JP2011153539A - Gear pump - Google Patents

Gear pump Download PDF

Info

Publication number
JP2011153539A
JP2011153539A JP2010014303A JP2010014303A JP2011153539A JP 2011153539 A JP2011153539 A JP 2011153539A JP 2010014303 A JP2010014303 A JP 2010014303A JP 2010014303 A JP2010014303 A JP 2010014303A JP 2011153539 A JP2011153539 A JP 2011153539A
Authority
JP
Japan
Prior art keywords
ring member
gear
rotor shaft
rotor
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010014303A
Other languages
Japanese (ja)
Other versions
JP5467882B2 (en
Inventor
Hiroko Morino
弘子 森野
Kazuo Iritani
一夫 入谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010014303A priority Critical patent/JP5467882B2/en
Publication of JP2011153539A publication Critical patent/JP2011153539A/en
Application granted granted Critical
Publication of JP5467882B2 publication Critical patent/JP5467882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0436Iron
    • F05C2201/0439Cast iron
    • F05C2201/0442Spheroidal graphite cast iron, e.g. nodular iron, ductile iron

Landscapes

  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gear pump preventing the one-side hitting of a rotor shaft on a sliding bearing when it is adopted, and preventing the occurrence of the problems of rotating resistance and irregularity of the rotor shaft and uneven wear of the rotor shaft and the bearing. <P>SOLUTION: The gear pump 1 includes a pair of mutually engaging gear rotors 2, 2 provided in a housing 3 in a state where the rotor shaft 5 of each gear rotor 2 is rotatably supported by the bearings 6. The gear rotors 2 are rotated to carry carried fluid from the suction side to the discharge side. The bearing 6 includes an annular inner ring member 23 externally inserted into the rotor shaft 5, and an annular outer ring member 24 provided in the housing 3 with the inner ring member 23 fitted inside thereof. The inner ring member 23 has an inner peripheral face rotatably supporting the rotor shaft 5 while being lubricated by part of the carried fluid. The outer ring member 24 has an inner peripheral face slidably supporting the inner ring member 23 so that the inner ring member 23 following the eccentricity of the rotor shaft 5 is slidable. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、搬送流体を加圧しつつ吸込側から吐出側へと移送するギヤポンプに関する。   The present invention relates to a gear pump that transfers a carrier fluid from a suction side to a discharge side while pressurizing the carrier fluid.

搬送流体の一つである溶融樹脂を加圧しつつ吸込側から吐出側へと移送するためのポンプとして、しばしばギヤポンプが採用される。
ギヤポンプとしては、例えば特許文献1に開示されたものがある。このギヤポンプは、ハウジングとこのハウジング内に配備された互いに噛合する一対のギヤロータを有し、各ギヤロータは両側に突設されたロータ軸を有している。このロータ軸はハウジング内にそれぞれ軸受を介して回転自在に支持されており、各軸受には滑り軸受が採用されている。滑り軸受としては、両ギヤロータを経て吐出される溶融樹脂の一部がハウジング内に形成された樹脂導入路に導かれて各軸受の内面(ロータ軸との滑り面)へ潤滑剤として供給されるように構成された自己潤滑式のものが採用されている。
A gear pump is often employed as a pump for transferring the molten resin, which is one of the carrier fluids, from the suction side to the discharge side while pressurizing.
An example of a gear pump is disclosed in Patent Document 1. This gear pump has a housing and a pair of gear rotors disposed in the housing and meshing with each other, and each gear rotor has a rotor shaft projecting on both sides. The rotor shaft is rotatably supported in the housing via bearings, and a sliding bearing is adopted for each bearing. As a sliding bearing, a part of the molten resin discharged through both gear rotors is guided to a resin introduction path formed in the housing and supplied as a lubricant to the inner surface of each bearing (sliding surface with the rotor shaft). A self-lubricating type constructed as described above is employed.

特許第3895537号公報Japanese Patent No. 3895537

前述した滑り軸受を備えたギヤポンプにおいて、搬送する溶融樹脂の樹脂圧(吐出圧)がギヤロータに作用することでロータ軸に撓みが発生すると、当該軸受の軸方向において、ロータ軸の外周面と軸受の内周面とのクリアランスが周方向同位相で一定とならない虞が生ずる。すなわち、ロータ軸の軸方向においてロータ軸の軸心と軸受の軸心とが偏心する量が変化し、軸受に対してロータ軸の片当たり現象(部分的な接触)が発生、それに伴い、ロータ軸の回転抵抗や回転ムラの増大、ロータ軸や軸受の異常摩耗などが発生する可能性が大である。   In the gear pump provided with the above-described sliding bearing, when the resin pressure (discharge pressure) of the molten resin to be conveyed acts on the gear rotor and the rotor shaft is bent, the outer circumferential surface of the rotor shaft and the bearing in the axial direction of the bearing. There is a possibility that the clearance with the inner peripheral surface of the inner surface of the inner surface of the inner surface is not constant at the same phase in the circumferential direction. That is, the amount of eccentricity between the axis of the rotor shaft and the shaft center of the bearing changes in the axial direction of the rotor shaft, causing a phenomenon of partial contact of the rotor shaft with respect to the bearing (partial contact). There is a great possibility that an increase in shaft rotation resistance and rotation unevenness, abnormal wear of the rotor shaft and bearings, etc. occur.

ギヤポンプを大型化乃至は高出力化すれば樹脂圧も高くなるため、軸受での片当たり現象も顕著となり、上記問題も深刻化する傾向となる。
本発明は、上記事情に鑑みてなされたものであって、滑り軸受タイプの軸受に対するロータ軸の片当たり現象を防止し、ロータ軸や軸受の異常摩耗発生などの問題を未然に防止できるようにしたギヤポンプを提供することを目的とする。
If the gear pump is increased in size or increased in output, the resin pressure increases, so that the one-side contact phenomenon at the bearing becomes prominent, and the above problem tends to become serious.
The present invention has been made in view of the above circumstances, and prevents the rotor shaft from hitting against a sliding bearing type bearing so that problems such as abnormal wear of the rotor shaft and the bearing can be prevented. An object of the present invention is to provide a gear pump.

前記目的を達成するために、本発明は次の手段を講じた。
即ち、本発明に係るギヤポンプは、互いに噛合する一対のギヤロータが各ギヤロータのロータ軸を軸受により回転可能に支持された状態でハウジング内に設けられていて、前記ギヤロータの回転により搬送流体を吸込側から吐出側へと送るギヤポンプにおいて、前記軸受は、前記ロータ軸に外挿される環状の内輪部材と、前記ハウジングに設けられ且つ前記内輪部材が内側に嵌まり込む環状の外輪部材とを有しており、前記内輪部材は、前記搬送流体の一部により潤滑されながら前記ロータ軸を回転支持する内周面を有し、前記外輪部材は、前記ロータ軸の偏心に追従した内輪部材の揺動が可能なように前記内輪部材を摺動自在に支持する内周面を有していることを特徴とする。
In order to achieve the above object, the present invention has taken the following measures.
That is, in the gear pump according to the present invention, a pair of gear rotors that mesh with each other is provided in the housing in a state in which the rotor shafts of the gear rotors are rotatably supported by bearings, and the carrier fluid is sucked in by the rotation of the gear rotors. In the gear pump that feeds from the discharge side to the discharge side, the bearing includes an annular inner ring member that is externally inserted into the rotor shaft, and an annular outer ring member that is provided in the housing and into which the inner ring member is fitted. The inner ring member has an inner peripheral surface that rotatably supports the rotor shaft while being lubricated by a part of the carrier fluid, and the outer ring member is configured to swing the inner ring member following the eccentricity of the rotor shaft. It has an inner peripheral surface that slidably supports the inner ring member as possible.

好ましくは、前記内輪部材は、凸球面状に形成された外周面を有しており、前記外輪部材は、前記内輪部材の外周面と面接触する凹球面状に形成された内周面を有しているとよい。
さらに、前記外輪部材は、ロータ軸の軸心を通る径方向の分割ラインによって分割可能とされており、前記分割ラインが、各ギヤロータに対し作用する搬送流体の圧力の方向と不一致となるように、前記外輪部材がハウジングに配備されていることは、非常に好ましい。
Preferably, the inner ring member has an outer peripheral surface formed in a convex spherical shape, and the outer ring member has an inner peripheral surface formed in a concave spherical shape in surface contact with the outer peripheral surface of the inner ring member. It is good to have.
Further, the outer ring member can be divided by a radial dividing line passing through the axis of the rotor shaft so that the dividing line does not coincide with the direction of the pressure of the carrier fluid acting on each gear rotor. It is very preferable that the outer ring member is disposed in the housing.

前記分割ラインが、各ギヤロータに対し作用する搬送流体の圧力の方向と略直交するように、前記外輪部材がハウジングに配備されているとよい。   The outer ring member may be provided in the housing so that the dividing line is substantially orthogonal to the direction of the pressure of the carrier fluid acting on each gear rotor.

本発明に係るギヤポンプでは、滑り軸受タイプの軸受に対するロータ軸の片当たり現象を防止し、ロータ軸や軸受の異常摩耗発生などの問題を未然に防ぐことができる。   In the gear pump according to the present invention, the one-side contact phenomenon of the rotor shaft with respect to the plain bearing type bearing can be prevented, and problems such as abnormal wear of the rotor shaft and bearing can be prevented.

本発明に係るギヤポンプの側面断面図である。It is side surface sectional drawing of the gear pump which concerns on this invention. 本発明に係るギヤポンプの正面断面図である。It is front sectional drawing of the gear pump which concerns on this invention. 軸受の側面拡大図である。It is a side enlarged view of a bearing.

以下、本発明の実施の形態を、図面に基づき説明する。
図1〜図3は、本発明に係るギヤポンプ1の一実施形態を示している。
ギヤポンプ1は、互いに噛合する一対のギヤロータ2がハウジング3内に設けられたもので、各ギヤロータ2の回転中心部でロータ両側へ突出して設けられたロータ軸5が、互いに平行に架設され、且つそれぞれ自己潤滑式の滑り軸受タイプの軸受6により回転自在に支持されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 3 show an embodiment of a gear pump 1 according to the present invention.
The gear pump 1 is provided with a pair of gear rotors 2 that mesh with each other in a housing 3, and rotor shafts 5 that protrude from both sides of the rotor at the center of rotation of the gear rotors 2 are installed in parallel to each other, and Each is supported rotatably by a self-lubricating plain bearing type bearing 6.

このギヤポンプ1は、例えば、連続式樹脂混練機の吐出部側(二次側)に設けられてペレタイザ等へ溶融樹脂(搬送流体)を加圧し押し出す場合などに採用される。
以下、ギヤポンプ1の詳細を説明する。
なお、以降の説明で、図1における左右方向を装置説明での前後方向と呼び、上下方向を装置説明における上下方向と呼ぶ。図2における左右方向を装置説明における左右方向又は幅方向と呼ぶ。
This gear pump 1 is employed, for example, when it is provided on the discharge part side (secondary side) of a continuous resin kneader and pressurizes and pushes molten resin (conveying fluid) to a pelletizer or the like.
Details of the gear pump 1 will be described below.
In the following description, the left-right direction in FIG. 1 is referred to as the front-rear direction in the apparatus description, and the vertical direction is referred to as the up-down direction in the apparatus description. The left-right direction in FIG. 2 is referred to as the left-right direction or the width direction in the device description.

図1,図2に示す如く、ハウジング3は、内部中空となっているブロック状のハウジング本体10を有する。ハウジング本体10の内部には、一対のロータ収納孔8,8が上下方向に連なるように形成されている。上下隣接するロータ収納孔8,8はその一部が重なり且つ連通し、メガネ形状を呈するものとなっている。
さらに、ロータ収納孔8の前後方向であって幅方向中央部には、当該ロータ収納孔8に連通する樹脂入口15と樹脂出口16とが形成されている。
As shown in FIGS. 1 and 2, the housing 3 has a block-shaped housing body 10 that is hollow inside. Inside the housing body 10, a pair of rotor housing holes 8, 8 are formed so as to be continuous in the vertical direction. The rotor storage holes 8 and 8 that are adjacent to each other in the upper and lower portions overlap and communicate with each other, and have a glasses shape.
Further, a resin inlet 15 and a resin outlet 16 communicating with the rotor storage hole 8 are formed in the front-rear direction of the rotor storage hole 8 and in the center in the width direction.

それぞれのロータ収納孔8に、ギヤロータ2が挿入され且つ軸受6,6を介して回転自在に支持されている。
ギヤロータ2は、溶融樹脂を移送する歯車部4と、この歯車部4の両側部に突出状に形成されたロータ軸5とからなる。一対のギヤロータ2,2の歯車部4,4は、互いが常時噛合するような位置関係でハウジング本体10内に配備されている。
The gear rotor 2 is inserted into each rotor housing hole 8 and is rotatably supported through bearings 6 and 6.
The gear rotor 2 includes a gear portion 4 that transfers a molten resin, and a rotor shaft 5 that is formed in a protruding shape on both sides of the gear portion 4. The gear portions 4 and 4 of the pair of gear rotors 2 and 2 are disposed in the housing main body 10 in a positional relationship such that they always mesh with each other.

ギヤロータ2を支持する軸受6は、ロータ収納孔8の左右両側に連続して形成されている軸受孔9に非固定状態で嵌合されている。上下に配備された一対の軸受6,6は、互いに隣接する外周面の一部が直線的に切り取られて平坦面に形成されている。それ故、軸受6,6は軸受孔9,9に収納された状態で、前述の平坦面同志が当接してその回動が防止される。   The bearing 6 that supports the gear rotor 2 is fitted into a bearing hole 9 formed continuously on the left and right sides of the rotor housing hole 8 in an unfixed state. A pair of bearings 6 and 6 arranged vertically are formed on a flat surface by partially cutting out the outer peripheral surfaces adjacent to each other. Therefore, in the state in which the bearings 6 and 6 are housed in the bearing holes 9 and 9, the above-described flat surfaces come into contact with each other to prevent the rotation thereof.

軸受6の幅方向内端面は、ギヤロータ2の歯車部4の側面に略当接状態となっている。また、軸受6の幅方向外端面とハウジング本体10の端面とは略面一とされ、軸受6は、ハウジング本体10の幅方向端面に取り付けられたベアリングリテーナ11(カバー体)により、軸受6は幅方向外方への抜け出しが防止されている。
ベアリングリテーナ11は、ハウジング本体10の幅方向端面にボルト等を介して取り付けられている。加えて、ベアリングリテーナ11には、ギヤロータ2の軸心と同心に形成された一対のシール部材挿入孔33が設けられると共に、このシール部材挿入孔33にビスコシール12が挿入される。
The inner end surface in the width direction of the bearing 6 is substantially in contact with the side surface of the gear portion 4 of the gear rotor 2. The outer end surface of the bearing 6 in the width direction and the end surface of the housing body 10 are substantially flush with each other. The bearing 6 is supported by a bearing retainer 11 (cover body) attached to the end surface of the housing body 10 in the width direction. Outward in the width direction is prevented.
The bearing retainer 11 is attached to the end surface in the width direction of the housing body 10 via a bolt or the like. In addition, the bearing retainer 11 is provided with a pair of seal member insertion holes 33 formed concentrically with the axis of the gear rotor 2, and the Bisco seal 12 is inserted into the seal member insertion holes 33.

ビスコシール12はフランジ付き筒状体を呈しており、そのフランジ部がベアリングリテーナ11の外端面に接するように、ボルト等を介してベアリングリテーナ11に固定されている。また、ビスコシール12はその外周面の一部に平坦面が形成されて、軸受6と同様に、一対のビスコシール12,12の平坦面同志が当接し互いが回動することを防止している。   The visco seal 12 has a cylindrical body with a flange, and is fixed to the bearing retainer 11 via bolts or the like so that the flange portion is in contact with the outer end surface of the bearing retainer 11. Further, the visco seal 12 is formed with a flat surface on a part of its outer peripheral surface, and like the bearing 6, the flat surfaces of the pair of visco seals 12 and 12 are prevented from contacting each other and rotating. Yes.

ビスコシール12の幅方向内端面(歯車部側の端面)は、軸受6の幅方向外端面(反歯車部側の端面)に面接触するようになっている。この面接触部分であってギヤロータ2のロータ軸5の周り部分には、軸受6を潤滑した溶融樹脂をギアポンプ1の吸込側へ戻す流路に連通する環状の溝34が設けられ、ここをロータ軸5の軸方向へ通過した溶融樹脂は、ビスコシール12の内面に設けられたスパイラル状の溝(図示省略)により外部への流出を防止される。   The width direction inner end surface (end surface on the gear portion side) of the visco seal 12 is in surface contact with the width direction outer end surface (end surface on the counter gear portion side) of the bearing 6. An annular groove 34 communicating with a flow path for returning the molten resin that has lubricated the bearing 6 to the suction side of the gear pump 1 is provided in the surface contact portion around the rotor shaft 5 of the gear rotor 2. The molten resin that has passed in the axial direction of the shaft 5 is prevented from flowing out to the outside by a spiral groove (not shown) provided on the inner surface of the Bisco seal 12.

ところで、ギヤロータ2のロータ軸5の一方側(図2で右側に伸びる側)は、カップリングを介して駆動装置(図示省略)に連結されている。この駆動装置により、図1に示すように、ギヤロータ2,2は互いに噛合しつつ逆方向(矢符X1,X2)に回転し、歯車部4によって、樹脂入口15から樹脂出口16に溶融樹脂が加圧搬送される。そのため、樹脂入口15においては、溶融樹脂の吸い込み作用(矢符Y)が生じており、樹脂出口16では溶融樹脂の押し出し作用(矢符Z)が生じている。   Incidentally, one side (the side extending to the right side in FIG. 2) of the rotor shaft 5 of the gear rotor 2 is connected to a drive device (not shown) via a coupling. As shown in FIG. 1, the gear rotors 2, 2 are rotated in opposite directions (arrows X 1, X 2) by this driving device, and the molten resin flows from the resin inlet 15 to the resin outlet 16 by the gear portion 4. It is conveyed under pressure. Therefore, the resin inlet 15 has a molten resin suction action (arrow Y), and the resin outlet 16 has a molten resin push-out action (arrow Z).

ところで、樹脂出口16においては、導入孔17が開口されており、この導入孔17は樹脂導入路20へ連通し、この樹脂導入路20は軸受6へと開口する導出孔18へと連通している。この樹脂導入路20に導かれて、ギヤロータ2を経て吐出される高圧の溶融樹脂の一部が軸受6へ向けて供給され、軸受6における潤滑剤の一部となる。この樹脂導入路20は、各軸受6に少なくとも1本が割り当てられるように複数形成されており、本実施形態の場合は、ハウジング本体10に2本形成されている。なお、この導入孔17及び樹脂導入路20は必要に応じて設けることができる。   Incidentally, an introduction hole 17 is opened at the resin outlet 16, and this introduction hole 17 communicates with the resin introduction path 20, and this resin introduction path 20 communicates with a lead-out hole 18 that opens to the bearing 6. Yes. Part of the high-pressure molten resin guided to the resin introduction path 20 and discharged through the gear rotor 2 is supplied toward the bearing 6 and becomes part of the lubricant in the bearing 6. A plurality of the resin introduction paths 20 are formed so that at least one is assigned to each bearing 6. In this embodiment, two resin introduction paths 20 are formed in the housing body 10. The introduction hole 17 and the resin introduction path 20 can be provided as necessary.

図2,図3に示すように、本実施形態のギヤポンプ1に備えられた軸受6は、ロータ軸5に対して相対回転自在に外挿された環状の内輪部材23と、この内輪部材23に外嵌された環状の外輪部材24とを有している。この外輪部材24がハウジング3に形成された軸受孔9に嵌まり込み、幅方向外側からベアリングリテーナ11により押さえ込まれている。   As shown in FIGS. 2 and 3, the bearing 6 provided in the gear pump 1 of the present embodiment includes an annular inner ring member 23 that is externally inserted relative to the rotor shaft 5, and an inner ring member 23. And an annular outer ring member 24 that is externally fitted. The outer ring member 24 is fitted into the bearing hole 9 formed in the housing 3 and is pressed by the bearing retainer 11 from the outside in the width direction.

内輪部材23は、中心部にロータ軸5へ挿通させるための軸孔25が貫通形成されており、軸孔25の内周面は、溶融樹脂の一部により潤滑されながらロータ軸5を回転支持するものとなっている。そのため、外輪部材24と内輪部材23には、樹脂導入路20の導出孔18が連通しており、この樹脂導入路20を通じて樹脂出口16における高圧の溶融樹脂が、内輪部材23の内周面とロータ軸5の外周面との間に供給され、軸受6は自己潤滑式のすべり軸受として動作する。   The inner ring member 23 has a shaft hole 25 through which the inner shaft member 25 is inserted into the rotor shaft 5 in the center. The inner peripheral surface of the shaft hole 25 is supported by the rotor shaft 5 while being lubricated by a part of the molten resin. It is supposed to be. Therefore, the outer ring member 24 and the inner ring member 23 communicate with the outlet hole 18 of the resin introduction path 20, and high-pressure molten resin at the resin outlet 16 passes through the resin introduction path 20 and the inner peripheral surface of the inner ring member 23. The bearing 6 is supplied between the outer peripheral surface of the rotor shaft 5 and operates as a self-lubricating plain bearing.

内輪部材23の外周面は、内輪部材23の径方向側に膨らむような円弧カーブが形成され凸球面26となっている。言い換えるならば、内輪部材23の外周面はドーナツ様の外側形状を呈している。
一方で、外輪部材24は、中心部に内輪部材23を嵌め入れるための開孔が貫通形成されており、この開孔の内周面が、内輪部材23の凸球面26と面対偶で接触可能な凹球面27に形成されている。凸球面26は凹球面27に対して摺動自在となっていて、それ故、外輪部材24に対する内輪部材23の揺動が可能となっている。
The outer peripheral surface of the inner ring member 23 is a convex spherical surface 26 formed with an arc curve that swells in the radial direction of the inner ring member 23. In other words, the outer peripheral surface of the inner ring member 23 has a donut-like outer shape.
On the other hand, the outer ring member 24 is formed with an opening for fitting the inner ring member 23 in the center thereof, and the inner peripheral surface of this hole can contact the convex spherical surface 26 of the inner ring member 23 by a face-to-face connection. The concave spherical surface 27 is formed. The convex spherical surface 26 is slidable with respect to the concave spherical surface 27, so that the inner ring member 23 can swing with respect to the outer ring member 24.

凸球面26の曲率半径(言い換えるならば凹球面27の曲率半径)は一定であり、ロータ軸5の偏心に追従した内輪部材23の揺動が可能なように球面上のどの位置からも中心までの距離が同じになるように設定されている。なお、凸球面26の曲率半径と凹球面27の曲率半径とに関しては、両者は同一であることが理想ではあるが、凸球面26と凹球面27とが面接触状態を維持しつつ凸球面26が凹球面27に対して摺動自在となるように、両者26,27の曲率半径は「実質的に同じ」となるように設定されるとよい。   The radius of curvature of the convex spherical surface 26 (in other words, the radius of curvature of the concave spherical surface 27) is constant, and from any position on the spherical surface to the center so that the inner ring member 23 can follow the eccentricity of the rotor shaft 5. Are set to have the same distance. It should be noted that the radius of curvature of the convex spherical surface 26 and the radius of curvature of the concave spherical surface 27 are ideally the same, but the convex spherical surface 26 and the concave spherical surface 27 maintain the surface contact state while the convex spherical surface 26 is maintained. Is set to be “substantially the same” so that both can be slidable with respect to the concave spherical surface 27.

また、凹球面27と凸球面26は、例えば球状黒鉛鋳鉄等のように自己潤滑性を有する材料で形成することが好ましい。
一方、図3に示す如く、軸受6を構成する外輪部材24は、ロータ軸5の軸心を通る径方向の分割ライン30を境として、半円形をした二つの半部材31,32に分割可能とされており、これら半部材31,32を互いに対向させて結合することで、内輪部材23を挟み込み得る円環形状を呈するようになっている。
The concave spherical surface 27 and the convex spherical surface 26 are preferably formed of a material having self-lubricating properties such as spheroidal graphite cast iron.
On the other hand, as shown in FIG. 3, the outer ring member 24 constituting the bearing 6 can be divided into two semicircular half members 31 and 32 with a radial dividing line 30 passing through the axis of the rotor shaft 5 as a boundary. The half members 31 and 32 are coupled to face each other so as to exhibit an annular shape that can sandwich the inner ring member 23.

外輪部材24の分割ライン30は、ギヤロータ2に対して樹脂出口16側から樹脂入口15側へ向けて作用する樹脂圧の方向(溶融樹脂の吐出圧の作用方向)と不一致となるように、当該外輪部材24がハウジング3内に配置されている。
すなわち、互いに噛み合うギヤロータ2,2を回転させると、各ギヤロータ2の歯車部4とロータ収納孔8の内周面との間で溶融樹脂が搬送され、合流位置Gから樹脂出口16へ向けて一気に押し出されるようになる。そのため、この合流部Gで溶融樹脂の樹脂圧が最も高くなる現象が起こる。このような樹脂圧がギヤロータ2を樹脂入口15側(低圧側)へ押し返すように作用し、ギヤロータ2の各ロータ軸5に撓みの原因を生じさせることになる。
The dividing line 30 of the outer ring member 24 is inconsistent with the direction of the resin pressure acting on the gear rotor 2 from the resin outlet 16 side toward the resin inlet 15 side (the direction of the molten resin discharge pressure). An outer ring member 24 is disposed in the housing 3.
That is, when the gear rotors 2 and 2 meshing with each other are rotated, the molten resin is transported between the gear portion 4 of each gear rotor 2 and the inner peripheral surface of the rotor housing hole 8, and at a stroke from the merging position G toward the resin outlet 16. Be pushed out. Therefore, a phenomenon occurs in which the resin pressure of the molten resin becomes the highest at the junction G. Such a resin pressure acts to push the gear rotor 2 back to the resin inlet 15 side (low pressure side), and causes each rotor shaft 5 of the gear rotor 2 to bend.

したがって、もし、この樹脂圧の作用方向と同じ方向に外輪部材24の分割ライン30が配置されていると、樹脂圧が、外輪部材24の半部材31,32相互間を径方向に位置ズレさせるように作用し、その結果、各半部材31,32間において凹球面27における周方向の連続性が無くなり、凹球面27と内輪部材23の凸球面26との滑りが悪化する虞が生ずる。そこで、この現象を防止するために、前記したように分割ライン30は樹脂圧の作用方向と不一致とさせている。   Therefore, if the split line 30 of the outer ring member 24 is arranged in the same direction as the direction of the resin pressure, the resin pressure causes the half members 31 and 32 of the outer ring member 24 to be displaced in the radial direction. As a result, there is no continuity in the circumferential direction of the concave spherical surface 27 between the half members 31 and 32, and there is a possibility that the slip between the concave spherical surface 27 and the convex spherical surface 26 of the inner ring member 23 is deteriorated. Therefore, in order to prevent this phenomenon, the dividing line 30 does not coincide with the direction of the resin pressure as described above.

図3に示す上側の外輪部材24において、その吐出側を0°として反時計回りに角度割りをした座標で説明すると、上側のギヤロータ2に作用する樹脂圧は矢符F(第2象限)で作用することが実績として明らかとなっている。係る実績を鑑みれば、第1象限の範囲内と第3象限の範囲内との対称な二カ所を横断しロータ軸5の軸心を通るように分割ライン30を配置するのが好適となる。   In the upper outer ring member 24 shown in FIG. 3, when the discharge side is set to 0 ° and the coordinates are divided counterclockwise, the resin pressure acting on the upper gear rotor 2 is indicated by an arrow F (second quadrant). It has become clear that it works. In view of such a result, it is preferable to arrange the dividing line 30 so as to cross two symmetrical points within the range of the first quadrant and the range of the third quadrant and pass through the axis of the rotor shaft 5.

また、下側のギヤロータ2に作用する樹脂圧は矢符F’(第3象限)で作用することが実績として明らかとなっている。係る実績を鑑みれば、第2象限の範囲内と第4象限の範囲内の対称な二カ所を横断しロータ軸5の軸心を通るように分割ライン30を配置するのが好適となる。
なお本実施形態では、図3に示す如く、上側のギヤロータ2を支える外輪部材24に関し、45°と225°との位置を横断するように分割ライン30を配置して、樹脂圧の作用方向F(約135°)と直交させるようにしている。また、下側のギヤロータ2を支える外輪部材24に関しては、135°と315°との位置を横断するように分割ライン30を配置して、樹脂圧の作用方向F’(約225°)と直交させている。
Moreover, it has become clear as a result that the resin pressure acting on the lower gear rotor 2 acts in the arrow F ′ (third quadrant). In view of such results, it is preferable to arrange the dividing line 30 so as to cross two symmetrical points in the range of the second quadrant and the range of the fourth quadrant and pass through the axis of the rotor shaft 5.
In the present embodiment, as shown in FIG. 3, with respect to the outer ring member 24 that supports the upper gear rotor 2, the dividing line 30 is disposed so as to cross the positions of 45 ° and 225 °, and the resin pressure acting direction F (About 135 °). Further, with respect to the outer ring member 24 that supports the lower gear rotor 2, a dividing line 30 is disposed so as to cross the positions of 135 ° and 315 °, and is orthogonal to the resin pressure acting direction F ′ (about 225 °). I am letting.

以上の如き構成を有する本発明のギヤポンプ1の作動態様は、以下の通りである。
ギヤポンプ1を駆動する駆動装置を作動させると、図1に示すように、ギヤロータ2は噛合していることで互いが逆方向(矢符X1,X2)に回転し、歯車部4によって、溶融樹脂が樹脂入口15から樹脂出口16へと搬送される。樹脂入口15の部分においては、溶融樹脂は符号Yのように流れ込み、歯車部4による搬送で加圧され、樹脂出口16では、高圧となった溶融樹脂は合流位置Gを経て符号Zのように吐出する。
The operation mode of the gear pump 1 of the present invention having the above-described configuration is as follows.
When the drive device that drives the gear pump 1 is operated, the gear rotor 2 rotates in the opposite direction (arrows X1, X2) due to meshing, as shown in FIG. Is conveyed from the resin inlet 15 to the resin outlet 16. At the resin inlet 15, the molten resin flows as indicated by a symbol Y and is pressurized by conveyance by the gear portion 4, and at the resin outlet 16, the molten resin that has reached a high pressure passes through a joining position G as indicated by a symbol Z. Discharge.

樹脂出口16における溶融樹脂は高圧となっているため、軸受6,6で両持ち支持されたギヤロータ2の歯車部4を樹脂入口15側すなわち後側へ押し返すように樹脂圧が発生する。
これによりロータ軸5に撓みが誘発されロータ軸5の軸心が傾いたとしても、ギヤポンプ1に備えられた軸受6において、内輪部材23の凸球面26が外輪部材24の凹球面27に対して摺動し、内輪部材23と外輪部材24との間で相応の角度調整(自動調心作用)が起こる。この自動調心作用はロータ軸5の撓みを許容することになるので、ロータ軸5と軸受6(内輪部材23)の軸孔25とは軸方向のクリアランスが一定した状態を保持するようになる。
Since the molten resin at the resin outlet 16 is at a high pressure, a resin pressure is generated so as to push back the gear portion 4 of the gear rotor 2 supported at both ends by the bearings 6 and 6 toward the resin inlet 15 side, that is, the rear side.
As a result, even if the rotor shaft 5 is deflected and the axis of the rotor shaft 5 is inclined, the convex spherical surface 26 of the inner ring member 23 in the bearing 6 provided in the gear pump 1 is compared with the concave spherical surface 27 of the outer ring member 24. By sliding, an appropriate angle adjustment (self-aligning action) occurs between the inner ring member 23 and the outer ring member 24. Since this self-aligning action allows the rotor shaft 5 to bend, the rotor shaft 5 and the shaft hole 25 of the bearing 6 (inner ring member 23) maintain a constant axial clearance. .

その結果、内輪部材23の軸孔25に対してロータ軸5の外周面が片当たり現象を起こすことはなくなり、ロータ軸5の回転抵抗、回転ムラ、ロータ軸5や軸受6の片摩耗などの問題を未然に防止できるようになる。
つまり、本発明のギヤポンプ1によれば、溶融樹脂を加圧しつつ確実に吸込側から吐出側へと移送できると共に、運転中における軸受6の内周面に対するロータ軸5の外周面の片当たり現象を防止し、ロータ軸5や軸受6の異常摩耗発生などの問題を未然に防止できる。
As a result, the outer peripheral surface of the rotor shaft 5 does not cause a one-side contact phenomenon with respect to the shaft hole 25 of the inner ring member 23, and the rotation resistance of the rotor shaft 5, rotation unevenness, single wear of the rotor shaft 5 and the bearing 6 and the like. The problem can be prevented beforehand.
That is, according to the gear pump 1 of the present invention, the molten resin can be reliably transferred from the suction side to the discharge side while being pressurized, and the perimeter phenomenon of the outer peripheral surface of the rotor shaft 5 with respect to the inner peripheral surface of the bearing 6 during operation. , And problems such as abnormal wear of the rotor shaft 5 and the bearing 6 can be prevented.

なお、本発明は、上記実施形態に限定されるものではなく、実施の形態に応じて適宜変更可能である。
例えば、ギヤポンプ1としての用途や搬送流体が溶融樹脂に限定されるものではない。
軸受6の外輪部材24に対し、分割ライン30は径方向に一直線状に設けることが限定されるものではなく、例えばY字状に3本の分割ライン30を設けて外輪部材24を周方向に3分割させるようなことも可能である。
In addition, this invention is not limited to the said embodiment, It can change suitably according to embodiment.
For example, the use as the gear pump 1 and the transport fluid are not limited to molten resin.
The dividing line 30 is not limited to be provided in a straight line in the radial direction with respect to the outer ring member 24 of the bearing 6. For example, three dividing lines 30 are provided in a Y shape so that the outer ring member 24 extends in the circumferential direction. It is also possible to divide into three parts.

1 ギヤポンプ
2 ギヤロータ
3 ハウジング
4 歯車部
5 ロータ軸
6 軸受
8 ロータ収納孔
9 軸受孔
10 ハウジング本体
11 ベアリングリテーナ
12 ビスコシール
15 樹脂入口
16 樹脂出口
17 導入孔
18 導出孔
20 樹脂導入路
23 内輪部材
24 外輪部材
25 内輪部材の軸孔
26 凸球面
27 凹球面
30 分割ライン
31 半部材
32 半部材
33 シール部材挿入孔
34 環状の溝
DESCRIPTION OF SYMBOLS 1 Gear pump 2 Gear rotor 3 Housing 4 Gear part 5 Rotor shaft 6 Bearing 8 Rotor accommodation hole 9 Bearing hole 10 Housing main body 11 Bearing retainer 12 Visco seal 15 Resin inlet 16 Resin outlet 17 Introduction hole 18 Lead-out hole 20 Resin introduction path 23 Inner ring member 24 Outer ring member 25 Inner ring member shaft hole 26 Convex spherical surface 27 Concave spherical surface 30 Dividing line 31 Half member 32 Half member 33 Seal member insertion hole 34 Annular groove

Claims (4)

互いに噛合する一対のギヤロータが各ギヤロータのロータ軸を軸受により回転可能に支持された状態でハウジング内に設けられていて、前記ギヤロータの回転により搬送流体を吸込側から吐出側へと送るギヤポンプにおいて、
前記軸受は、前記ロータ軸に外挿される環状の内輪部材と、前記ハウジングに設けられ且つ前記内輪部材が内側に嵌まり込む環状の外輪部材とを有しており、
前記内輪部材は、前記搬送流体の一部により潤滑されながら前記ロータ軸を回転支持する内周面を有し、
前記外輪部材は、前記ロータ軸の偏心に追従した内輪部材の揺動が可能なように前記内輪部材を摺動自在に支持する内周面を有していることを特徴とするギヤポンプ。
In a gear pump in which a pair of gear rotors engaged with each other is provided in the housing in a state where the rotor shaft of each gear rotor is rotatably supported by a bearing, and the carrier fluid is sent from the suction side to the discharge side by the rotation of the gear rotor.
The bearing includes an annular inner ring member that is externally inserted into the rotor shaft, and an annular outer ring member that is provided in the housing and into which the inner ring member is fitted.
The inner ring member has an inner peripheral surface that rotatably supports the rotor shaft while being lubricated by a part of the carrier fluid,
The gear pump according to claim 1, wherein the outer ring member has an inner peripheral surface that slidably supports the inner ring member so that the inner ring member can swing following the eccentricity of the rotor shaft.
前記内輪部材は、凸球面状に形成された外周面を有しており、
前記外輪部材は、前記内輪部材の外周面と面接触する凹球面状に形成された内周面を有していることを特徴とする請求項1に記載のギヤポンプ。
The inner ring member has an outer peripheral surface formed in a convex spherical shape,
2. The gear pump according to claim 1, wherein the outer ring member has an inner circumferential surface formed in a concave spherical shape in surface contact with the outer circumferential surface of the inner ring member.
前記外輪部材は、ロータ軸の軸心を通る径方向の分割ラインによって分割可能とされており、
前記分割ラインが、各ギヤロータに対し作用する搬送流体の圧力の方向と不一致となるように、前記外輪部材がハウジングに配備されていることを特徴とする請求項1又は2に記載のギヤポンプ。
The outer ring member can be divided by a radial division line passing through the axis of the rotor shaft,
3. The gear pump according to claim 1, wherein the outer ring member is disposed in the housing such that the dividing line does not coincide with the direction of the pressure of the carrier fluid acting on each gear rotor.
前記分割ラインが、各ギヤロータに対し作用する搬送流体の圧力の方向と略直交するように、前記外輪部材がハウジングに配備されていることを特徴とする請求項3に記載のギヤポンプ。   The gear pump according to claim 3, wherein the outer ring member is disposed in the housing so that the dividing line is substantially orthogonal to the direction of the pressure of the carrier fluid acting on each gear rotor.
JP2010014303A 2010-01-26 2010-01-26 Gear pump Active JP5467882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010014303A JP5467882B2 (en) 2010-01-26 2010-01-26 Gear pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010014303A JP5467882B2 (en) 2010-01-26 2010-01-26 Gear pump

Publications (2)

Publication Number Publication Date
JP2011153539A true JP2011153539A (en) 2011-08-11
JP5467882B2 JP5467882B2 (en) 2014-04-09

Family

ID=44539689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010014303A Active JP5467882B2 (en) 2010-01-26 2010-01-26 Gear pump

Country Status (1)

Country Link
JP (1) JP5467882B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014004814A (en) * 2012-05-31 2014-01-16 Nitto Denko Corp Gear structure and sheet manufacturing device
JP2019190401A (en) * 2018-04-26 2019-10-31 宇部興産株式会社 Gear pump
CN115370950A (en) * 2022-08-19 2022-11-22 西南石油大学 Self-generating rotor oil transfer pump active oil supply lubrication bearing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934492A (en) * 1982-08-19 1984-02-24 Kazuichi Ito Eccentric pump
JPH06221287A (en) * 1993-01-27 1994-08-09 Hitachi Ltd Rolling piston type compressor
JPH1150973A (en) * 1997-08-05 1999-02-23 Shimadzu Corp Gear pump
JP2002138970A (en) * 2000-11-02 2002-05-17 Kobe Steel Ltd Gear pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934492A (en) * 1982-08-19 1984-02-24 Kazuichi Ito Eccentric pump
JPH06221287A (en) * 1993-01-27 1994-08-09 Hitachi Ltd Rolling piston type compressor
JPH1150973A (en) * 1997-08-05 1999-02-23 Shimadzu Corp Gear pump
JP2002138970A (en) * 2000-11-02 2002-05-17 Kobe Steel Ltd Gear pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014004814A (en) * 2012-05-31 2014-01-16 Nitto Denko Corp Gear structure and sheet manufacturing device
JP2019190401A (en) * 2018-04-26 2019-10-31 宇部興産株式会社 Gear pump
CN115370950A (en) * 2022-08-19 2022-11-22 西南石油大学 Self-generating rotor oil transfer pump active oil supply lubrication bearing system
CN115370950B (en) * 2022-08-19 2024-01-16 西南石油大学 Active oil supply lubrication bearing system of self-generating rotor oil transfer pump

Also Published As

Publication number Publication date
JP5467882B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US10648569B2 (en) Sliding component
US20190285115A1 (en) Sliding component
JP6579690B2 (en) Planetary transmission
JP6279474B2 (en) Sliding parts
US9470265B2 (en) Slide bearing device
EP2453144B1 (en) Bearing device, bearing unit, and rotary machine
US11053975B2 (en) Sliding component
CN106795970B (en) Sealing device
JP5467882B2 (en) Gear pump
CN109196255B (en) Double mechanical seal, main fixed sealing ring thereof and pump housing in centrifugal pump
US10202967B2 (en) High-pressure rotating sealing coupling with continuous expandable ring
CN102797678B (en) Shaft sealing structure and rotary fluid machine
CN108708976A (en) Zero leakage non-contact mechanical seal structure
US20120156074A1 (en) Peristaltic Pump
JP5838462B2 (en) Uniaxial eccentric screw pump
CN108884868B (en) Journal bearing and rotary machine
US20230375089A1 (en) Mechanical seal arrangement with improved cooling characteristics
JP2007182959A (en) Sealing structure
CN208670059U (en) Zero leakage non-contact mechanical seal structure
CN109863304A (en) Interior rotation gear pump
JP2002138970A (en) Gear pump
JP5382559B1 (en) Rotary fluid machine
JP6395128B2 (en) Tube pump
JP2002138969A (en) Gear pump
JP2016095024A (en) Bearing device, mechanical device, and bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140128

R150 Certificate of patent or registration of utility model

Ref document number: 5467882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150