JP2011153550A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2011153550A
JP2011153550A JP2010014671A JP2010014671A JP2011153550A JP 2011153550 A JP2011153550 A JP 2011153550A JP 2010014671 A JP2010014671 A JP 2010014671A JP 2010014671 A JP2010014671 A JP 2010014671A JP 2011153550 A JP2011153550 A JP 2011153550A
Authority
JP
Japan
Prior art keywords
specific heat
heat ratio
egr rate
cylinder
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010014671A
Other languages
Japanese (ja)
Other versions
JP5263184B2 (en
Inventor
Hiromichi Yasuda
宏通 安田
Yusuke Suzuki
裕介 鈴木
Soichiro Tanaka
聡一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010014671A priority Critical patent/JP5263184B2/en
Publication of JP2011153550A publication Critical patent/JP2011153550A/en
Application granted granted Critical
Publication of JP5263184B2 publication Critical patent/JP5263184B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To compute an EGR rate using measuring data by a cylinder pressure sensor. <P>SOLUTION: The measuring data by the cylinder pressure sensor are acquired at least two points in a period from a time point of combustion termination in a cylinder, to which the cylinder pressure sensor is attached, until an exhaust valve of the cylinder is opened. The specific heat ratio κ<SB>exp</SB>of combustion gas in the cylinder is calculated using the obtained measuring data. As there is a certain relationship between the specific heat ratio of combustion gas and the EGR rate, when the relationship is mapped beforehand, the EGR rate can be calculated from the specific heat ratio κ<SB>exp</SB>of combustion gas. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、少なくとも1つの気筒に筒内圧センサが取り付けられている内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine in which an in-cylinder pressure sensor is attached to at least one cylinder.

内燃機関の圧縮行程を断熱圧縮とみなし、圧縮行程中の筒内圧の変化から筒内の混合ガスの比熱比を算出することが特開2008−231995号公報や特開2008−274811号公報に開示されている。また、特開2008−231995号公報には、混合ガスの比熱比とEGR濃度との間の関係を予めマップにしておき、そのマップと混合ガスの比熱比とを用いてEGRガス濃度を求めることが開示されている。   It is disclosed in Japanese Patent Application Laid-Open Nos. 2008-231995 and 2008-274811 that the compression stroke of the internal combustion engine is regarded as adiabatic compression and the specific heat ratio of the mixed gas in the cylinder is calculated from the change in the cylinder pressure during the compression stroke. Has been. Japanese Patent Application Laid-Open No. 2008-231995 discloses that the relationship between the specific heat ratio of the mixed gas and the EGR concentration is set as a map in advance, and the EGR gas concentration is obtained using the map and the specific heat ratio of the mixed gas. Is disclosed.

特開2008−231995号公報JP 2008-231995 A 特開2008−274811号公報JP 2008-274811 A

しかしながら、混合ガスの比熱比とEGR濃度との間の関係は必ずしも一定ではなく、その関係は空燃比に依存する。空燃比が変化すれば混合ガスの組成が変化し、それに伴って比熱も変化することになる。したがって、特開2008−231995号公報に開示された技術において正確なEGR率やEGR濃度を算出できるとすれば、それは空燃比が一定に、すなわち目標値に制御されている場合であり、そうでない限りはEGR率やEGR濃度を精度良く算出することは難しい。   However, the relationship between the specific heat ratio of the mixed gas and the EGR concentration is not necessarily constant, and the relationship depends on the air-fuel ratio. If the air-fuel ratio changes, the composition of the mixed gas changes, and the specific heat changes accordingly. Therefore, if it is possible to calculate an accurate EGR rate and EGR concentration in the technique disclosed in Japanese Patent Application Laid-Open No. 2008-231995, this is a case where the air-fuel ratio is controlled to a constant value, that is, a target value, and not so. As long as it is difficult to calculate the EGR rate and EGR concentration with high accuracy.

本発明は、上述のような課題に鑑みてなされたもので、筒内圧センサによる測定データを用いてEGR率を精度良く算出することができる内燃機関の制御装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a control device for an internal combustion engine that can accurately calculate an EGR rate using measurement data obtained by an in-cylinder pressure sensor.

上記目的のために、第1の発明の内燃機関の制御装置は、
少なくとも1つの気筒に筒内圧センサが取り付けられている内燃機関の制御装置であって、
前記筒内圧センサが取り付けられた気筒の燃焼終了時点から当該気筒の排気弁が開くまでの期間において前記筒内圧センサによる測定データを取得し、得られた測定データを用いて筒内の燃焼ガスの比熱比を算出する燃焼ガス比熱比算出手段と、
燃焼ガスの比熱比とEGR率との間の関係に基づいて、前記燃焼ガス比熱比算出手段によって算出された燃焼ガスの比熱比からEGR率を算出するEGR率算出手段と、
を備えることを特徴としている。
For the above purpose, the control device for an internal combustion engine of the first invention provides:
A control device for an internal combustion engine in which an in-cylinder pressure sensor is attached to at least one cylinder,
Measurement data obtained by the in-cylinder pressure sensor is acquired during a period from the end of combustion of the cylinder to which the in-cylinder pressure sensor is attached until the exhaust valve of the cylinder is opened, and using the obtained measurement data, A combustion gas specific heat ratio calculating means for calculating a specific heat ratio;
EGR rate calculating means for calculating an EGR rate from the specific heat ratio of the combustion gas calculated by the combustion gas specific heat ratio calculating means based on the relationship between the specific heat ratio of the combustion gas and the EGR rate;
It is characterized by having.

第2の発明の内燃機関の制御装置は、第1の発明の内燃機関の制御装置において、
前記筒内圧センサが取り付けられた気筒の吸気弁が閉じてから当該気筒の燃焼開始時点までの期間において前記筒内圧センサによる測定データを取得し、得られた測定データを用いて筒内の混合ガスの比熱比を算出する混合ガス比熱比算出手段と、
混合ガスの比熱比と空燃比とEGR率との間の関係に基づいて、前記混合ガス比熱比算出手段によって算出された混合ガスの比熱比と前記EGR率算出手段によって算出されたEGR率とから空燃比を算出する空燃比算出手段と、
をさらに備えることを特徴としている。
A control device for an internal combustion engine according to a second invention is the control device for an internal combustion engine according to the first invention,
Measurement data obtained by the in-cylinder pressure sensor is acquired during a period from when the intake valve of the cylinder to which the in-cylinder pressure sensor is attached is closed to when combustion starts in the cylinder, and the mixed gas in the cylinder is obtained using the obtained measurement data. A mixed gas specific heat ratio calculating means for calculating a specific heat ratio of
Based on the specific heat ratio of the mixed gas, the air-fuel ratio, and the EGR rate, from the specific heat ratio of the mixed gas calculated by the mixed gas specific heat ratio calculating unit and the EGR rate calculated by the EGR rate calculating unit Air-fuel ratio calculating means for calculating the air-fuel ratio;
Is further provided.

第3の発明の内燃機関の制御装置は、第1又は第2の発明の内燃機関の制御装置において、
前記筒内圧センサが取り付けられた気筒の失火を検出する失火検出手段をさらに備え、
前記EGR率算出手段は、前記失火検出手段によって失火が検出された場合にはEGR率の算出を中止することを特徴としている。
A control device for an internal combustion engine according to a third invention is the control device for an internal combustion engine according to the first or second invention,
A misfire detecting means for detecting misfire of a cylinder to which the in-cylinder pressure sensor is attached;
The EGR rate calculating means stops calculating the EGR rate when a misfire is detected by the misfire detecting means.

燃焼終了時点から排気弁が開くまでの期間の筒内圧を筒内圧センサによって測定すれば、その測定データからは燃焼ガスの比熱比を算出することができる。燃焼ガスの比熱比とEGR率との間には、空燃比に依存しない一定の関係がある。第1の発明の内燃機関の制御装置はこの関係をEGR率の計算に利用するので、筒内圧センサによる測定データを用いた精度の高いEGR率の計算が可能となる。   If the in-cylinder pressure during the period from the end of combustion to the opening of the exhaust valve is measured by the in-cylinder pressure sensor, the specific heat ratio of the combustion gas can be calculated from the measured data. There is a certain relationship that does not depend on the air-fuel ratio between the specific heat ratio of the combustion gas and the EGR rate. Since the control device for the internal combustion engine of the first invention uses this relationship for the calculation of the EGR rate, it is possible to calculate the EGR rate with high accuracy using the measurement data from the in-cylinder pressure sensor.

吸気弁が閉じてから燃焼開始時点までの期間の筒内圧を筒内圧センサによって測定すれば、その測定データからは燃焼前の混合ガスの比熱比を算出することができる。混合ガスの比熱比と空燃比とEGR率との間には一定の関係がある。第2の発明の内燃機関の制御装置はこの関係を空燃比の計算に利用するので、筒内圧センサによる測定データを用いた精度の高い空燃比の計算が可能となる。   If the in-cylinder pressure during the period from the closing of the intake valve to the start of combustion is measured by the in-cylinder pressure sensor, the specific heat ratio of the mixed gas before combustion can be calculated from the measured data. There is a certain relationship among the specific heat ratio of the mixed gas, the air-fuel ratio, and the EGR rate. Since the control device for the internal combustion engine of the second invention uses this relationship for calculation of the air-fuel ratio, it is possible to calculate the air-fuel ratio with high accuracy using the measurement data from the in-cylinder pressure sensor.

失火が発生したときには筒内ガスの多くは未燃ガスになるため、筒内圧センサによる測定データを得たとしても燃焼ガスの比熱比を正しく算出することはできない。第3の発明の内燃機関の制御装置によれば、失火の発生時にはEGR率の計算は中止され、前回算出値が用いられるので、不正確な比熱比に基づいて誤ったEGR率が算出されることは防止される。   When a misfire occurs, most of the in-cylinder gas becomes unburned gas. Therefore, even if measurement data obtained by the in-cylinder pressure sensor is obtained, the specific heat ratio of the combustion gas cannot be calculated correctly. According to the control apparatus for an internal combustion engine of the third invention, when the misfire occurs, the calculation of the EGR rate is stopped and the previously calculated value is used, so that an incorrect EGR rate is calculated based on an inaccurate specific heat ratio. This is prevented.

本発明の実施の形態の制御層装置が適用される内燃機関を示す図である。1 is a diagram showing an internal combustion engine to which a control layer device according to an embodiment of the present invention is applied. 燃焼ガスの比熱比とEGR率との間にある関係を示す図である。It is a figure which shows the relationship which exists between the specific heat ratio of combustion gas, and an EGR rate. 混合ガスの比熱比と空燃比とEGR率との間にある関係を示す図である。It is a figure which shows the relationship which exists among the specific heat ratio of a mixed gas, an air fuel ratio, and an EGR rate. 筒内圧センサによる測定データから空燃比を算出する手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates an air fuel ratio from the measurement data by a cylinder pressure sensor.

以下、本発明の実施の形態について図1乃至図4の各図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 4.

図1は、本実施の形態の制御装置が適用される内燃機関(以下、単にエンジンという)を示す図である。図1に示すエンジンは、スパークプラグ6を備えた火花点火式の4ストロークレシプロエンジンである。また、筒内に燃料を直接噴射する燃料直噴インジェクタ7を備えた筒内直噴エンジンでもある。図1では1つの気筒のみが描かれているが、一般的な車両用のエンジンは複数の気筒から構成されている。そのうち少なくとも1つの気筒には筒内圧を測定するための筒内圧センサ5が取り付けられている。また、このエンジンには、クランク軸の回転角に応じて信号を出力するクランク角度センサ8と、ノックの発生を検出するためのノックセンサ9とが取り付けられている。クランク角度センサ8の信号CAからは、エンジン回転数(単位時間当たり回転数)や、ピストンの位置によって決まる筒内容積を計算することができる。気筒に接続された吸気通路の入口にはエアクリーナ1が設けられ、エアクリーナ1の下流にスロットルバルブ2が配置されている。スロットルバルブ2の下流にはサージタンク4が設けられていて、サージタンク4には吸気圧を測定するための吸気圧センサ3が取り付けられている。一方、気筒に接続された排気通路には2つの触媒10,11が配置されている。また、このエンジンの排気通路と吸気通路とを接続するEGR通路にはEGRクーラ13とEGRバルブ12とが設けられている。EGRクーラ13にはその冷却水温を測定するための水温センサ14が取り付けられている。また、このエンジンは制御装置としての演算処理装置20を備えている。演算処理装置20は各センサ3,5,8,9,14からの信号を処理し、その処理結果を各アクチュエータ2,6,7,12の操作に反映させている。   FIG. 1 is a diagram showing an internal combustion engine (hereinafter simply referred to as an engine) to which the control device of the present embodiment is applied. The engine shown in FIG. 1 is a spark ignition type 4-stroke reciprocating engine provided with a spark plug 6. Moreover, it is also a cylinder direct injection engine provided with the fuel direct injection injector 7 which injects a fuel directly in a cylinder. Although only one cylinder is depicted in FIG. 1, a general vehicle engine is composed of a plurality of cylinders. An in-cylinder pressure sensor 5 for measuring the in-cylinder pressure is attached to at least one of the cylinders. The engine is also provided with a crank angle sensor 8 that outputs a signal according to the rotation angle of the crankshaft, and a knock sensor 9 for detecting the occurrence of knock. From the signal CA of the crank angle sensor 8, the in-cylinder volume determined by the engine speed (the number of revolutions per unit time) and the position of the piston can be calculated. An air cleaner 1 is provided at the inlet of the intake passage connected to the cylinder, and a throttle valve 2 is disposed downstream of the air cleaner 1. A surge tank 4 is provided downstream of the throttle valve 2, and an intake pressure sensor 3 for measuring the intake pressure is attached to the surge tank 4. On the other hand, two catalysts 10 and 11 are arranged in the exhaust passage connected to the cylinder. An EGR cooler 13 and an EGR valve 12 are provided in the EGR passage connecting the exhaust passage and the intake passage of the engine. The EGR cooler 13 is provided with a water temperature sensor 14 for measuring the cooling water temperature. The engine also includes an arithmetic processing unit 20 as a control device. The arithmetic processing unit 20 processes signals from the sensors 3, 5, 8, 9, and 14, and reflects the processing results in the operations of the actuators 2, 6, 7, and 12.

演算処理装置20は、筒内圧センサ5による測定データからエンジンのEGR率とA/F(空燃比)とを算出する機能を有している。ただし、ここでいうEGR率とは、総EGR率、すなわち内部EGRガス、外部EGRガス及び残留ガスを加えた総EGRガスの筒内ガスに対する比率を意味する。以下、演算処理装置20によるEGR率の計算方法とA/Fの計算方法とについて説明する。   The arithmetic processing unit 20 has a function of calculating the EGR rate and A / F (air / fuel ratio) of the engine from the data measured by the in-cylinder pressure sensor 5. However, the EGR rate here means the total EGR rate, that is, the ratio of the total EGR gas to the in-cylinder gas including the internal EGR gas, the external EGR gas, and the residual gas. Hereinafter, the calculation method of the EGR rate and the calculation method of A / F by the arithmetic processing unit 20 will be described.

まず、演算処理装置20によるEGR率の計算方法から説明する。特開2008−231995号公報に開示されている従来の方法は、混合ガスの比熱比を算出し、それを用いてEGR濃度(EGR率)を計算するものであった。それとは異なり、本実施の形態では、EGR率の計算は燃焼前の混合ガスの比熱比ではなく、混合ガスが燃焼して生成された燃焼ガスの比熱比を用いて行われる。   First, the calculation method of the EGR rate by the arithmetic processing unit 20 will be described. The conventional method disclosed in Japanese Patent Application Laid-Open No. 2008-231995 calculates the specific heat ratio of the mixed gas, and uses it to calculate the EGR concentration (EGR rate). In contrast, in the present embodiment, the EGR rate is calculated using the specific heat ratio of the combustion gas generated by burning the mixed gas, not the specific heat ratio of the mixed gas before combustion.

図2は、燃焼ガスの比熱比とEGR率との間にある関係について調べた実験結果を示す図である。実験では、A/Fが14.5の場合、16.0の場合、19.0の場合のそれぞれについて異なる数点のEGR率のもとで運転を行い、そのそれぞれについて燃焼ガスの比熱比を調べた。   FIG. 2 is a diagram showing the experimental results of examining the relationship between the specific heat ratio of the combustion gas and the EGR rate. In the experiment, when the A / F is 14.5, when it is 16.0, when it is 19.0, it is operated under different EGR rates, and the specific heat ratio of the combustion gas is set for each of them. Examined.

燃焼ガスの比熱比は、膨張行程、より詳しくは、燃焼終了時点から排気弁が開くまでの期間の筒内圧力の変化から計算することができる。次の式1は、燃焼ガスの比熱比κexpを筒内圧センサ5の測定値から算出するための式である。燃焼終了時点から排気弁が開くまでの期間は断熱膨張とみなすことができるので、ポリトロープ指数によって燃焼ガスの比熱比κexpを近似することができる。式1において、P、Pは膨張行程中の異なる2点で得られた筒内圧センサ5の測定値であり、V、Vは各測定時点での筒内容積である。測定値を得る2点は任意に選定できるが、好ましくは、S/N比の良い点(具体例としては、他気筒の燃料噴射によるノイズや点火ノイズ等が重畳しない点)を選択する。なお、ここでは比熱比κexpを計算するための筒内圧の測定点を2点としているが、3点以上の測定点をとって最小二乗法によって比熱比κexpを計算してもよい。
κexp=−(lnP−lnP)/(lnV−lnV) ・・・式1
The specific heat ratio of the combustion gas can be calculated from the expansion stroke, more specifically, the change in the in-cylinder pressure during the period from the end of combustion until the exhaust valve opens. The following equation 1 is an equation for calculating the specific heat ratio κ exp of the combustion gas from the measured value of the in-cylinder pressure sensor 5. Since the period from the end of combustion to the opening of the exhaust valve can be regarded as adiabatic expansion, the specific heat ratio κ exp of the combustion gas can be approximated by the polytropic index. In Equation 1, P 1 and P 2 are measured values of the in-cylinder pressure sensor 5 obtained at two different points during the expansion stroke, and V 1 and V 2 are in-cylinder volumes at each measurement time point. The two points for obtaining the measured values can be arbitrarily selected, but preferably, a point with a good S / N ratio (specifically, a point where noise due to fuel injection of other cylinders, ignition noise or the like is not superimposed) is selected. Here, the measurement points of the in-cylinder pressure for calculating the specific heat ratio κ exp are two, but the specific heat ratio κ exp may be calculated by the least square method taking three or more measurement points.
κ exp = − (lnP 2 −lnP 1 ) / (lnV 2 −lnV 1 ) Equation 1

図2に示す実験結果から先ず確認できることは、EGR率を増大させると燃焼ガスの比熱比は低下することである。これは、一般的にガスの比熱比はその構成原子数が多くなるにつれて減少するところ、EGRが導入されるとCOやHO等の構成原子数が多い成分が増加するためである。 The first thing that can be confirmed from the experimental results shown in FIG. 2 is that the specific heat ratio of the combustion gas decreases as the EGR rate increases. This is because the specific heat ratio of gas generally decreases as the number of constituent atoms increases, but when EGR is introduced, components having a large number of constituent atoms such as CO 2 and H 2 O increase.

また、図2に示す実験結果からは、燃焼ガスの比熱比とEGR率との間の関係はA/Fに依存しないことが確認できる。これは、比熱比に大きく影響するのはCOやCOであり、燃焼ガス内でのそれらの濃度はA/Fによらず略同じになるからである。一方、A/FがリーンになるにつれO濃度は増加するが、Oの比熱比に与える影響は小さいために比熱比の変化となっては現れない。 Also, from the experimental results shown in FIG. 2, it can be confirmed that the relationship between the specific heat ratio of the combustion gas and the EGR rate does not depend on A / F. This is because CO 2 and CO have a great influence on the specific heat ratio, and their concentrations in the combustion gas are substantially the same regardless of A / F. On the other hand, as the A / F becomes leaner, the O 2 concentration increases. However, since the influence on the specific heat ratio of O 2 is small, it does not appear as a change in the specific heat ratio.

さらに、図2に示す実験結果からは、失火が発生した場合にはEGR率に対する比熱比の計算精度が大きく低下することも確認できる。これは、失火が発生したときには筒内ガスの多くは未燃ガスになるためである。   Furthermore, from the experimental results shown in FIG. 2, it can be confirmed that the calculation accuracy of the specific heat ratio with respect to the EGR rate is greatly reduced when misfire occurs. This is because most of the in-cylinder gas becomes unburned gas when misfire occurs.

以上の考察の結果、燃焼が安定している状況では、燃焼ガスの比熱比とEGR率との間にはA/Fに依存しない一定の関係があることが分かった。その関係を利用すれば、筒内圧センサ5による測定データから燃焼ガスの比熱比を算出するだけで、A/Fを考慮することなく一意にEGR率を求めることが可能となる。本実施の形態では、図2のグラフに示すような燃焼ガスの比熱比とEGR率との間の関係が予めマップにされ、それを演算処理装置20に記憶させている。演算処理装置20は、膨張行程で得た筒内圧センサ5の測定値を前述の式1に代入し、燃焼ガスの比熱比κexpを算出する。そして、記憶しているマップ(以下、EGR率マップという)を用いて、燃焼ガスの比熱比κexpからエンジンのEGR率を算出する。 As a result of the above considerations, it has been found that there is a certain relationship independent of A / F between the specific heat ratio of the combustion gas and the EGR rate in a situation where combustion is stable. By utilizing this relationship, it is possible to uniquely determine the EGR rate without considering A / F only by calculating the specific heat ratio of the combustion gas from the measurement data obtained by the in-cylinder pressure sensor 5. In the present embodiment, the relationship between the specific heat ratio of the combustion gas and the EGR rate as shown in the graph of FIG. 2 is previously mapped and stored in the arithmetic processing unit 20. The arithmetic processing unit 20 substitutes the measured value of the in-cylinder pressure sensor 5 obtained in the expansion stroke into the above-described equation 1, and calculates the specific heat ratio κ exp of the combustion gas. Then, using the stored map (hereinafter referred to as the EGR rate map), the engine EGR rate is calculated from the specific heat ratio κ exp of the combustion gas.

次に、演算処理装置20によるA/Fの計算方法を説明する。本実施の形態でA/Fの計算に用いられる情報は、先に算出したEGR率と燃焼前の混合ガスの比熱比である。   Next, an A / F calculation method by the arithmetic processing unit 20 will be described. The information used for calculating A / F in the present embodiment is the EGR rate calculated previously and the specific heat ratio of the mixed gas before combustion.

図3は、混合ガスの比熱比とA/FとEGR率との間にある関係について調べた実験結果を示す図である。実験では、A/Fが14.5の場合、16.0の場合、19.0の場合のそれぞれについて異なる数点のEGR率のもとで運転を行い、そのそれぞれについて混合ガスの比熱比を調べた。   FIG. 3 is a diagram showing the experimental results of examining the relationship among the specific heat ratio of the mixed gas, the A / F, and the EGR rate. In the experiment, when A / F is 14.5, 16.0, 19.0, operation is performed under different EGR ratios, and the specific heat ratio of the mixed gas is set for each. Examined.

燃焼前の混合ガスの比熱比は、圧縮行程、より詳しくは、吸気弁が閉じてから燃焼開始時点までの期間の筒内圧力の変化から計算することができる。次の式2は、混合ガスの比熱比κcompを筒内圧センサ5の測定値から算出するための式である。吸気弁が閉じてから燃焼開始時点までの期間は断熱圧縮とみなすことができるので、ポリトロープ指数によって混合ガスの比熱比κcompを近似することができる。式2において、P、Pは圧縮行程中の異なる2点で得られた筒内圧センサ5の測定値であり、V、Vは各測定時点での筒内容積である。測定値を得る2点は任意に選定できるが、好ましくは、S/N比の良い点(具体例としては、他気筒の燃料噴射によるノイズや点火ノイズ等が重畳しない点)を選択する。なお、ここでは比熱比κcompを計算するための筒内圧の測定点を2点としているが、3点以上の測定点をとって最小二乗法によって比熱比κcompを計算してもよい。
κcomp=−(lnP−lnP)/(lnV−lnV) ・・・式2
The specific heat ratio of the mixed gas before combustion can be calculated from the change in the in-cylinder pressure during the compression stroke, more specifically, the period from the closing of the intake valve to the start of combustion. The following equation 2 is an equation for calculating the specific heat ratio κ comp of the mixed gas from the measured value of the in-cylinder pressure sensor 5. Since the period from the closing of the intake valve to the start of combustion can be regarded as adiabatic compression, the specific heat ratio κ comp of the mixed gas can be approximated by the polytropic index. In Equation 2, P 1 and P 2 are measured values of the in-cylinder pressure sensor 5 obtained at two different points during the compression stroke, and V 1 and V 2 are in-cylinder volumes at each measurement time point. The two points for obtaining the measured values can be arbitrarily selected, but preferably, a point with a good S / N ratio (specifically, a point where noise due to fuel injection of other cylinders, ignition noise or the like is not superimposed) is selected. Here, the measurement points of the in-cylinder pressure for calculating the specific heat ratio κ comp are two, but the specific heat ratio κ comp may be calculated by the least square method taking three or more measurement points.
κ comp = − (lnP 4 −lnP 3 ) / (lnV 4 −lnV 3 ) Equation 2

図3に示す実験結果から先ず確認できることは、EGR率を増大させると混合ガスの比熱比は低下することである。これは、一般的にガスの比熱比はその構成原子数が多くなるにつれて減少するところ、EGRが導入されるとCOやHO等の構成原子数が多い成分が増加するためである。 It can be confirmed from the experimental results shown in FIG. 3 that the specific heat ratio of the mixed gas decreases when the EGR rate is increased. This is because the specific heat ratio of gas generally decreases as the number of constituent atoms increases, but when EGR is introduced, components having a large number of constituent atoms such as CO 2 and H 2 O increase.

また、図3に示す実験結果からは、混合ガスの比熱比とEGR率との間の関係はA/Fに依存することが確認できる。A/Fがリーンになるにつれ混合ガスの比熱比は空気の比熱比(約1.4)に漸近するようになる。   From the experimental results shown in FIG. 3, it can be confirmed that the relationship between the specific heat ratio of the mixed gas and the EGR rate depends on A / F. As A / F becomes leaner, the specific heat ratio of the mixed gas gradually approaches the specific heat ratio of air (about 1.4).

以上のように、混合ガスの比熱比とA/FとEGR率との間には一定の関係がある。その関係を利用すれば、前述の方法でEGR率を算出し、さらに、筒内圧センサ5による測定データから混合ガスの比熱比を算出することによって一意にA/Fを求めることが可能となる。本実施の形態では、図3のグラフに示すような混合ガスの比熱比とA/FとEGR率との間の関係が予めマップにされ、それを演算処理装置20に記憶させている。演算処理装置20は、前述の方法でEGR率を算出し、さらに、圧縮行程で得た筒内圧センサ5の測定値を前述の式2に代入して混合ガスの比熱比κcompを算出する。そして、記憶しているマップ(以下、A/Fマップという)を用いて、EGR率と混合ガスの比熱比κcompとからエンジンのA/Fを算出する。 As described above, there is a certain relationship between the specific heat ratio of the mixed gas, the A / F, and the EGR rate. By utilizing this relationship, it is possible to uniquely determine the A / F by calculating the EGR rate by the above-described method and further calculating the specific heat ratio of the mixed gas from the measurement data obtained by the in-cylinder pressure sensor 5. In the present embodiment, the relationship between the specific heat ratio of the mixed gas, the A / F, and the EGR rate as shown in the graph of FIG. 3 is previously mapped and stored in the arithmetic processing unit 20. The arithmetic processing unit 20 calculates the EGR rate by the above-described method, and further calculates the specific heat ratio κ comp of the mixed gas by substituting the measured value of the in-cylinder pressure sensor 5 obtained in the compression stroke into the above-described equation 2. Then, using the stored map (hereinafter referred to as A / F map), the A / F of the engine is calculated from the EGR rate and the specific heat ratio κ comp of the mixed gas.

以下、演算処理装置20が筒内圧センサ5による測定データからエンジンのEGR率とA/Fとを算出する際の一連の処理について、図4のフローチャートを用いて説明する。なお、以下に説明する一連の処理は、筒内圧センサ5が取り付けられている気筒毎に行われる処理である。したがって、筒内圧センサ5が全気筒に取り付けられている場合には、演算処理装置20は気筒毎に以下の処理を実施する。   Hereinafter, a series of processes when the arithmetic processing unit 20 calculates the EGR rate and A / F of the engine from the measurement data by the in-cylinder pressure sensor 5 will be described with reference to the flowchart of FIG. A series of processing described below is processing performed for each cylinder to which the in-cylinder pressure sensor 5 is attached. Therefore, when the in-cylinder pressure sensor 5 is attached to all the cylinders, the arithmetic processing unit 20 performs the following processing for each cylinder.

最初のステップS2では、演算処理装置20は、筒内圧センサ5が取り付けられている気筒、すなわち、対象気筒において失火が発生していないかどうか判定する。失火の判定方法には限定はない。失火の発生が検出された場合には、演算処理装置20は以降のステップの計算をスキップして前回算出値を用いる。失火が発生したときには筒内圧センサ5による測定データを得たとしても燃焼ガスの比熱比を正しく算出することはできないからである。以降のステップの計算を中止することで、不正確な比熱比に基づいて誤ったEGR率及びA/Fが算出されることは防止される。   In the first step S2, the arithmetic processing unit 20 determines whether or not misfiring has occurred in the cylinder to which the in-cylinder pressure sensor 5 is attached, that is, the target cylinder. There is no limitation on the misfire determination method. When the occurrence of misfire is detected, the arithmetic processing unit 20 skips the calculation of the subsequent steps and uses the previously calculated value. This is because the specific heat ratio of the combustion gas cannot be calculated correctly even if measurement data obtained by the in-cylinder pressure sensor 5 is obtained when misfire occurs. By canceling the calculation of the subsequent steps, it is possible to prevent an erroneous EGR rate and A / F from being calculated based on an inaccurate specific heat ratio.

失火が発生していない場合、演算処理装置20は、ステップS4以降の処理を実行する。まず、ステップS4では、演算処理装置20は燃焼終了時点から排気弁が開くまでの期間における筒内圧を筒内圧センサ5によって測定し、その測定データから前述の式1によって燃焼ガスの比熱比κexpを算出する。 When no misfire has occurred, the arithmetic processing unit 20 executes the processes after step S4. First, in step S4, the arithmetic processing unit 20 measures the in-cylinder pressure in the period from the end of combustion to the opening of the exhaust valve by the in-cylinder pressure sensor 5, and from the measured data, the specific heat ratio κ exp of the combustion gas by the above-mentioned equation 1 Is calculated.

次のステップS6では、演算処理装置20はステップS4で得た燃焼ガスの比熱比κexpをキーにしてEGR率マップを検索し、燃焼ガスの比熱比κexpに対応するEGR率を得る。 In the next step S6, the arithmetic processing unit 20 searches the EGR rate map using the specific heat ratio κ exp of the combustion gas obtained in step S4 as a key, and obtains an EGR rate corresponding to the specific heat ratio κ exp of the combustion gas.

次のステップS8では、演算処理装置20は吸気弁が開いてから燃焼開始時点までの期間における筒内圧を筒内圧センサ5によって測定し、その測定データから前述の式2によって混合ガスの比熱比κcompを算出する。 In the next step S8, the arithmetic processing unit 20 measures the in-cylinder pressure in the period from the opening of the intake valve to the start of combustion by the in-cylinder pressure sensor 5, and from the measurement data, the specific heat ratio κ of the mixed gas according to the above-described equation 2. comp is calculated.

そして、ステップS10では、演算処理装置20はステップS6で得たEGR率とステップS8で得た混合ガスの比熱比κcompとをキーにしてA/Fマップを検索し、EGR率と混合ガスの比熱比κcompとに対応するA/Fを得る。 In step S10, the arithmetic processing unit 20 searches the A / F map using the EGR rate obtained in step S6 and the specific heat ratio κ comp of the mixed gas obtained in step S8 as a key, and calculates the EGR rate and the mixed gas. A / F corresponding to the specific heat ratio κ comp is obtained.

以上説明した本実施の形態の方法によれば、筒内圧センサ5による測定データを用いた精度の高いEGR率の計算が可能であり、さらに、その計算結果を用いて精度の高いA/Fの計算を行うことができる。また、本実施の形態の方法によれば、EGR率及びA/Fをサイクル毎に求めることができ、さらに筒内圧センサ5が全ての気筒に設けられている場合には、気筒毎にEGR率及びA/Fを求めることもできる。   According to the method of the present embodiment described above, it is possible to calculate the EGR rate with high accuracy using the measurement data by the in-cylinder pressure sensor 5, and furthermore, using the calculation result, the A / F with high accuracy can be calculated. Calculations can be made. Further, according to the method of the present embodiment, the EGR rate and A / F can be obtained for each cycle, and when the in-cylinder pressure sensor 5 is provided in all the cylinders, the EGR rate for each cylinder. And A / F can also be obtained.

したがって、本実施の形態によれば、目標A/Fとなるよう燃料直噴インジェクタ7による燃料噴射量を増減する制御や、目標EGR率になるようEGRバルブ12を開閉する制御を高い精度で計算されたEGR率及びA/Fに基づいて緻密に行うことができる。つまり、本実施の形態によれば、緻密な燃焼制御を行うことができる。   Therefore, according to the present embodiment, the control for increasing / decreasing the fuel injection amount by the direct fuel injector 7 so as to achieve the target A / F and the control for opening / closing the EGR valve 12 so as to achieve the target EGR rate are calculated with high accuracy. Can be performed precisely based on the measured EGR rate and A / F. That is, according to the present embodiment, precise combustion control can be performed.

さらに、本実施の形態によれば、筒内圧センサ5による測定データからA/Fを算出することができるので、排気通路からA/Fセンサを省略することもできる。また、A/Fを得るために使用する筒内圧センサ5はA/Fセンサのような活性時間を必要としないので、本実施の形態によれば、冷間始動時も含めた全ての運転条件においてA/F制御を行うことが可能であり、排気ガス性能の向上が期待できる。   Furthermore, according to the present embodiment, since the A / F can be calculated from the measurement data obtained by the in-cylinder pressure sensor 5, the A / F sensor can be omitted from the exhaust passage. Further, since the cylinder pressure sensor 5 used to obtain A / F does not require an active time like the A / F sensor, according to the present embodiment, all operating conditions including cold start are included. It is possible to perform A / F control in step 1, and an improvement in exhaust gas performance can be expected.

以上、本発明の実施の形態について説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

また、本発明が適用されるエンジンは、上述の実施の形態のような筒内直噴エンジンには限定されない。ポート噴射式のエンジンにも本発明の適用は可能である。また、火花点火式のエンジンに限らず、圧縮自着火式のエンジンにも本発明を適用することができる。   Further, the engine to which the present invention is applied is not limited to the in-cylinder direct injection engine as in the above-described embodiment. The present invention can also be applied to a port injection type engine. Further, the present invention can be applied not only to a spark ignition type engine but also to a compression self-ignition type engine.

1 エアクリーナ
2 スロットルバルブ
3 吸気圧センサ
4 サージタンク
5 筒内圧センサ
6 スパークプラグ
7 燃料直噴インジェクタ
8 クランク角センサ
9 ノックセンサ
10,11 触媒
12 EGRバルブ
13 EGRクーラ
14 水温センサ
20 演算処理装置
DESCRIPTION OF SYMBOLS 1 Air cleaner 2 Throttle valve 3 Intake pressure sensor 4 Surge tank 5 In-cylinder pressure sensor 6 Spark plug 7 Fuel direct injection injector 8 Crank angle sensor 9 Knock sensor 10, 11 Catalyst 12 EGR valve 13 EGR cooler 14 Water temperature sensor 20 Processing unit

Claims (3)

少なくとも1つの気筒に筒内圧センサが取り付けられている内燃機関の制御装置であって、
前記筒内圧センサが取り付けられた気筒の燃焼終了時点から当該気筒の排気弁が開くまでの期間において前記筒内圧センサによる測定データを取得し、得られた測定データを用いて筒内の燃焼ガスの比熱比を算出する燃焼ガス比熱比算出手段と、
燃焼ガスの比熱比とEGR率との間の関係に基づいて、前記燃焼ガス比熱比算出手段によって算出された燃焼ガスの比熱比からEGR率を算出するEGR率算出手段と、
を備えることを特徴とする内燃機関の制御装置。
A control device for an internal combustion engine in which an in-cylinder pressure sensor is attached to at least one cylinder,
Measurement data obtained by the in-cylinder pressure sensor is acquired during a period from the end of combustion of the cylinder to which the in-cylinder pressure sensor is attached until the exhaust valve of the cylinder is opened, and using the obtained measurement data, A combustion gas specific heat ratio calculating means for calculating a specific heat ratio;
EGR rate calculating means for calculating an EGR rate from the specific heat ratio of the combustion gas calculated by the combustion gas specific heat ratio calculating means based on the relationship between the specific heat ratio of the combustion gas and the EGR rate;
A control device for an internal combustion engine, comprising:
前記筒内圧センサが取り付けられた気筒の吸気弁が閉じてから当該気筒の燃焼開始時点までの期間において前記筒内圧センサによる測定データを取得し、得られた測定データを用いて筒内の混合ガスの比熱比を算出する混合ガス比熱比算出手段と、
混合ガスの比熱比と空燃比とEGR率との間の関係に基づいて、前記混合ガス比熱比算出手段によって算出された混合ガスの比熱比と前記EGR率算出手段によって算出されたEGR率とから空燃比を算出する空燃比算出手段と、
をさらに備えることを特徴とする請求項1記載の内燃機関の制御装置。
Measurement data obtained by the in-cylinder pressure sensor is acquired during a period from when the intake valve of the cylinder to which the in-cylinder pressure sensor is attached is closed to when combustion starts in the cylinder, and the mixed gas in the cylinder is obtained using the obtained measurement data. A mixed gas specific heat ratio calculating means for calculating a specific heat ratio of
Based on the specific heat ratio of the mixed gas, the air-fuel ratio, and the EGR rate, from the specific heat ratio of the mixed gas calculated by the mixed gas specific heat ratio calculating unit and the EGR rate calculated by the EGR rate calculating unit Air-fuel ratio calculating means for calculating the air-fuel ratio;
The control device for an internal combustion engine according to claim 1, further comprising:
前記筒内圧センサが取り付けられた気筒の失火を検出する失火検出手段をさらに備え、
前記EGR率算出手段は、前記失火検出手段によって失火が検出された場合にはEGR率の算出を中止することを特徴とする請求項1又は2記載の内燃機関の制御装置。
A misfire detecting means for detecting misfire of a cylinder to which the in-cylinder pressure sensor is attached;
3. The control apparatus for an internal combustion engine according to claim 1, wherein the EGR rate calculating unit stops calculating the EGR rate when a misfire is detected by the misfire detecting unit.
JP2010014671A 2010-01-26 2010-01-26 Control device for internal combustion engine Expired - Fee Related JP5263184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010014671A JP5263184B2 (en) 2010-01-26 2010-01-26 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010014671A JP5263184B2 (en) 2010-01-26 2010-01-26 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011153550A true JP2011153550A (en) 2011-08-11
JP5263184B2 JP5263184B2 (en) 2013-08-14

Family

ID=44539699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010014671A Expired - Fee Related JP5263184B2 (en) 2010-01-26 2010-01-26 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5263184B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249932A (en) * 1988-03-31 1989-10-05 Suzuki Motor Co Ltd Fuel injection controller
JP2002038911A (en) * 2000-07-25 2002-02-06 Nissan Motor Co Ltd Diesel engine
JP2003148183A (en) * 2001-08-27 2003-05-21 Toyota Motor Corp Internal exhaust gas re-circulation control device of internal combustion engine
JP2005351145A (en) * 2004-06-09 2005-12-22 Toyota Motor Corp Control device and control method of internal combustion engine
JP2008051005A (en) * 2006-08-24 2008-03-06 Toyota Motor Corp Control device for internal combustion engine
JP2008231995A (en) * 2007-03-19 2008-10-02 Toyota Motor Corp Method and device of controlling operation of spark-ignition engine
JP2008274811A (en) * 2007-04-26 2008-11-13 Toyota Motor Corp Control unit of internal combustion engine
JP2010007581A (en) * 2008-06-27 2010-01-14 Toyota Motor Corp Air fuel ratio control device
JP2010007618A (en) * 2008-06-30 2010-01-14 Toyota Motor Corp Control device of internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249932A (en) * 1988-03-31 1989-10-05 Suzuki Motor Co Ltd Fuel injection controller
JP2002038911A (en) * 2000-07-25 2002-02-06 Nissan Motor Co Ltd Diesel engine
JP2003148183A (en) * 2001-08-27 2003-05-21 Toyota Motor Corp Internal exhaust gas re-circulation control device of internal combustion engine
JP2005351145A (en) * 2004-06-09 2005-12-22 Toyota Motor Corp Control device and control method of internal combustion engine
JP2008051005A (en) * 2006-08-24 2008-03-06 Toyota Motor Corp Control device for internal combustion engine
JP2008231995A (en) * 2007-03-19 2008-10-02 Toyota Motor Corp Method and device of controlling operation of spark-ignition engine
JP2008274811A (en) * 2007-04-26 2008-11-13 Toyota Motor Corp Control unit of internal combustion engine
JP2010007581A (en) * 2008-06-27 2010-01-14 Toyota Motor Corp Air fuel ratio control device
JP2010007618A (en) * 2008-06-30 2010-01-14 Toyota Motor Corp Control device of internal combustion engine

Also Published As

Publication number Publication date
JP5263184B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5026334B2 (en) Angular velocity and angular acceleration calculation device, torque estimation device, combustion state estimation device
US6560526B1 (en) Onboard misfire, partial-burn detection and spark-retard control using cylinder pressure sensing
JP2007126996A (en) Engine output computing method and arithmetic unit
BR112015030156B1 (en) Misfire detection system for internal combustion engine
JPWO2011132253A1 (en) Control device for internal combustion engine
US8095293B2 (en) Method and device for operating an internal combustion engine
JP5331613B2 (en) In-cylinder gas amount estimation device for internal combustion engine
JP2007231883A (en) Air fuel ratio control device for internal combustion engine
JP2007248119A (en) Method for determining wiebe function parameter and device for presuming heat release rate of internal combustion engine
JP2008540912A (en) Method and apparatus for determining the ratio between the fuel mass burned in a cylinder of an internal combustion engine and the fuel mass supplied to the cylinder
JP4356079B2 (en) Fuel property determination device for internal combustion engine
JP6270210B2 (en) In-cylinder pressure sensor diagnostic method and vehicle operation control device
RU2633521C1 (en) Diagnostics system for internal combustion engine
JP2008215204A (en) Simulation method for heat generation rate of internal combustion engine, torque model creating method for internal combustion engine, and torque estimating method for internal combustion engine
JP5910651B2 (en) Air-fuel ratio detection device for internal combustion engine
JP5229192B2 (en) In-cylinder pressure sensor diagnostic device
JP5263184B2 (en) Control device for internal combustion engine
JP6280087B2 (en) Engine torque estimation device for internal combustion engine
JP5263185B2 (en) Air-fuel ratio estimation system
JP2008309006A (en) Control device for internal combustion engine
JP4115677B2 (en) Atmospheric pressure detection device for internal combustion engine
JP5126104B2 (en) Deterioration judgment device for intake pressure sensor
JP5760924B2 (en) In-cylinder pressure estimation device for internal combustion engine
JP2005351150A (en) Crank angle measuring device and measuring method
JP2009167871A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R151 Written notification of patent or utility model registration

Ref document number: 5263184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees