JP2011153760A - Two-stage compressor - Google Patents

Two-stage compressor Download PDF

Info

Publication number
JP2011153760A
JP2011153760A JP2010015346A JP2010015346A JP2011153760A JP 2011153760 A JP2011153760 A JP 2011153760A JP 2010015346 A JP2010015346 A JP 2010015346A JP 2010015346 A JP2010015346 A JP 2010015346A JP 2011153760 A JP2011153760 A JP 2011153760A
Authority
JP
Japan
Prior art keywords
cooler
compressor
flow path
path configuration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010015346A
Other languages
Japanese (ja)
Other versions
JP5470064B2 (en
Inventor
Masaki Matsukuma
正樹 松隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010015346A priority Critical patent/JP5470064B2/en
Publication of JP2011153760A publication Critical patent/JP2011153760A/en
Application granted granted Critical
Publication of JP5470064B2 publication Critical patent/JP5470064B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-stage compressor enabling effective heat recovery from cooling water after compressed gas is cooled. <P>SOLUTION: The two-stage compressor 1 includes: a first compressor 2 and a second compressor 3 compressing gas; and a first cooler 4 and a second cooler 5 cooling gas by heat exchange with cooling fluid. In the two-stage compressor 1, a first fluid passage configuration for introducing gas discharged from the first compressor 2 to the second compressor 3 via the first cooler 4 and supplying gas discharged from the second compressor 3 to a demand destination via the second cooler 5 and a second fluid configuration for introducing gas discharged from the first compressor 2 to the second compressor 3 via the first cooler 4 and second cooler 5 and supplying gas discharged from the second compressor 3 to the demand destination can be selected. The two-stage compressor 1 includes flow rate control means 20, 21 setting a flow rate of cooling fluid supplied to the first cooler 4 and second cooler 5 in the second flow passage configuration smaller than that in the first flow passage configuration. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は2段圧縮装置に関する。   The present invention relates to a two-stage compression apparatus.

2つの圧縮機を直列に接続してガスを2段階に圧縮する2段圧縮装置がある。2段圧縮装置では、例えば特許文献1に記載されているように、1段目の圧縮機の吐出ガスをインタークーラ(冷却器)で冷却してから、2段目の圧縮機に導入し、2段目の圧縮機の吐出ガスをアフタークーラ(冷却器)で冷却してから需要先に供給するのが一般的である。   There is a two-stage compressor that compresses gas in two stages by connecting two compressors in series. In the two-stage compression device, for example, as described in Patent Document 1, the discharge gas of the first-stage compressor is cooled by an intercooler (cooler), and then introduced into the second-stage compressor. Generally, the discharge gas of the second stage compressor is cooled by an aftercooler (cooler) and then supplied to the customer.

通常、インタークーラやアフタークーラは、圧縮ガスと冷却水との間で熱交換を行う熱交換器によって構成され、圧縮ガスを冷却することで冷却水の温度が上昇する。多くの2段圧縮装置のインタークーラやアフタークーラは、小型化および低価格化のために、伝熱面積を小さくし、冷却水の供給温度と排出温度との差が5〜10℃程度で、その水量を多く設定したもの、つまり、熱交換における対数平均温度差を大きな値に設定したものが多い。   Usually, an intercooler and an aftercooler are comprised by the heat exchanger which performs heat exchange between compressed gas and cooling water, and the temperature of cooling water rises by cooling compressed gas. Many two-stage compressor intercoolers and aftercoolers have a reduced heat transfer area for miniaturization and cost reduction, and the difference between the cooling water supply temperature and the discharge temperature is about 5 to 10 ° C. In many cases, the amount of water is set large, that is, the logarithmic average temperature difference in heat exchange is set to a large value.

近年、省エネルギーの観点から、熱交換器からなる冷却器において温度が上昇した冷却水(温水)から熱回収を行うことが提案されている。温水からの熱回収の効率を高めるためには、温水温度をできるだけ高くすることが望ましい。したがって、インタークーラやアフタークーラの伝熱面積を大きくして、少ない冷却水で圧縮ガスを冷却できるようにすることが、熱回収の観点からは好ましい。   In recent years, from the viewpoint of energy saving, it has been proposed to recover heat from cooling water (hot water) whose temperature has increased in a cooler composed of a heat exchanger. In order to increase the efficiency of heat recovery from hot water, it is desirable to make the hot water temperature as high as possible. Therefore, it is preferable from the viewpoint of heat recovery to increase the heat transfer area of the intercooler or the aftercooler so that the compressed gas can be cooled with a small amount of cooling water.

しかしながら、上述のとおり、2段圧縮装置のインタークーラやアフタークーラの伝熱面積を大きくすることは、装置の大型化やコストアップを招くので好ましくない。特に、2台の圧縮機と、インタークーラおよびアフタークーラと、その他の構成要素とを1つの筐体内に収めたパッケージ型の2段圧縮装置においては、熱交換器の小型化へのニーズが大きい。このため、従来の2段圧縮装置では、インタークーラやアフタークーラから排出される温水から十分な熱回収を行うことが難しかった。   However, as described above, it is not preferable to increase the heat transfer area of the intercooler or the aftercooler of the two-stage compression device because it increases the size and cost of the device. In particular, in a package-type two-stage compression device in which two compressors, an intercooler and an aftercooler, and other components are housed in one housing, there is a great need for downsizing of the heat exchanger. . For this reason, in the conventional two-stage compression apparatus, it has been difficult to sufficiently recover heat from the hot water discharged from the intercooler or the aftercooler.

特開平6−2677号公報Japanese Patent Laid-Open No. 6-2676

前記問題点に鑑みて、本発明は、小型で安価な冷却器を用いながら、圧縮ガスを冷却した後の冷却水から有効な熱回収を行うことができる2段圧縮装置を提供することを課題とする。   In view of the above problems, the present invention is to provide a two-stage compression device capable of performing effective heat recovery from cooling water after cooling compressed gas while using a small and inexpensive cooler. And

前記課題を解決するために、本発明による2段圧縮装置の第1の態様は、ガスを圧縮する第1圧縮機および第2圧縮機と、前記ガスを冷却流体と熱交換して冷却する第1冷却器および第2冷却器とを有し、前記第1圧縮機が吐出した前記ガスを、前記第1冷却器を介して前記第2圧縮機に導入し、前記第2圧縮が吐出した前記ガスを、前記第2冷却器を介して需要先に供給する第1の流路構成と、前記第1圧縮機が吐出した前記ガスを、前記第1冷却器および前記第2冷却器を介して前記第2圧縮機に導入し、前記第2圧縮が吐出した前記ガスを前記需要先に供給する第2の流路構成とを選択可能であり、前記第1冷却器および前記第2冷却器に供給される前記冷却流体の流量を、前記第2の流路構成において、前記第1の流路構成よりも少なくする流量調整手段を有するものとする。   In order to solve the above problems, a first aspect of a two-stage compressor according to the present invention includes a first compressor and a second compressor that compress a gas, and a first compressor that cools the gas by heat exchange with a cooling fluid. The first cooler and the second cooler, the gas discharged from the first compressor is introduced into the second compressor through the first cooler, and the second compression discharges the gas A first flow path configuration for supplying gas to a customer through the second cooler, and the gas discharged by the first compressor through the first cooler and the second cooler A second flow path configuration that is introduced into the second compressor and that supplies the gas discharged by the second compression to the demand destination can be selected, and the first cooler and the second cooler can be selected. The flow rate of the supplied cooling fluid is less in the second channel configuration than in the first channel configuration. It shall have Kusuru flow rate adjusting means.

この構成によれば、2段圧縮装置の吐出ガスの温度を高くできない場合、例えば、給気温度を一定温度以下にする必要がある冷凍式のエアドライアに圧縮空気を供給するような場合には、第1冷却器をインタークーラとし、第2冷却器をアフタークーラとして使用する第1の流路構成とすればよい。また、需要設備が高温の圧縮ガスを許容する場合には、第1冷却器および第2冷却器を直列に接続して1つのインタークーラとして使用する第2の流路構成とすることで、インタークーラの伝熱面積を大きくできる。これにより、インタークーラにおける圧縮ガスと冷却流体との温度差を小さく、つまり、冷却流体のインタークーラ出口における温度を高くすることによって、冷却流体から容易且つ効率よく熱回収できるようにする。   According to this configuration, when the temperature of the discharge gas of the two-stage compressor cannot be increased, for example, when compressed air is supplied to a refrigeration type air dryer that requires the supply air temperature to be a certain temperature or less, What is necessary is just to set it as the 1st flow path structure which uses a 1st cooler as an intercooler and a 2nd cooler as an aftercooler. In addition, when the demand facility allows high-temperature compressed gas, the first cooler and the second cooler are connected in series to form a second flow path configuration that is used as one intercooler. The heat transfer area of the cooler can be increased. Accordingly, the temperature difference between the compressed gas and the cooling fluid in the intercooler is reduced, that is, the temperature of the cooling fluid at the intercooler outlet is increased, so that heat can be easily and efficiently recovered from the cooling fluid.

また、本発明の2段圧縮装置の第1の態様において、前記冷却流体は、前記第1の流路構成において、前記第1冷却機および前記第2冷却器を並列に通過し、前記第2の流路構成において、前記第1冷却器および前記第2冷却器を直列に通過してもよい。   In the first aspect of the two-stage compression device of the present invention, the cooling fluid passes in parallel through the first cooler and the second cooler in the first flow path configuration, and the second In the flow path configuration, the first cooler and the second cooler may pass in series.

この構成によれば、第2の流路構成において、前記第1冷却機および前記第2冷却器の両方を通して、圧縮ガスと冷却流体とが1パスの向流熱交換を行うことができるので、冷却流体の戻り温度を高くできる。   According to this configuration, in the second flow path configuration, the compressed gas and the cooling fluid can perform one-pass countercurrent heat exchange through both the first cooler and the second cooler. The return temperature of the cooling fluid can be increased.

また、本発明による2段圧縮装置の第2の態様は、ガスを圧縮する第1圧縮機および第2圧縮機と、前記ガスを冷却流体と熱交換して冷却する第1冷却器および第2冷却器とを有し、前記第1圧縮機が吐出した前記ガスを、前記第1冷却器を介して前記第2圧縮機に導入し、前記第2圧縮が吐出した前記ガスを、前記第2冷却器を介して需要先に供給する第1の流路構成と、前記第1圧縮機が吐出した前記ガスを2分して、一方は前記第1冷却器を介して、他方は前記第2冷却器を介して前記第2圧縮機に導入し、前記第2圧縮が吐出した前記ガスを前記需要先に供給する第2の流路構成とを選択可能であり、前記第1冷却器および前記第2冷却器に供給される前記冷却流体の流量を、前記第2の流路構成において、前記第1の流路構成よりも少なくする流量調整手段を有するものとする。   A second aspect of the two-stage compression apparatus according to the present invention includes a first compressor and a second compressor that compress a gas, a first cooler that cools the gas by heat exchange with a cooling fluid, and a second compressor. The gas discharged from the first compressor is introduced into the second compressor via the first cooler, and the gas discharged from the second compression is supplied to the second compressor. A first flow path configuration supplied to a customer through a cooler, and the gas discharged by the first compressor are divided into two, one through the first cooler and the other through the second A second flow path configuration that is introduced into the second compressor via a cooler and supplies the gas discharged by the second compression to the demand destination can be selected, and the first cooler and the The flow rate of the cooling fluid supplied to the second cooler in the second channel configuration is greater than that in the first channel configuration. It shall have a flow rate adjusting means to lessen.

この構成によれば、2段圧縮装置の吐出ガス温度を高くできない場合には、第1冷却器をインタークーラとし、第2冷却器をアフタークーラとして使用する第1の流路構成とすればよい。また、需要設備が高温の圧縮ガスを許容する場合には、第1冷却器および第2冷却器を並列に接続してインタークーラとして使用する第2の流路構成とすることで、第1冷却器および第2冷却器を通過する圧縮ガスの流量を少なくできる。これにより、1冷却器および第2冷却器における圧縮ガスと冷却流体との温度差を小さくし、冷却流体の1冷却器および第2冷却器の出口温度を高くすることによって、冷却流体からの熱回収を可能にする。   According to this configuration, when the discharge gas temperature of the two-stage compression device cannot be increased, the first flow path configuration may be used in which the first cooler is used as an intercooler and the second cooler is used as an aftercooler. . Further, when the demand facility allows high-temperature compressed gas, the first cooling device and the second cooling device are connected in parallel to form a second flow path configuration that is used as an intercooler. The flow rate of the compressed gas passing through the condenser and the second cooler can be reduced. Accordingly, the temperature difference between the compressed gas and the cooling fluid in the first cooler and the second cooler is reduced, and the outlet temperature of the first cooler and the second cooler of the cooling fluid is increased, so that the heat from the cooling fluid is increased. Enable recovery.

以上のように、本発明によれば、第2冷却器を2段圧縮装置のアフタークーラとして使用して、圧縮ガスの供給温度を低くすることも、第2冷却器を第1冷却器と共にインタークーラとして使用して、インタークーラの伝熱面積を大きくすることもできる。インタークーラの伝熱面積を大きくすれば、圧縮ガスと冷却流体との温度差を小さくできるので、冷却流体の戻り温度を高くして、冷却流体からの熱回収を容易にできる。   As described above, according to the present invention, the second cooler can be used as the aftercooler of the two-stage compression device to reduce the supply temperature of the compressed gas, and the second cooler can be used together with the first cooler. It can also be used as a cooler to increase the heat transfer area of the intercooler. If the heat transfer area of the intercooler is increased, the temperature difference between the compressed gas and the cooling fluid can be reduced, so that the return temperature of the cooling fluid can be increased and heat recovery from the cooling fluid can be facilitated.

本発明の第1実施形態の2段圧縮装置の構成図である。It is a block diagram of the two-stage compression apparatus of 1st Embodiment of this invention. 図1の2段圧縮装置の第1の流路構成を示す図である。It is a figure which shows the 1st flow-path structure of the two-stage compression apparatus of FIG. 図1の2段圧縮装置の第2の流路構成を示す図である。It is a figure which shows the 2nd flow-path structure of the two-stage compression apparatus of FIG. 本発明の第2実施形態の2段圧縮装置の構成図である。It is a block diagram of the two-stage compression apparatus of 2nd Embodiment of this invention.

これより、本発明の実施形態について、図面を参照しながら説明する。図1に、本発明の第1実施形態の2段圧縮装置1の構成を示す。本実施形態の2段圧縮装置1は、空気(ガス)を吸い込んで2段階に圧縮し、圧縮空気として不図示の需要先(エアドライヤのような中間処理装置を含む)に供給するための装置である。   Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows a configuration of a two-stage compression apparatus 1 according to the first embodiment of the present invention. The two-stage compression apparatus 1 of the present embodiment is an apparatus for sucking air (gas), compressing it into two stages, and supplying the compressed air to a customer (not shown) including an intermediate processing device such as an air dryer. is there.

2段圧縮装置1は、それぞれ、スクリュ圧縮機からなる第1段圧縮機2および第2段圧縮機3と、それぞれ、圧縮空気と冷却水(冷却流体)との間で熱交換する第1冷却器4および第2冷却器5とを有する。第1段圧縮機2は、吸込フィルタ6、吸込サイレンサ7および吸込調整弁8を介して外気を吸い込んで圧縮し、吐出サイレンサ9を介して圧縮した空気を吐出する。第1段圧縮機2が吐出した圧縮空気は、第1冷却器4に導入される。   The two-stage compressor 1 is a first cooling unit that exchanges heat between the first-stage compressor 2 and the second-stage compressor 3, each of which is a screw compressor, and between compressed air and cooling water (cooling fluid), respectively. And a second cooler 5. The first stage compressor 2 sucks and compresses outside air through the suction filter 6, the suction silencer 7 and the suction adjustment valve 8, and discharges the compressed air through the discharge silencer 9. The compressed air discharged from the first stage compressor 2 is introduced into the first cooler 4.

第1冷却器4を通過した圧縮空気は、第1中間供給弁10を介して第2圧縮機3に導入、或いは、第2中間供給弁11を介して第2冷却器5に導入される。第2圧縮機3は、供給された圧縮空気をさらに圧縮し、吐出サイレンサ12を介して吐出する。第2圧縮機3から吐出された圧縮空気は、第1高圧供給弁13を介して第2冷却器5に導入、或いは、第2高圧供給弁14を介して需要先に直接供給される。   The compressed air that has passed through the first cooler 4 is introduced into the second compressor 3 via the first intermediate supply valve 10 or introduced into the second cooler 5 via the second intermediate supply valve 11. The second compressor 3 further compresses the supplied compressed air and discharges it through the discharge silencer 12. The compressed air discharged from the second compressor 3 is introduced into the second cooler 5 through the first high-pressure supply valve 13 or is directly supplied to the customer through the second high-pressure supply valve 14.

第1冷却器5を通過した圧縮空気は、第1吐出弁15を介して需要先に供給、或いは、第2吐出弁16を介して第2段圧縮機3に導入される。   The compressed air that has passed through the first cooler 5 is supplied to the customer through the first discharge valve 15 or introduced into the second stage compressor 3 through the second discharge valve 16.

また、2段圧縮装置1は、不図示の冷水源から給水ライン17を介して冷却水が供給され、使用した冷却水を環流ライン18を介して冷水源に戻すようになっている。第1冷却器4は、給水ライン17に供給三方弁19および第1調整弁(流量調整手段)20を介して接続されており、通過した冷却水を環流ライン18に直接戻すようになっている。第2冷却器5は、給水ライン17に、第2調整弁(流量調整手段)21を介して接続されており、通過した冷却水を環流三方弁22を介して環流ライン18に直接戻すことも供給三方弁19に供給することもできるようになっている。供給三方弁19は、第1冷却器4を給水ライン17から切り離して、環流三方弁22と接続することもできる。   The two-stage compressor 1 is supplied with cooling water from a cold water source (not shown) via a water supply line 17, and returns the used cooling water to the cold water source via a circulation line 18. The first cooler 4 is connected to the water supply line 17 via a supply three-way valve 19 and a first adjustment valve (flow rate adjusting means) 20, and returns the passed cooling water directly to the reflux line 18. . The second cooler 5 is connected to the water supply line 17 via a second regulating valve (flow rate adjusting means) 21, and the passing cooling water can be directly returned to the reflux line 18 via the reflux three-way valve 22. Supply to the supply three-way valve 19 is also possible. The supply three-way valve 19 can also be connected to the reflux three-way valve 22 by disconnecting the first cooler 4 from the water supply line 17.

図2に、第1中間供給弁10、第2中間供給弁11、第1高圧供給弁13、第2高圧供給弁14、第1吐出弁15および第2吐出弁16の開閉状態の選択によって構成される2段圧縮装置1の第1の流路構成を示す。図において、破線で示した流路は、弁10,11,13,14、15,16によって流路が閉鎖されて圧縮空気が流れない流路である。また、この第1の流路構成における、供給三方弁19および環流三方弁22によって決定される冷却水の流路も、同様に図示されている。   In FIG. 2, the first intermediate supply valve 10, the second intermediate supply valve 11, the first high-pressure supply valve 13, the second high-pressure supply valve 14, the first discharge valve 15, and the second discharge valve 16 are configured to be selected. The 1st flow-path structure of the two-stage compression apparatus 1 shown is shown. In the figure, the flow path indicated by a broken line is a flow path where the compressed air does not flow because the flow path is closed by the valves 10, 11, 13, 14, 15 and 16. In addition, the flow path of the cooling water determined by the supply three-way valve 19 and the reflux three-way valve 22 in the first flow path configuration is also illustrated.

この第1の流路構成では、第1圧縮機2から吐出された圧縮空気は、第1冷却器4で冷却されてから、第2圧縮機3に導入される。そして、第2圧縮機3から吐出された圧縮空気は、第2冷却器5で冷却されてから、需要先に供給される。また、第1の流路構成において、給水ライン17から供給された冷却水は、第1冷却器4および第2冷却器5にそれぞれ供給されて環流ライン18に戻される。つまり、第1の流路構成において、冷却水は、第1冷却器4および第2冷却器5を並列に通過する。   In the first flow path configuration, the compressed air discharged from the first compressor 2 is cooled by the first cooler 4 and then introduced into the second compressor 3. The compressed air discharged from the second compressor 3 is cooled by the second cooler 5 and then supplied to the customer. Further, in the first flow path configuration, the cooling water supplied from the water supply line 17 is supplied to the first cooler 4 and the second cooler 5 and returned to the circulation line 18. That is, in the first flow path configuration, the cooling water passes through the first cooler 4 and the second cooler 5 in parallel.

続いて、図3に、2段圧縮装置1の第2の流路構成を示す。この第2の流路構成では、第1圧縮機2から吐出された圧縮空気は、第1冷却器4で冷却されてからさらに第2冷却器5で冷却され、その後、第1圧縮機3に導入される。第2圧縮機3から吐出された圧縮空気は、直接需要先に供給される。また、第2の流路構成において、給水ライン17から供給された冷却水は、第2冷却器5を通過してから第1冷却器4を通過、つまり、第2冷却器5および第1冷却器4を直列に通過して、環流ライン18に戻される。   Subsequently, FIG. 3 shows a second flow path configuration of the two-stage compression apparatus 1. In the second flow path configuration, the compressed air discharged from the first compressor 2 is cooled by the first cooler 4 and then further cooled by the second cooler 5, and then the first compressor 3. be introduced. The compressed air discharged from the second compressor 3 is directly supplied to the customer. In the second flow path configuration, the cooling water supplied from the water supply line 17 passes through the first cooler 4 after passing through the second cooler 5, that is, the second cooler 5 and the first cooling. It passes through the vessel 4 in series and is returned to the reflux line 18.

第1の流路構成としたときの2段圧縮装置1における、圧縮空気と冷却水との熱収支を説明する。尚、2段圧縮装置1には、給水ライン17から32℃の冷却水が供給されるものとする。また、常温の大気は、第1圧縮機2において、圧縮される際のポリトロープ変化によって約200℃に昇温する。第2圧縮機5の過熱を防止するために、第1冷却器4では、圧縮空気を約60℃まで冷却する必要がある。   The heat balance between the compressed air and the cooling water in the two-stage compressor 1 when the first flow path configuration is adopted will be described. In addition, 32 degreeC cooling water shall be supplied to the two-stage compression apparatus 1 from the feed water line 17. FIG. Further, the ambient temperature air is heated to about 200 ° C. by the change in the polytrope when compressed in the first compressor 2. In order to prevent overheating of the second compressor 5, the first cooler 4 needs to cool the compressed air to about 60 ° C.

ここで、圧縮空気と冷却水との間の交換熱量をQ、第1冷却器4の熱貫流率をU、第1冷却器4の伝熱面積をS、圧縮空気と冷却水との対数平均温度差をΔTmとすると、次の関係が成り立つ、
Q=U・S・ΔTm ・・・(1)
Here, the exchange heat quantity between the compressed air and the cooling water is Q, the heat transmissivity of the first cooler 4 is U, the heat transfer area of the first cooler 4 is S, and the logarithmic average of the compressed air and the cooling water If the temperature difference is ΔTm, the following relationship holds:
Q = U · S · ΔTm (1)

本実施形態において、第1段圧縮機2の出力が100kWであれば、第1冷却器4において必要な交換熱量Qも約100kW/hになる。第1冷却器4は、圧縮空気を約200℃から約60℃まで冷却するとき、冷却水の第1冷却器4出口における温度が37℃になるような熱貫流率Uおよび伝熱面積Sを有している。交換熱量Qおよび冷却水の温度上昇から、冷却水の流量を算出すると、約17200kg/hとなる。   In this embodiment, if the output of the first stage compressor 2 is 100 kW, the exchange heat quantity Q required in the first cooler 4 is also about 100 kW / h. When the first cooler 4 cools the compressed air from about 200 ° C. to about 60 ° C., the heat transfer rate U and the heat transfer area S are set such that the temperature of the cooling water at the outlet of the first cooler 4 is 37 ° C. Have. When the flow rate of the cooling water is calculated from the exchange heat quantity Q and the temperature rise of the cooling water, it is about 17200 kg / h.

また、第2圧縮機3から吐出される圧縮空気の温度も、第1圧縮機2の吐出温度と同じ200℃になる。第2冷却器5は、第1冷却器4と同じ型式のものが使用されており、第1冷却器と同じ熱貫流率Uおよび伝熱面積Sを有している。第2調整弁21を第1調整弁19と同じ開度に調整すると、第2冷却器5を流れる冷却水の流量は、第1冷却器4の冷却水の流量と同じになる。このとき、第1冷却器4と第2冷却器5とでは、圧縮空気の圧力(容積)が異なるだけで、上記式(1)に係る他の条件が同一であるため、圧縮空気の出口温度および冷却水の出口温度も、第1冷却器4と同じになる。したがって、2段圧縮装置1は、第1の流路構成において、60℃の圧縮空気を需要先に供給する。   The temperature of the compressed air discharged from the second compressor 3 is also 200 ° C., which is the same as the discharge temperature of the first compressor 2. The second cooler 5 is of the same type as the first cooler 4 and has the same heat transmissibility U and heat transfer area S as the first cooler. When the second regulating valve 21 is adjusted to the same opening as the first regulating valve 19, the flow rate of the cooling water flowing through the second cooler 5 becomes the same as the flow rate of the cooling water in the first cooler 4. At this time, the first cooler 4 and the second cooler 5 are different in only the pressure (volume) of the compressed air and other conditions according to the above formula (1) are the same. The outlet temperature of the cooling water is also the same as that of the first cooler 4. Therefore, the two-stage compression apparatus 1 supplies 60 ° C. compressed air to the customer in the first flow path configuration.

一方、第2の流路構成においては、第1冷却器4と第2冷却器5とが直列に接続されており、第1冷却器4と第2冷却器5とを伝熱面積が2倍の1つの熱交換器とみなすことができる。ここでも、第2圧縮機3に導入する圧縮空気の温度を第1の流路構成の場合と同じ60℃になるように第1調整弁20および第2調整弁21の開度を調整する。つまり、圧縮空気と冷却水との間の交換熱量Qを第1の流路構成と同じ値に調整する。この場合、第1の流路構成の場合と比べて伝熱面積Sが倍になっているので、対数平均温度差ΔTmは第1の流路構成の半分になる。   On the other hand, in the second flow path configuration, the first cooler 4 and the second cooler 5 are connected in series, and the heat transfer area of the first cooler 4 and the second cooler 5 is doubled. It can be regarded as one heat exchanger. Also here, the opening degree of the first regulating valve 20 and the second regulating valve 21 is adjusted so that the temperature of the compressed air introduced into the second compressor 3 becomes 60 ° C., which is the same as that in the first flow path configuration. That is, the exchange heat quantity Q between the compressed air and the cooling water is adjusted to the same value as that of the first flow path configuration. In this case, since the heat transfer area S is doubled compared to the case of the first flow path configuration, the logarithmic average temperature difference ΔTm is half that of the first flow path configuration.

対数平均温度差ΔTmは、第1冷却器4の圧縮空気入口における圧縮空気と冷却水との温度差をΔT1、第2冷却器5の圧縮空気出口における圧縮空気と冷却水との温度差をΔT2とすると、次の式で表される。
ΔTm=(ΔT1−ΔT2)/ln(ΔT1/ΔT2) ・・・(2)
The logarithm average temperature difference ΔTm is ΔT1 which is the temperature difference between the compressed air and the cooling water at the compressed air inlet of the first cooler 4, and ΔT2 is the temperature difference between the compressed air and the cooling water at the compressed air outlet of the second cooler 5. Then, it is expressed by the following formula.
ΔTm = (ΔT1−ΔT2) / ln (ΔT1 / ΔT2) (2)

したがって、第2の流路構成において、冷却水の第2冷却器5の入口温度が32℃である場合、冷却水の第1冷却器4の出口温度は約150℃になり、交換熱量Qおよび冷却水の上昇温度から算出される冷却水流量は、約364kg/hである。   Therefore, in the second flow path configuration, when the inlet temperature of the second cooler 5 of the cooling water is 32 ° C., the outlet temperature of the first cooler 4 of the cooling water is about 150 ° C., and the exchange heat quantity Q and The cooling water flow rate calculated from the rising temperature of the cooling water is about 364 kg / h.

このように、この第2の流路構成では、環流ライン18において回収した冷却水が約150℃の熱水であるため、そこから容易に熱回収できる。但し、第2の流路構成では、第2圧縮機3から吐出される200℃の圧縮空気をそのまま需要先に供給することになる。したがって、需要先が高温の圧縮空気を許容しない冷凍型エアドライア等である場合には、2段圧縮装置1は、第1の流路構成で使用する必要があり、第2の流路構成で使用することはできない。   Thus, in this 2nd flow path structure, since the cooling water collect | recovered in the reflux line 18 is a hot water of about 150 degreeC, it can collect | recover heat easily from there. However, in the second flow path configuration, 200 ° C. compressed air discharged from the second compressor 3 is supplied to the customer as it is. Therefore, when the demand destination is a refrigeration air dryer or the like that does not allow high-temperature compressed air, the two-stage compressor 1 needs to be used in the first flow path configuration, and is used in the second flow path configuration. I can't do it.

さらに、図4に、本発明の第2実施形態の2段圧縮装置1aの第1の流路構成を示す。本実施形態に関して、第1実施形態と同じ構成要素には同じ符号を付して、重複する説明は省略する。   Furthermore, in FIG. 4, the 1st flow-path structure of the two-stage compression apparatus 1a of 2nd Embodiment of this invention is shown. With respect to the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

本実施形態の2段圧縮装置1aでは、第1の流路構成において、第1圧縮機2が吐出した圧縮空気は、第1冷却器4を介して第2圧縮機3に導入され、第2圧縮機3が吐出した圧縮空気は、高圧供給弁23を介して第2冷却器5に導入され、第2冷却器5を通過した圧縮空気は、第1吐出弁24を介して、需要先に供給される。   In the two-stage compressor 1a of the present embodiment, in the first flow path configuration, the compressed air discharged by the first compressor 2 is introduced into the second compressor 3 via the first cooler 4, and the second The compressed air discharged from the compressor 3 is introduced into the second cooler 5 through the high pressure supply valve 23, and the compressed air that has passed through the second cooler 5 passes through the first discharge valve 24 to the customer. Supplied.

また、2段圧縮装置1aでは、第2の流路構成において、第1圧縮機2が吐出した圧縮空気の半分を分流して、中間吐出弁25を介して第2冷却器5に導入し、第2冷却器5を通過した圧縮空気を中間供給弁26を介して、第1冷却器4を通過した圧縮空気と共に第2圧縮機3に導入し、第2圧縮機が吐出した圧縮空気を高圧吐出弁27を介して需要先に供給する。   Further, in the two-stage compressor 1a, in the second flow path configuration, half of the compressed air discharged by the first compressor 2 is diverted and introduced into the second cooler 5 via the intermediate discharge valve 25, The compressed air that has passed through the second cooler 5 is introduced into the second compressor 3 through the intermediate supply valve 26 together with the compressed air that has passed through the first cooler 4, and the compressed air discharged by the second compressor is high pressure. Supply to the customer through the discharge valve 27.

また、本実施形態では、第1の流路構成および第2の流路構成のいずれにおいても、第1冷却器4および第2冷却器には、給水ライン17から調整弁(流量調整手段)28を介して供給される冷却水の半量ずつが導入され、第1冷却器4および第2冷却器を通過した冷却水が環流ライン18に戻される。   In the present embodiment, in both the first flow path configuration and the second flow path configuration, the first cooler 4 and the second cooler are provided with a regulating valve (flow rate adjusting means) 28 from the water supply line 17. A half amount of the cooling water supplied through the first cooling device 4 is introduced, and the cooling water that has passed through the first cooling device 4 and the second cooling device is returned to the reflux line 18.

本実施形態では、第2の流路構成において、第1冷却器4および第2冷却器を通過する圧縮空気および冷却水の流量が、第1の流路構成の第1冷却器4の半分になる。つまり、本実施形態の第2の流路構成では、交換熱量Qが半分の熱交換が並列して行われるので、第2の流路構成における対数平均温度差ΔTmを1/2にすることができる。このため、本実施形態でも、調整弁28の開度調整によって、第1冷却器4および第2冷却器5の冷却水の流量をそれぞれ約182kg/h(合計364kg/h)とし、その出口温度を約150℃にすることができる。   In the present embodiment, in the second flow path configuration, the flow rate of the compressed air and the cooling water passing through the first cooler 4 and the second cooler is half that of the first cooler 4 of the first flow path configuration. Become. That is, in the second flow path configuration of the present embodiment, heat exchange with half the exchange heat quantity Q is performed in parallel, so the logarithmic average temperature difference ΔTm in the second flow path configuration can be halved. it can. For this reason, also in this embodiment, the flow rate of the cooling water of the first cooler 4 and the second cooler 5 is set to about 182 kg / h (total 364 kg / h) by adjusting the opening of the regulating valve 28, and the outlet temperature thereof Can be about 150 ° C.

1,1a…2段圧縮装置
2…第1圧縮機
3…第2圧縮機
4…第1冷却器
5…第2冷却器
10…第1中間供給弁
11…第2中間供給弁
13…第1高圧供給弁
14…第2高圧供給弁
15…第1吐出弁
16…第2吐出弁
19…供給三方弁
20…第1調整弁(流量調整手段)
21…第2調整弁(流量調整手段)
22…環流三方弁
23…高圧供給弁
24…第1吐出弁
25…中間吐出弁
26…中間供給弁
27…高圧吐出弁
28…調整弁(流量調整手段)
DESCRIPTION OF SYMBOLS 1, 1a ... Two-stage compressor 2 ... 1st compressor 3 ... 2nd compressor 4 ... 1st cooler 5 ... 2nd cooler 10 ... 1st intermediate supply valve 11 ... 2nd intermediate supply valve 13 ... 1st High pressure supply valve 14 ... Second high pressure supply valve 15 ... First discharge valve 16 ... Second discharge valve 19 ... Three-way supply valve 20 ... First adjustment valve (flow rate adjusting means)
21 ... Second adjusting valve (flow rate adjusting means)
DESCRIPTION OF SYMBOLS 22 ... Three-way valve 23 ... High pressure supply valve 24 ... 1st discharge valve 25 ... Intermediate discharge valve 26 ... Intermediate supply valve 27 ... High pressure discharge valve 28 ... Adjustment valve (flow rate adjustment means)

Claims (3)

ガスを圧縮する第1圧縮機および第2圧縮機と、前記ガスを冷却流体と熱交換して冷却する第1冷却器および第2冷却器とを有し、
前記第1圧縮機が吐出した前記ガスを、前記第1冷却器を介して前記第2圧縮機に導入し、前記第2圧縮が吐出した前記ガスを、前記第2冷却器を介して需要先に供給する第1の流路構成と、
前記第1圧縮機が吐出した前記ガスを、前記第1冷却器および前記第2冷却器を介して前記第2圧縮機に導入し、前記第2圧縮が吐出した前記ガスを前記需要先に供給する第2の流路構成とを選択可能であり、
前記第1冷却器および前記第2冷却器に供給される前記冷却流体の流量を、前記第2の流路構成において、前記第1の流路構成よりも少なくする流量調整手段を有することを特徴とする圧縮装置。
A first compressor and a second compressor for compressing a gas; and a first cooler and a second cooler for cooling the gas by heat exchange with a cooling fluid;
The gas discharged from the first compressor is introduced into the second compressor through the first cooler, and the gas discharged from the second compression is supplied to the customer through the second cooler. A first flow path configuration for supplying to
The gas discharged from the first compressor is introduced into the second compressor via the first cooler and the second cooler, and the gas discharged from the second compression is supplied to the customer. A second flow path configuration can be selected,
In the second flow path configuration, the flow rate of the cooling fluid supplied to the first cooler and the second cooler is less than that of the first flow path configuration. A compression device.
前記冷却流体は、前記第1の流路構成において、前記第1冷却機および前記第2冷却器を並列に通過し、前記第2の流路構成において、前記第1冷却器および前記第2冷却器を直列に通過することを特徴とする請求項1に記載の圧縮装置。   The cooling fluid passes through the first cooler and the second cooler in parallel in the first flow path configuration, and the first cooler and the second cooling in the second flow path configuration. 2. The compression apparatus according to claim 1, wherein the compressors are passed in series. ガスを圧縮する第1圧縮機および第2圧縮機と、前記ガスを冷却流体と熱交換して冷却する第1冷却器および第2冷却器とを有し、
前記第1圧縮機が吐出した前記ガスを、前記第1冷却器を介して前記第2圧縮機に導入し、前記第2圧縮が吐出した前記ガスを、前記第2冷却器を介して需要先に供給する第1の流路構成と、
前記第1圧縮機が吐出した前記ガスを2分して、一方は前記第1冷却器を介して、他方は前記第2冷却器を介して前記第2圧縮機に導入し、前記第2圧縮が吐出した前記ガスを前記需要先に供給する第2の流路構成とを選択可能であり、
前記第1冷却器および前記第2冷却器に供給される前記冷却流体の流量を、前記第2の流路構成において、前記第1の流路構成よりも少なくする流量調整手段を有することを特徴とする圧縮装置。
A first compressor and a second compressor for compressing a gas; and a first cooler and a second cooler for cooling the gas by heat exchange with a cooling fluid;
The gas discharged from the first compressor is introduced into the second compressor through the first cooler, and the gas discharged from the second compression is supplied to the customer through the second cooler. A first flow path configuration for supplying to
The gas discharged from the first compressor is divided into two parts, one is introduced into the second compressor through the first cooler and the other is introduced into the second compressor through the second cooler. Can select the second flow path configuration for supplying the gas discharged by the customer to the demand destination,
In the second flow path configuration, the flow rate of the cooling fluid supplied to the first cooler and the second cooler is less than that of the first flow path configuration. A compression device.
JP2010015346A 2010-01-27 2010-01-27 Two-stage compressor Expired - Fee Related JP5470064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015346A JP5470064B2 (en) 2010-01-27 2010-01-27 Two-stage compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015346A JP5470064B2 (en) 2010-01-27 2010-01-27 Two-stage compressor

Publications (2)

Publication Number Publication Date
JP2011153760A true JP2011153760A (en) 2011-08-11
JP5470064B2 JP5470064B2 (en) 2014-04-16

Family

ID=44539862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015346A Expired - Fee Related JP5470064B2 (en) 2010-01-27 2010-01-27 Two-stage compressor

Country Status (1)

Country Link
JP (1) JP5470064B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147389A1 (en) * 2015-03-19 2016-09-22 三菱電機株式会社 Heat pump system
JP2017150496A (en) * 2017-05-22 2017-08-31 三浦工業株式会社 Heat recovery system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633489U (en) * 1979-08-17 1981-04-01
JPS57120972U (en) * 1981-01-22 1982-07-27
JPS5963471A (en) * 1982-10-01 1984-04-11 東洋エンジニアリング株式会社 Heat pump type heating method
JPH0849674A (en) * 1994-08-09 1996-02-20 Kobe Steel Ltd Screw compressor
JP2005195265A (en) * 2004-01-08 2005-07-21 Ishikawajima Harima Heavy Ind Co Ltd Compression exhaust heat using system and compression exhaust heat using method of multi-stage air compressor
JP2010014380A (en) * 2008-07-07 2010-01-21 Tokyo Electric Power Co Inc:The Thermal fluid supply system and thermal fluid supply method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633489U (en) * 1979-08-17 1981-04-01
JPS57120972U (en) * 1981-01-22 1982-07-27
JPS5963471A (en) * 1982-10-01 1984-04-11 東洋エンジニアリング株式会社 Heat pump type heating method
JPH0849674A (en) * 1994-08-09 1996-02-20 Kobe Steel Ltd Screw compressor
JP2005195265A (en) * 2004-01-08 2005-07-21 Ishikawajima Harima Heavy Ind Co Ltd Compression exhaust heat using system and compression exhaust heat using method of multi-stage air compressor
JP2010014380A (en) * 2008-07-07 2010-01-21 Tokyo Electric Power Co Inc:The Thermal fluid supply system and thermal fluid supply method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147389A1 (en) * 2015-03-19 2016-09-22 三菱電機株式会社 Heat pump system
JPWO2016147389A1 (en) * 2015-03-19 2017-09-21 三菱電機株式会社 Heat pump system
JP2017150496A (en) * 2017-05-22 2017-08-31 三浦工業株式会社 Heat recovery system

Also Published As

Publication number Publication date
JP5470064B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
US8966916B2 (en) Extended range heat pump
US10458411B2 (en) Compressor device and a cooler thereby used
US10704426B2 (en) Method for cooling off the compressed gas of a compressor installation and compressor installation in which this method is applied
BE1018598A3 (en) METHOD FOR RECYCLING ENRGIE.
US10401094B2 (en) Brazed plate heat exchanger for water-cooled heat rejection in a refrigeration cycle
JP2008163926A (en) Oil-less screw compressor
KR102108239B1 (en) Helium compressor with double aftercooler
KR102108241B1 (en) Double helium compressor
JP2012504221A (en) Increase in capacity when pulling down
US10190600B2 (en) Pressure increasing system and method of increasing gas pressure
JP5470064B2 (en) Two-stage compressor
JP5024198B2 (en) vending machine
JP6607960B2 (en) Gas compressor
JP2005195265A (en) Compression exhaust heat using system and compression exhaust heat using method of multi-stage air compressor
EP4033098A1 (en) Heat recovery device
WO2021228018A1 (en) Air conditioning unit and control method therefor
JP5183569B2 (en) Air compressor
EP3872412A1 (en) Refrigeration apparatus
JPWO2021053965A5 (en)
JPS5833364Y2 (en) Exhaust heat recovery equipment such as compressors
JP2010236833A (en) Air heat source turbo heat pump and method for controlling the same
WO2020025770A3 (en) Coolant circuit
RU2432531C2 (en) Cooler unit and procedure for circulation of cooling fluid medium in it
US20240191919A1 (en) C02 refrigeration system with isochoric compression
CN209893818U (en) Cold machine system of doing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees