JP2011157251A - Reinforcing fiber material, fiber-reinforced ceramic composite materials using same, and method for producing them - Google Patents

Reinforcing fiber material, fiber-reinforced ceramic composite materials using same, and method for producing them Download PDF

Info

Publication number
JP2011157251A
JP2011157251A JP2010022627A JP2010022627A JP2011157251A JP 2011157251 A JP2011157251 A JP 2011157251A JP 2010022627 A JP2010022627 A JP 2010022627A JP 2010022627 A JP2010022627 A JP 2010022627A JP 2011157251 A JP2011157251 A JP 2011157251A
Authority
JP
Japan
Prior art keywords
fiber
carbon
reinforcing fiber
resin
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010022627A
Other languages
Japanese (ja)
Other versions
JP5263980B2 (en
Inventor
Koichi Machida
晃一 町田
Koji Enomoto
浩二 榎本
Shinichiro Aonuma
伸一朗 青沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2010022627A priority Critical patent/JP5263980B2/en
Publication of JP2011157251A publication Critical patent/JP2011157251A/en
Application granted granted Critical
Publication of JP5263980B2 publication Critical patent/JP5263980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To impart a slip function to the fibers of a reinforcing fiber aggregate by filling the space among the fibers with a layered-structure material and to thereby improve the breakdown energy of a fiber-reinforced ceramic composite material containing the same. <P>SOLUTION: The space formed inside a reinforcing fiber aggregate used in a fiber-reinforced ceramic composite material is filled with a layered-structure material, desirably, a graphitic layered carbon, more desirably, the surface of the fiber aggregate is covered with a graphitic layered carbon material, and further it is coated with an isotropic carbon material to form a reinforcing fiber material having a layered structure having a slip function and containing many interfaces. Therefore, a fiber-reinforced ceramic composite material containing the reinforcing fiber material can exhibit more improved breakdown energy. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、セラミックスまたは金属材料からなる強化用繊維材料とこれを用いた繊維強化セラミックス複合材料およびこれらの製造方法に関する。   The present invention relates to a reinforcing fiber material made of ceramics or a metal material, a fiber-reinforced ceramic composite material using the same, and a method for producing them.

セラミックス材料は、一般的に金属材料に比べて軽量、高剛性、高耐熱性という優れた特性を有する一方で、脆性材料であるという弱点を有する。この弱点を克服するため、例えば、セラミックスの繊維とセラミックスのマトリックス部からなる機械的強度が強化された繊維強化セラミックス複合材料が広く知られている。 Ceramic materials generally have excellent characteristics such as light weight, high rigidity, and high heat resistance as compared with metal materials, but have a weak point that they are brittle materials. In order to overcome this weak point, for example, a fiber reinforced ceramic composite material having a strengthened mechanical strength composed of ceramic fibers and a ceramic matrix portion is widely known.

例えば特許文献1には、複数のセラミックス繊維を緻密に束ねて形成した繊維束をセラミックスマトリックス中に分散させ、繊維束の表面と断面はTiを含有するコーティング層またはCとBNを含む層を形成することで、マクロな破壊進展抵抗の大きい高靭性の複合材料が得られるという技術が開示されている。 For example, in Patent Document 1, a fiber bundle formed by densely bundling a plurality of ceramic fibers is dispersed in a ceramic matrix, and the surface and cross section of the fiber bundle forms a coating layer containing Ti or a layer containing C and BN. Thus, a technique has been disclosed in which a high-toughness composite material having a large resistance to fracture propagation is obtained.

また特許文献2には、耐環境性に優れたセラミックス基繊維複合材料を提供する目的でプリカーサ含浸・焼成法により形成された炭化ケイ素を主成分とするマトリックスと、このマトリックス中に含有される繊維と、この繊維の外周に、マトリックス中に進展してきたクラックの進展する方向を変換させるすべり機能を有する層、及び耐環境性機能層を設けた複合化された繊維から構成することで、複合材料に過大な応力が作用した場合でも、上記すべり機能層におけるすべりや剥離が両者の歪差を吸収するため、クラックの進展を偏向させることができ、また繊維の引抜き抵抗が寄与して破壊抵抗を増大させるため靭性値が高い複合材料が得られるという技術が開示されている。 Patent Document 2 discloses a matrix mainly composed of silicon carbide formed by a precursor impregnation / firing method for the purpose of providing a ceramic-based fiber composite material having excellent environmental resistance, and fibers contained in the matrix. And a composite material in which the outer periphery of the fiber is provided with a composite fiber provided with a layer having a sliding function for changing the progress direction of a crack that has progressed in the matrix, and an environment-resistant functional layer. Even when an excessive stress is applied to the surface, the slip and peeling in the above-mentioned slip function layer absorb the difference in strain between them, so that the progress of cracks can be deflected, and the pulling resistance of the fiber contributes to the breaking resistance. A technique is disclosed in which a composite material having a high toughness value can be obtained because of an increase.

さらに特許文献3には、繊維プリフォームにSiC又はCコーティング層を直接形成することにより、SiC繊維又はC繊維とSiCマトリックスからなる複合体(以下、「SiC繊維又はC繊維/SiCマトリックス」と示す。)の界面に層間剥離のないSiC又はC繊維/SiC複合材料を得るために、反応器に収容されたSiC又はC繊維プリフォームの反応ガス供給側と排気側とを同じ一定圧力に維持し、メタン,エタン,プロパン等の炭化水素ガスを供給しながら、減圧高温下で炭化水素ガスを熱分解し、熱分解生成物であるCをSiC又はC繊維の周りに析出させるという技術が開示されている。 Further, Patent Document 3 shows a composite composed of SiC fibers or C fibers and a SiC matrix (hereinafter referred to as “SiC fibers or C fibers / SiC matrix”) by directly forming a SiC or C coating layer on the fiber preform. In order to obtain a SiC or C fiber / SiC composite material without delamination at the interface, the reaction gas supply side and the exhaust side of the SiC or C fiber preform contained in the reactor are maintained at the same constant pressure. A technique is disclosed in which hydrocarbon gas such as methane, ethane, propane, etc. is supplied while pyrolyzing the hydrocarbon gas under reduced pressure and high temperature, and C as a pyrolysis product is precipitated around SiC or C fibers. ing.

特開平8−143376号公報JP-A-8-143376 特開2001−48665号公報JP 2001-48665 A 特開2002−211985公報Japanese Patent Laid-Open No. 2002-211985

特許文献1に開示されている技術には、繊維単体に直接コーティングすることと、さらにコーティングを行うに際してスパッタ法を用いることが記載されているが、この場合マクロな破壊進展抵抗を有するのは繊維表面の1層のみしかないので、この点で十分な効果が得られているとは言い難い。   In the technique disclosed in Patent Document 1, it is described that a single fiber is directly coated, and that a sputtering method is used for further coating. In this case, a fiber having a macro fracture propagation resistance is used. Since there is only one layer on the surface, it cannot be said that a sufficient effect is obtained in this respect.

また、特許文献2に開示されている技術は、繊維表面にCVD法で膜を形成することとさらに複数の膜を形成することで多機能性を持たせるとあるが、この場合、繊維単体に対してすべり機能を有する層を形成するので、例えば繊維が多数集まってできている繊維集合体に対してこのような処理を行うと、繊維単体に均一かつ確実に膜を形成することが困難で、実用上も問題があると考えられる。 Moreover, although the technique currently disclosed by patent document 2 has multi-functionality by forming a film | membrane by the CVD method and further forming a several film | membrane on the fiber surface, in this case, it is a fiber single-piece | unit. On the other hand, since a layer having a sliding function is formed, for example, when such a treatment is performed on a fiber assembly in which a large number of fibers are gathered, it is difficult to form a film uniformly and surely on a single fiber. It is considered that there is a problem in practical use.

さらに、特許文献3に開示されている技術は、セラミックスの破壊エネルギーを向上させるため、炭素繊維で3次元的なプリフォームを形成した後にCVI法で、この破壊エネルギーを消費させるすべり機能を有するすべり層を形成し、これにより、直接炭素繊維に対してすべり層を形成したのち、形状を作製するよりも簡易に行え、すべり層と繊維表面の界面に繊維を成形する際に生じる剥離がなく、より生産性の向上やコスト低減の効果が見込めるとしている。しかし、この場合も、繊維表面に多くすべり効果を持たせるためには複数回のCVI法によるコーティングが必要となり、そのすべり層の層数を多くすることが難しいという問題があった。 Furthermore, the technique disclosed in Patent Document 3 has a slip function that consumes the fracture energy by the CVI method after forming a three-dimensional preform with carbon fiber in order to improve the fracture energy of ceramics. After forming the slip layer directly on the carbon fiber, it can be performed more easily than making the shape, there is no peeling that occurs when molding the fiber at the interface between the slip layer and the fiber surface, The company expects to improve productivity and reduce costs. However, in this case as well, in order to give a large slip effect to the fiber surface, coating by the CVI method is required a plurality of times, and it is difficult to increase the number of the slip layers.

なお、ここでいう破壊エネルギーというのは、破壊するまでに物体に加えることができるエネルギーのことで、セラミックスのような脆性材料はその値は低く、金属のような塑性を示す材料は高い。一般的には、日本セラミックス協会規格JCRS−201「シェブロンノッチ試験片の準静的3点曲げ破壊によるセラミック系複合材料の破壊エネルギー試験方法」で測定され、本発明もこれに準拠している。 Note that the fracture energy here is energy that can be applied to an object before it breaks. Brittle materials such as ceramics have low values, and metals that exhibit plasticity such as metals are high. Generally, it is measured according to Japan Ceramic Society Standard JCRS-201 “Fracture energy test method of ceramic composite material by quasi-static three-point bending failure of chevron notch test piece”, and the present invention also complies with this.

そして、繊維単体の表面にコーティングしてすべり層を形成することで得られるすべり機能をさらに展開させ、より破壊エネルギーを向上させたいという要求に対しては、これらの技術に共通した課題として、実用上でも十分な対応ができているとはいえない。 In response to the demand to further develop the slip function obtained by coating the surface of a single fiber to form a slip layer, and to further improve the fracture energy, it is a problem common to these technologies. The above is not enough.

本発明は、かかる事情に鑑みてなされたものであり、繊維のすべり機能をより簡便な手法で、かつ従来と比べてさらに破壊エネルギーが向上された強化用繊維材料と、強化用繊維材料を用いた繊維強化セラミックス複合材料、およびこれらの製造方法を提供するものである。 The present invention has been made in view of such circumstances, and uses a fiber material for reinforcement and a fiber material for reinforcement, which have a fiber sliding function improved by a simpler method and further improved in breaking energy as compared with the conventional technique. The present invention provides a fiber reinforced ceramic composite material and a method for producing the same.

本発明に係る強化用繊維材料は、複数本のセラミックス、金属、もしくはセラミックスと金属の混合体からなる繊維集合体の繊維間が層状構造材料で満たされており、かつ、前記繊維集合体の表面全体もしくは表面の一部が、前記層状構造材料で覆われていることを特徴とする。このような構成をとることで、繊維間に充填された層状構造材料自体が高いすべり機能を有するので、結果としてすべり層の層数が多くなり、この強化用繊維材料を用いた複合材料は、破壊エネルギーを向上させることができる。 In the reinforcing fiber material according to the present invention, a fiber assembly composed of a plurality of ceramics, metal, or a mixture of ceramics and metal is filled with a layered structure material, and the surface of the fiber assembly The whole or a part of the surface is covered with the layered structural material. By taking such a configuration, since the layered structural material itself filled between the fibers has a high sliding function, as a result, the number of sliding layers is increased, and the composite material using this reinforcing fiber material is, The destruction energy can be improved.

本発明に係る強化用繊維材料においては、強化用繊維材料の表面全体もしくは表面の一部に、さらに層状構造材料と層状構造と異なる組織構造の材料によって形成される界面が1面以上存在することが好ましい。このような構成をとることで、繊維集合体に形成された界面でも高いすべり機能を有するので、この強化用繊維材料を用いた複合材料の破壊エネルギーを一層向上させることが可能となる。 In the reinforcing fiber material according to the present invention, the entire surface of the reinforcing fiber material or a part of the surface further has one or more interfaces formed by a layered structure material and a material having a structure different from the layered structure. Is preferred. By adopting such a configuration, the interface formed in the fiber assembly also has a high slip function, so that it is possible to further improve the fracture energy of the composite material using this reinforcing fiber material.

本発明に係る強化用繊維材料において、層状構造材料は、黒鉛質の炭素であることが好ましい。このような構成をとることで、容易かつ均質に層状構造を繊維間に形成することが可能となる。 In the reinforcing fiber material according to the present invention, the layered structural material is preferably graphitic carbon. By adopting such a configuration, a layered structure can be easily and uniformly formed between the fibers.

また、本発明に係る強化用繊維材料において、層状構造と異なる組織構造の材料は、等方性の炭素であることが好ましい。このような構成をとることで、容易かつ均質に層状構造との間に界面を形成することが可能となる。 In the reinforcing fiber material according to the present invention, the material having a structure different from the layered structure is preferably isotropic carbon. By adopting such a configuration, it is possible to easily and uniformly form an interface with the layered structure.

また、本発明に係る繊維強化セラミックス複合材料は、本発明に係る強化用繊維材料をセラミックスのマトリックス中に配したことを特徴とする。このような構成をとることでマクロな破壊進展抵抗の大きい、すなわち破壊エネルギーをより向上させた繊維強化セラミックス複合材料とすることができる。 The fiber-reinforced ceramic composite material according to the present invention is characterized in that the reinforcing fiber material according to the present invention is arranged in a ceramic matrix. By adopting such a configuration, it is possible to obtain a fiber-reinforced ceramic composite material having a large macro fracture resistance, that is, having a higher fracture energy.

また、本発明に係る強化用繊維材料の一態様にかかる製造方法は、繊維集合体と、樹脂と、前記樹脂を溶解する溶媒と、ピッチ又はメソフェーズの少なくともいずれか一つからなる炭素材と、をそれぞれ準備する工程と、前記樹脂と前記炭素材を前記炭素材の重量分率が50%以上になる比率で前記溶媒中に溶解して混合させることにより浸漬用材料を作製する工程と、前記繊維集合体に前記浸漬用材料を重量比で1:0.2から1:9の範囲で接触させ吸収させて前記繊維集合体の繊維間の空間部に前記浸漬用材料を充填させる工程と、前記繊維集合体の繊維間の空間部に充填された前記浸漬用材料を乾燥および層状構造化させるための加熱処理を行う工程と、からなることを特徴とする。このような構成をとることで、層状構造材料として炭素材料を用いた場合に、効果的に強化用繊維材料を製造することができる。 Further, the manufacturing method according to one aspect of the reinforcing fiber material according to the present invention includes a fiber assembly, a resin, a solvent for dissolving the resin, and a carbon material composed of at least one of pitch or mesophase, Preparing a dipping material by dissolving and mixing the resin and the carbon material in the solvent at a ratio at which the weight fraction of the carbon material is 50% or more, and Contacting the fiber assembly with the immersion material in a weight ratio in the range of 1: 0.2 to 1: 9 and filling the space between the fibers of the fiber assembly with the immersion material; And a step of performing a heat treatment for drying and layering the material for dipping filled in the space between the fibers of the fiber assembly. By adopting such a configuration, a reinforcing fiber material can be effectively produced when a carbon material is used as the layered structural material.

また、本発明に係る強化用繊維材料の一態様にかかる製造方法は、繊維間に層状構造材料が満たされた強化用繊維材料と、樹脂と、前記樹脂を溶解する溶媒と、ピッチ又はメソフェーズの少なくともいずれか一つからなる炭素材と、をそれぞれ準備する工程と、前記強化用繊維材料中の炭素繊維と前記樹脂および前記炭素材を合計した材料とが重量比で1:0.2から1:7の範囲になるように前記溶媒を用いて混合することにより前記強化用繊維材料表面へ層状構造の炭素の元になる膜を形成する第一の被膜形成工程と、前記樹脂と前記炭素材を前記炭素材の重量分率が40%以下になる比率で前記溶媒中に溶解して混合させることにより被膜用材料を作製する工程と、前記強化用繊維材料中の炭素繊維と前記被膜用材料とが重量比で1:0.2から1:7の範囲となるように前記溶媒を用いて混合することにより前記強化用繊維材料の表面に等方性の炭素の元になる膜を形成する第二の被膜形成工程と、引き続き前記強化用繊維材料を乾燥させる工程と、さらに前記第一の被膜を層状構造化させ前記第二の被膜を等方性化させる加熱処理を行う工程と、を行うことが好ましい。このような構成をとることで、炭素材料を用いて効果的に強化用繊維材料を製造する場合に、より破壊エネルギーを向上させることができる。 Further, the manufacturing method according to one aspect of the reinforcing fiber material according to the present invention includes a reinforcing fiber material filled with a layered structure material between fibers, a resin, a solvent for dissolving the resin, and a pitch or mesophase. The step of preparing each of the carbon materials comprising at least one of the carbon materials in the reinforcing fiber material, and the total material of the resin and the carbon material in a weight ratio of 1: 0.2 to 1 : A first film forming step of forming a layer-structured carbon film on the surface of the reinforcing fiber material by mixing with the solvent so as to be in the range of 7, the resin and the carbon material A coating material by dissolving and mixing in the solvent at a ratio such that the weight fraction of the carbon material is 40% or less, and the carbon fiber in the reinforcing fiber material and the coating material And 1 by weight. A second film forming step of forming a film based on isotropic carbon on the surface of the reinforcing fiber material by mixing with the solvent so as to be in the range of 2 to 1: 7; Subsequently, it is preferable to perform a step of drying the reinforcing fiber material and a step of performing a heat treatment for further layering the first coating and making the second coating isotropic. By taking such a structure, when manufacturing the fiber material for reinforcement effectively using a carbon material, fracture energy can be improved more.

また、本発明に係る強化用繊維材料の一態様にかかる製造方法においては、樹脂は、フェノール、シリコーン、フッ素、エポキシ、フラン、フルフリル、メラミン、尿素、ポリエステル、ポリイミドのうち1ないし2以上の混合物からなることが好ましい。このような構成をとることで、容易に強化用繊維材料を製造することができる。 In the production method according to one aspect of the reinforcing fiber material according to the present invention, the resin is a mixture of one or more of phenol, silicone, fluorine, epoxy, furan, furfuryl, melamine, urea, polyester, and polyimide. Preferably it consists of. By taking such a configuration, the reinforcing fiber material can be easily manufactured.

さらに、本発明に係る強化用繊維材料の一態様にかかる製造方法においては、溶媒は、水、有機溶剤、またはこれらの混合物からなることが好ましい。このような構成をとることで、容易に強化用繊維材料を製造することができる。 Furthermore, in the manufacturing method according to one aspect of the reinforcing fiber material according to the present invention, the solvent is preferably composed of water, an organic solvent, or a mixture thereof. By taking such a configuration, the reinforcing fiber material can be easily manufactured.

さらに、本発明に係る繊維強化セラミックス複合材料の一態様にかかる製造方法においては、これらの強化用繊維材料を用いて、強化用繊維材料中の炭素繊維の体積含有率が10%以上50%以下になるようにセラミックス材料中へ混合し、その後、成型、乾燥、焼成することを特徴とする。このような構成をとることで、破壊エネルギーをより向上させた繊維強化セラミックス複合材料を製造することができる。 Furthermore, in the manufacturing method according to one aspect of the fiber-reinforced ceramic composite material according to the present invention, the volume content of carbon fibers in the reinforcing fiber material is 10% or more and 50% or less using these reinforcing fiber materials. It mixes in a ceramic material so that it may become, and it is characterized by forming, drying, and baking after that. By taking such a structure, the fiber reinforced ceramic composite material which improved breakage energy more can be manufactured.

本発明に係る強化用繊維材料とこれを用いた繊維強化セラミックス複合材料は、強化材料として含有されている繊維集合体に対して、よりすべり機能の優れた構成を具備すること、そしてこの強化された繊維集合体を用いることで、繊維強化セラミックス複合材料全体のより一層の破壊エネルギーを向上させることができる。 The reinforcing fiber material according to the present invention and the fiber-reinforced ceramic composite material using the reinforcing fiber material have a structure having a more excellent sliding function with respect to the fiber aggregate contained as the reinforcing material, and this reinforcement is achieved. By using the fiber aggregate, it is possible to further improve the fracture energy of the entire fiber reinforced ceramic composite material.

本発明の実施形態に係る、強化用繊維材料とこの強化用繊維材料を含んだ繊維強化セラミックス複合材料の概念を示す断面図。Sectional drawing which shows the concept of the fiber material for reinforcement based on embodiment of this invention, and the fiber reinforced ceramic composite material containing this fiber material for reinforcement. 本発明の実施形態に係る、繊維と繊維間に充填された層状構造の一形態を示す電子顕微鏡写真(a)と、本発明の実施形態に係る繊維間に充填された層状構造を拡大した形態を示す電子顕微鏡写真(b)である。An electron micrograph (a) showing an embodiment of a layered structure filled between fibers according to an embodiment of the present invention, and an enlarged form of the layered structure filled between fibers according to an embodiment of the present invention It is an electron micrograph (b) which shows. 本発明の実施形態に係る、強化用繊維材料とこの強化用繊維材料を用いた繊維強化セラミックス複合材料の製造工程フローの一例を示す図。The figure which shows an example of the manufacturing process flow of the fiber reinforced ceramic composite material using the fiber material for reinforcement | strengthening and this fiber material for reinforcement | strengthening based on embodiment of this invention.

以下、本発明の実施形態について詳細に説明する。図1は、本発明の実施形態に係る繊維強化セラミックス複合材料の概念を示す断面図である。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a cross-sectional view showing the concept of a fiber-reinforced ceramic composite material according to an embodiment of the present invention.

本発明に係る強化用繊維材料は、複数本のセラミックス、金属、もしくはセラミックスと金属の混合体からなる繊維集合体の繊維間が層状構造材料で満たされており、かつ、繊維集合体の表面全体もしくは表面の一部が、層状構造材料で覆われていることを特徴とする。 In the reinforcing fiber material according to the present invention, a fiber assembly composed of a plurality of ceramics, metal, or a mixture of ceramics and metal is filled with a layered structure material, and the entire surface of the fiber assembly is provided. Alternatively, a part of the surface is covered with a layered structural material.

繊維の材質は、任意のセラミックスまたは金属材料から選択される。好適には、炭素、炭化ケイ素、ホウ素、タングステンがあり、炭素がより好ましい。炭素繊維は、製造が容易、強度などの諸特性が優れているからである。   The material of the fiber is selected from any ceramic or metal material. Preferred are carbon, silicon carbide, boron and tungsten, with carbon being more preferred. This is because carbon fiber is easy to manufacture and has excellent properties such as strength.

なお、その他の繊維の材質としては、炭素繊維などセラミックス繊維を生成できる有機物繊維、例えばセルロース繊維、アクリル繊維、ピッチ繊維なども適用出来る。この場合、強化用繊維を形成した後、加熱処理によってセラミックス繊維となれば、繊維強化複合セラミックス材料として問題なく使えるからである。 In addition, as other fiber materials, organic fibers that can produce ceramic fibers such as carbon fibers, for example, cellulose fibers, acrylic fibers, pitch fibers, and the like are also applicable. In this case, if ceramic fibers are formed by heat treatment after forming reinforcing fibers, they can be used as a fiber-reinforced composite ceramic material without any problems.

本発明において、繊維集合体とは繊維が複数本集合し、かつ繊維同士によって空間が形成された状態であるものを指す。ただし、繊維集合体の形状は特に限定されるものではなく、例えばフェルト状、不織布状でも良いが、好ましい例として、2mmから50mmの長さ、3μmから500μmの径の繊維が数本から数千本束ねられ、全体として針状,棒状,小片状,板状,塊状の形態を成している、いわゆる短繊維束が挙げられる。また、長繊維束と称される長手方向に一体化され連続した構造の繊維束も、この繊維を断面方向から見た場合は短繊維束と同じ形態を有しており、本発明における繊維集合体として用いることができる。 In the present invention, the fiber assembly refers to a state in which a plurality of fibers are aggregated and a space is formed by the fibers. However, the shape of the fiber assembly is not particularly limited, and may be, for example, a felt shape or a non-woven fabric shape. As a preferable example, there are several to thousands of fibers having a length of 2 to 50 mm and a diameter of 3 to 500 μm. There are so-called short fiber bundles that are bundled in the form of needles, rods, small pieces, plates, and lumps as a whole. Further, a fiber bundle having a continuous structure integrated in the longitudinal direction, called a long fiber bundle, has the same form as the short fiber bundle when the fiber is viewed from the cross-sectional direction. Can be used as a body.

そして、繊維同士によって形成される空間部には、層状構造材料が充填されている。ここで層状構造とは、結晶構造として例えば黒鉛のようにある結晶軸がファンデルワールス力で弱く結合した層状のもの、および層状の結晶構造を持つ組織が重量分率で材料全体に対して50%以上含まれており、かつ、これらの組織が小薄片、膜、層に堆積して、マクロの形態として流れ形状を成しているものとする。 The space formed by the fibers is filled with a layered structural material. Here, the layered structure is a layered structure in which crystal axes such as graphite are weakly coupled by van der Waals force as a crystal structure, and a structure having a layered crystal structure is 50% by weight with respect to the whole material. % Or more, and these tissues are deposited on small flakes, films, and layers to form a flow shape as a macro form.

図2(a)は、本発明の一実施形態における炭素繊維と炭素繊維間に充填された炭素材料による層状構造の形態を、図2(b)にその層状構造の拡大図を示す。ここでは、層状構造はうろこ状の小片がほぼ一定方向に配向して、マクロの形態として流れ形状を成している状態が観察できる。 FIG. 2A shows the form of a layered structure of carbon fibers and a carbon material filled between the carbon fibers in one embodiment of the present invention, and FIG. 2B shows an enlarged view of the layered structure. Here, the lamellar structure can be observed in a state where scaly pieces are oriented in a substantially constant direction to form a flow shape as a macro form.

層状構造において、層間は堆積方向に対して相対的に弱い結合力または非結合の構造をもち、亀裂が進展してくると容易に堆積方向と垂直な平面方向に多数の亀裂の進展を促しエネルギーを消費させるという、いわゆるすべり機能を有する。本発明においては、強化用繊維材料を形成する繊維集合体の内部の繊維同士間において、このすべり機能を多数もたせることにより、強化用繊維材料自体が効率よくエネルギーを消費することを可能とする。 In a layered structure, the interlayer has a relatively weak bonding force or non-bonding structure with respect to the deposition direction, and when a crack progresses, it easily promotes the growth of a large number of cracks in a plane direction perpendicular to the deposition direction. Has a so-called sliding function. In the present invention, the reinforcing fiber material itself can efficiently consume energy by providing many slip functions between the fibers inside the fiber assembly forming the reinforcing fiber material.

本発明に係る強化用繊維材料は、繊維集合体の表面全体もしくは表面の一部が、層状構造材料で覆われている。ここで、強化用繊維材料の表面とは、層状構造材料によって繊維間の空間が充填された繊維集合体をひとつの塊とみなし、繊維集合体の表面の一部または全体が層状構造材料の露出により被覆された面を指すものとする。 In the reinforcing fiber material according to the present invention, the entire surface of the fiber assembly or a part of the surface is covered with the layered structural material. Here, the surface of the reinforcing fiber material means that the fiber aggregate in which the space between the fibers is filled with the layered structural material is regarded as one lump, and a part or the whole of the surface of the fiber aggregate is exposed of the layered structural material. Refers to the surface covered by.

本発明では、繊維集合体の繊維間だけでなく、繊維集合体表面に露出した最外部の繊維にも層状構造のすべり機能を有すれば好ましいが、繊維集合体の表面全体が層状構造材料で覆われていなくてもよく、繊維集合体の表面の一部に存在してもよい。そしてその表面を被覆する割合も特別限定されるものではなく、繊維集合体の表面の10%以上がより好ましい。 In the present invention, it is preferable that the outermost fibers exposed on the surface of the fiber assembly as well as the fibers of the fiber assembly have a layered structure sliding function, but the entire surface of the fiber assembly is made of a layered structure material. It may not be covered and may exist in a part of surface of a fiber assembly. And the ratio which coat | covers the surface is not specifically limited, 10% or more of the surface of a fiber assembly is more preferable.

次に、本発明に係る強化用繊維材料では、強化用繊維材料の表面全体もしくは表面の一部に、さらに層状構造材料と層状構造と異なる組織構造の材料によって形成される界面が1面以上存在することが好ましい。 Next, in the reinforcing fiber material according to the present invention, the entire surface of the reinforcing fiber material or a part of the surface further has one or more interfaces formed by a layered structure material and a material having a structure different from the layered structure. It is preferable to do.

層状構造の材料は、すべり面を多く有しておりエネルギーの消費効果が高い反面、層間の結合力は弱いので層状構造の材料自身は剥離しやすくもろい。よって、層状構造の材料の表面に対して相対的に機械的強度が優れた膜、ここでは等方性材料で耐衝撃性を保持することで、双方の長所を併せ持つ繊維集合体とすることが可能となる。なお、等方性材料であれば、形状は、緻密体、多孔質体、層状構造、網目構造、モザイク状組織構造でもよい。 The layered structure material has many slip surfaces and has a high energy consumption effect, but the interlayer bonding force is weak, so that the layered structure material itself is easy to peel off. Therefore, a film having relatively high mechanical strength with respect to the surface of the material having a layered structure, in this case, isotropic material can be used to maintain a shock resistance, so that a fiber assembly having both advantages can be obtained. It becomes possible. In the case of an isotropic material, the shape may be a dense body, a porous body, a layered structure, a network structure, or a mosaic structure.

界面を構成する材料は、繊維、層状構造材料の材質の組み合わせに応じて、製造条件や特性も考慮して適時選択される。材料の組み合わせの例としては、繊維が炭素材料の場合、層状構造材料には非酸化性物質、例えば炭素材料または窒化ホウ素、TiSiCが適用でき、層状構造材料と異なる組織構造の材料には、非酸化性物質、例えば炭素、窒化ケイ素、炭化ケイ素、炭化ホウ素、窒化アルミニウム、ZrBが適用できる。なお、単一の材料でなく2種類以上の材料から構成されていてもよい。 The material constituting the interface is appropriately selected in consideration of manufacturing conditions and characteristics according to the combination of the materials of the fiber and the layered structure material. As an example of a combination of materials, when the fiber is a carbon material, a non-oxidizing substance such as a carbon material, boron nitride, or Ti 3 SiC 2 can be applied to the layered structure material, and the structure structure material is different from the layered structure material. Non-oxidizing substances such as carbon, silicon nitride, silicon carbide, boron carbide, aluminum nitride, and ZrB 2 can be applied. In addition, you may be comprised from 2 or more types of materials instead of a single material.

なお、繊維が耐酸化性を有する炭化珪素繊維や酸化アルミニウムの場合は、層状構造材料と異なる組織構造の材料に酸化性物質も使用でき、一例として、酸化アルミニウム、酸化ケイ素、HfOが挙げられる。 When the fiber is a silicon carbide fiber or aluminum oxide having oxidation resistance, an oxidizing substance can be used as a material having a structure different from the layered structure material. Examples thereof include aluminum oxide, silicon oxide, and HfO 2. .

また、繊維集合体内の繊維間に形成された空間を充填しかつ繊維集合体表面全体もしくは表面の一部を被覆する層状構造材料上に、直接層状構造材料と異なる組織構造の材料の膜を形成してもよく、新たに層状構造の膜を形成しその上に層状構造材料と異なる組織構造の材料で構成されている膜を形成してもよい。 Also, a film of a material having a different structure from the layered structure material is directly formed on the layered structure material that fills the space formed between the fibers in the fiber assembly and covers the entire surface of the fiber assembly or a part of the surface. Alternatively, a film having a layered structure may be newly formed, and a film made of a material having a tissue structure different from the layered structure material may be formed thereon.

界面は、1面以上40面以下がより好ましく、2面以上20面以下がさらに好ましい。これは、界面が多くなることで、すべり機能をさらにもたせることができるが、40面を越えるとすべり効果がほとんど変わらない一方で、界面を形成する膜自体の体積が大きくなり、セラミックス材料のもつ全体の機械的強度が低下してしまい、好ましくないからである。 The interface is more preferably from 1 to 40 surfaces, and even more preferably from 2 to 20 surfaces. This is because the slip function can be further increased by increasing the number of interfaces. However, the slip effect hardly changes when the number of surfaces exceeds 40, while the volume of the film itself forming the interface increases and the ceramic material has This is because the overall mechanical strength is lowered, which is not preferable.

なお、層状構造の膜と、等方性構造の膜を複数回交互に形成して、繊維集合体の最外の被膜層が等方性の組織構造を取る構成は、耐衝撃性を高めるうえでさらに好ましい形態といえる。 In addition, a structure in which a film having a layered structure and a film having an isotropic structure are alternately formed a plurality of times so that the outermost coating layer of the fiber assembly has an isotropic texture structure increases the impact resistance. It can be said that it is a more preferable form.

しかしながら、本発明に係る界面を有する膜で繊維集合体の表面が完全に被覆されていることは、必ずしも要求されるものでなく、例えば繊維集合体の表面のごく一部が露出している、あるいは被覆の膜厚が部分的に不均一であってもよい。 However, it is not always required that the surface of the fiber assembly is completely covered with the film having an interface according to the present invention, for example, only a part of the surface of the fiber assembly is exposed. Alternatively, the coating thickness may be partially non-uniform.

界面を構成する層状構造の膜厚は0.5μm以上1000μm以下、および等方性構造の膜厚は0.5μm以上1000μm以下であることがより好ましい。これらの範囲を下限で下回ると、被膜のもつすべり機能、耐衝撃性保持効果が十分に得られず、上限を超えると被膜自体の容積が過大になることで、被膜自身の剥離,破損のおそれがあり、これが繊維強化セラミックス複合材料全体の強度に影響を及ぼすことが懸念され好ましくない。 More preferably, the film thickness of the layered structure constituting the interface is 0.5 μm or more and 1000 μm or less, and the film thickness of the isotropic structure is 0.5 μm or more and 1000 μm or less. If the lower limit is not exceeded, the slip function and impact resistance retention effect of the coating cannot be obtained sufficiently. If the upper limit is exceeded, the volume of the coating itself becomes excessive, which may cause the coating to peel or break. There is a concern that this may affect the strength of the entire fiber-reinforced ceramic composite material, which is not preferable.

本発明に係る強化用繊維材料において、層状構造材料は黒鉛質の炭素であることが好ましい。層状構造材料としては、層状の構造が形成される各種材料が適用できるが、好適には炭素や窒化ホウ素が挙げられ、特に繊維が炭素の場合は、充填性、繊維間への浸透性、製法の容易さを考慮すると、黒鉛質の炭素がより好適に用いられる。 In the reinforcing fiber material according to the present invention, the layered structural material is preferably graphitic carbon. As the layered structure material, various materials capable of forming a layered structure can be applied, and preferably carbon and boron nitride are mentioned. Especially, when the fiber is carbon, the filling property, the permeability between the fibers, the manufacturing method Therefore, graphitic carbon is more preferably used.

また、本発明に係る強化用繊維材料の一態様における、強化用繊維材料の表面全体もしくは表面の一部に、さらに層状構造材料と層状構造と異なる組織構造の材料から構成される界面が1面以上存在する場合の層状構造と異なる組織構造の材料は、炭素からなる等方性材料であることが好ましい。炭素の持つ層状構造と等方性構造を、同一の工程で製造条件のみを変更することで、より簡易かつ精密に制御して製造できるためである。 Further, in one aspect of the reinforcing fiber material according to the present invention, the entire surface of the reinforcing fiber material or a part of the surface further has one interface composed of a layered structure material and a material having a structure different from the layered structure. The material having a structure different from the layered structure in the case where it exists as described above is preferably an isotropic material made of carbon. This is because a layered structure and an isotropic structure possessed by carbon can be manufactured with simpler and more precise control by changing only the manufacturing conditions in the same process.

また、本発明に係る繊維強化セラミックス複合材料は、本発明に係る強化用繊維材料をセラミックスのマトリックス中に配したことを特徴とする。セラミックスのマトリックスには、広く既存のセラミックス材料を用いることができ、炭素質の層状構造を充填する場合、好適には、非酸化性物質、例えば、炭素、珪素、炭化ケイ素、炭化ホウ素、窒化ホウ素、窒化ケイ素、窒化アルミニウム、ZrBが挙げられ、また、これらを2つ以上組み合わせた構造でもよい。 The fiber-reinforced ceramic composite material according to the present invention is characterized in that the reinforcing fiber material according to the present invention is arranged in a ceramic matrix. A wide range of existing ceramic materials can be used for the ceramic matrix. When filling a carbonaceous layered structure, a non-oxidizing substance such as carbon, silicon, silicon carbide, boron carbide, boron nitride is preferable. , Silicon nitride, aluminum nitride, and ZrB 2 , and a structure in which two or more of these are combined may be used.

強化用繊維材料として用いられる繊維集合体の内部空間を、層状構造材料で充填することで、繊維集合体自体の内部に多数のすべり層を含有し、結果として高いすべり機能をもち、さらに繊維集合体の表面にすべり効果をもつ層状構造と、層状構造の脆弱性を補う組織構造の異なる材料、例えば等方性構造材料との組み合わせの層を有することで、これらの構成をもたない従来技術と比べて、より効果的に破壊エネルギーを向上させることが可能となる。   By filling the internal space of the fiber assembly used as the reinforcing fiber material with the layered structure material, the fiber assembly itself contains a large number of slip layers, resulting in a high sliding function and further fiber assembly. Conventional technology that does not have these configurations by having a layered structure on the surface of the body with a combination of a layered structure having a sliding effect and a material with a different tissue structure that compensates for the weakness of the layered structure, for example, an isotropic structural material Compared to, it becomes possible to improve the destruction energy more effectively.

本発明に係る強化用繊維材料の一態様にかかる製造方法は、繊維集合体と、樹脂と、樹脂を溶解する溶媒と、ピッチ又はメソフェーズの少なくともいずれか一つからなる炭素材と、をそれぞれ準備する工程と、炭素材の重量分率が全体の50%以上になる比率で樹脂と炭素材とを溶媒中に溶解、混合して浸漬用材料を作製する工程と、繊維集合体中の炭素繊維とに浸漬用材料を重量比で1:0.2から1:9の範囲で接触させ吸収させた後乾燥して繊維集合体の空間部に黒鉛質の層状炭素原料を充填させる工程と、黒鉛質の層状炭素原料を充填させた繊維集合体に対して乾燥処理を含む熱処理を行う工程と、からなることを特徴とする。 A manufacturing method according to an aspect of a reinforcing fiber material according to the present invention includes a fiber assembly, a resin, a solvent for dissolving the resin, and a carbon material made of at least one of pitch and mesophase. A step of preparing a dipping material by dissolving and mixing a resin and a carbon material in a solvent at a ratio of 50% or more of the total weight of the carbon material, and carbon fibers in the fiber assembly A step of contacting and absorbing the dipping material in a range of 1: 0.2 to 1: 9 by weight and then drying to fill the space of the fiber assembly with a graphite layered carbon raw material; And a step of performing a heat treatment including a drying process on the fiber assembly filled with the quality layered carbon raw material.

繊維集合体を構成する繊維は、炭素繊維が好ましい。この場合、炭素の品質、純度は通常のセラミックス材料に用いられるものでよく、特に限定されない。また、設計する繊維強化セラミックス複合材料に応じて、繊維の長さと径は適時選択できるが、径については0.5μm以上50μm以下が好ましい。0.5μm未満では、繊維間の空間が狭くなりすぎて、層状構造の炭素材料が形成されにくくなり、50μmを超えると、繊維間の空間が相対的に広くなるので、単位断面積当たりの炭素繊維と層状構造の炭素材料の面積比において層状構造の炭素材料の割合が増加し、繊維集合体自体のすべり機能が低減してしまい、こちらも好ましくない。 The fiber constituting the fiber assembly is preferably a carbon fiber. In this case, the quality and purity of carbon may be those used for ordinary ceramic materials and are not particularly limited. Further, the length and diameter of the fiber can be selected as appropriate depending on the fiber-reinforced ceramic composite material to be designed, but the diameter is preferably 0.5 μm or more and 50 μm or less. If the thickness is less than 0.5 μm, the space between the fibers becomes too narrow and it becomes difficult to form a layered carbon material. If the thickness exceeds 50 μm, the space between the fibers becomes relatively wide. The ratio of the carbon material having the layered structure increases in the area ratio of the fiber and the carbon material having the layered structure, and the sliding function of the fiber aggregate itself is reduced, which is also not preferable.

樹脂は、層状構造の材料となる炭素の供給源として、また加熱分解にて炭素を生成させる目的で用いられる。樹脂の種類は、熱硬化性または熱可塑性であることが好ましく、例えば、フェノール、シリコーン、フッ素、エポキシ、フラン、フルフリル、メラミン、尿素、ポリエステル、ポリイミドのうちから1ないし複数の混合体として選択でき、より好適には、フェノールレジンが用いられる。 The resin is used as a supply source of carbon to be a layered structure material and for the purpose of generating carbon by thermal decomposition. The type of resin is preferably thermosetting or thermoplastic, and can be selected as a mixture of one or more of, for example, phenol, silicone, fluorine, epoxy, furan, furfuryl, melamine, urea, polyester, and polyimide. More preferably, a phenol resin is used.

フェノールレジンは、固体と液体の両方の状態で存在して、水または有機溶剤中に溶解していることがより好ましい。フェノールレジンは、黒鉛質の層状構造の炭素材料及び等方性の炭素材料を形成する供給源となるので、固体のフェノールレジンを使用する場合、完全に融解した状態ではなく、固体のフェノールレジンが残存した状態がより高い炭化収率を得ることができるので好ましい。しかしながら、固形分が多すぎると、繊維間、繊維束間の狭い空間への浸透の妨げになるので、設計する繊維強化セラミックス複合材料に応じて適時変更してよい。好適には、固形分は5%以下の範囲で用いられるが、5%を上回る場合、固形分が溶液中に多くなり、繊維束内部への樹脂の浸透性が低下するので好ましくない。 More preferably, the phenol resin exists in both a solid state and a liquid state and is dissolved in water or an organic solvent. Phenol resin is a source for forming a graphitic layered carbon material and an isotropic carbon material. Therefore, when using a solid phenol resin, the solid phenol resin is not completely melted. The remaining state is preferable because a higher carbonization yield can be obtained. However, if there is too much solid content, it will hinder penetration into narrow spaces between fibers and fiber bundles, so it may be changed as appropriate according to the fiber-reinforced ceramic composite material to be designed. Preferably, the solid content is used in the range of 5% or less. However, if it exceeds 5%, the solid content increases in the solution, and the permeability of the resin into the fiber bundle decreases, which is not preferable.

ピッチ又はメソフェーズの少なくともいずれか一つからなる炭素材は、樹脂との重量比を適正化することで、炭素の層状または等方性の構造を決定できる。すなわち、加熱処理を行った場合に昜黒鉛性を示す材料であるピッチ又はメソフェーズと、難黒鉛性を示すフェノールなどの樹脂を混合することによる組織制御である。なお、炭素材として用いるピッチとメソフェーズは、それぞれ単体でもよいし、両方を混合してもよい。 A carbon material composed of at least one of pitch and mesophase can determine the layered or isotropic structure of carbon by optimizing the weight ratio with the resin. That is, it is a structure control by mixing pitch or mesophase, which is a material that exhibits graphitic properties when heat-treated, and a resin such as phenol that exhibits non-graphitizable properties. Note that the pitch and mesophase used as the carbon material may each be a single material or a mixture of both.

溶媒には、水または有機溶媒が用いられるが、樹脂を溶解できればこれらに限定されるものではなく、さらにはこれら複数の液体を混合して用いても良い。好適には、有機溶媒エタノール、2−ブタノール、アセトンを用いることができ、より好適には、エタノールが用いられる。 As the solvent, water or an organic solvent is used. However, the solvent is not limited to these as long as the resin can be dissolved, and a plurality of these liquids may be mixed and used. Preferably, organic solvent ethanol, 2-butanol, and acetone can be used, and ethanol is more preferably used.

次に、浸漬用材料を作製するにあたり、炭素材の重量分率が50%以上になるように樹脂溶液を混合して浸漬用材料を作製する。ここで、浸漬用材料とは、繊維間および繊維集合体の表面に層状構造材料を形成するための役割をするもので、液体状で層状構造を形成するのに適切な炭素材料を含有しているものである。 Next, in producing the dipping material, the dipping material is produced by mixing the resin solution so that the weight fraction of the carbon material is 50% or more. Here, the dipping material serves to form a layered structure material between the fibers and on the surface of the fiber assembly, and contains a carbon material suitable for forming a layered structure in a liquid state. It is what.

炭素材の重量分率は、重量分率が50%を下回ると、浸漬用材料による層状構造形成がされにくい。また、炭素材が50%以下、とくに40%以下では炭素は等方的な構造を示す。なお、樹脂が0の場合、すなわち炭素材のみでも、層状構造を形成させることは可能であるが、粉状である炭素材を液体状の樹脂に溶かした状態のほうが、より繊維間に浸漬しやすいので好ましい。 When the weight fraction of the carbon material is less than 50%, it is difficult to form a layered structure using the dipping material. Further, when the carbon material is 50% or less, particularly 40% or less, the carbon has an isotropic structure. In addition, when the resin is 0, that is, it is possible to form a layered structure with only the carbon material, the state in which the powdery carbon material is dissolved in the liquid resin is more immersed between the fibers. It is preferable because it is easy.

繊維集合体中の炭素繊維と浸漬用材料は、重量比で1:0.5から1:9の範囲で混合することが好ましい。この範囲を外れると、破壊エネルギー向上の効果が顕著には得られなくなり好ましくない。 The carbon fibers in the fiber assembly and the dipping material are preferably mixed in a weight ratio of 1: 0.5 to 1: 9. If it is out of this range, the effect of improving the breaking energy cannot be obtained remarkably, which is not preferable.

次に、繊維集合体と浸漬用材料を均一になるよう混合する工程を実施するが、混合方法と混合時間については、既存の製造方法を適切に適用する範囲で任意に決めてよい。なお混合時に溶媒の揮発を目的に、乾燥工程、加熱工程、またはその両方を含めてもよい。 Next, a step of mixing the fiber assembly and the dipping material so as to be uniform is performed, and the mixing method and the mixing time may be arbitrarily determined within a range where the existing manufacturing method is appropriately applied. In addition, you may include a drying process, a heating process, or both for the purpose of volatilization of a solvent at the time of mixing.

混合後は、すぐに乾燥を実施してもよく、適切な時間放置してから乾燥してもよい。放置する時間は、連続して繊維集合体の空間部に黒鉛質の層状炭素原料が十分浸透して、層状構造の充填が完了するまで行うが、例えば1時間以上、あるいは溶媒が完全に気化してなくなるまで実施してよい。ただし1分未満では、浸漬用材料の繊維間への浸透が十分でなく好ましくない。また、溶媒が完全に気化してなくなった以降も放置することは、工程上作業ロスとなるので、これも好ましくない。なお、溶媒が完全に気化してなくなるまでというのは、厳密な判断を必要とせず、作業者の目視による浸漬用材料の乾燥状態で判断してもよい。 After mixing, drying may be performed immediately, or it may be allowed to stand for an appropriate time and then dried. The standing time is continued until the layered carbon raw material of graphite has sufficiently penetrated into the space of the fiber aggregate and the filling of the layered structure is completed. For example, it takes 1 hour or more, or the solvent is completely evaporated. It can be done until it is gone. However, if the time is less than 1 minute, the penetration of the dipping material between the fibers is not sufficient, which is not preferable. Further, it is not preferable to leave the solvent after it is completely vaporized because it causes a work loss in the process. Note that until the solvent is completely evaporated, strict judgment is not necessary, and it may be judged based on the dry state of the dipping material visually observed by the operator.

また繊維集合体と浸漬用材料の混合は、一回だけ浸漬用材料と混合してもよいし、一度浸漬用材料と混合後繊維集合体を取り出して、再度浸漬用材料と混合する作業を繰り返してもよい。その際の工程移行の間は、そのまま放置してもよく、その放置時間も特に限定されない。 The fiber assembly and the dipping material may be mixed only once with the dipping material, or once the dipping material is mixed with the dipping material, the fiber assembly is taken out and mixed with the dipping material again. May be. During the process transition at that time, it may be left as it is, and the leaving time is not particularly limited.

乾燥は、大気中に40℃から200℃の範囲で数時間保持することでなされるが、不活性雰囲気で実施してもよい。また、加熱処理については、保持温度は600℃から3000℃、好適には1000℃から2000℃の範囲にて、保持時間は5分から3時間、好適には1時間から2時間の範囲で、不活性雰囲気下でなされることが好ましい。この加熱処理で樹脂とピッチまたはメソフェーズが炭化され、黒鉛質の層状炭素が生成して、繊維間の空間に充填される。また、炭化のための加熱処理は、マトリックスとなるセラミック材料と成形した後行ってもよい。 Drying is performed by holding in the air at a temperature ranging from 40 ° C. to 200 ° C. for several hours, but may be performed in an inert atmosphere. For heat treatment, the holding temperature is 600 ° C. to 3000 ° C., preferably 1000 ° C. to 2000 ° C., the holding time is 5 minutes to 3 hours, preferably 1 hour to 2 hours. It is preferable to be performed under an active atmosphere. By this heat treatment, the resin and pitch or mesophase are carbonized to produce graphitic layered carbon and fill the spaces between the fibers. Moreover, you may perform the heat processing for carbonization, after shape | molding with the ceramic material used as a matrix.

加熱処理の温度は、600℃未満では炭化が不十分であり好ましくないが、3000℃を超える温度ではほぼ炭素の黒鉛化が収束するため、加熱処理としての作用がなく、これも好ましくない。また、加熱処理の保持時間は、5分未満では温度の安定化が不十分のため好ましくないが、3時間を越えて保持しても、こちらもほぼ炭素の黒鉛化が収束するため好ましくない。 If the temperature of the heat treatment is less than 600 ° C., the carbonization is insufficient, which is not preferable. However, if the temperature exceeds 3000 ° C., graphitization of carbon is almost converged, so that there is no action as heat treatment, which is also not preferable. Further, if the holding time of the heat treatment is less than 5 minutes, it is not preferable because the temperature is not sufficiently stabilized, but even if the holding time is longer than 3 hours, it is not preferable because the graphitization of carbon almost converges.

このような工程を経て作製された黒鉛質の炭素の構造を図2(a)に示す。これは繊維集合体の断面方向から電子顕微鏡にて観察したものである。ここでは、繊維間の層状構造材料がうろこ状の黒鉛質の炭素で充填された状態となっていることがわかる。 FIG. 2 (a) shows the structure of graphitic carbon produced through such steps. This is observed with an electron microscope from the cross-sectional direction of the fiber assembly. Here, it can be seen that the layered structural material between the fibers is filled with scaly graphite carbon.

また、本発明に係る強化用繊維材料の一態様にかかる製造方法は、繊維間に層状構造材料を充填した強化用繊維材料と、樹脂と、前記樹脂を溶解する溶媒と、ピッチ又はメソフェーズの少なくともいずれか一つからなる炭素材と、をそれぞれ準備する工程と、前記強化用繊維材料中の炭素繊維と前記樹脂および前記炭素材を合計した材料とが重量比で1:0.2から1:7の範囲になるように前記溶媒を用いて混合することにより前記強化用繊維材料表面へ層状構造の炭素の元になる膜を形成する第一の被膜形成工程と、前記樹脂と前記炭素材を前記炭素材の重量分率が40%以下になる比率で前記溶媒中に溶解して混合させることにより被膜用材料を作製する工程と、前記強化用繊維材料中の炭素繊維と前記被膜用材料とが重量比で1:0.2から1:7の範囲となるように前記溶媒を用いて混合することにより前記強化用繊維材料の表面に等方性の炭素の元になる膜を形成する第二の被膜形成工程と、引き続き前記強化用繊維材料を乾燥させる工程と、さらに前記第一の被膜を層状構造化させ前記第二の被膜を等方性化させる加熱処理を行う工程と、からなる。図3にその製造フローの一例を示す。 The manufacturing method according to one aspect of the reinforcing fiber material according to the present invention includes a reinforcing fiber material filled with a layered structure material between fibers, a resin, a solvent for dissolving the resin, and at least pitch or mesophase. The step of preparing each of the carbon materials consisting of any one of the above, the carbon fiber in the reinforcing fiber material, and the total material of the resin and the carbon material in a weight ratio of 1: 0.2 to 1: A first film forming step for forming a layer-structured carbon film on the reinforcing fiber material surface by mixing with the solvent so as to be in the range of 7, the resin and the carbon material; A step of producing a coating material by dissolving and mixing in the solvent at a ratio such that the weight fraction of the carbon material is 40% or less; a carbon fiber in the reinforcing fiber material; and the coating material; 1: 0 by weight A second film forming step of forming a film based on isotropic carbon on the surface of the reinforcing fiber material by mixing with the solvent so as to be in the range of 2 to 1: 7, and subsequently The method includes a step of drying the reinforcing fiber material, and a step of performing a heat treatment for further layering the first coating and making the second coating isotropic. FIG. 3 shows an example of the manufacturing flow.

黒鉛質の層状炭素原料を充填させた繊維集合体表面へ、黒鉛質の層状炭素被膜の元となる第一の被膜形成工程では、黒鉛質の層状炭素原料を充填させた繊維集合体中の炭素繊維と樹脂および炭素材を合計した材料を、1:0.2から1:7の範囲の重量比となるように混ぜ合わせることが好ましい。 In the first film formation process, which is the basis of the graphite layered carbon coating, the carbon in the fiber assembly filled with the graphite layered carbon raw material is formed on the surface of the fiber assembly filled with the graphite layered carbon raw material. It is preferable to mix the material of the fiber, the resin, and the carbon material so that the weight ratio is in the range of 1: 0.2 to 1: 7.

この重量比において、溶剤および炭素材を合計した材料の比が0.2を下回ると、繊維集合体の表面に膜の形成がほとんど行われず、また7を上回ると膜ではなく塊状になって繊維集合体表面に付着する現象が発生するため、いずれも好ましくない。1:1から1:5の範囲がより好適である。 In this weight ratio, when the ratio of the total material of the solvent and the carbon material is less than 0.2, a film is hardly formed on the surface of the fiber assembly, and when it exceeds 7, the fiber becomes a lump instead of a film. Since the phenomenon of adhering to the aggregate surface occurs, neither is preferable. A range of 1: 1 to 1: 5 is more preferred.

第一の被膜の表面上に等方性構造の炭素被膜を形成する元となる被膜用材料を作製する工程では、樹脂と炭素材が、炭素材40%以下の範囲、より好ましくは20%以上40%以下の範囲の重量比で混合される。重量比で40%以下の範囲を外れると、耐衝撃性の高い等方性構造になりにくいので好ましくない。なお、繊維集合体中の繊維と、樹脂および炭素材を合計した材料の比は、黒鉛質の被膜を形成する場合と同様である。 In the step of producing a coating material that forms a carbon coating having an isotropic structure on the surface of the first coating, the resin and the carbon material are within a range of 40% or less, more preferably 20% or more. Mix in a weight ratio in the range of 40% or less. If the weight ratio is out of the range of 40% or less, it is not preferable because an isotropic structure with high impact resistance is difficult to be obtained. The ratio of the fibers in the fiber assembly to the total of the resin and carbon material is the same as in the case of forming a graphite film.

等方性の炭素の元になる膜を形成する第二の被膜形成工程では、強化用繊維材料中の炭素繊維と前記被膜用材料とが重量比で1:0.2から1:7の範囲となるように前記溶媒を用いて混合することが好ましい。この重量比において、被膜用材料の比が0.2を下回ると、繊維集合体の第一の皮膜表面上に膜の形成がほとんど行われず、また7を上回ると膜ではなく塊状になって繊維集合体表面に付着する現象が発生するため、いずれも好ましくない。1:1から1:5の範囲がより好適である。 In the second film forming step of forming a film that is the basis of isotropic carbon, the carbon fiber in the reinforcing fiber material and the film material have a weight ratio in the range of 1: 0.2 to 1: 7. It is preferable to mix using the said solvent so that it may become. In this weight ratio, when the ratio of the coating material is less than 0.2, almost no film is formed on the surface of the first film of the fiber assembly. Since the phenomenon of adhering to the aggregate surface occurs, neither is preferable. A range of 1: 1 to 1: 5 is more preferred.

そして、このようにして製造した第一の被膜と第二の被膜を形成した繊維集合体を任意のマトリックス材と混合したのち、成型、加熱することで、層状または等方性の組織構造を生成させる。この繊維集合体を作製した後の、繊維強化セラミックス複合材料を作製する工程は、公知の技術を適用できるが、好適には、マトリックスとして炭化ケイ素、より好適には炭化ケイ素にシリコンを含浸したものを用いることが出来る。 Then, the fiber assembly formed with the first coating and the second coating thus produced is mixed with an arbitrary matrix material, and then molded and heated to produce a layered or isotropic structure. Let A known technique can be applied to the step of producing the fiber-reinforced ceramic composite material after producing this fiber assembly, but preferably silicon carbide as a matrix, more preferably silicon carbide impregnated with silicon Can be used.

なお、マトリックスとして炭化ケイ素粒子の間に残存する空間をシリコンで含浸する炭化ケイ素−ケイ素マトリックスを適用すると、繊維集合体を被覆している黒鉛質の層状構造炭素が、含浸シリコンによる炭素繊維のケイ化を阻害することで、炭素繊維のケイ化による繊維の強度劣化を抑えることができるので、より好適である。 When a silicon carbide-silicon matrix in which the space remaining between the silicon carbide particles is impregnated with silicon is applied as a matrix, the graphitic layered structure carbon covering the fiber assembly is converted into the carbon fiber silica by the impregnated silicon. By inhibiting the formation, deterioration of the strength of the fiber due to silicidation of the carbon fiber can be suppressed, which is more preferable.

本発明に係る繊維強化セラミックス複合材料の一態様にかかる製造方法においては、本発明に係る強化用繊維材料を、繊維強化セラミックス複合材料中に炭素繊維の体積含有率が10%以上50%以下になるように混合し、その後成型、乾燥、焼成することを特徴とする。 In the manufacturing method according to one aspect of the fiber-reinforced ceramic composite material according to the present invention, the reinforcing fiber material according to the present invention has a carbon fiber volume content of 10% to 50% in the fiber-reinforced ceramic composite material. It mixes so that it may become, and it is characterized by forming, drying, and baking after that.

このときの強化用繊維材料中の炭素繊維の含有率は、10%未満では繊維集合体での亀裂進展が起こる確率が低くなってしまい、また50%を超えるとセラミックスのマトリックスがもつ耐熱性、耐酸化性、強度などの優れた特性を損なう恐れがあり、いずれも好ましくない。より好ましくは、セラミックス複合材中の繊維の体積含有率が25%以上45%以下である。 If the carbon fiber content in the reinforcing fiber material at this time is less than 10%, the probability of crack growth in the fiber assembly is low, and if it exceeds 50%, the ceramic matrix has heat resistance, There is a risk of damaging excellent properties such as oxidation resistance and strength, both of which are not preferred. More preferably, the volume content of the fibers in the ceramic composite material is 25% or more and 45% or less.

本発明に係る強化用繊維材料の、好ましい製造方法の一態様においては、CVD法やスパッタ法のような、繊維1本単位の成膜を目指し、すべり面の少ない、製造コストも高くつく方法に比べて、液体材料の浸漬と混合による繊維集合体全体に層状構造の材料を含有するように材料の比率の最適化などを行うことによって、繊維表面と繊維間にすべり効果を付与し、破壊エネルギーの高い繊維強化セラミックス複合材料を、比較的簡単な装置で容易にかつ効率よく提供することが可能となる。   In one aspect of a preferred manufacturing method of the reinforcing fiber material according to the present invention, a method of forming a single fiber unit, such as a CVD method or a sputtering method, having a low slip surface and a high manufacturing cost. In comparison, by optimizing the ratio of materials so that the entire fiber assembly contains a layered material by immersion and mixing of liquid materials, a slip effect is imparted between the fiber surface and the fibers, and the fracture energy It is possible to easily and efficiently provide a high fiber-reinforced ceramic composite material with a relatively simple device.

また、既存の繊維強化セラミックス複合材料に対しても、本発明の一態様に係る強化用繊維材料を適用することで、マトリックス材の種類にかかわらず、本発明を適用しなかった場合に比べて、簡易に破壊エネルギーを向上させることが可能となる。 In addition, by applying the reinforcing fiber material according to one aspect of the present invention to the existing fiber reinforced ceramic composite material, the present invention is not applied regardless of the type of the matrix material. It is possible to easily improve the destruction energy.

以下、本発明の好ましい実施形態を実施例に基づき説明するが、本発明はこの実施例により限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described based on examples, but the present invention is not limited to these examples.

(実験1)から(実験4)に示す内容で、カーボンファイバーと炭化ケイ素マトリックスからなる複合材(以下、CF/SiCコンポジット)を作製し、破壊エネルギーを測定した。得られたCF/SiCコンポジットから3×4×40(mm)の試験片を切り出し、これを評価サンプルとして、日本セラミックス協会規格JCRS−201「シェブロンノッチ試験片の準静的3点曲げ破壊によるセラミック系複合材料の破壊エネルギー試験方法」に準拠した破壊エネルギーの測定を行った。 With the contents shown in (Experiment 1) to (Experiment 4), a composite material (hereinafter referred to as CF / SiC composite) composed of a carbon fiber and a silicon carbide matrix was produced, and the fracture energy was measured. A test piece of 3 × 4 × 40 (mm) was cut out from the obtained CF / SiC composite, and this was used as an evaluation sample. The ceramics produced by the Japan Ceramic Society Standard JCRS-201 “Quasi-static three-point bending fracture of a chevron notch test piece” Fracture energy was measured in accordance with the “Fracture energy test method for composite materials”.

繊維集合体に用いる繊維は、平均長6mm、平均径10μmの炭素繊維Aと、平均長6mm、平均径10.5μmの炭素繊維Bと、平均長6mm、平均径11μmの炭素繊維Cを準備した。そして、樹脂としてDIC製フェノールレジン、炭素材料としてJFE製のピッチとJFE製メソフェーズカーボンを等量混合した混合粉末を用意した。溶媒には、純度99.95%のエタノールを用いて、濃度50%のフェノールレジン溶液を作製した。なお、炭素繊維A、B、Cについては、その物性の違いを表1に示す。 The fibers used in the fiber assembly were prepared as carbon fibers A having an average length of 6 mm and an average diameter of 10 μm, carbon fibers B having an average length of 6 mm and an average diameter of 10.5 μm, and carbon fibers C having an average length of 6 mm and an average diameter of 11 μm. . Then, a mixed powder prepared by mixing equal amounts of DIC phenol resin as resin and JFE pitch and JFE mesophase carbon as carbon materials was prepared. As a solvent, ethanol having a purity of 99.95% was used to prepare a phenol resin solution having a concentration of 50%. In addition, about carbon fiber A, B, and C, the difference in the physical property is shown in Table 1.

(実験1)
これらの炭素繊維A、B、Cとフェノール溶液と混合粉末を、表2、表3に記載の通りに配合し、混練機にて混合して混合体を得た。なお、各材料の重量は、φ50×40(mm)の円盤材の大きさのCF/SiCコンポジットになるように適時調整した。
(Experiment 1)
These carbon fibers A, B and C, a phenol solution and a mixed powder were blended as shown in Tables 2 and 3, and mixed in a kneader to obtain a mixture. The weight of each material was adjusted in a timely manner so as to be a CF / SiC composite having a disk material size of φ50 × 40 (mm).

この混合体を、乾燥オーブンにて50℃×300分乾燥させ、続いて熱処理炉にてAr雰囲気中1000℃まで昇温し2時間保持する加熱処理を施した。前記処理を行った炭素繊維を、HSスタルク製SiC粉末と混合し、φ50×40(mm)の円盤材の形状に加圧成形した。その後、Ar雰囲気下2000℃で2時間焼成してCF/SiCコンポジットを形成し、さらにこのCF/SiCコンポジットに対して、真空雰囲気下1450℃で2時間保持して、シリコン含浸処理を行ったCF/SiCコンポジット円盤材を得た。 This mixture was dried in a drying oven at 50 ° C. for 300 minutes, and then subjected to a heat treatment in which the temperature was raised to 1000 ° C. in an Ar atmosphere and held for 2 hours in a heat treatment furnace. The carbon fiber subjected to the above-described treatment was mixed with HS Starc SiC powder and pressure-molded into a disk material of φ50 × 40 (mm). Thereafter, a CF / SiC composite was formed by firing at 2000 ° C. for 2 hours in an Ar atmosphere. Further, this CF / SiC composite was held at 1450 ° C. for 2 hours in a vacuum atmosphere, and subjected to silicon impregnation treatment. / SiC composite disc material was obtained.

破壊エネルギーの評価内容を、表4に示す。なお、特徴的な特性劣化の傾向として破壊エネルギー上昇抑制が見られた評価サンプルについては、表に*印を付した。   Table 4 shows the evaluation contents of the fracture energy. In addition, the * mark was attached | subjected to the table | surface about the evaluation sample in which the increase in destruction energy was seen as a characteristic characteristic deterioration tendency.

(実験2)
炭素繊維Cを用いて炭素繊維10gと、フェノール樹脂2.5g、純度99.95%のエタノール2.5g、混合粉末47.5gを混合し、50℃乾燥の条件で作製した混合体に表5、表6の内容に従って被膜を形成した繊維集合体を用いて、(実験1)と同様の方法でCF/SiCコンポジットを作製した。
(Experiment 2)
Using carbon fiber C, 10 g of carbon fiber, 2.5 g of phenol resin, 2.5 g of ethanol with a purity of 99.95%, and 47.5 g of mixed powder were mixed, and Table 5 A CF / SiC composite was produced in the same manner as in (Experiment 1) using the fiber assembly in which a coating was formed according to the contents of Table 6.

破壊エネルギーの評価は、表7に示す内容で実施した。なお、特徴的な特性劣化の傾向として、破壊エネルギー上昇抑制が見られた評価サンプルについては、(実験1)に準ずるものとする。   Evaluation of fracture energy was carried out with the contents shown in Table 7. Note that the evaluation sample in which the suppression of the breakdown energy increase is observed as a characteristic characteristic deterioration tendency is based on (Experiment 1).

(実験3)
炭素繊維Cを用いて炭素繊維10gと、フェノール樹脂2.5g、純度99.95%のエタノール2.5g、混合粉末47.5gを混合し、50℃乾燥の条件で作製した繊維集合体を用いて、表8に示す配合により、Ar雰囲気中1000℃加熱処理を挟み、層状構造の被膜と等方性構造の被膜を交互に20回被膜した繊維集合体を用いて、(実験1)と同様の方法で、CF/SiCコンポジットを作製し、破壊エネルギーを測定した。
(Experiment 3)
Using carbon fiber C, 10 g of carbon fiber, 2.5 g of phenol resin, 2.5 g of ethanol with a purity of 99.95%, and 47.5 g of mixed powder are used, and a fiber assembly produced under conditions of drying at 50 ° C. is used. By using the fiber assembly in which the heat treatment in an Ar atmosphere was sandwiched by the composition shown in Table 8 and the layered structure film and the isotropic structure film were alternately coated 20 times, the same as in (Experiment 1) The CF / SiC composite was prepared by the method described above, and the fracture energy was measured.

(実験4)
炭素繊維Cを用いて炭素繊維10gと、フェノール樹脂2.5g、純度99.95%のエタノール2.5g、混合粉末47.5gを混合し、50℃乾燥の条件で作製した繊維集合体をもとにして、表9に示す条件で、SiCまたはBCのフィラーを一部混合した条件で作製した新しい繊維集合体を作製し、(実験1)と同様の方法で、CF/SiCコンポジットを作製し、破壊エネルギーを測定した。
(Experiment 4)
A fiber assembly produced by mixing carbon fiber 10g, carbon fiber 10g, phenol resin 2.5g, ethanol 99g with purity 99.95%, mixed powder 47.5g and drying at 50 ° C Then, a new fiber assembly was prepared under the conditions shown in Table 9 under the condition that a part of the SiC or B 4 C filler was mixed, and the CF / SiC composite was prepared in the same manner as in (Experiment 1). Fabricated and measured for fracture energy.

(比較例1)
コバレントマテリアル(株)製の炭化ケイ素セラミックスを用いて、(実験1)と同型の円盤材を用意した。
(Comparative Example 1)
A disk material of the same type as (Experiment 1) was prepared using silicon carbide ceramics manufactured by Covalent Materials Corporation.

(比較例2)
東レ(株)製の炭素繊維と前記炭化ケイ素粉末を混合して、(実験1)と同様の製造方法で同型の円盤材を作製した。
(Comparative Example 2)
Carbon fiber manufactured by Toray Industries, Inc. and the silicon carbide powder were mixed to produce a disk material of the same type by the same production method as in (Experiment 1).

(比較例3)
比較例2の円盤材に対して、さらに真空雰囲気下1450℃でシリコンを含浸させた。
(Comparative Example 3)
The disc material of Comparative Example 2 was further impregnated with silicon at 1450 ° C. in a vacuum atmosphere.

以上のとおり作製した評価サンプルに対して、それぞれ破壊エネルギーを計測した。そして、(実験1)の製造条件と測定結果の一覧表を表2と表3、その判定基準を表4、(実験2)の製造条件と測定結果の一覧表を表5と表6、その判定基準を表4、(実験3)の製造条件と測定結果の一覧表を表8、および(実験4)の製造条件と測定結果の一覧表を表9に、それぞれ示す。 Fracture energy was measured for each of the evaluation samples prepared as described above. Tables 2 and 3 show the manufacturing conditions and measurement results in (Experiment 1), Table 4 shows the determination criteria, and Tables 5 and 6 show the manufacturing conditions and measurement results in (Experiment 2). The judgment criteria are shown in Table 4, the manufacturing conditions and measurement results in (Experiment 3) are listed in Table 8, and the manufacturing conditions and measurement results in (Experiment 4) are listed in Table 9.

判定基準は、表4においては、本発明の効果が見られたものを◎または○と記し、これより劣るものを△、または×と記した。表7では、本発明の効果が見られたものを○または△とし、これより劣るものを×とした。さらに、若干の破壊エネルギー劣化傾向がみられたものについては、*を付した。 In Table 4, those in which the effect of the present invention was observed were marked as ◎ or ◯, and those inferior to this were marked as Δ or ×. In Table 7, the case where the effect of the present invention was observed was marked with ◯ or Δ, and the case where it was inferior to this was marked with ×. Furthermore, those with a slight tendency to destructive energy degradation were marked with *.

表2、表3の結果では、本発明の一態様に係る実施範囲と実施範囲外の試験条件を比較すると、破壊エネルギーが3倍程度向上しており、本発明の効果が確認された。なお、炭素繊維の物性により破壊エネルギーの値に違いが生じており、本発明では、炭素繊維自体の特性も、繊維強化セラミックス複合材料全体の特性に反映される可能性が伺える。 In the results of Tables 2 and 3, when the implementation range according to one aspect of the present invention was compared with the test conditions outside the implementation range, the fracture energy was improved by about 3 times, and the effect of the present invention was confirmed. Note that there is a difference in the value of the fracture energy depending on the physical properties of the carbon fiber, and in the present invention, it is possible that the characteristics of the carbon fiber itself may be reflected in the characteristics of the entire fiber reinforced ceramic composite material.

表5、表6の結果では、使用した炭素繊維集合体の破壊エネルギー値が2180(J/m)であったのに対して、本発明の別の一態様に係る実施範囲に係るものは、70(J/m)以上の破壊エネルギー上昇がみられた。一方、本発明の実施範囲外では破壊エネルギー60(J/m)程度の上昇にとどまるか、同等以下であり、かつ、添加量増大による破壊エネルギーの上昇抑制が確認されており、特性としては劣化傾向が見られた。 In the results of Tables 5 and 6, the fracture energy value of the carbon fiber aggregate used was 2180 (J / m 2 ), while those related to the implementation range according to another aspect of the present invention , An increase in fracture energy of 70 (J / m 2 ) or more was observed. On the other hand, outside the scope of implementation of the present invention, the increase in the fracture energy is about 60 (J / m 2 ) or is equal to or less than that, and the increase in the breakdown energy due to the increase in the addition amount has been confirmed. A deterioration tendency was observed.

表8では、使用した炭素繊維集合体の破壊エネルギー値が2180(J/m)であり、表3で示した本発明の実施範囲の中で、破壊エネルギー値の最高値が2430(J/m)であったのに対して、本発明のさらに別の一態様に係る実施範囲に係るものは、これを大きく上回る2950(J/m)という値を示した。 In Table 8, the fracture energy value of the carbon fiber aggregate used is 2180 (J / m 2 ), and the maximum value of the fracture energy value in the implementation range of the present invention shown in Table 3 is 2430 (J / m). In contrast to m 2 ), the one according to another embodiment of the present invention showed a value of 2950 (J / m 2 ), which is much higher than this.

表9の結果から、浸漬用材料にその他材料としてSiCまたはBCフィラーを追加することで、破壊エネルギーをさらに向上させることができた。炭素材料と炭素材料以外とを適切に選択することで、破壊エネルギーのさらなる向上も見込める。 From the results shown in Table 9, the fracture energy could be further improved by adding SiC or B 4 C filler as the other material to the dipping material. By appropriately selecting a carbon material and a material other than the carbon material, further improvement in fracture energy can be expected.

なお、(比較例1)の破壊エネルギーは5(J/m)、(比較例2)の破壊エネルギーは17(J/m)、(比較例3)の破壊エネルギーは15(J/m)であった。 The fracture energy of (Comparative Example 1) is 5 (J / m 2 ), the fracture energy of (Comparative Example 2) is 17 (J / m 2 ), and the fracture energy of (Comparative Example 3) is 15 (J / m 2 ). 2 ).

以上の結果から、本発明の一態様に係る実施例において、破壊エネルギーの向上が確認された。   From the above results, it was confirmed that the fracture energy was improved in the example according to one embodiment of the present invention.

本発明は、金属に比べて軽いため、例えば自動車や鉄道車両のディスクブレーキのディスク材などの摺動磨耗材、また回転体の軸受けも半導体製造装置、研磨機などの制動装置の台座や移動体のボディーの構造材、航空宇宙用途のロケットノズル、シールドなど衝撃からの保護材、等の用途に対する繊維強化セラミックス複合材料として特に好適である。   Since the present invention is lighter than metal, for example, sliding wear materials such as disc materials for disc brakes of automobiles and railway vehicles, and bearings of rotating bodies are also used as pedestals and moving bodies for braking devices such as semiconductor manufacturing apparatuses and polishing machines. It is particularly suitable as a fiber-reinforced ceramic composite material for applications such as structural materials for body, rocket nozzles for aerospace applications, protective materials against impacts such as shields, and the like.

1…繊維強化セラミックス複合材料、11…マトリックス、21…繊維、22…繊維集合体
23…繊維間空間部、24…繊維集合体表面、25…層状構造材料、26…層状材料と異なる組織構造材料(等方性構造材料)、27…層状構造材料と層状材料と異なる組織構造材料(等方性構造材料により形成される界面、28…層状構造材料と層状材料と異なる組織構造材料(等方性構造材料により形成される界面を有する繊維集合体
1 ... Fiber reinforced ceramic composite material, 11 ... Matrix, 21 ... Fiber, 22 ... Fiber assembly
23 ... inter-fiber space, 24 ... fiber assembly surface, 25 ... layered structure material, 26 ... tissue structure material (isotropic structure material) different from layered material, 27 ... structure structure material different from layered structure material and layered material (Interface formed by isotropic structural material, 28 ... Structural structural material different from layered structural material and layered material (fiber assembly having an interface formed by isotropic structural material)

Claims (11)

複数本のセラミックス、金属、もしくは、セラミックスと金属の混合体からなる繊維集合体の繊維間が層状構造材料で満たされており、かつ、前記繊維集合体の表面全体もしくは表面の一部が、前記層状構造材料で覆われていることを特徴とする強化用繊維材料。 Between the fibers of a fiber assembly made of a plurality of ceramics, metal, or a mixture of ceramics and metal is filled with a layered structural material, and the entire surface of the fiber assembly or a part of the surface is A reinforcing fiber material, characterized in that it is covered with a layered structural material. 請求項1記載の強化用繊維材料の表面全体もしくは表面の一部に、さらに層状構造材料と層状構造と異なる組織構造の材料によって形成される界面が1面以上存在することを特徴とする強化用繊維材料。 The reinforcing fiber material according to claim 1, wherein at least one interface formed by a layered structure material and a material having a structure different from the layered structure exists on the entire surface or a part of the surface of the reinforcing fiber material. Fiber material. 層状構造材料は、黒鉛質の炭素であることを特徴とする請求項1または請求項2に記載の強化用繊維材料。 The reinforcing fiber material according to claim 1 or 2, wherein the layered structural material is graphitic carbon. 層状構造と異なる組織構造の材料は、等方性の炭素であることを特徴とする請求項2に記載の強化用繊維材料。 The reinforcing fiber material according to claim 2, wherein the material having a structure different from the layered structure is isotropic carbon. 請求項1から4のいずれかに記載の強化用繊維材料を、セラミックスのマトリックス中に配したことを特徴とする繊維強化セラミックス複合材料。 5. A fiber-reinforced ceramic composite material, wherein the reinforcing fiber material according to claim 1 is disposed in a ceramic matrix. 繊維集合体と、樹脂と、前記樹脂を溶解する溶媒と、ピッチ又はメソフェーズの少なくともいずれか一つからなる炭素材と、をそれぞれ準備する工程と、前記樹脂と前記炭素材を前記炭素材の重量分率が50%以上になる比率で前記溶媒中に溶解して混合させることにより浸漬用材料を作製する工程と、前記繊維集合体に前記浸漬用材料を重量比で1:0.2から1:9の範囲で接触させ吸収させて前記繊維集合体の繊維間の空間部に前記浸漬用材料を充填させる工程と、前記繊維集合体の繊維間の空間部に充填された前記浸漬用材料を乾燥および層状構造化させるための加熱処理を行う工程と、からなることを特徴とする強化用繊維材料の製造方法。 A step of preparing a fiber assembly, a resin, a solvent for dissolving the resin, and a carbon material composed of at least one of pitch and mesophase, and a weight of the carbon material for the resin and the carbon material. A step of preparing a dipping material by dissolving and mixing in the solvent at a ratio of 50% or more; and a weight ratio of the dipping material to the fiber assembly from 1: 0.2 to 1 : The step of contacting and absorbing in the range of 9 to fill the space between the fibers of the fiber assembly with the immersion material, and the material for immersion filled in the space between the fibers of the fiber assembly. A method for producing a reinforcing fiber material, comprising: a step of performing heat treatment for drying and layering. 請求項6で得られた強化用繊維材料と、樹脂と、前記樹脂を溶解する溶媒と、ピッチ又はメソフェーズの少なくともいずれか一つからなる炭素材と、をそれぞれ準備する工程と、前記強化用繊維材料中の炭素繊維と前記樹脂および前記炭素材を合計した材料とが重量比で1:0.2から1:7の範囲になるように前記溶媒を用いて混合することにより前記強化用繊維材料表面へ層状構造の炭素の元になる膜を形成する第一の被膜形成工程と、前記樹脂と前記炭素材を前記炭素材の重量分率が40%以下になる比率で前記溶媒中に溶解して混合させることにより被膜用材料を作製する工程と、前記強化用繊維材料中の炭素繊維と前記被膜用材料とが重量比で1:0.2から1:7の範囲となるように前記溶媒を用いて混合することにより前記強化用繊維材料の表面に等方性の炭素の元になる膜を形成する第二の被膜形成工程と、引き続き前記強化用繊維材料を乾燥させる工程と、さらに前記第一の被膜を層状構造化させ前記第二の被膜を等方性化させる加熱処理を行う工程と、からなることを特徴とする請求項6に記載の強化用繊維材料の製造方法。 Preparing the reinforcing fiber material obtained in claim 6, a resin, a solvent for dissolving the resin, and a carbon material made of at least one of pitch and mesophase, and the reinforcing fiber The reinforcing fiber material is prepared by mixing the carbon fiber in the material with the solvent so that the weight ratio of the resin and the carbon material is a total of 1: 0.2 to 1: 7. A first film forming step for forming a layer-structured carbon film on the surface, and the resin and the carbon material are dissolved in the solvent at a ratio of 40% or less by weight of the carbon material. The solvent is prepared such that the coating material is prepared by mixing the carbon fiber in the reinforcing fiber material and the coating material in a weight ratio of 1: 0.2 to 1: 7. By mixing with A second film forming step of forming a film based on isotropic carbon on the surface of the fiber material, a step of subsequently drying the reinforcing fiber material, and a layered structure of the first film. The method for producing a reinforcing fiber material according to claim 6, comprising a step of performing a heat treatment for making the second coating isotropic. 前記第一の被膜形成工程と前記第二の被膜形成工程とをこの順で2回以上40回以下繰り返し、その後、前記強化用繊維材料を乾燥させる工程と、前記第一の被膜を層状構造化させ前記第二の被膜を等方性化させる加熱処理を行う工程と、を行うことを特徴とする請求項7に記載の強化用繊維材料の製造方法。 The first film forming step and the second film forming step are repeated twice or more and 40 times or less in this order, and then the step of drying the reinforcing fiber material and the layered structure of the first film And a step of performing a heat treatment for making the second coating isotropic. The method for producing a reinforcing fiber material according to claim 7. 樹脂は、フェノール、シリコーン、フッ素、エポキシ、フラン、フルフリル、メラミン、尿素、ポリエステル、ポリイミドのうち1ないし2以上の混合物からなることを特徴とする請求項6から8のいずれかに記載の強化用繊維材料の製造方法。 The reinforcing resin according to any one of claims 6 to 8, wherein the resin comprises a mixture of one or more of phenol, silicone, fluorine, epoxy, furan, furfuryl, melamine, urea, polyester, and polyimide. A method for producing a fiber material. 溶媒は、水、有機溶剤、またはこれらの混合物からなることを特徴とする請求項6から8のいずれかに記載の強化用繊維材料の製造方法。 The method for producing a reinforcing fiber material according to any one of claims 6 to 8, wherein the solvent comprises water, an organic solvent, or a mixture thereof. 請求項6から10のいずれかに記載の強化用繊維材料を、前記強化用繊維材料中の炭素繊維の体積含有率が10%以上50%以下になるようにセラミックス材料中へ混合し、その後、成型、乾燥、焼成することを特徴とする繊維強化セラミックス複合材料の製造方法。 The reinforcing fiber material according to any one of claims 6 to 10 is mixed into a ceramic material so that a volume content of carbon fibers in the reinforcing fiber material is 10% or more and 50% or less, and then A method for producing a fiber-reinforced ceramic composite material, characterized by molding, drying and firing.
JP2010022627A 2010-02-04 2010-02-04 REINFORCING FIBER MATERIAL, FIBER-REINFORCED CERAMIC COMPOSITE MATERIAL USING THE SAME, AND METHOD FOR PRODUCING THEM. Active JP5263980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010022627A JP5263980B2 (en) 2010-02-04 2010-02-04 REINFORCING FIBER MATERIAL, FIBER-REINFORCED CERAMIC COMPOSITE MATERIAL USING THE SAME, AND METHOD FOR PRODUCING THEM.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010022627A JP5263980B2 (en) 2010-02-04 2010-02-04 REINFORCING FIBER MATERIAL, FIBER-REINFORCED CERAMIC COMPOSITE MATERIAL USING THE SAME, AND METHOD FOR PRODUCING THEM.

Publications (2)

Publication Number Publication Date
JP2011157251A true JP2011157251A (en) 2011-08-18
JP5263980B2 JP5263980B2 (en) 2013-08-14

Family

ID=44589552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010022627A Active JP5263980B2 (en) 2010-02-04 2010-02-04 REINFORCING FIBER MATERIAL, FIBER-REINFORCED CERAMIC COMPOSITE MATERIAL USING THE SAME, AND METHOD FOR PRODUCING THEM.

Country Status (1)

Country Link
JP (1) JP5263980B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014445A (en) * 2011-06-30 2013-01-24 Covalent Materials Corp Reinforcing fiber material, fiber-reinforced ceramic composite material using reinforcing fiber material, and methods for producing them
DE102013216475A1 (en) 2012-08-31 2014-03-06 Japan Aviation Electronics Industry, Limited INORGANIC SOLID-SOLVENT MATERIAL AND CUTTING TOOL
US20160376201A1 (en) * 2015-06-29 2016-12-29 Coorstek Kk Fiber material for reinforcement, production method thereof, and fiber-reinforced ceramic composite material
JP7535928B2 (en) 2020-12-04 2024-08-19 株式会社Ihiエアロスペース Ceramic matrix composite material, its manufacturing method, and fixture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388779A (en) * 1989-01-13 1991-04-15 Soc Europ Propulsion (Sep) Composite material having multiple intermediate phases between reinforcing fire-resisting fiber and ceramic matrix
JPH0769748A (en) * 1990-02-09 1995-03-14 Soc Europ Propulsion (Sep) Preparation of carbon fiber reinforced ceramics composite material
JP2001163669A (en) * 1999-12-09 2001-06-19 Kawasaki Heavy Ind Ltd Carbon/carbon composite material and its manufacturing method
JP2002510596A (en) * 1998-04-06 2002-04-09 ダイムラークライスラー・アクチェンゲゼルシャフト Reinforcing fiber and fiber strand used for fiber-reinforced composite material, etc., method for producing such reinforcing fiber, method for producing such fiber strand, and method for producing fiber-reinforced composite material using reinforcing fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388779A (en) * 1989-01-13 1991-04-15 Soc Europ Propulsion (Sep) Composite material having multiple intermediate phases between reinforcing fire-resisting fiber and ceramic matrix
JPH0769748A (en) * 1990-02-09 1995-03-14 Soc Europ Propulsion (Sep) Preparation of carbon fiber reinforced ceramics composite material
JP2002510596A (en) * 1998-04-06 2002-04-09 ダイムラークライスラー・アクチェンゲゼルシャフト Reinforcing fiber and fiber strand used for fiber-reinforced composite material, etc., method for producing such reinforcing fiber, method for producing such fiber strand, and method for producing fiber-reinforced composite material using reinforcing fiber
JP2001163669A (en) * 1999-12-09 2001-06-19 Kawasaki Heavy Ind Ltd Carbon/carbon composite material and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014445A (en) * 2011-06-30 2013-01-24 Covalent Materials Corp Reinforcing fiber material, fiber-reinforced ceramic composite material using reinforcing fiber material, and methods for producing them
DE102013216475A1 (en) 2012-08-31 2014-03-06 Japan Aviation Electronics Industry, Limited INORGANIC SOLID-SOLVENT MATERIAL AND CUTTING TOOL
US9999983B2 (en) 2012-08-31 2018-06-19 Japan Aviation Electronics Industry, Limited Chipping-proof inorganic solid-state material and chipping-proof edge tool
US20160376201A1 (en) * 2015-06-29 2016-12-29 Coorstek Kk Fiber material for reinforcement, production method thereof, and fiber-reinforced ceramic composite material
JP2017014033A (en) * 2015-06-29 2017-01-19 クアーズテック株式会社 Reinforcing fiber material and manufacturing method thereof, and fiber reinforced ceramics composite
JP7535928B2 (en) 2020-12-04 2024-08-19 株式会社Ihiエアロスペース Ceramic matrix composite material, its manufacturing method, and fixture

Also Published As

Publication number Publication date
JP5263980B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP6155439B2 (en) Manufacturing method of parts made of CMC material
Zhuang et al. SiCnw/PyC core-shell networks to improve the bonding strength and oxyacetylene ablation resistance of ZrB2–ZrC coating for C/C–ZrB2–ZrC–SiC composites
Lu et al. Ablation resistance of SiC–HfC–ZrC multiphase modified carbon/carbon composites
CN107903067A (en) A kind of growth in situ SiC nanowire enhancing SiC ceramic based composites and preparation method thereof
EP1911990A2 (en) Carbon-carbon friction material with improved wear life
Devasia et al. Continuous fiber reinforced ceramic matrix composites
CN107353025A (en) A kind of preparation method of resistance to 1200 DEG C of oxidation resistant ceramic matric composites
EP2210868B1 (en) Composite material
CA2666042A1 (en) Process for manufacturing a part made of a ceramic matrix composite containing matrix phases for healing and deflecting cracks
JP5263980B2 (en) REINFORCING FIBER MATERIAL, FIBER-REINFORCED CERAMIC COMPOSITE MATERIAL USING THE SAME, AND METHOD FOR PRODUCING THEM.
JP5944619B2 (en) Carbon fiber composite material, brake member using this carbon fiber composite material, structural member for semiconductor, heat resistant panel, heat sink
Zhao et al. Fabrication of C/SiC composites by siliconizing carbon fiber reinforced nanoporous carbon matrix preforms and their properties
CN103898499A (en) Method for preparing SiC/Al2O3 coating by using precursor conversion method
CN103951454A (en) SiC whisker-enhanced ceramic matrix composite material
CN108083832A (en) A kind of high efficiency, low cost near clean shaping preparation method of C/C-HfC composite materials
Yin et al. Novel structural design strategies in ceramic-modified C/C composites
Shimoda et al. Novel production route for SiC/SiC ceramic-matrix composites using sandwich prepreg sheets
JP6824601B2 (en) Reinforcing fiber material and its manufacturing method, and fiber reinforced ceramic composite material
JP2003252694A (en) SiC-FIBER-COMPOSITED SiC COMPOSITE MATERIAL
JP5769519B2 (en) Fiber material for reinforcement, fiber-reinforced ceramic composite material using fiber material for reinforcement, and method for producing the same
WO2018216816A1 (en) Production method for sic/sic composite material
Gottlieb et al. Continuous fiber-reinforced ceramic matrix composites
JP5690789B2 (en) Surface-treated molded heat insulating material and method for producing the same
JP2004175605A (en) Oxidation-resistant c/c composite material and its manufacturing process
JP5492817B2 (en) Surface-treated molded heat insulating material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5263980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250