bracket 40. This jack 22 is similar to the first embodiment, and adjusts the vertical position of the first H-shaped steel 34 and the second H-shaped steel 36 as will be described later. The first H-shaped steel 34 and the second H-shaped steel 36 are lowered.
As a result, the jacks 22 are provided between the support bracket 40 and the first H-shaped steel 34 and the second H-shaped steel 36, respectively. Note that the height of the jack 22 is adjusted in advance with the jack 22 attached to the upper end of the support bracket 40.

次いで、図9に示すように、支持ブラケット40の上部間に、図示しない床版用型枠が床版16の下面1606を形成する箇所を支持するように、橋軸方向と直交する方向に間隔をおき橋軸方向に沿って延在する複数の第1のH型鋼34を掛け渡して設置する。言い換えると、膨出部1604に干渉しない箇所において、橋軸方向と直交する方向に間隔をおき橋軸方向に沿って延在する複数の第1のH型鋼34を支持ブラケット40の上部間に掛け渡して設置する。
本実施の形態では、図8、図9に示すように、各ジャッキ22の上部に橋軸方向と平行に延在する複数の枕桁26を橋軸方向と直交する方向に間隔をおいて掛け渡す。
次いで、各枕桁26の上に高さ位置調整用のスペーサ部材28をそれぞれ取り付ける。
次いで、各スペーサ部材28の上に橋軸方向と直交する方向に沿って延在する複数の受桁30を橋軸方向に間隔をおいて掛け渡す。
そして、主桁としての複数の第1のH型鋼34を、橋軸方向と直交する方向に間隔をおい各受桁30の上に掛け渡し、各第1のH型鋼34を橋軸方向に延在させる。
Next, as shown in FIG. 9, a space between the upper portions of the support brackets 40 in a direction orthogonal to the bridge axis direction so that a floor slab form (not shown) forms a lower surface 1606 of the floor slab 16 is supported. And a plurality of first H-shaped steels 34 extending along the bridge axis direction are installed. In other words, a plurality of first H-shaped steels 34 that are spaced in the direction orthogonal to the bridge axis direction and extend along the bridge axis direction are hung between the upper portions of the support brackets 40 at locations that do not interfere with the bulging portion 1604. Hand over and install.
In this embodiment, as shown in FIGS. 8 and 9, a plurality of pillow girders 26 extending in parallel with the bridge axis direction are hung on the top of each jack 22 at intervals in a direction perpendicular to the bridge axis direction. hand over.
Next, a spacer member 28 for height position adjustment is attached on each pillow girder 26.
Next, a plurality of receiving girders 30 extending along a direction orthogonal to the bridge axis direction are hung on the spacer members 28 at intervals in the bridge axis direction.
Then, a plurality of first H-shaped steels 34 as main girders are spanned on each receiving beam 30 with a spacing in a direction perpendicular to the bridge axis direction, and each first H-shaped steel 34 is extended in the bridge axis direction. Let it be.

次いで、図10に示すように、支持ブラケット40の上部間に、前記の床版用型枠が床版16の膨出部1604の下面を形成する箇所を支持するように、橋軸方向に間隔をおき橋軸方向と直交する方向に沿って延在する複数の第2のH型鋼36を掛け渡して設置する。
本実施の形態では、図8、図10に示すように、各ジャッキ22の上部に橋軸方向と平行に延在する複数の枕桁26を橋軸方向と直交する方向に間隔をおいて掛け渡す。
次いで、主桁としての複数の第2のH型鋼36を、橋軸方向に間隔をおいて各枕桁26の上に掛け渡し、各第2のH型鋼36を橋軸方向と直交する方向に延在させる。
Next, as shown in FIG. 10, between the upper portions of the support brackets 40, the floor slab formwork is spaced in the bridge axis direction so as to support the portion forming the lower surface of the bulging portion 1604 of the floor slab 16. And a plurality of second H-shaped steels 36 extending along a direction orthogonal to the bridge axis direction are installed.
In this embodiment, as shown in FIGS. 8 and 10, a plurality of pillow girders 26 extending in parallel with the bridge axis direction are hung on the top of each jack 22 at intervals in a direction perpendicular to the bridge axis direction. hand over.
Next, a plurality of second H-shaped steels 36 as main girders are spanned on each pillow girder 26 at intervals in the bridge axis direction, and each second H-shaped steel 36 is arranged in a direction orthogonal to the bridge axis direction. Extend.

次いで、第1のH型鋼34および第2のH型鋼36の上に支保工38を取り付ける。支保工はベニヤ板材3802、根太材3804(図7参照)など従来公知の部材を用いて構成される。
次いで、支保工38に前記の床版用型枠を取り付ける。
次いで、前記の床版用型枠内に鉄筋を組み立てると共に床版用型枠内にコンクリートを打設し、養生することによりコンクリートを固化させ、これにより柱部14の上部に結合された床版16を形成する。
Next, a support work 38 is attached on the first H-shaped steel 34 and the second H-shaped steel 36. The supporting work is configured by using a conventionally known member such as a veneer plate 3802 and a joist 3804 (see FIG. 7).
Next, the floor slab form is attached to the support work 38.
Next, assembling the reinforcing bars in the above-mentioned floor slab formwork, placing concrete in the floor slab formwork, curing the concrete, thereby solidifying the concrete, and thereby connecting the top part of the column 14 16 is formed.

コンクリートが固化したのち第1、第2H型鋼34、36、床版用型枠、支保工、支持ブラケット40を解体除去する。
この場合、各ジャッキ22を下降させることで、第1、第2H型鋼34、36と共に床版用型枠、支保工を同時に降下させ、床版16の下面1606および膨出部1604の下面と、床版用型枠との間に空間を形成する。
そして、この空間を利用して床版用型枠を解体除去し、次いで支保工を解体除去する。
次いで、第1、第2H型鋼34、36を橋軸方向と直交する方向で水平方向に移動させ除去する。
次いで、受桁30を橋軸方向と直交する方向で水平方向に移動させて除去し、スペーサ部材28を取り外して除去し、枕桁26を橋軸方向と直交する方向で水平方向に移動させ除去する。
次いで、支持ブラケット40を解体除去する。
なお、地中梁12の埋め戻しは、地中梁12および複数の柱部14の構築が完了したのちに行ってもよく、あるいは、床版16の構築途中に行ってもよく、あるいは、床版16の構築が完了したのちに行ってもよい。
After the concrete is solidified, the first and second H-shaped steels 34 and 36, the formwork for floor slab, the support work, and the support bracket 40 are disassembled and removed.
In this case, by lowering each jack 22, the floor slab formwork and the supporting work are simultaneously lowered together with the first and second H-shaped steels 34 and 36, and the lower surface 1606 of the floor slab 16 and the lower surface of the bulging portion 1604, A space is formed between the floor slab formwork.
And the formwork for floor slabs is dismantled and removed using this space, and then the support work is dismantled and removed.
Next, the first and second H-shaped steels 34 and 36 are removed by moving in the horizontal direction in a direction orthogonal to the bridge axis direction.
Next, the receiving girder 30 is removed by moving it horizontally in the direction perpendicular to the bridge axis direction, the spacer member 28 is removed and removed, and the pillow girder 26 is moved in the direction perpendicular to the bridge axis direction and removed. To do.
Next, the support bracket 40 is disassembled and removed.
The backfilling of the underground beam 12 may be performed after the construction of the underground beam 12 and the plurality of column portions 14 is completed, or may be performed during the construction of the floor slab 16, or the floor It may be performed after the construction of the plate 16 is completed.

以上説明したように本実施の形態によれば、地中梁12から立設された柱部14の両側面に支持ブラケット40を取り付け、この支持ブラケット40を介して複数の第1のH型鋼34、第2のH型鋼36を掛け渡して設置し、これら第1のH型鋼34、第2のH型鋼36を利用して支保工38、床版用型枠を取り付け、鉄筋が組み立てられた床版用型枠内にコンクリートを打設することにより床版を形成するようにした。
そのため、従来の枠組式支保工を用いる方法に比較して、支保工を設置するために地盤に対して行う各種作業が不要となり、時間と人手を大幅に削減する上で有利となる。
また、従来の枠組式支保工を用いる方法に比較して、床版の下方に位置する地盤の全域にわたって支保工を設置する必要が無いため、支保工に要する部品コストを削減でき、枠組式支保工の組み立ておよび解体除去に要する時間と人手を大幅に削減する上でも有利となる。
したがって、施工期間の短縮および施工コストの低減を図る上で有利となる。
As described above, according to the present embodiment, the support brackets 40 are attached to both side surfaces of the column portion 14 erected from the underground beam 12, and the plurality of first H-shaped steels 34 are interposed via the support brackets 40. The floor in which the second H-shaped steel 36 is installed and installed, and the first H-shaped steel 34 and the second H-shaped steel 36 are used to attach the support 38 and the formwork for the floor slab, and the rebar is assembled. The floor slab was formed by placing concrete in the plate formwork.
Therefore, as compared with the conventional method using a frame-type support work, various operations to be performed on the ground to install the support work become unnecessary, which is advantageous in greatly reducing time and manpower.
In addition, compared to the conventional method using a frame-type support, it is not necessary to install a support over the entire ground located below the floor slab, so the parts cost required for the support can be reduced, and the frame-type support This is also advantageous for greatly reducing the time and labor required for assembly and dismantling of the work.
Therefore, it is advantageous in shortening the construction period and reducing the construction cost.

なお、本実施の形態では、基礎構造部が地中梁12で構成されている場合について説明したが、基礎構造部が柱部14の下部に結合され地中に埋設されるフーチングを含んで構成されていてもよい。あるいは、柱部14の下部が基礎構造部に埋設され、基礎構造部に埋設された柱部14の下部が基礎構造部の一部を構成していてもよい。   In the present embodiment, the case where the foundation structure portion is composed of the underground beam 12 has been described. However, the foundation structure portion is configured to include a footing that is coupled to the lower portion of the column portion 14 and embedded in the ground. May be. Or the lower part of the pillar part 14 may be embed | buried under a foundation structure part, and the lower part of the pillar part 14 embed | buried under the foundation structure part may comprise a part of foundation structure part.

10……鉄道RCラーメン構造高架橋
12……地中梁
14……柱部
16……床版
1602……梁部
1604……膨出部
1606……下面
20……支持構造体
22……ジャッキ
34……第1のH型鋼
36……第2のH型鋼
38……支保工
40……支持ブラケット
10 ... Rail RC ramen structure viaduct 12 ... Underground beam 14 ... Column 16 ... Floor slab 1602 ... Beam 1604 ... Swell 1606 ... Underside 20 ... Support structure 22 ... Jack 34 …… First H-shaped steel 36 …… Second H-shaped steel 38 …… Support work 40 …… Support bracket

Claims (6)

地中に施工された基礎構造部と、前記基礎構造部から立設された橋脚としての複数の柱部と、前記各柱部の上部間に掛け渡されかつ前記各柱部に結合され軌道が敷設される床版とを備え、
前記床版の下部は、前記柱部の上方に位置する箇所に下方に膨出形成された膨出部と、前記膨出部以外の箇所に形成された平坦な下面とで構成された鉄道RCラーメン構造高架橋の構築方法であって、
橋軸方向における各柱部の両側面に対向させてそれぞれ前記基礎構造部から支持構造体を立設させる工程と、
前記支持構造体の上部間に、前記床版の前記下面を形成する床版用型枠の箇所を支持するように、橋軸方向と直交する方向に間隔をおき橋軸方向に沿って延在する複数の第1のH型鋼を掛け渡して設置する工程と、
前記支持構造体の上部間に、前記床版の前記膨出部の下面を形成する床版用型枠の箇所を支持するように、橋軸方向に間隔をおき橋軸方向と直交する方向に沿って延在する複数の第2のH型鋼を掛け渡して設置する工程と、
前記第1のH型鋼および前記第2のH型鋼の上に支保工を取り付ける工程と、
前記支保工に床版用型枠を取り付ける工程と、
前記床版用型枠内に鉄筋を組み立てると共に前記床版用型枠内にコンクリートを打設することにより前記柱部の上部に結合された前記床版を形成する工程と、
前記コンクリートが固化したのち前記第1、第2のH型鋼、前記床版用型枠、前記支保工、前記支持構造体を解体除去する工程と、
を含むことを特徴とする鉄道RCラーメン構造高架橋の構築方法。
A foundation structure constructed in the ground, a plurality of pillars as piers erected from the foundation structure, and spanned between the upper parts of the pillars and coupled to the pillars, A floor slab to be laid,
The lower part of the floor slab is composed of a bulging part that bulges downward at a position located above the pillar part, and a flat bottom surface formed at a place other than the bulging part. A method for constructing a ramen structure viaduct,
A step of erecting the support structure from the foundation structure portion so as to face both side surfaces of each pillar portion in the bridge axis direction;
Extending along the bridge axis direction at intervals in the direction orthogonal to the bridge axis direction so as to support the location of the formwork for the floor slab that forms the lower surface of the floor slab between the upper parts of the support structure Spanning and installing a plurality of first H-shaped steels;
In a direction perpendicular to the bridge axis direction with an interval in the bridge axis direction so as to support a portion of the floor slab formwork that forms the lower surface of the bulge portion of the floor slab between the upper portions of the support structure. Spanning and installing a plurality of second H-shaped steels extending along;
Attaching a support on the first H-shaped steel and the second H-shaped steel;
Attaching a floor slab form to the support;
Assembling reinforcing bars in the floor slab form and forming the floor slab connected to the upper part of the column by placing concrete in the floor slab form; and
A step of dismantling and removing the first and second H-shaped steel, the formwork for floor slab, the support work, and the support structure after the concrete is solidified;
A method for constructing a railway RC ramen structure viaduct.
前記支持構造体に前記第1、第2のH型鋼の上下方向の位置を調整するジャッキが設けられている、
ことを特徴とする請求項1記載の鉄道RCラーメン構造高架橋の構築方法。
A jack for adjusting the vertical position of the first and second H-shaped steels is provided on the support structure.
The method for constructing a railway RC ramen structure viaduct according to claim 1.
地中に施工された基礎構造部と、前記基礎構造部から立設された橋脚としての複数の柱部と、前記各柱部の上部間に掛け渡されかつ前記各柱部に結合され軌道が敷設される床版とを備え、
前記床版の下部は、前記柱部の上方に位置する箇所に下方に膨出形成された膨出部と、前記膨出部以外の箇所に形成された平坦な下面とで構成された鉄道RCラーメン構造高架橋の構築方法であって、
橋軸方向における各柱部の両側面で前記柱部の上部寄り箇所に支持ブラケットを設ける工程と、
前記支持ブラケットの上部間に、前記床版の前記下面を形成する床版用型枠の箇所を支持するように、橋軸方向と直交する方向に間隔をおき橋軸方向に沿って延在する複数の第1のH型鋼を掛け渡して設置する工程と、
前記支持ブラケットの上部間に、前記床版の前記膨出部の下面を形成する床版用型枠の箇所を支持するように、橋軸方向に間隔をおき橋軸方向と直交する方向に沿って延在する複数の第2のH型鋼を掛け渡して設置する工程と、
前記第1のH型鋼および前記第2のH型鋼の上に支保工を取り付ける工程と、
前記支保工に床版用型枠を取り付ける工程と、
前記床版用型枠内に鉄筋を組み立てると共に前記床版用型枠内にコンクリートを打設することにより前記柱部の上部に結合された前記床版を形成する工程と、
前記コンクリートが固化したのち前記第1、第2のH型鋼、前記床版用型枠、前記支保工、前記支持ブラケットを解体除去する工程と、
を含むことを特徴とする鉄道RCラーメン構造高架橋の構築方法。
A foundation structure constructed in the ground, a plurality of pillars as piers erected from the foundation structure, and spanned between the upper parts of the pillars and coupled to the pillars, A floor slab to be laid,
The lower part of the floor slab is composed of a bulging part that bulges downward at a position located above the pillar part, and a flat bottom surface formed at a place other than the bulging part. A method for constructing a ramen structure viaduct,
A step of providing a support bracket at a position near the upper part of the pillar part on both side surfaces of each pillar part in the bridge axis direction;
The upper part of the support bracket extends along the bridge axis direction with an interval in a direction orthogonal to the bridge axis direction so as to support the place of the floor slab form forming the lower surface of the floor slab. Spanning and installing a plurality of first H-shaped steels;
Along the direction perpendicular to the bridge axis direction with an interval in the bridge axis direction so as to support the location of the floor slab form forming the lower surface of the bulge portion of the floor slab between the upper portions of the support brackets Spanning and installing a plurality of second H-shaped steels extending;
Attaching a support on the first H-shaped steel and the second H-shaped steel;
Attaching a floor slab form to the support;
Assembling reinforcing bars in the floor slab form and forming the floor slab connected to the upper part of the column by placing concrete in the floor slab form; and
A step of dismantling and removing the first and second H-shaped steel, the formwork for floor slab, the support work, and the support bracket after the concrete is solidified;
A method for constructing a railway RC ramen structure viaduct.
前記支持ブラケットと前記第1、第2のH型鋼との間に前記第1、第2のH型鋼の上下方向の位置を調整するジャッキが設けられている、
ことを特徴とする請求項3記載の鉄道RCラーメン構造高架橋の構築方法。
A jack for adjusting the vertical position of the first and second H-shaped steels is provided between the support bracket and the first and second H-shaped steels.
The construction method of a railway RC ramen structure viaduct according to claim 3.
前記床版は橋軸方向に延在する梁部が前記橋軸方向と直交する方向に間隔をおいて前記床版の上面に複数形成されている、
ことを特徴とする請求項1乃至4に何れか1項記載の鉄道RCラーメン構造高架橋の構築方法。
In the floor slab, a plurality of beam portions extending in the bridge axis direction are formed on the upper surface of the floor slab at intervals in a direction orthogonal to the bridge axis direction.
The construction method of a railway RC ramen structure viaduct according to any one of claims 1 to 4.
前記基礎構造部は、前記床版の延在方向に沿って延在し地中に埋設される地中梁である、
ことを特徴とする請求項1乃至5に何れか1項記載の鉄道RCラーメン構造高架橋の構築方法。
The foundation structure part is an underground beam extending along the extending direction of the floor slab and buried in the ground.
The construction method of a railway RC ramen structure viaduct according to any one of claims 1 to 5.
JP2010020142A 2010-02-01 2010-02-01 Construction method of railway RC ramen structure viaduct Active JP5405337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010020142A JP5405337B2 (en) 2010-02-01 2010-02-01 Construction method of railway RC ramen structure viaduct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020142A JP5405337B2 (en) 2010-02-01 2010-02-01 Construction method of railway RC ramen structure viaduct

Publications (2)

Publication Number Publication Date
JP2011157720A true JP2011157720A (en) 2011-08-18
JP5405337B2 JP5405337B2 (en) 2014-02-05

Family

ID=44589897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020142A Active JP5405337B2 (en) 2010-02-01 2010-02-01 Construction method of railway RC ramen structure viaduct

Country Status (1)

Country Link
JP (1) JP5405337B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242062B1 (en) 2012-07-23 2013-03-11 이승수 Girder bridge without expansion joint and construction method
CN102979041A (en) * 2012-12-26 2013-03-20 中铁七局集团郑州工程有限公司 Soft overhead reinforcing jacking method for construction of span box bridge of jacking block of underpass turnout group of railway
KR101282810B1 (en) * 2012-04-24 2013-07-05 우경기술주식회사 Bridge supporting post system
CN103266568A (en) * 2013-04-28 2013-08-28 中国五冶集团有限公司 Moving platform capable of constructing without colliding walls
WO2021109535A1 (en) * 2019-12-04 2021-06-10 中铁上海工程局集团有限公司 Construction method for assembling steel box girder above tramcar
CN113235448A (en) * 2021-05-31 2021-08-10 中铁四局集团第四工程有限公司 Installation method of main line crossing ultrahigh steel pipe column system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938557B (en) * 2014-03-11 2016-01-20 卢来运 A kind of bridge crossing method for dismounting
CN106274556B (en) * 2016-08-05 2018-07-20 中铁六局集团天津铁路建设有限公司 A kind of contact net bar changes shifting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028737B1 (en) * 1970-10-07 1975-09-18
JPS5119537U (en) * 1974-07-31 1976-02-13
JPH04202905A (en) * 1990-11-30 1992-07-23 Nippon Tetsudo Kensetsu Kodan Elevated railway bridge and its construction process
JP2008297898A (en) * 2008-08-05 2008-12-11 Railway Technical Res Inst Overturning preventive structure for railroad vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028737B1 (en) * 1970-10-07 1975-09-18
JPS5119537U (en) * 1974-07-31 1976-02-13
JPH04202905A (en) * 1990-11-30 1992-07-23 Nippon Tetsudo Kensetsu Kodan Elevated railway bridge and its construction process
JP2008297898A (en) * 2008-08-05 2008-12-11 Railway Technical Res Inst Overturning preventive structure for railroad vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101282810B1 (en) * 2012-04-24 2013-07-05 우경기술주식회사 Bridge supporting post system
KR101242062B1 (en) 2012-07-23 2013-03-11 이승수 Girder bridge without expansion joint and construction method
CN102979041A (en) * 2012-12-26 2013-03-20 中铁七局集团郑州工程有限公司 Soft overhead reinforcing jacking method for construction of span box bridge of jacking block of underpass turnout group of railway
CN102979041B (en) * 2012-12-26 2015-01-21 中铁七局集团郑州工程有限公司 Soft overhead reinforcing jacking method for construction of span box bridge of jacking block of underpass turnout group of railway
CN103266568A (en) * 2013-04-28 2013-08-28 中国五冶集团有限公司 Moving platform capable of constructing without colliding walls
CN103266568B (en) * 2013-04-28 2015-08-19 中国五冶集团有限公司 A kind of movable platform of anti-collision wall construction
WO2021109535A1 (en) * 2019-12-04 2021-06-10 中铁上海工程局集团有限公司 Construction method for assembling steel box girder above tramcar
CN113235448A (en) * 2021-05-31 2021-08-10 中铁四局集团第四工程有限公司 Installation method of main line crossing ultrahigh steel pipe column system
CN113235448B (en) * 2021-05-31 2022-06-21 中铁四局集团第四工程有限公司 Installation method of main line crossing ultrahigh steel pipe column system

Also Published As

Publication number Publication date
JP5405337B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5405337B2 (en) Construction method of railway RC ramen structure viaduct
CN107090975B (en) Formwork erecting construction method for ultrahigh large-span concrete cast-in-place beam bailey truss
JP5045214B2 (en) Column head construction method
KR20120096605A (en) Bracket support type downward construction system and method
JP2008240410A (en) Bridge construction method, steel structure, and bridge
CN102277835A (en) Method for constructing single-column bent cap by adopting hoop and A-frame composite system
KR20200032316A (en) Method for Forming Top-down-typed Underground Strucutre using Trus-typed Support
KR20150029512A (en) The horizontal structural frame and the underground construction methods using it
KR102286225B1 (en) Method for constructing underground structure busing PC integrating method without support
KR200443605Y1 (en) Frame panel supporting apparatus for concrete casting a bridge structure
KR20060096706A (en) Deck suspension top-down method of sub-structure
JP4477467B2 (en) Bridge structure and its replacement method
JP5437876B2 (en) Method of dismantling and removing support members in the construction process of RC RC ramen structure viaduct
JP5003253B2 (en) RC beam construction method
JP3644606B2 (en) Installation method of formwork support in reverse placement method
WO2015051551A1 (en) Building and construction method thereof
KR200390421Y1 (en) Top-down substructure by deck suspension
JP2018178588A (en) Bridge construction method
JP5872332B2 (en) Seismic reinforcement method for buildings
CN112482316A (en) Gate dam gate machine beam construction method and gate dam gate machine beam structure
JP4130810B2 (en) Construction method of water structure
JP6710064B2 (en) Seismic isolation retrofit construction method and building construction
KR102490025B1 (en) Floor frame support system for flat slab in top-down method
KR101409249B1 (en) Top Down Construction method Using Method Of Steel Hybrid Girder Construction
KR200358247Y1 (en) Downward construction structure using bracket support type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131030

R150 Certificate of patent or registration of utility model

Ref document number: 5405337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250