JP2011157572A - Method for enhancing denseness of metal film to be vapor-deposited - Google Patents

Method for enhancing denseness of metal film to be vapor-deposited Download PDF

Info

Publication number
JP2011157572A
JP2011157572A JP2010018475A JP2010018475A JP2011157572A JP 2011157572 A JP2011157572 A JP 2011157572A JP 2010018475 A JP2010018475 A JP 2010018475A JP 2010018475 A JP2010018475 A JP 2010018475A JP 2011157572 A JP2011157572 A JP 2011157572A
Authority
JP
Japan
Prior art keywords
vapor deposition
tank
metal film
partial pressure
control gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010018475A
Other languages
Japanese (ja)
Other versions
JP5423438B2 (en
Inventor
Atsushi Kikukawa
篤 菊川
Masayuki Yoshimura
吉村  公志
Toshiyuki Sasai
敏行 笹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2010018475A priority Critical patent/JP5423438B2/en
Publication of JP2011157572A publication Critical patent/JP2011157572A/en
Application granted granted Critical
Publication of JP5423438B2 publication Critical patent/JP5423438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for enhancing denseness of a metal film to be vapor-deposited on an object to be processed such as rare earth-based permanent magnet. <P>SOLUTION: A wire-like metal vapor deposition material containing vapor deposition control gas is evaporated while being continuously supplied to a melt-evaporation part heated in a vapor deposition tank, thereby a metal film is vapor-deposited on a surface of an object in a state in which the vapor deposition control gas is supplied to at least the melt-evaporation part and to a vicinity of the object in the vapor deposition tank. In this case, the vapor deposition is performed while maintaining the ratio of noble gas partial pressure to the total pressure in the vapor deposition tank at 0.2-0.8. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、希土類系永久磁石などの被処理物の表面に蒸着形成される金属被膜の緻密性を向上させる方法に関する。   The present invention relates to a method for improving the denseness of a metal film formed by vapor deposition on the surface of an object to be processed such as a rare earth permanent magnet.

Nd−Fe−B系永久磁石に代表されるR−Fe−B系永久磁石などの希土類系永久磁石は、資源的に豊富で安価な材料が用いられ、かつ、高い磁気特性を有していることから、特にR−Fe−B系永久磁石は今日様々な分野で使用されている。しかしながら、希土類系永久磁石は反応性の高い希土類元素:Rを含むため、大気中で酸化腐食されやすく、何の表面処理をも行わずに使用した場合には、わずかな酸やアルカリや水分などの存在によって表面から腐食が進行して錆が発生し、それに伴って、磁気特性の劣化やばらつきを招く。さらに、錆が発生した磁石を磁気回路などの装置に組み込んだ場合、錆が飛散して周辺部品を汚染する恐れがある。
上記の点に鑑み、希土類系永久磁石に優れた耐食性を付与することを目的として、その表面に例えばアルミニウム被膜などの金属被膜を蒸着法などの気相めっき法によって成膜することが行われている。アルミニウム被膜は耐食性に優れていることに加え、部品組み込み時に必要とされる接着剤との接着信頼性に優れている(接着剤が本質的に有する破壊強度に達するまでに被膜と接着剤との間で剥離が生じにくい)ので、強い接着強度が要求される希土類系永久磁石に対して広く適用されおり、表面にアルミニウム被膜を有する希土類系永久磁石は、各種モータなどに組み込まれて使用されている。
Rare-earth permanent magnets such as R-Fe-B permanent magnets typified by Nd-Fe-B permanent magnets are made of resource-rich and inexpensive materials and have high magnetic properties. Therefore, in particular, R—Fe—B permanent magnets are used in various fields today. However, since rare earth permanent magnets contain a highly reactive rare earth element: R, they are easily oxidatively corroded in the atmosphere. When used without any surface treatment, a slight amount of acid, alkali, moisture, etc. Corrosion proceeds from the surface due to the presence of rust, and rust is generated, resulting in deterioration and variation in magnetic properties. Furthermore, when a magnet in which rust is generated is incorporated in an apparatus such as a magnetic circuit, the rust may be scattered to contaminate peripheral components.
In view of the above points, for the purpose of imparting excellent corrosion resistance to a rare earth-based permanent magnet, a metal film such as an aluminum film is formed on the surface thereof by a vapor deposition method such as an evaporation method. Yes. In addition to being excellent in corrosion resistance, the aluminum coating has excellent adhesion reliability with the adhesive required when assembling the parts (the coating and adhesive are required to reach the breaking strength inherent in the adhesive). Is widely applied to rare earth permanent magnets that require strong adhesive strength, and rare earth permanent magnets having an aluminum coating on the surface are used in various motors. Yes.

特許文献1には、アルミニウム被膜などの酸化され易い金属蒸着材料からなる蒸着被膜を希土類系永久磁石などの被処理物の表面に形成する方法として、蒸着槽内において加熱した溶融蒸発部に水素などの蒸着制御ガスを含有するワイヤー状金属蒸着材料を連続供給しながら蒸発させることで、蒸着槽内の少なくとも溶融蒸発部と被処理物の近傍に蒸着制御ガスを供給した状態で被処理物の表面に金属被膜を蒸着形成する方法が記載されている。この方法は、ワイヤー状金属蒸着材料に含まれる蒸着制御ガスを蒸着槽内の少なくとも溶融蒸発部と被処理物の近傍に供給することにより、蒸着槽内に存在する酸素による金属蒸着材料の酸化や蒸着形成された金属被膜の酸化を阻止することで、例えば蒸着槽内全圧を10−4Pa以下といった高真空にせずとも優れた耐食性希土類系永久磁石を製造することができる方法として既に実用化されている。しかしながら、蒸着形成された金属被膜を構成する結晶組織は、被膜の厚み方向に成長した柱状組織であるため、結晶組織と結晶組織の間には微細な空隙が存在することから、この空隙を通じて水分などが被膜表面から磁石表面に到達すると磁石の腐食を招くことになる。このような現象を防ぐためには、特許文献1にも記載されている通り、金属被膜に対してピーニング処理を行って被膜表面の平滑化と空隙の封隙を行うことが有効であるが、それでもなお、過酷な使用環境下にある自動車用モータに組み込まれる磁石などにおいては腐食が生じてしまう可能性を否定できない。そこで、希土類系永久磁石の表面に金属被膜を構成する柱状組織を密に成長させることによって被膜の緻密性を向上させることができれば、これらの問題の解決に繋がることが期待されるが、そのような方法は今だ知られていない。 In Patent Document 1, as a method of forming a vapor-deposited film made of a metal vapor-deposited material that is easily oxidized, such as an aluminum film, on the surface of an object to be treated such as a rare earth-based permanent magnet, The surface of the object to be processed in a state where the evaporation control gas is supplied at least in the vicinity of the melt evaporation part and the object to be processed in the evaporation tank by evaporating while continuously supplying the wire-like metal evaporation material containing the evaporation control gas of Describes a method for forming a metal film by vapor deposition. In this method, the vapor deposition control gas contained in the wire-shaped metal vapor deposition material is supplied to at least the melt evaporation portion in the vapor deposition tank and the vicinity of the object to be processed, thereby oxidizing the metal vapor deposition material with oxygen present in the vapor deposition tank. Already put into practical use as a method that can produce an excellent corrosion-resistant rare earth permanent magnet without requiring high vacuum, for example, the total pressure in the vapor deposition tank is 10 −4 Pa or less, by preventing oxidation of the deposited metal film. Has been. However, since the crystal structure constituting the vapor-deposited metal film is a columnar structure grown in the thickness direction of the film, there are minute voids between the crystal structure and the moisture through the voids. Etc. will reach the magnet surface from the coating surface, which will cause corrosion of the magnet. In order to prevent such a phenomenon, as described in Patent Document 1, it is effective to perform a peening treatment on the metal film to smooth the surface of the film and to seal the gaps. In addition, it cannot be denied that corrosion may occur in a magnet or the like incorporated in a motor for automobiles under severe use environment. Therefore, if the denseness of the film can be improved by densely growing the columnar structure constituting the metal film on the surface of the rare earth-based permanent magnet, it is expected to lead to the solution of these problems. The correct method is not yet known.

特許2001−32062号公報Japanese Patent No. 2001-32062

そこで本発明は、希土類系永久磁石などの被処理物の表面に蒸着形成される金属被膜の緻密性を向上させる方法を提供することを目的とする。   Then, an object of this invention is to provide the method of improving the denseness of the metal film formed by vapor deposition on the surface of to-be-processed objects, such as a rare earth type permanent magnet.

ところで、特許文献1にも記載されている通り、被処理物の表面に金属被膜を蒸着形成するにあたっては、蒸着槽内の全圧をアルゴンなどの希ガスを用いて調整することが行われるが、本発明者らは、上記の点に鑑みて鋭意研究を重ねた結果、被処理物の表面に金属被膜を蒸着形成する際の蒸着槽内の希ガスの存在割合の違いによって被処理物の表面に蒸着形成される金属被膜の緻密性が異なること、蒸着槽内全圧に対する希ガス分圧の割合を高めて蒸着処理を行うことで、被処理物の表面に蒸着形成される金属被膜の緻密性を向上させることができ、その結果として金属被膜の耐食性の向上を図ることができることを見出した。   By the way, as described in Patent Document 1, when a metal film is deposited on the surface of an object to be processed, the total pressure in the deposition tank is adjusted using a rare gas such as argon. As a result of intensive studies in view of the above points, the present inventors have determined that the object to be processed depends on the difference in the presence of rare gas in the vapor deposition tank when a metal film is deposited on the surface of the object to be processed. The metal film formed on the surface is different in denseness, and the ratio of the rare gas partial pressure to the total pressure in the vapor deposition tank is increased to carry out the vapor deposition process, so that the metal film formed on the surface of the object to be processed is deposited. It has been found that the denseness can be improved, and as a result, the corrosion resistance of the metal coating can be improved.

上記の知見に基づいてなされた本発明の蒸着形成される金属被膜の緻密性を向上させる方法は、請求項1記載の通り、蒸着槽内において加熱した溶融蒸発部に蒸着制御ガスを含有するワイヤー状金属蒸着材料を連続供給しながら蒸発させることで、蒸着槽内の少なくとも溶融蒸発部と被処理物の近傍に蒸着制御ガスを供給した状態で被処理物の表面に金属被膜を蒸着形成する際、蒸着槽内全圧に対する希ガス分圧の割合を0.2〜0.8に維持して蒸着処理を行うことを特徴とする。
また、請求項2記載の方法は、請求項1記載の方法において、300mL/分以上の流量で希ガスを蒸着槽内に導入することによって蒸着槽内全圧に対する希ガス分圧の割合を維持することを特徴とする。
また、請求項3記載の方法は、請求項1または2記載の方法において、蒸着槽内全圧を0.1Pa〜3.0Paとすることを特徴とする。
また、請求項4記載の方法は、請求項1乃至3のいずれかに記載の方法において、希ガスがヘリウム、ネオン、アルゴン、キセノンから選ばれる少なくとも1種であることを特徴とする。
また、請求項5記載の方法は、請求項1乃至4のいずれかに記載の方法において、蒸着制御ガスが水素であることを特徴とする。
また、請求項6記載の方法は、請求項1乃至5のいずれかに記載の方法において、蒸着槽内の希ガス分圧と蒸着制御ガス分圧の比(希ガス分圧/蒸着制御ガス分圧)を0.3〜3.0とすることを特徴とする。
また、請求項7記載の方法は、請求項1乃至6のいずれかに記載の方法において、金属がアルミニウムまたはその合金であることを特徴とする。
また、請求項8記載の方法は、請求項1乃至7のいずれかに記載の方法において、被処理物が希土類系永久磁石であることを特徴とする。
また、本発明は、請求項9記載の通り、蒸着槽内において加熱した溶融蒸発部に蒸着制御ガスを含有するワイヤー状金属蒸着材料を連続供給しながら蒸発させることで、蒸着槽内の少なくとも溶融蒸発部と被処理物である希土類系永久磁石の近傍に蒸着制御ガスを供給した状態で希土類系永久磁石の表面に金属被膜を蒸着形成することによる耐食性希土類系永久磁石の製造方法であって、蒸着槽内全圧に対する希ガス分圧の割合を0.2〜0.8に維持して蒸着処理を行うことを特徴とする。
また、本発明の耐食性希土類系永久磁石は、請求項10記載の通り、請求項9記載の製造方法によって製造されてなり、金属被膜中に含まれる蒸着制御ガス量が50ppm〜200ppmであることを特徴とする。
The method for improving the denseness of the metal film formed by vapor deposition according to the present invention based on the above knowledge is, as described in claim 1, a wire containing a vapor deposition control gas in a molten vaporized portion heated in a vapor deposition tank. When vapor-depositing a metal film on the surface of the workpiece with vapor deposition control gas supplied at least in the vicinity of the melt evaporation part and the workpiece in the vapor deposition tank The ratio of the rare gas partial pressure to the total pressure in the vapor deposition tank is maintained at 0.2 to 0.8, and the vapor deposition treatment is performed.
The method according to claim 2 is the method according to claim 1, wherein the ratio of the rare gas partial pressure to the total pressure in the vapor deposition tank is maintained by introducing the rare gas into the vapor deposition tank at a flow rate of 300 mL / min or more. It is characterized by doing.
A method according to claim 3 is characterized in that, in the method according to claim 1 or 2, the total pressure in the vapor deposition tank is 0.1 Pa to 3.0 Pa.
A method according to claim 4 is the method according to any one of claims 1 to 3, wherein the rare gas is at least one selected from helium, neon, argon, and xenon.
A method according to claim 5 is the method according to any one of claims 1 to 4, wherein the deposition control gas is hydrogen.
A method according to claim 6 is the method according to any one of claims 1 to 5, wherein the ratio of the rare gas partial pressure in the vapor deposition tank to the vapor deposition control gas partial pressure (rare gas partial pressure / vapor deposition control gas component). The pressure is 0.3 to 3.0.
A method according to claim 7 is the method according to any one of claims 1 to 6, wherein the metal is aluminum or an alloy thereof.
The method according to claim 8 is the method according to any one of claims 1 to 7, wherein the object to be processed is a rare earth-based permanent magnet.
Further, according to the present invention, as described in claim 9, by evaporating while continuously supplying a wire-shaped metal vapor deposition material containing a vapor deposition control gas to the melt vaporization section heated in the vapor deposition tank, A method for producing a corrosion-resistant rare earth permanent magnet by depositing a metal film on the surface of a rare earth permanent magnet in a state where an evaporation control gas is supplied in the vicinity of the evaporation part and the rare earth permanent magnet to be processed, The deposition process is performed while maintaining the ratio of the rare gas partial pressure to the total pressure in the deposition tank at 0.2 to 0.8.
Moreover, the corrosion-resistant rare earth-based permanent magnet of the present invention is manufactured by the manufacturing method according to claim 9 as described in claim 10, and the amount of vapor deposition control gas contained in the metal film is 50 ppm to 200 ppm. Features.

本発明によれば、希土類系永久磁石などの被処理物の表面に蒸着形成される金属被膜の緻密性を向上させる方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method of improving the denseness of the metal film formed by vapor deposition on the surface of to-be-processed objects, such as a rare earth type permanent magnet, can be provided.

本発明の蒸着形成される金属被膜の緻密性を向上させる方法を実施するのに好適な蒸着被膜形成装置の一実施形態の蒸着槽内の模式的正面図(一部透視図)である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic front view (partially perspective view) in a vapor deposition tank of an embodiment of a vapor deposition film forming apparatus suitable for carrying out the method for improving the density of a metal film formed by vapor deposition according to the present invention. 実験Aにおける条件1でガラスプレートの表面に蒸着形成されたアルミニウム被膜の表面の走査型電子顕微鏡写真(ショットピーニング処理前のもの)である。2 is a scanning electron micrograph (before shot peening) of the surface of an aluminum coating deposited on the surface of a glass plate under Condition 1 in Experiment A. 同、条件5でガラスプレートの表面に蒸着形成されたアルミニウム被膜の表面の走査型電子顕微鏡写真(ショットピーニング処理前のもの)である。4 is a scanning electron micrograph (before shot peening) of the surface of the aluminum coating deposited on the surface of the glass plate under Condition 5. FIG.

本発明の蒸着形成される金属被膜の緻密性を向上させる方法は、蒸着槽内において加熱した溶融蒸発部に蒸着制御ガスを含有するワイヤー状金属蒸着材料を連続供給しながら蒸発させることで、蒸着槽内の少なくとも溶融蒸発部と被処理物の近傍に蒸着制御ガスを供給した状態で被処理物の表面に金属被膜を蒸着形成する際、蒸着槽内全圧に対する希ガス分圧の割合を0.2〜0.8に維持して蒸着処理を行うことを特徴とするものである。本発明によれば、高い緻密性を有することで耐食性に優れた金属被膜を被処理物の表面に蒸着形成することができる。   The method of improving the denseness of the metal film formed by vapor deposition according to the present invention is a method in which vapor deposition is performed by continuously supplying a wire-shaped metal vapor deposition material containing a vapor deposition control gas to a melt evaporation part heated in a vapor deposition tank. When depositing a metal film on the surface of the object to be processed in a state where the vapor deposition control gas is supplied at least in the vicinity of the melt evaporation part and the object to be processed in the tank, the ratio of the rare gas partial pressure to the total pressure in the evaporation tank is 0 It is characterized by performing the vapor deposition process while maintaining the temperature at 2 to 0.8. According to the present invention, it is possible to deposit a metal film having excellent corrosion resistance on the surface of an object to be processed by having high density.

本発明において、蒸着槽内において加熱した溶融蒸発部に蒸着制御ガスを含有するワイヤー状金属蒸着材料を連続供給しながら蒸発させることで、蒸着槽内の少なくとも溶融蒸発部と被処理物の近傍に蒸着制御ガスを供給した状態で被処理物の表面に金属被膜を蒸着形成する方法は、上記の通り特許文献1に記載の公知の方法である。この方法が好適に採用される蒸着対象となる酸化され易い金属としては、アルミニウムやその合金(例えばアルミニウム以外の金属としてマグネシウムを1質量%〜10質量%含有する合金)の他、チタニウム、亜鉛、錫などが挙げられる(混入回避不可避な微量成分を含有することを妨げない)。蒸着制御ガスとしては、酸素との反応性を有する還元性ガスである一酸化炭素や水素などが挙げられる。被処理物としては希土類系永久磁石が例示されるが、表面に金属被膜を蒸着形成することができる物品であればどのようなものであってもよい。被処理物が希土類系永久磁石の場合、磁石の表面に蒸着形成される金属被膜の厚みは3μm〜50μmが望ましい。3μm未満であると磁石に対する優れた耐食性付与効果が得られない恐れがある一方、50μmを超えても磁石に対する耐食性付与効果は変わらず生産コストの上昇だけを招く結果となる恐れがあるからである。好適な実施態様の一例としては、直径が1mm〜2mmで水素含有量が0.5ppm〜11ppmのアルミニウムワイヤーまたはアルミニウム合金ワイヤーを、1g/分〜10g/分の繰り出し速度で溶融蒸発部に連続供給しながら蒸発させる態様が挙げられる。   In the present invention, by evaporating while continuously supplying the wire-like metal vapor deposition material containing the vapor deposition control gas to the melt evaporation part heated in the vapor deposition tank, at least in the vicinity of the melt evaporation part and the object to be processed in the vapor deposition tank. The method for vapor-depositing and forming a metal film on the surface of an object to be processed while supplying the vapor deposition control gas is a known method described in Patent Document 1 as described above. Examples of the easily oxidized metal to be deposited by this method include aluminum and its alloys (for example, alloys containing 1% by mass to 10% by mass of magnesium as a metal other than aluminum), titanium, zinc, Tin etc. are mentioned (it does not prevent containing a trace component inevitable of mixing). Examples of the deposition control gas include carbon monoxide and hydrogen which are reducing gases having reactivity with oxygen. The object to be treated is exemplified by a rare earth permanent magnet, but any article can be used as long as the metal film can be deposited on the surface. When the object to be processed is a rare earth permanent magnet, the thickness of the metal film deposited on the surface of the magnet is desirably 3 μm to 50 μm. If the thickness is less than 3 μm, the effect of imparting excellent corrosion resistance to the magnet may not be obtained. On the other hand, if it exceeds 50 μm, the effect of imparting corrosion resistance to the magnet does not change and may result in only an increase in production cost. . As an example of a preferred embodiment, an aluminum wire or an aluminum alloy wire having a diameter of 1 mm to 2 mm and a hydrogen content of 0.5 ppm to 11 ppm is continuously supplied to the melt evaporation section at a feeding speed of 1 g / min to 10 g / min. The aspect of evaporating is mentioned.

また、この方法は、例えば特開2001−335921号公報に記載されている、蒸着槽内に、蒸着材料の溶融蒸発部と、その表面に蒸着材料が蒸着される被処理物を収容するためのメッシュで形成された筒型バレルを備えた蒸着被膜形成装置であって、水平方向の回転軸線を中心に回転自在とした支持部材の回転軸線の周方向の外方に筒型バレルが公転自在に支持されており、支持部材を回転させることによって、支持部材の回転軸線を中心に公転運動する筒型バレルと蒸発部の間の距離を可変自在としつつ、ワイヤー状蒸着材料を加熱した溶融蒸発部に連続供給しながら蒸発させることで被処理物の表面に蒸着被膜を形成することができる蒸着被膜形成装置を用いることにより容易に実施することができる。   Moreover, this method is described in, for example, Japanese Patent Application Laid-Open No. 2001-335921. In the vapor deposition tank, a melt evaporation part of the vapor deposition material and an object to be vapor deposited on the surface thereof are accommodated. A vapor deposition film forming apparatus having a cylindrical barrel formed of a mesh, wherein the cylindrical barrel can revolve outwardly in the circumferential direction of the rotation axis of a support member that is rotatable about a horizontal rotation axis. A melt evaporation part that heats the wire vapor deposition material while making the distance between the cylindrical barrel that revolves around the rotation axis of the support member and the evaporation part variable by being supported and rotating the support member It can be easily carried out by using a vapor deposition film forming apparatus capable of forming a vapor deposition film on the surface of the object to be processed by evaporating while continuously supplying to the substrate.

図1は、特開2001−335921号公報に記載されている上記の蒸着被膜形成装置の一実施形態の蒸着槽内の模式的正面図(一部透視図)である。図略の真空排気系に連なる蒸着槽1の内部の上方には、水平方向の回転軸線上の回転シャフト6を中心に回転自在とした支持部材7が2個併設されており、この支持部材7の回転シャフト6の周方向の外方に6個のステンレス製のメッシュ金網で形成された円筒形バレル5が支持軸8によって公転自在に環状に支持されている。また、蒸着槽1の内部の下方には、蒸着材料を蒸発させる溶融蒸発部であるボート2が、支持テーブル3上に立設されたボート支持台4上に複数個配置されている。支持テーブル3の下方内部には、蒸着材料のワイヤー9が繰り出しリール10に巻回保持されている。蒸着材料のワイヤー9の先端はボート2の内面に向かって臨ませた耐熱性の保護チューブ11によってボート2の上方に案内されている。保護チューブ11の一部には切り欠き窓12が設けられており、この切り欠き窓12に対応して設けられた繰り出しギア13が蒸着材料のワイヤー9に直接接触し、蒸着材料のワイヤー9を繰り出すことによってボート2内に蒸着材料が絶えず供給されるように構成され、蒸着材料のワイヤー9の繰り出し速度を調節することで蒸着被膜の成膜速度を自在に制御することができる。また、回転シャフト6を中心に支持部材7を回転させると(図1矢印参照)、支持部材7の回転シャフト6の周方向の外方に支持軸8によって支持されている円筒形バレル5は、これに対応して、回転シャフト6を中心に公転運動する。その結果、個々の円筒形バレルと支持部材の下方に配置された蒸発部との間の距離が変動することになり、以下の効果が発揮される。即ち、支持部材7の下部に位置した円筒形バレルは蒸発部に接近している。従って、この円筒形バレルに収容された被処理物30に対しては、その表面に蒸着被膜が効率よく形成される。一方、蒸発部から遠ざかった円筒形バレルに収容された被処理物は、蒸発部から遠ざかった分だけ加熱状態から開放されて冷却される。従って、この間、その表面に形成された蒸着被膜の軟化が抑制される。このように、この蒸着被膜形成装置を用いれば、蒸着被膜の効率的形成と形成された蒸着被膜の軟化抑制を同時に達成することが可能となる。   FIG. 1 is a schematic front view (partially perspective view) inside a vapor deposition tank of one embodiment of the vapor deposition film forming apparatus described in JP-A-2001-335921. Two support members 7 that are rotatable around a rotation shaft 6 on a horizontal rotation axis are provided above the inside of the vapor deposition tank 1 connected to a vacuum exhaust system (not shown). A cylindrical barrel 5 formed of six stainless steel mesh wire nets is supported in an annular manner by a support shaft 8 so as to revolve on the outer side in the circumferential direction of the rotary shaft 6. A plurality of boats 2, which are melting and evaporating portions for evaporating the vapor deposition material, are arranged on a boat support base 4 standing on a support table 3 below the inside of the vapor deposition tank 1. Inside the support table 3, a wire 9 made of vapor deposition material is wound and held on a supply reel 10. The tip of the wire 9 of vapor deposition material is guided above the boat 2 by a heat-resistant protective tube 11 facing the inner surface of the boat 2. A cutout window 12 is provided in a part of the protective tube 11, and a feeding gear 13 provided corresponding to the cutout window 12 is in direct contact with the vapor deposition material wire 9, so that the vapor deposition material wire 9 is connected. By being drawn out, the vapor deposition material is constantly supplied into the boat 2, and the film formation rate of the vapor deposition film can be freely controlled by adjusting the feed rate of the wire 9 of the vapor deposition material. When the support member 7 is rotated around the rotation shaft 6 (see the arrow in FIG. 1), the cylindrical barrel 5 supported by the support shaft 8 on the outer side of the rotation shaft 6 of the support member 7 in the circumferential direction is In response to this, a revolving motion is performed around the rotating shaft 6. As a result, the distance between the individual cylindrical barrels and the evaporating part disposed below the support member varies, and the following effects are exhibited. That is, the cylindrical barrel located at the lower part of the support member 7 is close to the evaporation part. Therefore, a vapor deposition film is efficiently formed on the surface of the workpiece 30 accommodated in the cylindrical barrel. On the other hand, the object to be processed accommodated in the cylindrical barrel away from the evaporator is released from the heating state and cooled by the distance away from the evaporator. Therefore, softening of the vapor deposition film formed on the surface is suppressed during this time. Thus, if this vapor deposition film forming apparatus is used, it becomes possible to achieve efficient formation of a vapor deposition film and suppression of softening of the formed vapor deposition film simultaneously.

本発明において、被処理物の表面に金属被膜を蒸着形成する際の蒸着槽内全圧に対する希ガス分圧の割合を0.2〜0.8と規定するのは、0.2未満であると蒸着形成される金属被膜の緻密性を向上させることができないことで金属被膜の耐食性の向上を図ることができない恐れがある一方、0.8を超えると蒸着槽内の蒸着制御ガスの存在割合が少なすぎて金属蒸着材料の酸化や蒸着形成された金属被膜の酸化を十分に阻止することができないことで密着性に優れた金属被膜を蒸着形成することができない恐れがあるからである。被処理物の表面に金属被膜を蒸着形成する際の蒸着槽内全圧に対する希ガス分圧の割合を0.2以上に維持することで蒸着形成される金属被膜の緻密性を向上させることができる理由は明らかでないが、蒸着槽内に多量に存在する化学的に不活性な希ガスがグロー放電によるプラズマ発生の安定化に寄与しているのではないかと推察される。なお、希ガスは、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドンのいずれを用いてもよいが、ヘリウム、ネオン、アルゴン、キセノンを好適に用いることができる。蒸着槽内の希ガス分圧と蒸着制御ガス分圧の比(希ガス分圧/蒸着制御ガス分圧)は0.3〜3.0とすることが望ましい。0.3未満であると蒸着槽内の希ガスの存在割合が少なすぎて蒸着形成される金属被膜の緻密性を向上させることができないことで金属被膜の耐食性の向上を図ることができない恐れがある一方、3.0を超えると蒸着槽内の蒸着制御ガスの存在割合が少なすぎて金属蒸着材料の酸化や蒸着形成された金属被膜の酸化を十分に阻止することができないことで密着性に優れた金属被膜を蒸着形成することができない恐れがあるからである。   In the present invention, the ratio of the rare gas partial pressure to the total pressure in the vapor deposition tank when the metal film is vapor-deposited on the surface of the object to be treated is defined as 0.2 to 0.8, which is less than 0.2. However, if the density of the metal film formed by vapor deposition cannot be improved, the corrosion resistance of the metal film may not be improved. This is because there is a possibility that the metal film having excellent adhesion cannot be formed by vapor deposition because the metal deposition material cannot be sufficiently prevented from being oxidized or the metal film formed by vapor deposition cannot be sufficiently oxidized. By maintaining the ratio of the rare gas partial pressure with respect to the total pressure in the vapor deposition tank when the metal film is vapor-deposited on the surface of the object to be processed, the denseness of the metal film formed by vapor deposition can be improved. The reason for this is not clear, but it is presumed that a chemically inert inert gas present in a large amount in the vapor deposition tank may contribute to stabilization of plasma generation by glow discharge. As the rare gas, any of helium, neon, argon, krypton, xenon, and radon may be used, but helium, neon, argon, and xenon can be preferably used. The ratio of the rare gas partial pressure in the vapor deposition tank to the vapor deposition control gas partial pressure (rare gas partial pressure / vapor deposition control gas partial pressure) is preferably 0.3 to 3.0. If the ratio is less than 0.3, the presence ratio of the rare gas in the vapor deposition tank may be too small to improve the denseness of the metal film formed by vapor deposition, so that the corrosion resistance of the metal film may not be improved. On the other hand, if it exceeds 3.0, the ratio of the deposition control gas in the deposition tank is too small to sufficiently prevent the oxidation of the metal deposition material and the oxidation of the deposited metal film, thereby improving the adhesion. This is because an excellent metal film may not be formed by vapor deposition.

蒸着槽内全圧に対する希ガス分圧の割合を0.2〜0.8に維持する方法としては、例えば希ガスを300mL/分以上の流量で蒸着槽内に連続的乃至断続的に導入する方法が挙げられ、希ガスの導入流量を多くすることによりその分圧の割合を高めることができる(従って希ガスの導入流量は500mL/分以上が望ましく700mL/分以上がより望ましい)。なお、希ガスの導入流量の上限は一般的には1000mL/分である(蒸着槽の体積や排気速度などに依存する)。蒸着槽内を所定の圧力に維持するためには、希ガスの導入流量は例えばマスフローコントローラーによって制御することが望ましい。蒸着槽内全圧は0.1Pa〜3.0Paとすることが望ましく、0.3Pa〜1.5Paとすることがより望ましい。0.1Pa未満であると蒸着形成される金属被膜の緻密性を向上させることができないことで金属被膜の耐食性の向上を図ることができない恐れがある一方、3.0Paを超えると金属粒子の平均自由行程が短くなることで蒸着形成される金属被膜の膜厚が薄くなってしまう傾向にあるからである。   As a method for maintaining the ratio of the rare gas partial pressure with respect to the total pressure in the vapor deposition tank to 0.2 to 0.8, for example, the rare gas is continuously or intermittently introduced into the vapor deposition tank at a flow rate of 300 mL / min or more. The ratio of the partial pressure can be increased by increasing the introduction flow rate of the rare gas (thus, the introduction flow rate of the rare gas is preferably 500 mL / min or more and more preferably 700 mL / min or more). In addition, the upper limit of the introduction flow rate of the rare gas is generally 1000 mL / min (depending on the volume of the vapor deposition tank, the exhaust speed, etc.). In order to maintain the inside of the vapor deposition tank at a predetermined pressure, the introduction flow rate of the rare gas is preferably controlled by, for example, a mass flow controller. The total pressure in the vapor deposition tank is preferably 0.1 Pa to 3.0 Pa, and more preferably 0.3 Pa to 1.5 Pa. If it is less than 0.1 Pa, the metal film formed by vapor deposition may not be able to improve the denseness of the metal film, so that the corrosion resistance of the metal film may not be improved. This is because the thickness of the metal film formed by vapor deposition tends to be reduced due to the shorter free stroke.

なお、本発明の方法によって緻密性の向上が図られた金属被膜に対してピーニング処理を行って被膜表面の平滑化と空隙の封隙を行うことで、その特性の向上を図ってもよい。ピーニング処理は、例えば、投射材として平均粒径が80μm〜200μm(望ましくは100μm〜150μm)でモース硬度が3〜8のガラスビーズやスチールボールなどを使用し、0.01MPa〜0.5MPaの投射圧で被膜に対して1分間〜1時間程度行えばよい。ピーニング処理が不十分であると被膜表面の平滑化と空隙の封隙が十分に行われない恐れがある一方、過剰であると被膜が磁石表面から剥れてしまったりする恐れがあるので注意を要する。ピーニング処理に使用する装置は、投射ノズルから投射材を磁石に対して投射することができるものであれば特段制限されるものではなく、例えば特開2001−341075号公報に記載のブラスト加工装置などを好適に使用することができる。投射ノズルと磁石の距離は80mm〜150mmとすることが望ましい。   In addition, the metal film in which the denseness is improved by the method of the present invention may be subjected to peening treatment to smooth the surface of the film and to seal the voids, thereby improving the characteristics. In the peening treatment, for example, glass beads or steel balls having an average particle diameter of 80 μm to 200 μm (preferably 100 μm to 150 μm) and a Mohs hardness of 3 to 8 are used as the projection material, and a projection of 0.01 MPa to 0.5 MPa. What is necessary is just to perform about 1 minute-1 hour with respect to a film with a pressure. If the peening treatment is insufficient, the coating surface may not be smoothed and the gaps may not be sufficiently sealed, whereas if the coating is excessive, the coating may be peeled off from the magnet surface. Cost. The apparatus used for the peening process is not particularly limited as long as it can project the projection material from the projection nozzle onto the magnet. For example, a blasting apparatus described in JP-A-2001-34175 Can be preferably used. The distance between the projection nozzle and the magnet is desirably 80 mm to 150 mm.

本発明における被処理物が希土類系永久磁石の場合、希土類元素(R)は、Nd、Pr、Dy、Ho、Tb、Smのうち少なくとも1種を含んでいてもよく、さらに、La、Ce、Gd、Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1種を含んでいてもよい。また、通常はRのうち1種をもって足りるが、実用上は2種以上の混合物(ミッシュメタルやジジムなど)を入手上の便宜などの理由によって用いることもできる。希土類系永久磁石におけるRの含量は、10原子%未満であるとα−Fe相が析出するため、高磁気特性、特に高い保磁力(Hcj)が得られず、一方、30原子%を越えるとRリッチな非磁性相が多くなり、残留磁束密度(B)が低下して優れた特性の永久磁石が得られないので、Rの含量は組成の10原子%〜30原子%であることが望ましい。 When the object to be treated in the present invention is a rare earth permanent magnet, the rare earth element (R) may contain at least one of Nd, Pr, Dy, Ho, Tb, and Sm, and further La, Ce, At least one of Gd, Er, Eu, Tm, Yb, Lu, and Y may be included. Usually, one type of R is sufficient, but in practice, a mixture of two or more types (such as misch metal and didymium) can also be used for reasons of convenience. When the content of R in the rare earth-based permanent magnet is less than 10 atomic%, the α-Fe phase precipitates, so that high magnetic properties, particularly high coercive force (H cj ) cannot be obtained, while it exceeds 30 atomic%. And the R-rich non-magnetic phase increases, and the residual magnetic flux density (B r ) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, the R content should be 10 atomic% to 30 atomic% of the composition. Is desirable.

Feの含量は、65原子%未満であるとBが低下し、80原子%を越えると高いHcjが得られないので、65原子%〜80原子%の含有が望ましい。また、Feの一部をCoで置換することによって、得られる磁石の磁気特性を損なうことなしに温度特性を改善することができるが、Co置換量がFeの20原子%を越えると、磁気特性が劣化するので望ましくない。Co置換量が5原子%〜15原子%の場合、Bは置換しない場合に比較して増加するため、高磁束密度を得るのに望ましい。 The content of Fe is to decrease B r is less than 65 atomic%, since exceeding the high H cj 80 atomic% can not be obtained, is preferable content of 65 atomic% to 80 atomic%. Further, by substituting a part of Fe with Co, the temperature characteristics can be improved without impairing the magnetic characteristics of the obtained magnet. However, if the Co substitution amount exceeds 20 atomic%, the magnetic characteristics will be improved. Is undesirable as it degrades. If Co substitution amount of 5 atomic% to 15 atomic%, B r is to increase as compared with the case where no replacement, desirable to obtain a high magnetic flux density.

Bの含量は、2原子%未満であると菱面体構造が主相となり、高いHcjは得られず、28原子%を越えるとBリッチな非磁性相が多くなり、Bが低下して優れた特性の永久磁石が得られないので、2原子%〜28原子%の含有が望ましい。また、磁石の製造性の改善や低価格化のために、2.0質量%以下のP、2.0質量%以下のSのうち、少なくとも1種、合計量で2.0質量%以下を含有していてもよい。さらに、Bの一部を30質量%以下のCで置換することによって、磁石の耐食性を改善することができる。 If the B content is less than 2 atomic%, the rhombohedral structure becomes the main phase, and high H cj cannot be obtained. If it exceeds 28 atomic%, the B-rich non-magnetic phase increases and Br decreases. Since a permanent magnet having excellent characteristics cannot be obtained, the content is preferably 2 atomic% to 28 atomic%. Moreover, in order to improve the manufacturability and reduce the price of the magnet, at least one of P of 2.0 mass% or less and S of 2.0 mass% or less, and 2.0 mass% or less in total amount. You may contain. Furthermore, the corrosion resistance of the magnet can be improved by substituting a part of B with 30% by mass or less of C.

さらに、Al、Ti、V、Cr、Mn、Bi、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、Zn、Hf、Gaのうち少なくとも1種の添加は、保磁力や減磁曲線の角型性の改善、製造性の改善、低価格化に効果がある。なお、希土類系永久磁石には、R、Fe、B以外に工業的生産上混入不可避な不純物を含有するものでも差し支えない。   Furthermore, at least one of Al, Ti, V, Cr, Mn, Bi, Nb, Ta, Mo, W, Sb, Ge, Sn, Zr, Ni, Si, Zn, Hf, and Ga is added. It is effective in improving the squareness of the demagnetization curve, improving manufacturability, and reducing the price. The rare earth-based permanent magnet may contain impurities inevitable for industrial production in addition to R, Fe, and B.

なお、本発明の方法によって緻密性の向上が図られた金属被膜の表面に、更に別の耐食性被膜を積層形成してもよい。このような構成を採用することにより、金属被膜の特性を増強・補完したり、さらなる機能性を付与したりすることができる。   In addition, another corrosion-resistant film may be laminated on the surface of the metal film whose density has been improved by the method of the present invention. By adopting such a configuration, it is possible to enhance / complement the characteristics of the metal coating or to impart further functionality.

以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。なお、以下の実施例は、例えば、米国特許4770723号公報、米国特許4792368号公報、米国特許5383978号公報に記載されているようにして、ストリップキャスト法により作製した急冷凝固合金を粗粉砕し、微粉砕後に成形、焼結、熱処理、表面加工を行うことによって得られたNd14Fe79Co組成(原子%)の縦50mm×横20mm×幅2mm寸法の焼結磁石(以下、磁石体試験片と称する)を用いて行った。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is limited to the following description and is not interpreted. In the following examples, for example, as described in US Pat. No. 4,770,723, US Pat. No. 4,792,368, US Pat. No. 5,383,978, a rapidly solidified alloy produced by strip casting is roughly pulverized. Sintered magnet (hereinafter referred to as magnet) having dimensions of 50 mm in length, 20 mm in width, and 2 mm in width of Nd 14 Fe 79 B 6 Co 1 composition (atomic%) obtained by forming, sintering, heat treatment, and surface processing after pulverization This was performed using a test piece.

(実験A)
図1に示した蒸着被膜形成装置を用いて磁石体試験片の表面にアルミニウム被膜を蒸着形成した。なお、蒸着槽内に配置した12個の円筒形バレルは、直径110mm×長さ600mmで、ステンレス製メッシュ金網(開口率:約80%、目開きの形状:一辺が10mmの正方形、線幅:2mm)で作製されたものを用いた。
磁石体試験片に対し、サンドブラスト加工を行い、前工程の表面加工で生じた表面の酸化層を除去した。この酸化層が除去された磁石体試験片をそれぞれの円筒形バレル内に45個ずつ収容し、さらに攪拌用メディアとして平均粒径が10mmのセラミックスボール(新東工業社製)を収容し、真空処理室内を全圧が4×10−2Paになるまで真空排気した後、Arガスを全圧が5Paになるように導入し、その後、バレルの回転シャフトを4.5rpmで回転させながら、バイアス電圧−1.0kVの条件下、15分間グロー放電を行って磁石体試験片の表面を清浄化した。
続いて、表1に示す蒸着槽内全圧、アルゴン導入流量にて、バイアス電圧−1.0kVの条件下、バレルの回転シャフトを4.5rpmで回転させながら、直径が1.6mmで水素含有量が5ppmのアルミニウムワイヤー(JIS A1070に準拠したもの)を表1に示す繰り出し速度で加熱した溶融蒸発部に連続供給し、これを蒸発させてイオン化することでイオンプレーティングを行い、磁石体試験片の表面にアルミニウム被膜を蒸着形成した。蒸着処理時における蒸着槽内のアルゴン分圧と水素分圧の測定値、蒸着槽内全圧に対するアルゴン分圧の割合、アルゴン分圧と水素分圧の比を表1に示す。また、磁石体試験片の表面に蒸着形成されたアルミニウム被膜の膜厚と水素含有量を表1に示す。なお、アルゴン分圧と水素分圧の測定は、蒸着槽外壁に直接設置した四重極質量分析計(QIG−066:アネルバ社製)によって行った。アルミニウム被膜の膜厚は磁石体試験片10個の平均値として求めた。アルミニウム被膜の水素含有量は円筒形バレルの外側に固定した3枚のガラスプレートに蒸着形成されたアルミニウム被膜から溶解法にて測定し、その平均値として求めた。
(Experiment A)
An aluminum film was deposited on the surface of the magnet specimen using the deposited film forming apparatus shown in FIG. The twelve cylindrical barrels arranged in the vapor deposition tank have a diameter of 110 mm and a length of 600 mm, and are made of a stainless steel mesh wire mesh (opening ratio: about 80%, opening shape: square with a side of 10 mm, line width: 2 mm) was used.
The magnetic specimen was subjected to sand blasting to remove the oxidized layer on the surface generated by the surface processing in the previous step. Forty-five magnet test specimens from which the oxide layer has been removed are accommodated in each cylindrical barrel, and ceramic balls having an average particle diameter of 10 mm (manufactured by Shinto Kogyo Co., Ltd.) are accommodated as a stirring medium. After evacuating the process chamber to a total pressure of 4 × 10 −2 Pa, Ar gas was introduced so that the total pressure was 5 Pa, and then the bias was applied while rotating the rotating shaft of the barrel at 4.5 rpm. Under the condition of a voltage of −1.0 kV, glow discharge was performed for 15 minutes to clean the surface of the magnet specimen.
Subsequently, with a total pressure in the vapor deposition tank shown in Table 1 and an argon introduction flow rate, a diameter of 1.6 mm was contained while rotating the rotating shaft of the barrel at 4.5 rpm under the condition of a bias voltage of −1.0 kV. A magnet body test is conducted by supplying an aluminum wire of 5 ppm (conforming to JIS A1070) continuously to the melt evaporation section heated at the feeding speed shown in Table 1 and evaporating and ionizing it. An aluminum coating was deposited on the surface of the piece. Table 1 shows the measured values of the argon partial pressure and the hydrogen partial pressure in the vapor deposition tank during the vapor deposition treatment, the ratio of the argon partial pressure to the total pressure in the vapor deposition tank, and the ratio of the argon partial pressure and the hydrogen partial pressure. Table 1 shows the film thickness and hydrogen content of the aluminum coating deposited on the surface of the magnet specimen. In addition, the measurement of the argon partial pressure and the hydrogen partial pressure was performed with a quadrupole mass spectrometer (QIG-066: manufactured by Anerva) directly installed on the outer wall of the vapor deposition tank. The film thickness of the aluminum coating was determined as the average value of 10 magnet body test pieces. The hydrogen content of the aluminum coating was measured by a melting method from the aluminum coating deposited on the three glass plates fixed outside the cylindrical barrel, and the average value was obtained.

次に、磁石体試験片の表面に蒸着形成されたアルミニウム被膜に対し、モース硬度が6で平均粒径が120μmのガラスビーズ(共栄研磨材社製)を用いたショットピーニング処理を、投射圧0.1MPa、投射時間10分間、投射ノズルと磁石体試験片の距離150mmの条件にて行った。こうしてショットピーニング処理を行ったアルミニウム被膜を表面に有する磁石体試験片に対し、恒温恒湿試験機(LH−112:タバイエスペック社製)を用いて、温度80℃×相対湿度90%の湿潤雰囲気に曝露する湿潤試験を行った(条件7で製造されたサンプルについてはショットピーニング処理を行うことによりアルミニウム被膜と磁石体試験片の密着性が悪いことに起因して被膜剥れを起こしたことから湿潤試験は行わなかった)。サンプルを湿潤雰囲気に1000時間曝露した後、発錆の有無を確認してから写真撮影を行い、アルミニウム被膜の表面の錆面積率を画像処理により算出し、錆面積率が1%以下の場合を良好、1%を超える場合を不良と評価した(磁石体試験片2個の平均値)。結果を表2に示す。   Next, a shot peening treatment using a glass bead (manufactured by Kyoei Abrasive Co., Ltd.) having a Mohs hardness of 6 and an average particle size of 120 μm is applied to the aluminum coating formed by vapor deposition on the surface of the magnet specimen. .1 MPa, a projection time of 10 minutes, and the distance between the projection nozzle and the magnet test piece was 150 mm. Using a constant temperature and humidity tester (LH-112: manufactured by Tabai Espec Co., Ltd.), a humid atmosphere having a temperature of 80 ° C. and a relative humidity of 90% is applied to the magnet body test piece having the aluminum coating film subjected to the shot peening treatment on the surface. (Since the sample manufactured under condition 7 was shot peened, the film peeled off due to poor adhesion between the aluminum coating and the magnet specimen) Wet test was not performed). After exposing the sample to a humid atmosphere for 1000 hours, confirm the presence or absence of rusting, take a photograph, calculate the rust area ratio of the surface of the aluminum coating by image processing, and the rust area ratio is 1% or less The case where it exceeded favorable and 1% was evaluated as bad (average value of two magnet body test pieces). The results are shown in Table 2.

以上の結果から明らかなように、磁石体試験片の表面にアルミニウム被膜を蒸着形成する際の蒸着槽内のアルゴンの存在割合の違いによってアルミニウム被膜の耐食性が異なることがわかった。また、条件1と条件5のそれぞれで円筒形バレルの外側に固定したガラスプレートの表面に蒸着形成されたアルミニウム被膜の表面の走査型電子顕微鏡写真(ショットピーニング処理前のもの)を示す図2と図3から明らかなように、蒸着槽内全圧に対するアルゴン分圧の割合を高めて蒸着処理を行うことで、蒸着形成されるアルミニウム被膜を構成する柱状組織を密に成長させることができることによって被膜の緻密性が向上することがわかった。従って、条件5で蒸着形成されたアルミニウム被膜が条件1で蒸着形成されたアルミニウム被膜よりも耐食性が優れるのは、アルミニウム被膜の緻密性の違いによると推察された。この蒸着形成されるアルミニウム被膜の緻密性の向上に基づく耐食性の向上は、蒸着処理時の蒸着槽内全圧に対するアルゴン分圧の割合が少なくとも0.2〜0.8の範囲で認められた(上記の条件3〜条件6での実験と別途の蒸着槽内全圧に対するアルゴン分圧の割合が0.8の条件での実験による)。また、こうして蒸着形成されるアルミニウム被膜中に含まれる水素含有量は50ppm〜200ppmの範囲にあることがわかった。   As is clear from the above results, it was found that the corrosion resistance of the aluminum coating differs depending on the difference in the proportion of argon in the vapor deposition tank when the aluminum coating is deposited on the surface of the magnet specimen. FIG. 2 shows a scanning electron micrograph (before shot peening) of the surface of the aluminum film deposited on the surface of the glass plate fixed on the outside of the cylindrical barrel in each of conditions 1 and 5. As can be seen from FIG. 3, by increasing the ratio of the argon partial pressure to the total pressure in the vapor deposition tank and performing the vapor deposition treatment, the columnar structure constituting the vapor deposited aluminum film can be densely grown. It has been found that the denseness of the is improved. Therefore, it was inferred that the aluminum film formed by vapor deposition under condition 5 had better corrosion resistance than the aluminum film vapor-deposited by condition 1 due to the difference in the denseness of the aluminum film. The improvement of the corrosion resistance based on the improvement of the denseness of the aluminum film formed by vapor deposition was recognized when the ratio of the partial pressure of argon with respect to the total pressure in the vapor deposition tank during the vapor deposition treatment was at least 0.2 to 0.8 ( (Based on the experiment under the above conditions 3 to 6 and the experiment under the condition that the ratio of the partial pressure of argon to the total pressure in the vapor deposition tank is 0.8). Moreover, it turned out that the hydrogen content contained in the aluminum film formed by vapor deposition in this way exists in the range of 50 ppm-200 ppm.

(実験B)
蒸着制御ガスを含有するワイヤー状金属蒸着材料として、マグネシウムを6質量%含有し、水素含有量が1ppmのアルミニウム合金ワイヤーを用いたこと以外は実験Aと同様の実験を行ったところ、程度の違いはあるが、少なくとも蒸着処理時の蒸着槽内全圧に対するアルゴン分圧の割合が0.2〜0.8の範囲で蒸着形成されるアルミニウム被膜の緻密性の向上に基づく耐食性の向上効果が認められた。
(Experiment B)
When the same experiment as experiment A was conducted except that an aluminum alloy wire containing 6 mass% magnesium and having a hydrogen content of 1 ppm was used as the wire-like metal deposition material containing the deposition control gas, the difference in degree However, at least the ratio of the argon partial pressure with respect to the total pressure in the vapor deposition tank during the vapor deposition treatment is in the range of 0.2 to 0.8. It was.

本発明は、希土類系永久磁石などの被処理物の表面に蒸着形成される金属被膜の緻密性を向上させる方法を提供することができる点において産業上の利用可能性を有する。   INDUSTRIAL APPLICABILITY The present invention has industrial applicability in that it can provide a method for improving the denseness of a metal film deposited on the surface of an object to be processed such as a rare earth permanent magnet.

1 蒸着槽
2 ボート(溶融蒸発部)
3 支持テーブル
4 ボート支持台
5 円筒形バレル
6 回転シャフト
7 支持部材
8 支持軸
9 蒸着材料のワイヤー
10 繰り出しリール
11 耐熱性の保護チューブ
12 切り欠き窓
13 繰り出しギア
30 被処理物
1 Deposition tank 2 Boat (melting evaporation part)
DESCRIPTION OF SYMBOLS 3 Support table 4 Boat support stand 5 Cylindrical barrel 6 Rotating shaft 7 Support member 8 Support shaft 9 Wire of vapor deposition material 10 Feeding reel 11 Heat-resistant protective tube 12 Notch window 13 Feeding gear 30 Workpiece

Claims (10)

蒸着槽内において加熱した溶融蒸発部に蒸着制御ガスを含有するワイヤー状金属蒸着材料を連続供給しながら蒸発させることで、蒸着槽内の少なくとも溶融蒸発部と被処理物の近傍に蒸着制御ガスを供給した状態で被処理物の表面に金属被膜を蒸着形成する際、蒸着槽内全圧に対する希ガス分圧の割合を0.2〜0.8に維持して蒸着処理を行うことを特徴とする蒸着形成される金属被膜の緻密性を向上させる方法。   By evaporating while evaporating while continuously supplying the wire-like metal vapor deposition material containing the vapor deposition control gas to the melt evaporation part heated in the vapor deposition tank, the vapor deposition control gas is placed at least in the vicinity of the melt evaporation part and the object to be processed in the vapor deposition tank. When forming a metal film on the surface of the object to be processed while being supplied, the ratio of the rare gas partial pressure to the total pressure in the evaporation tank is maintained at 0.2 to 0.8, and the evaporation process is performed. A method for improving the denseness of a metal film formed by vapor deposition. 300mL/分以上の流量で希ガスを蒸着槽内に導入することによって蒸着槽内全圧に対する希ガス分圧の割合を維持することを特徴とする請求項1記載の方法。   The method according to claim 1, wherein the ratio of the rare gas partial pressure to the total pressure in the vapor deposition tank is maintained by introducing the rare gas into the vapor deposition tank at a flow rate of 300 mL / min or more. 蒸着槽内全圧を0.1Pa〜3.0Paとすることを特徴とする請求項1または2記載の方法。   The method according to claim 1 or 2, wherein the total pressure in the vapor deposition tank is 0.1 Pa to 3.0 Pa. 希ガスがヘリウム、ネオン、アルゴン、キセノンから選ばれる少なくとも1種であることを特徴とする請求項1乃至3のいずれかに記載の方法。   The method according to any one of claims 1 to 3, wherein the rare gas is at least one selected from helium, neon, argon, and xenon. 蒸着制御ガスが水素であることを特徴とする請求項1乃至4のいずれかに記載の方法。   The method according to claim 1, wherein the deposition control gas is hydrogen. 蒸着槽内の希ガス分圧と蒸着制御ガス分圧の比(希ガス分圧/蒸着制御ガス分圧)を0.3〜3.0とすることを特徴とする請求項1乃至5のいずれかに記載の方法。   6. The ratio of the rare gas partial pressure in the vapor deposition tank to the vapor deposition control gas partial pressure (rare gas partial pressure / vapor deposition control gas partial pressure) is set to 0.3 to 3.0. The method of crab. 金属がアルミニウムまたはその合金であることを特徴とする請求項1乃至6のいずれかに記載の方法。   7. The method according to claim 1, wherein the metal is aluminum or an alloy thereof. 被処理物が希土類系永久磁石であることを特徴とする請求項1乃至7のいずれかに記載の方法。   8. The method according to claim 1, wherein the object to be processed is a rare earth permanent magnet. 蒸着槽内において加熱した溶融蒸発部に蒸着制御ガスを含有するワイヤー状金属蒸着材料を連続供給しながら蒸発させることで、蒸着槽内の少なくとも溶融蒸発部と被処理物である希土類系永久磁石の近傍に蒸着制御ガスを供給した状態で希土類系永久磁石の表面に金属被膜を蒸着形成することによる耐食性希土類系永久磁石の製造方法であって、蒸着槽内全圧に対する希ガス分圧の割合を0.2〜0.8に維持して蒸着処理を行うことを特徴とする製造方法。   By evaporating while continuously supplying the wire-like metal vapor deposition material containing the vapor deposition control gas to the melt evaporation part heated in the vapor deposition tank, at least the melt evaporation part in the vapor deposition tank and the rare earth permanent magnet that is the object to be processed A method for producing a corrosion-resistant rare earth permanent magnet by depositing a metal film on the surface of a rare earth permanent magnet with a vapor deposition control gas supplied in the vicinity, wherein the ratio of the rare gas partial pressure to the total pressure in the vapor deposition tank is A manufacturing method characterized by carrying out a vapor deposition treatment while maintaining the pressure at 0.2 to 0.8. 請求項9記載の製造方法によって製造されてなり、金属被膜中に含まれる蒸着制御ガス量が50ppm〜200ppmであることを特徴とする耐食性希土類系永久磁石。   A corrosion-resistant rare earth permanent magnet manufactured by the manufacturing method according to claim 9, wherein the amount of vapor deposition control gas contained in the metal film is 50 ppm to 200 ppm.
JP2010018475A 2010-01-29 2010-01-29 Method for improving denseness of metal film formed by vapor deposition Active JP5423438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010018475A JP5423438B2 (en) 2010-01-29 2010-01-29 Method for improving denseness of metal film formed by vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010018475A JP5423438B2 (en) 2010-01-29 2010-01-29 Method for improving denseness of metal film formed by vapor deposition

Publications (2)

Publication Number Publication Date
JP2011157572A true JP2011157572A (en) 2011-08-18
JP5423438B2 JP5423438B2 (en) 2014-02-19

Family

ID=44589774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010018475A Active JP5423438B2 (en) 2010-01-29 2010-01-29 Method for improving denseness of metal film formed by vapor deposition

Country Status (1)

Country Link
JP (1) JP5423438B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102310038A (en) * 2011-09-29 2012-01-11 华东交通大学 Method for improving surface hydrophobicity of metal film
US10208376B2 (en) 2014-11-05 2019-02-19 Yantai Shougang Magnetic Materials Inc. Apparatus and method for coating of small Nd-Fe-B magnets

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032062A (en) * 1999-05-14 2001-02-06 Sumitomo Special Metals Co Ltd Surface treatment, surface treating device, vapor deposition material and surface-treated rare earth permanent magnet
JP2005191276A (en) * 2003-12-25 2005-07-14 Neomax Co Ltd Rare earth-based permanent magnet excellent in saline water resistance, and saline water resistance imparting method thereto
JP2006274424A (en) * 2005-03-30 2006-10-12 Neomax Co Ltd METHOD FOR DEPOSITING VAPOR-DEPOSITED FILM OF Al OR Al ALLOY ON THE SURFACE OF WORK

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032062A (en) * 1999-05-14 2001-02-06 Sumitomo Special Metals Co Ltd Surface treatment, surface treating device, vapor deposition material and surface-treated rare earth permanent magnet
JP2005191276A (en) * 2003-12-25 2005-07-14 Neomax Co Ltd Rare earth-based permanent magnet excellent in saline water resistance, and saline water resistance imparting method thereto
JP2006274424A (en) * 2005-03-30 2006-10-12 Neomax Co Ltd METHOD FOR DEPOSITING VAPOR-DEPOSITED FILM OF Al OR Al ALLOY ON THE SURFACE OF WORK

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102310038A (en) * 2011-09-29 2012-01-11 华东交通大学 Method for improving surface hydrophobicity of metal film
US10208376B2 (en) 2014-11-05 2019-02-19 Yantai Shougang Magnetic Materials Inc. Apparatus and method for coating of small Nd-Fe-B magnets

Also Published As

Publication number Publication date
JP5423438B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP3897724B2 (en) Manufacturing method of micro, high performance sintered rare earth magnets for micro products
JP3801418B2 (en) Surface treatment method
CN101563737B (en) Permanent magnet and method for producing permanent magnet
JP5929766B2 (en) R-T-B sintered magnet
JP4591631B2 (en) Corrosion-resistant magnet and manufacturing method thereof
WO2007102391A1 (en) R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
JP5831451B2 (en) Method for producing RTB-based sintered magnet
WO2004114333A1 (en) Rare earth - iron - boron based magnet and method for production thereof
JP5760400B2 (en) Method for producing R-Fe-B sintered magnet
JP4241901B2 (en) Rare earth permanent magnet manufacturing method
JP5056267B2 (en) Rare earth permanent magnet having Al coating containing Mg on its surface and method for producing the same
JP5423438B2 (en) Method for improving denseness of metal film formed by vapor deposition
JP2006118055A (en) Surface treatment apparatus and surface treated rare earth based permanent magnet
JP5381577B2 (en) Method for producing corrosion-resistant R—Fe—B sintered magnet
JP2005209669A (en) Rare-earth magnet and magnetic circuit using it
JP2005191276A (en) Rare earth-based permanent magnet excellent in saline water resistance, and saline water resistance imparting method thereto
JP5326730B2 (en) Method for producing rare earth permanent magnets with excellent salt water resistance
JP5691226B2 (en) Method for producing rare earth permanent magnets having a deposited film of aluminum or an alloy thereof on the surface
JP2007154310A (en) Vacuum deposition method for forming alloy film on surface of piece by vapor deposition
JP4691833B2 (en) Method for producing rare earth-based permanent magnet having metal-deposited coating on its surface
JP4375131B2 (en) Method for producing oxidation-resistant HDDR magnet powder having excellent magnetic properties
JP2005105311A (en) SURFACE TREATMENT METHOD FOR OBJECT TO BE TREATED, SURFACE-TREATED RARE EARTH PERMANENT MAGNET AND METHOD FOR INCREASING HARDNESS OF Al COATING FILM
JP2007273850A (en) Magnet member, and manufacturing method thereof
JP4483574B2 (en) Deposition film forming method
JP2010245394A (en) METHOD OF IMPROVING SALINE WATER RESISTANCE OF RARE EARTH-BASED PERMANENT MAGNET HAVING VAPOR-DEPOSITED Al FILM CONTAINING Mg ON SURFACE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5423438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350