JP2011153251A - Regenerated polyolefinic resin composition and regenerated polystyrene resin composition - Google Patents

Regenerated polyolefinic resin composition and regenerated polystyrene resin composition Download PDF

Info

Publication number
JP2011153251A
JP2011153251A JP2010016695A JP2010016695A JP2011153251A JP 2011153251 A JP2011153251 A JP 2011153251A JP 2010016695 A JP2010016695 A JP 2010016695A JP 2010016695 A JP2010016695 A JP 2010016695A JP 2011153251 A JP2011153251 A JP 2011153251A
Authority
JP
Japan
Prior art keywords
resin composition
hours
weight
parts
break
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010016695A
Other languages
Japanese (ja)
Other versions
JP5177575B2 (en
Inventor
Yuichi Matsuo
雄一 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010016695A priority Critical patent/JP5177575B2/en
Publication of JP2011153251A publication Critical patent/JP2011153251A/en
Application granted granted Critical
Publication of JP5177575B2 publication Critical patent/JP5177575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a regenerated polyolefinic or a regenerated polystyrene resin composition, excel in heat stability, under consideration of a degradation of reinforcement during recycling, in the degradation of resin composition caused because an inorganic filler or a surface treatment agent of titanium oxide or the like causes a decomposition of a base material of a resin composition comprising a metal composition of titanium oxide or the like when a used resin composition is recycled. <P>SOLUTION: The regenerated resin composition comprises 0.05-10 ps.wt. of a metal scavenger based on 100 ps.wt. of a recovered polyolefinic resin composition or 100 ps.wt. of recycled polystyrene composition. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、ポリオレフィン系樹脂およびポリスチレン系樹脂の再生と製造方法に関するものであり、特に使用済みのポリオレフィン系およびポリスチレン系樹脂組成物の再生に関するものである。   The present invention relates to the regeneration and production method of polyolefin resins and polystyrene resins, and particularly to the regeneration of used polyolefin and polystyrene resin compositions.

現在、家電製品、複写機などのOA機器やコンピュータの筐体や部品として、オレフィン系、スチレン系、アクリロニトリル系およびポリカーボネート系樹脂などの熱可塑性樹脂組成物が一般的に用いられている。これら製品が役目を終えて捨てられる段になると、廃棄物として取り扱われ、その多くは焼却や埋め立てや燃料として処理されてきた。しかしながら、近年、焼却、埋め立てによる環境汚染や埋め立ての処分場の不足が社会的問題となっている状況を受けて、家電業界やOA機器業界では、環境負荷低減や資源の有効活用の観点から、そのまま粉砕して再溶融して各種成形品に加工するマテリアルリサイクルが推進されて、マテリアルリサイクル材の製品への適用が進められている。   At present, thermoplastic resin compositions such as olefin-based, styrene-based, acrylonitrile-based, and polycarbonate-based resins are generally used as housings and parts of OA equipment and computers such as home appliances and copying machines. When these products are used up and discarded, they are treated as waste, and many of them have been incinerated, landfilled and treated as fuel. However, in recent years, in response to the situation that environmental pollution caused by incineration and landfilling and a shortage of landfill disposal sites have become a social problem, the home appliance industry and OA equipment industry are from the viewpoint of reducing environmental impact and effective use of resources. Material recycling, which is crushed as it is, remelted and processed into various molded products, is being promoted, and application of material recycled materials to products is being promoted.

使用済み家電製品は、大半をポリオレフィン(ポリプロピレン、ポリエチレン)系、ポリスチレン(HIPS(High Impact Polystyrene)、GPPS(General Purpose Polystyrene))系、アクリロニトリル系(ABS(Acrylonitrile-Butadiene-Styrene)、AS(Acrylonitrile-Styrene))樹脂組成物が占め、使用済みOA機器やコンピュータは、アクリロニトリル系(ABS、AS)、ポリカーボネート(PC:Polycarbonate)系、ポリカーボネート/アクリロニトリル系、難燃系樹脂組成物が占めている。   Used home appliances are mostly polyolefin (polypropylene, polyethylene), polystyrene (HIPS (High Impact Polystyrene), GPPS (General Purpose Polystyrene)), acrylonitrile (ABS (Acrylonitrile-Butadiene-Styrene), AS (Acrylonitrile-) Styrene)) resin composition, and used OA equipment and computers are acrylonitrile (ABS, AS), polycarbonate (PC), polycarbonate / acrylonitrile, and flame retardant resin compositions.

上記種々の樹脂組成物は、時間の経過とともに使用環境下において外力や化学変化等により徐々に劣化が進行する(図1参照)。使用済み樹脂組成物をリサイクルするためには、樹脂組成物の劣化度合を把握して、その劣化に対して、機械的物性および熱酸化安定性等の特性を改善する必要がある。   The above-mentioned various resin compositions gradually deteriorate over time due to external forces, chemical changes, and the like in a use environment (see FIG. 1). In order to recycle the used resin composition, it is necessary to grasp the degree of deterioration of the resin composition and improve characteristics such as mechanical properties and thermal oxidation stability against the deterioration.

使用済み樹脂組成物をリサイクルする場合の上記特性の改善方法は、樹脂組成物の構成成分別に提案されている。樹脂組成物の構成成分とは、樹脂組成物の主となる樹脂組成物の基材、無機化合物が主体の補強材、機能性を付与するための添加剤や酸化防止剤等の安定化剤等に分類される。   A method for improving the above-described characteristics when recycling a used resin composition is proposed for each component of the resin composition. The component of the resin composition is a base material of the resin composition that is the main component of the resin composition, a reinforcing material mainly composed of an inorganic compound, an additive for imparting functionality, a stabilizer such as an antioxidant, etc. are categorized.

例えば、樹脂組成物の基材の劣化により、低下した機械的物性を再生させる方法として、特許文献1では、熱可塑性樹脂に該熱可塑性樹脂を構成する単量体と同一または類似の単量体をグラフト重合させることによって、該樹脂との相溶性を付与したオレフィン系ゴムおよびアクリル系ゴムを等価再生改良剤として樹脂に添加して、等価再生させる方法が提案されている。また、機能性を付与するための添加剤や酸化防止剤等の安定化剤等の劣化に対しては、一般的に、消費分を追加添加する方法が提案されている。無機化合物が主体の補強材は、主成分が無機化合物であることから、ガラス繊維や炭素繊維等の繊維状補強剤の場合、使用環境下における外力やリサイクル工程時の破砕により、繊維長が短くなり、それによる補強効果の低減による機械的物性の劣化が起こるとされており、リサイクルする場合は、繊維状補強材を追加添加する方法が一般的である。   For example, as a method for regenerating the lowered mechanical properties due to deterioration of the base material of the resin composition, in Patent Document 1, a monomer that is the same as or similar to the monomer that constitutes the thermoplastic resin in the thermoplastic resin A method has been proposed in which olefin rubber and acrylic rubber imparted with compatibility with the resin are added to the resin as an equivalent regeneration improver by graft polymerization of the resin to effect equivalent regeneration. In addition, a method of additionally adding a consumed amount is generally proposed for the deterioration of additives such as an additive for imparting functionality and a stabilizer such as an antioxidant. Reinforcing materials mainly composed of inorganic compounds are mainly composed of inorganic compounds, so in the case of fibrous reinforcing agents such as glass fibers and carbon fibers, the fiber length is shortened due to external forces in the usage environment or crushing during the recycling process. Therefore, it is said that the mechanical properties are deteriorated due to the reduction of the reinforcing effect, and in the case of recycling, a method of adding a fibrous reinforcing material is common.

また、白着色剤や強度改善のために、添加されている酸化チタンは、光触媒作用により強い酸化力を有する。特許文献2では、リサイクル特性に優れたポリブチレンテレフタレート樹脂組成物として、樹脂組成物のリサイクルする際の酸化チタンに起因する加水分解抑制のために、樹脂に添加するチタン化合物の配合量をチタン原子換算で10ppm以上80ppm以下に規定する方法が提案されている。また、通常、酸化チタンは、光触媒作用により強い酸化力を有するので、樹脂組成物に添加する場合は表面処理を施すことで、添加した酸化チタンによる樹脂の劣化を防止している。しかし、リサイクルでの熱履歴により表面処理剤が劣化する問題がある。   Further, titanium oxide added for the purpose of improving the white colorant and strength has a strong oxidizing power due to the photocatalytic action. In Patent Document 2, as a polybutylene terephthalate resin composition having excellent recycling characteristics, the amount of titanium compound added to the resin is set to titanium atoms in order to suppress hydrolysis caused by titanium oxide when the resin composition is recycled. There has been proposed a method for regulating the conversion to 10 ppm or more and 80 ppm or less. In addition, since titanium oxide usually has a strong oxidizing power due to photocatalytic action, when added to the resin composition, surface treatment is performed to prevent deterioration of the resin due to the added titanium oxide. However, there is a problem that the surface treatment agent deteriorates due to a heat history in recycling.

上記問題に対しては、特許文献3で、無機充填剤を配合したポリオレフィン系樹脂をリサイクルする場合に、ハイドロタルサイト類化合物(例:ハイドロタルク石)と一般式R―CO―NH―(CH2)n―NH―CO―Rで表される化合物(例:エチレンビスステアリルアミド)とフェノール系およびリン系酸化防止剤を配合することで、熱酸化安定性、臭気、色相安定性が良好である熱可塑性樹脂組成物が記載されている。 To solve the above problem, in Patent Document 3, when recycling a polyolefin resin containing an inorganic filler, a hydrotalcite compound (eg, hydrotalcite) and a general formula R—CO—NH— (CH 2 ) By blending a compound represented by n- NH-CO-R (eg ethylene bisstearylamide) with phenolic and phosphorus antioxidants, thermal oxidation stability, odor and hue stability are good. Certain thermoplastic resin compositions are described.

特開2002−105332号公報JP 2002-105332 A 特開2007−284533号公報JP 2007-284533 A 特開2001−302809号公報JP 2001-302809 A

樹脂組成物をリサイクルする場合、樹脂組成物の基材や安定剤等の添加剤だけでなく、無機化合物である補強材の劣化度合も把握する必要がある。白色着色剤として用いられている酸化チタンは、上述のように光触媒作用により強い酸化力を有するので、この酸化力を抑制するために樹脂組成物に添加する場合は表面処理が施されている。この表面処理において、酸化力の抑制に加えて樹脂組成物との親和性を高めるため、表面処理剤としては、AlやSiの含水酸化物等が用いられている。特に、表面処理剤が水酸化アルミニウムの場合、融点は300℃付近であり、200℃以上の温度になると結晶水の解離反応が起こり、アルミナと結晶水に分解するので、リサイクル工程時の熱履歴(180〜250℃)により、表面処理剤の劣化を誘発することから、表面処理剤が剥がれた酸化チタンおよび分解したアルミニウム化合物の金属成分による樹脂組成物の基材の分解が引き起こされ、樹脂組成物が劣化することになる。   When the resin composition is recycled, it is necessary to grasp not only the base material of the resin composition and additives such as a stabilizer, but also the degree of deterioration of the reinforcing material that is an inorganic compound. Since titanium oxide used as a white colorant has a strong oxidizing power due to the photocatalytic action as described above, surface treatment is applied when it is added to the resin composition in order to suppress this oxidizing power. In this surface treatment, in order to enhance the affinity with the resin composition in addition to the suppression of the oxidizing power, a hydrous oxide of Al or Si or the like is used as the surface treatment agent. In particular, when the surface treatment agent is aluminum hydroxide, the melting point is around 300 ° C., and when it reaches a temperature of 200 ° C. or higher, crystal water dissociation occurs and decomposes into alumina and crystal water. (180 to 250 ° C.) induces deterioration of the surface treatment agent, causing decomposition of the base material of the resin composition by the titanium oxide from which the surface treatment agent was peeled off and the metal component of the decomposed aluminum compound, and the resin composition Things will deteriorate.

また、特許文献3の方法では、添加された酸化防止剤は、酸化防止剤単独では、酸化チタンの光触媒作用による劣化を防止するのは、不十分であると考えられる。すなわち、酸化防止剤は、ラジカル反応の抑制および捕捉剤の役割のみで、酸化チタンおよび上記のような表面処理剤の熱劣化により発生する酸化チタンやアルミニウム化合物の金属成分に対する酸化劣化促進反応を抑制することができないと考えられる。   Further, in the method of Patent Document 3, it is considered that the added antioxidant alone is insufficient to prevent deterioration due to the photocatalytic action of titanium oxide. In other words, the antioxidant only suppresses radical reaction and acts as a scavenger, and suppresses the oxidative degradation promotion reaction to the titanium oxide and the metal components of the aluminum compound generated by thermal degradation of the above-mentioned surface treatment agent. It is thought that it cannot be done.

この課題を解決して、酸化チタンおよび表面処理剤の熱劣化による酸化チタンやアルミニウム化合物の金属成分に対する劣化反応を抑えるためには、金属成分の酸化劣化促進反応を抑制する必要がある。例えば、強い酸化力を持つ酸化チタンの光触媒作用とは、光吸収により酸化チタン表面に生成した電子と正孔により、水分と正孔が反応して生じるOH-(水酸化物イオン)もしくはOH・(水酸化物ラジカル)が、有機物を分解し、最終的に、二酸化酸素と水まで酸化させることである。よって、酸化チタンの光触媒作用を抑制するためには、酸化チタン表面に生成する電子と正孔を不活性することが求められる。 In order to solve this problem and suppress the deterioration reaction of titanium oxide and the aluminum compound due to thermal deterioration of titanium oxide and the surface treatment agent, it is necessary to suppress the oxidation deterioration promoting reaction of the metal component. For example, the photocatalytic action of titanium oxide having a strong oxidizing power is OH (hydroxide ion) or OH · generated by reaction of moisture and holes by electrons and holes generated on the surface of titanium oxide by light absorption. (Hydroxide radical) is to decompose organic matter and finally oxidize to oxygen dioxide and water. Therefore, in order to suppress the photocatalytic action of titanium oxide, it is required to inactivate electrons and holes generated on the titanium oxide surface.

本発明は、上記のような問題点を解決するためになされたものであり、リサイクル使用時に起こる補強材の劣化を考慮して、熱安定性の優れた再生ポリオレフィン系および再生ポリスチレン系樹脂組成物を得ることを目的としている。   The present invention has been made to solve the above-described problems, and in consideration of deterioration of a reinforcing material that occurs during recycling, a recycled polyolefin-based and recycled polystyrene-based resin composition having excellent thermal stability. The purpose is to obtain.

上記課題を解決して、熱安定性の優れた再生ポリオレフィン系および再生ポリスチレン系樹脂組成物を得るためには、酸化チタンおよび表面処理剤の熱劣化により発生した酸化チタンやアルミニウム化合物の金属成分の酸化劣化促進反応を抑制する必要があり、金属成分の表面に生成する電子と正孔を不活性することが求められる。   In order to solve the above problems and obtain a regenerated polyolefin resin composition and a regenerated polystyrene resin composition having excellent heat stability, the metal components of titanium oxide and aluminum compounds generated by thermal deterioration of titanium oxide and the surface treatment agent It is necessary to suppress the oxidative degradation promoting reaction, and it is required to inactivate electrons and holes generated on the surface of the metal component.

本発明は、上記の課題を解決するための手段として、第1に、回収ポリオレフィン系樹脂組成物100重量部に対して、金属捕捉剤0.05〜10重量部を添加したことを特徴とする再生ポリオレフィン系樹脂組成物である。   The present invention is characterized in that, as a means for solving the above problems, first, 0.05 to 10 parts by weight of a metal scavenger is added to 100 parts by weight of the recovered polyolefin resin composition. This is a recycled polyolefin resin composition.

第2に、回収ポリスチレン系樹脂組成物100重量部に対して、金属捕捉剤0.05〜10重量部を添加したことを特徴とする再生ポリスチレン系樹脂組成物である。   2ndly, it is the reproduction | regeneration polystyrene resin composition characterized by adding 0.05-10 weight part of metal capture agents with respect to 100 weight part of collection polystyrene resin compositions.

第3に上記回収ポリオレフィン系樹脂組成物または上記回収ポリスチレン系樹脂組成物に添加する金属捕捉剤が、エチレンジアミン四酢酸、ニトリロ三酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルエチレンジアミン三酢酸、酢酸トコフェロールのうち、一種以上を含むことを特徴とする。   Third, the metal scavenger added to the recovered polyolefin resin composition or the recovered polystyrene resin composition is one of ethylenediaminetetraacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, hydroxyethylethylenediaminetriacetic acid, and tocopherol acetate. It is characterized by including the above.

第4に上記再生ポリオレフィン系樹脂組成物または上記再生ポリスチレン系樹脂組成物に、安定化剤として、炭素数8〜24の脂肪酸を添加することを特徴とする。   Fourthly, a fatty acid having 8 to 24 carbon atoms is added as a stabilizer to the regenerated polyolefin resin composition or the regenerated polystyrene resin composition.

この発明によれば、回収ポリオレフィン系樹脂組成物または回収ポリスチレン系樹脂組成物に、金属捕捉剤の特定量を添加することにより、回収樹脂組成物に含まれる金属成分表面に生成する電子や正孔とキレートを形成して不活性化させるため、金属成分の酸化劣化促進反応を抑制することができる。その結果、再生された樹脂組成物は、新材のポリオレフィン系樹脂組成物または新材のポリスチレン系樹脂組成物相当以上の熱安定性を得ることができる。   According to this invention, by adding a specific amount of the metal scavenger to the recovered polyolefin resin composition or the recovered polystyrene resin composition, electrons and holes generated on the surface of the metal component contained in the recovered resin composition Since the chelate is formed and inactivated, the oxidative degradation promoting reaction of the metal component can be suppressed. As a result, the regenerated resin composition can obtain a thermal stability equivalent to or higher than that of a new polyolefin resin composition or a new polystyrene resin composition.

(a)〜(e)はポリプロピレン樹脂の劣化反応を経時的に説明する図である。(A)-(e) is a figure explaining the degradation reaction of a polypropylene resin over time. 本発明における金属捕捉剤であるエチレンジアミン四酢酸の金属成分の捕捉による不活性化メカニズムを説明する図である。It is a figure explaining the inactivation mechanism by the capture | acquisition of the metal component of ethylenediaminetetraacetic acid which is a metal scavenger in this invention.

以下、本発明を詳細に説明する。本発明の再生樹脂組成物は、回収ポリオレフィン系樹脂組成物または回収ポリスチレン系樹脂組成物のそれぞれに、特定量の金属捕捉剤を含有することを特徴とする。   Hereinafter, the present invention will be described in detail. The recycled resin composition of the present invention is characterized in that each of the recovered polyolefin resin composition or the recovered polystyrene resin composition contains a specific amount of a metal scavenger.

[回収ポリオレフィン系樹脂組成物]
本発明における回収ポリオレフィン系樹脂組成物を構成するポリオレフィン系樹脂は、ポリエチレン、ホモポリプロピレン、プロピレン−エチレンブロック共重合体、プロピレン−ブテンブロック共重合体、プロピレン−α−オレフィンブロック共重合体、プロピレン−エチレンランダム共重合体、プロピレン−ブテンランダム共重合体、プロピレン−α−オレフィンランダム共重合体、プロピレン−α−オレフィングラフト共重合体等が挙げられる。このような回収ポリオレフィン系樹脂組成物には、使用済み家電製品等から回収された再生ポリオレフィン系樹脂も含まれる。これらのポリオレフィン系樹脂には、エチレン−α−オレフィン共重合体、スチレン系エラストマー等の公知の樹脂や、これらの樹脂等にタルク、マイカ、ワラストナイト、炭酸カルシウム、硫酸バリウム、炭酸マグネシウム、クレイ、アルミナ、シリカ、硫酸カルシウム、炭素繊維、ガラス繊維、金属繊維、けい砂、けし石、カーボンブラック、酸化チタン、水酸化マグネシウム、アスベスト、ゼオライト、モリブデン、珪藻土、セリサイト、シラス、水酸化カルシウム、亜硫酸カルシウム、硫酸ソーダ、ベントナイト、黒鉛等の無機充填材を含有するものも含まれる。このような回収ポリオレフィン系樹脂組成物には、一般に樹脂組成物100重量部に対して、0.1〜10重量部の無機充填材が含有されている。
[Recovered polyolefin resin composition]
The polyolefin resin constituting the recovered polyolefin resin composition in the present invention is polyethylene, homopolypropylene, propylene-ethylene block copolymer, propylene-butene block copolymer, propylene-α-olefin block copolymer, propylene- Examples thereof include an ethylene random copolymer, a propylene-butene random copolymer, a propylene-α-olefin random copolymer, and a propylene-α-olefin graft copolymer. Such recovered polyolefin resin composition also includes recycled polyolefin resin recovered from used home appliances and the like. These polyolefin resins include known resins such as ethylene-α-olefin copolymers and styrene elastomers, talc, mica, wollastonite, calcium carbonate, barium sulfate, magnesium carbonate, clay , Alumina, silica, calcium sulfate, carbon fiber, glass fiber, metal fiber, silica sand, feldspar, carbon black, titanium oxide, magnesium hydroxide, asbestos, zeolite, molybdenum, diatomaceous earth, sericite, shirasu, calcium hydroxide, Those containing inorganic fillers such as calcium sulfite, sodium sulfate, bentonite, and graphite are also included. Such a recovered polyolefin resin composition generally contains 0.1 to 10 parts by weight of an inorganic filler with respect to 100 parts by weight of the resin composition.

なお、本発明において、「回収樹脂組成物」とは、上記のような使用済み家電製品等から回収された樹脂だけでなく、未使用の状態であっても、各種添加剤等が原料である樹脂に添加されて加工時に出されたスクラップ等、そのまま再利用できない樹脂を含む。回収ポリスチレン系樹脂組成物についても同様である。   In the present invention, the “recovered resin composition” is not only the resin recovered from the used home appliances as described above, but also various additives, etc., as raw materials even in an unused state. Resins that cannot be reused as they are, such as scraps added to the resin and produced during processing. The same applies to the recovered polystyrene resin composition.

[回収ポリスチレン系樹脂組成物]
本発明における回収ポリスチレン系樹脂組成物を構成するポリスチレン系樹脂としては、スチレン、α−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレンなどのモノビニル系芳香族単量体からなる単量体を重合して得られる重合体で、代表的なポリスチレン(GPPS)やゴム状物質をスチレン系モノマーに溶解し、塊状又は塊状懸濁重合法などにより製造したゴム変性スチレン系重合体で、ゴム状物質としては、ポリブタジエン(PBD)、スチレン−ブタジエン共重合体(SBR)等が用いられ、代表的なものとしては、ハイインパクトポリスチレン(HIPS)、ミドルインパクトポリスチレン(MIPS)等が挙げられる。加えて、シアノ基を有するアクリロニトリルのシアン化ビニル系単量体からなる単量体を重合して得られる重合体で代表的なアクリロニトリル−スチレン共重合体(AS樹脂)やポリブタジエンにアクリロニトリルとスチレンとが重合したABS(アクリロニトリル−ブタジエン−スチレン共重合体)樹脂組成物が挙げられる。ポリブタジエンにメタクリル酸メチルとスチレンが重合したMBS樹脂組成物も含まれる。また、使用済み家電製品等から回収された再生ポリスチレン系樹脂も含まれる。これらのポリスチレン系樹脂にスチレン系エラストマー等の公知の樹脂やタルク、マイカ、ワラストナイト、炭酸カルシウム、硫酸バリウム、炭酸マグネシウム、クレイ、アルミナ、シリカ、硫酸カルシウム、炭素繊維、ガラス繊維、金属繊維、けい砂、けし石、カーボンブラック、酸化チタン、水酸化マグネシウム、アスベスト、ゼオライト、モリブデン、珪藻土、セリサイト、シラス、水酸化カルシウム、亜硫酸カルシウム、硫酸ソーダ、ベントナイト、黒鉛等の無機充填材を含有するものも含まれる。このような回収ポリスチレン系樹脂組成物には、一般に樹脂組成物100重量部に対して、0.1〜10重量部の無機充填材が含有されている。
[Recovered polystyrene resin composition]
Examples of the polystyrene resin constituting the recovered polystyrene resin composition in the present invention include monomers composed of monovinyl aromatic monomers such as styrene, α-methylstyrene, p-methylstyrene, and p-t-butylstyrene. A rubber-modified styrenic polymer produced by dissolving a typical polystyrene (GPPS) or rubber-like substance in a styrenic monomer and polymerizing by bulk or bulk suspension polymerization. As the material, polybutadiene (PBD), styrene-butadiene copolymer (SBR) or the like is used, and representative examples include high impact polystyrene (HIPS), middle impact polystyrene (MIPS) and the like. In addition, acrylonitrile-styrene copolymer (AS resin), which is a polymer obtained by polymerizing a monomer composed of acrylonitrile vinyl cyanide monomer having cyano group, and polybutadiene with acrylonitrile and styrene. And an ABS (acrylonitrile-butadiene-styrene copolymer) resin composition obtained by polymerizing. An MBS resin composition in which methyl methacrylate and styrene are polymerized on polybutadiene is also included. In addition, recycled polystyrene resins recovered from used home appliances and the like are also included. These polystyrene resins include known resins such as styrene elastomers, talc, mica, wollastonite, calcium carbonate, barium sulfate, magnesium carbonate, clay, alumina, silica, calcium sulfate, carbon fiber, glass fiber, metal fiber, Contains inorganic fillers such as silica sand, silica, carbon black, titanium oxide, magnesium hydroxide, asbestos, zeolite, molybdenum, diatomaceous earth, sericite, shirasu, calcium hydroxide, calcium sulfite, sodium sulfate, bentonite, graphite Also included. Such a recovered polystyrene resin composition generally contains 0.1 to 10 parts by weight of an inorganic filler with respect to 100 parts by weight of the resin composition.

[金属捕捉剤]
本発明において、金属捕捉剤とは、回収の樹脂組成物に含有された酸化チタンおよび表面処理剤の熱劣化により発生した酸化チタンやアルミニウム化合物の金属成分の酸化劣化促進反応を抑制するために添加するものであり、金属成分の表面に生成する電子と正孔を不活性化する化合物である。このような金属捕捉剤としては、エチレンジアミン四酢酸、ニトリロ三酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルエチレンジアミン三酢酸、酢酸トコフェロールが挙げられる。上記の金属捕捉剤は、上記の一種または二種以上を含んでも良い。上記金属捕捉剤を添加することによって、回収ポリオレフィン系樹脂組成物または回収ポリスチレン系樹脂組成物の熱安定性を、新材のポリオレフィン系樹脂組成物または新材のポリスチレン系樹脂組成物相当以上にまで改善することができる。
[Metal scavenger]
In the present invention, the metal scavenger is added to suppress the oxidative degradation promotion reaction of titanium oxide and aluminum compounds generated by thermal degradation of the titanium oxide and surface treatment agent contained in the recovered resin composition. It is a compound that inactivates electrons and holes generated on the surface of the metal component. Examples of such metal scavengers include ethylenediaminetetraacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, hydroxyethylethylenediaminetriacetic acid, and tocopherol acetate. The above metal scavenger may contain one or more of the above. By adding the metal scavenger, the thermal stability of the recovered polyolefin resin composition or recovered polystyrene resin composition is increased to a level equivalent to or higher than that of the new polyolefin resin composition or new polystyrene resin composition. Can be improved.

これは、金属捕捉剤であるエチレンジアミン四酢酸が、アミド基(NR2基)やカルボニル基(CO基)を有することから、図2に示す金属成分の不活性化メカニズムが成立し、エチレンジアミン四酢酸のアミド基(NR2基)やカルボニル基(CO基)と金属成分表面に生成する電子や正孔とキレートを形成して不活性化させるので、金属成分の酸化劣化促進反応を抑制できるからである。このような酸化劣化促進反応の抑制は、金属捕捉剤であるニトリロ三酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルエチレンジアミン三酢酸、酢酸トコフェロールでも同様の効果が得られる。なお、酢酸トコフェロールは、アミド基(NR2基)を有しないが、カルボニル基(CO基)と金属成分表面に生成する電子や正孔とキレートを形成して不活性化させることにより、金属成分の酸化劣化促進反応を抑制する。 This is because ethylenediaminetetraacetic acid, which is a metal scavenger, has an amide group (NR 2 group) or a carbonyl group (CO group), and thus the deactivation mechanism of the metal component shown in FIG. Since the amide group (NR 2 group) or carbonyl group (CO group) of the metal and the electrons and holes generated on the surface of the metal component are inactivated by forming a chelate, the oxidative degradation promoting reaction of the metal component can be suppressed. is there. Suppression of such oxidative degradation promoting reaction can be obtained with nitrilotriacetic acid, diethylenetriaminepentaacetic acid, hydroxyethylethylenediaminetriacetic acid, and tocopherol acetate, which are metal scavengers. Tocopherol acetate does not have an amide group (NR 2 group), but forms a chelate with a carbonyl group (CO group) and electrons and holes generated on the surface of the metal component, thereby inactivating the metal component. Suppresses oxidative degradation promotion reaction.

金属捕捉剤として、キレート化剤のうち、上記例示の化合物を用いる場合は、回収樹脂組成物に含まれる酸化チタンや、該酸化チタンの表面処理剤である酸化アルミニウムとのキレート形成の能力が高いので、耐熱性の改善効果に優れる。   Among the chelating agents used as the metal scavenger, when the above-exemplified compounds are used, the ability to form a chelate with titanium oxide contained in the recovered resin composition and aluminum oxide which is a surface treatment agent for the titanium oxide is high. Therefore, the heat resistance improvement effect is excellent.

本発明において、上記金属捕捉剤の含有量は、回収樹脂組成物100重量部に対して0.05〜10重量部である。金属捕捉剤の含有量が、回収樹脂組成物100重量部に対して0.05重量部以上10重量部以下である場合は、金属成分表面に生成する電子や正孔とキレートを形成して不活性化させることによる熱安定性の改善効果が得られる。また、金属捕捉剤の含有量が10重量部を超える場合は、熱安定性の改善の効果は大きいが、剛性(たとえば、曲げ弾性率)および強度(たとえば、曲げ強度や引張強度)および粘度、の低下が大きく、樹脂組成物として、要求される機械的物性が保持されにくくなる傾向がある。   In the present invention, the content of the metal scavenger is 0.05 to 10 parts by weight with respect to 100 parts by weight of the recovered resin composition. When the content of the metal scavenger is 0.05 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the recovered resin composition, it forms chelate with electrons and holes generated on the surface of the metal component. The effect of improving thermal stability by activation can be obtained. Further, when the content of the metal scavenger exceeds 10 parts by weight, the effect of improving the thermal stability is great, but rigidity (for example, flexural modulus) and strength (for example, bending strength and tensile strength) and viscosity, There is a tendency that the mechanical properties required as a resin composition are difficult to be maintained.

[安定化剤]
本発明において上記回収樹脂組成物に含有される金属捕捉剤に対して、安定化剤として、炭素数8〜24の脂肪酸を添加することにより、より優れた熱安定性が得られる。
[Stabilizer]
In the present invention, better thermal stability can be obtained by adding a fatty acid having 8 to 24 carbon atoms as a stabilizer to the metal scavenger contained in the recovered resin composition.

本発明において安定化剤は、金属捕捉剤の分解を抑制するために添加するものであり、安定化剤を添加する場合は、再生された樹脂組成物がより優れた熱安定性を有するものとなる。このような安定化剤としては、炭素数8〜24の脂肪酸を用いることが好ましい。これは、金属捕捉剤の分解温度が、エチレンジアミン四酢酸が250℃、ニトリロ三酢酸が247℃、ジエチレントリアミン五酢酸175〜188℃、ヒドロキシエチルエチレンジアミン三酢酸が288〜290℃、酢酸トコフェロールが200〜220℃であり、回収ポリオレフィン系樹脂組成物および回収ポリスチレン系樹脂組成物のリサイクル時の加工温度(180〜250℃)付近にあることから、金属捕捉剤の分解が生じる場合がある。その分解を抑制するために、炭素数8〜24の脂肪酸を添加して、リサイクル時の加工温度を低減し、かつ樹脂の流動性を上げて、金属捕捉剤の分散性を良くすることにより、顕著な金属成分の酸化劣化促進反応の抑制効果が得られるのである。   In the present invention, the stabilizer is added in order to suppress the decomposition of the metal scavenger, and when the stabilizer is added, the regenerated resin composition has better thermal stability. Become. As such a stabilizer, it is preferable to use a fatty acid having 8 to 24 carbon atoms. This is because the decomposition temperature of the metal scavenger is 250 ° C for ethylenediaminetetraacetic acid, 247 ° C for nitrilotriacetic acid, 175-188 ° C for diethylenetriaminepentaacetic acid, 288-290 ° C for hydroxyethylethylenediaminetriacetic acid, and 200-220 for tocopherol acetate. Since it is C and near the processing temperature (180 to 250 ° C.) during recycling of the recovered polyolefin resin composition and the recovered polystyrene resin composition, the metal scavenger may be decomposed. In order to suppress the decomposition, by adding a fatty acid having 8 to 24 carbon atoms, reducing the processing temperature during recycling, increasing the fluidity of the resin, and improving the dispersibility of the metal scavenger, A remarkable effect of suppressing the oxidative degradation promoting reaction of the metal component is obtained.

炭素数8〜24の脂肪酸としては、オクタン酸(別名:カプリル酸、炭素数8)、デカン酸(カプリン酸、炭素数10)、ラウリン酸(炭素数12)、ミリスチン酸(炭素数14)、パルミチン酸(炭素数16)、パルミトレイン酸(炭素数16)、ステアリン酸(炭素数18)、オレイン酸(炭素数18)、エライジン酸(炭素数18)、パクセン酸(炭素数18)、リノール酸(炭素数18)、α−リノレン酸(炭素数18)、γ−リノレン酸(炭素数18)、ジホモ−γ−リノレン酸(炭素数20)、アラキジン酸(炭素数20)、エイコサトリエン酸(炭素数20)、アラキドン酸(炭素数20)、イコサペンタエン酸(炭素数20)、ベヘン酸(炭素数22)、ドコセン酸(別名:エルカ酸、炭素数22)、ドコサペンタエン酸(炭素数22)、ドコサヘキサエン酸(炭素数22)、リグノセリン酸(炭素数24)等が挙げられる。   As fatty acids having 8 to 24 carbon atoms, octanoic acid (alias: caprylic acid, carbon number 8), decanoic acid (capric acid, carbon number 10), lauric acid (carbon number 12), myristic acid (carbon number 14), Palmitic acid (16 carbon atoms), palmitoleic acid (16 carbon atoms), stearic acid (18 carbon atoms), oleic acid (18 carbon atoms), elaidic acid (18 carbon atoms), paxenoic acid (18 carbon atoms), linoleic acid (18 carbon atoms), α-linolenic acid (18 carbon atoms), γ-linolenic acid (18 carbon atoms), dihomo-γ-linolenic acid (20 carbon atoms), arachidic acid (20 carbon atoms), eicosatrienoic acid (20 carbon atoms), arachidonic acid (20 carbon atoms), icosapentaenoic acid (20 carbon atoms), behenic acid (22 carbon atoms), docosenoic acid (also known as erucic acid, 22 carbon atoms), docosapentaenoic acid (charcoal) Number 22), docosahexaenoic acid (22 carbon atoms), such as lignoceric acid (24 carbon atoms).

[耐熱安定剤]
本発明における回収ポリオレフィン系および回収ポリスチレン系樹脂組成物は、使用済み家電由来のプラスチック残さから選別回収されたものの場合、新材に添加された耐熱安定剤は著しく消費されていることから、耐熱安定剤を添加することが望ましい。ここでの耐熱安定剤は、ヒンダードフェノール系、ホスファイト系、イオウ系等の酸化防止剤および金属不活性剤を少なくとも1個以上を含み、耐熱安定剤の構成比率は、特に制限されるものではないが、必要となる物性によりその都度調整することが望ましい。回収ポリオレフィン系および回収ポリスチレン系樹脂組成物に対する耐熱安定剤の添加量は、好ましくは、0.05〜10重量部である。
[Heat resistance stabilizer]
In the case of the recovered polyolefin-based and recovered polystyrene-based resin composition according to the present invention, which is selected and recovered from plastic residues derived from used home appliances, the heat stabilizer added to the new material is significantly consumed, It is desirable to add an agent. The heat stabilizer here includes at least one hindered phenol-based, phosphite-based, sulfur-based antioxidant and metal deactivator, and the composition ratio of the heat stabilizer is particularly limited. However, it is desirable to adjust each time according to the required physical properties. The amount of the heat stabilizer added to the recovered polyolefin resin and the recovered polystyrene resin composition is preferably 0.05 to 10 parts by weight.

本発明における回収ポリオレフィン系および回収ポリスチレン系樹脂組成物に添加する耐熱安定剤を構成する酸化防止剤としては、2,6−ジ−t−ブチル−p−クレゾール、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、ステアリルβ−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリエチレングリコールビス[3−(3−t−ブチル-5-メチル−4−ヒドロキシフェニル)プロピオネート]等のフェノール系、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)[1,1−ビフェニル]−4,4’−ジイルビスホスフォナイト、ビス[2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル]エチルエステル亜リン酸、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトールジホスファイト、トリアリルホスファイト、トリ(モノノニルフェニル)ホスファイト等のリン系、ジラウリル−3,3’−チオジプロピオネート、ジオクタデシル−3,3’−チオジプロピオネート等のイオウ系等の公知のものが用いられる。これらの中でも、耐熱安定性の点で、フェノール系はテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、リン系はトリス(2,4−ジ−t−ブチルフェニル)ホスファイト、イオウ系はジオクタデシル−3,3’−チオジプロピオネートが好ましい。   Examples of the antioxidant constituting the heat stabilizer added to the recovered polyolefin resin and recovered polystyrene resin composition in the present invention include 2,6-di-t-butyl-p-cresol, tetrakis [methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane, stearyl β- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 1,3,5-trimethyl- 2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, triethylene glycol bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] Phenols such as tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) [1,1-biphe L] -4,4′-diylbisphosphonite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester phosphorous acid, bis (2,4-di-t -Butylphenyl) pentaerythritol diphosphite, triallyl phosphite, tri (monononylphenyl) phosphite, etc. phosphorus, dilauryl-3,3'-thiodipropionate, dioctadecyl-3,3'-thiodipro Known compounds such as sulfur-based compounds such as piionate are used. Among these, in terms of heat resistance stability, the phenol type is tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, and the phosphorus type is tris (2, 4-Di-t-butylphenyl) phosphite and sulfur are preferably dioctadecyl-3,3′-thiodipropionate.

本発明における回収ポリオレフィン系および回収ポリスチレン系樹脂組成物に添加する耐熱安定剤を構成する金属不活性剤としては、2’,3−ビス[[3−[3,5−ジ−t−ブチル−4−ヒドロキシフェニル]プロピオニル]]プロピオノヒドラジド、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール、デカメチレンジカルボン酸ジサリチロイルヒドラジド、N−フォーミイルサリチロイルヒドラジン、ベンゾトリアゾール、メチルベンゾトリアゾール、メチルベンゾトリアゾールカリウム塩、N,N−ジベンザール(オキザリルヒドラジド)、N,N−ビス(3,5−ジ−t−ブチル−4−ハイドロキシハイドロシンナメート)等の公知ものが用いられる。これらの中でも、耐熱安定性の点で、デカメチレンジカルボン酸ジサリチロイルヒドラジドが好ましい。   As the metal deactivator constituting the heat stabilizer added to the recovered polyolefin resin and recovered polystyrene resin composition in the present invention, 2 ′, 3-bis [[3- [3,5-di-t-butyl- 4-hydroxyphenyl] propionyl]] propionohydrazide, 3- (N-salicyloyl) amino-1,2,4-triazole, decamethylenedicarboxylic acid disalicyloyl hydrazide, N-formylsalicyloyl hydrazine, benzotriazole , Methylbenzotriazole, methylbenzotriazole potassium salt, N, N-dibenzal (oxalyl hydrazide), N, N-bis (3,5-di-t-butyl-4-hydroxyhydrocinnamate), etc. Used. Among these, decamethylene dicarboxylic acid disalicyloyl hydrazide is preferable in terms of heat resistance stability.

[その他添加剤]
本発明においては、本発明の目的を阻害しない限り、可塑剤、離型剤、難燃剤、難燃助剤、染料、顔料、帯電防止剤等の添加剤を配合することができる。なお、これらのそれぞれについてはその一種のみを単独で、又は二種以上を組み合わせて用いることができる。
[Other additives]
In the present invention, additives such as a plasticizer, a release agent, a flame retardant, a flame retardant aid, a dye, a pigment, and an antistatic agent can be blended as long as the object of the present invention is not impaired. In addition, about each of these, only the 1 type can be used individually or in combination of 2 or more types.

可塑剤としては、ポリエチレングリコール、ポリアミドオリゴマー、エチレンビスステアロアマイド、フタル酸エステル、アジピン酸エステル、ポリスチレンオリゴマー、ポリエチレンワックス、シリコーンオイル、ミネラルオイル等の公知のものから任意に選択しえ用いることができる。   As a plasticizer, it can be arbitrarily selected from known ones such as polyethylene glycol, polyamide oligomer, ethylene bisstearoamide, phthalic acid ester, adipic acid ester, polystyrene oligomer, polyethylene wax, silicone oil and mineral oil. it can.

離型剤としては、ポリエチレンワックス、シリコーンオイル、長鎖カルボン酸、長鎖カルボン酸金属塩等公知のものから任意に選択して用いることができる。   The release agent can be arbitrarily selected from known ones such as polyethylene wax, silicone oil, long chain carboxylic acid, and long chain carboxylic acid metal salt.

難燃剤としては、トリクレジルホスフェート、トリフェニルホスフェート、トリス−3−クロロプロピルホスフェート等のリン系難燃剤、2,2−ビス[4−(2,3−ジブロモプロポキシル)−3,5−ジブロモフェニル]プロパン、ビス(3,5−ジブロモ−4−ジブロモプロピルオキシフェニル)スルホン、エチレンビスペンタブロモベンゼン、ヘキサブロモシクロドデカン等の臭素系難燃剤、シリコーン系難燃剤、水酸化マグネシウムや水酸化アルミニウム等の水酸化物系難燃剤等の公知のものから任意に選択して用いることができる。   Examples of the flame retardant include phosphorus flame retardants such as tricresyl phosphate, triphenyl phosphate, tris-3-chloropropyl phosphate, 2,2-bis [4- (2,3-dibromopropoxyl) -3,5- Brominated flame retardants such as dibromophenyl] propane, bis (3,5-dibromo-4-dibromopropyloxyphenyl) sulfone, ethylene bispentabromobenzene, hexabromocyclododecane, silicone flame retardants, magnesium hydroxide and hydroxide It can be arbitrarily selected from known ones such as hydroxide flame retardants such as aluminum.

難燃助剤としては、三酸化アンチモン等のアンチモン化合物、その他のものから任意に選択して用いることができる。   The flame retardant aid can be arbitrarily selected from antimony compounds such as antimony trioxide and others.

[再生ポリオレフィン系樹脂組成物および再生ポリスチレン系樹脂組成物の製造]
本発明の再生されたポリオレフィン系樹脂組成物およびポリスチレン系樹脂組成物に添加する金属捕捉剤および安定化剤は、通常粉末あるいは粒状として提供される。回収樹脂組成物に金属捕捉剤、または金属捕捉剤および安定化剤を添加し、所望なれば上記添加剤を添加して、混練した後、成形材料を得る。混練の方法としては、溶融混練、溶媒キャストブレンド、ラテックスブレンド、ポリマーコンプレックス等の物理的ブレンドを用いて、混練するが、特に溶融混練法が好ましい。
[Production of Recycled Polyolefin Resin Composition and Recycled Polystyrene Resin Composition]
The metal scavenger and stabilizer added to the regenerated polyolefin resin composition and polystyrene resin composition of the present invention are usually provided as powder or granules. A metal scavenger or a metal scavenger and a stabilizer are added to the recovered resin composition, and if desired, the above additives are added and kneaded to obtain a molding material. As a kneading method, kneading is performed using a physical blend such as melt kneading, solvent cast blending, latex blending, polymer complex, etc., and melt kneading method is particularly preferable.

上記材料を混練する装置としてはタンブラ、ヘンシェルミキサ、ロータリーミキサ、スーパーミキサ、リボンタンブラ、Vブレンダ等が用いられ、上記混練装置によって上記各材料を均一に分散させ、次いで、溶融混練した上で、ペレット化する。溶融混練ペレット化には単軸、または多軸押出機を用いるのが一般的であるが、上記押出機以外にはバンバリーミキサ、ローラ、コ・ニーダ、ブラストミル、プラベンダーブラウトグラフ等を用いることもでき、これらを回分的、または連続的に運転する。また、溶融混練はせずに、樹脂ペレット、金属捕捉剤、安定化剤、その他添加剤それぞれを混ぜ合わせ、前記混合材を成形用樹脂として使用し成形機加熱筒内で溶融混練する、いわゆるモールドブレンドでの実施も可能である。   As a device for kneading the material, a tumbler, a Henschel mixer, a rotary mixer, a super mixer, a ribbon tumbler, a V blender, and the like are used. After the materials are uniformly dispersed by the kneading device, and then melt-kneaded, Pelletize. In general, a single-screw or multi-screw extruder is used for melt-kneading pelletization. In addition to the above-mentioned extruder, a Banbury mixer, a roller, a co-kneader, a blast mill, a Plavender brow graph, etc. should be used. They can be run batchwise or continuously. In addition, a so-called mold is used in which resin pellets, metal scavengers, stabilizers, and other additives are mixed without melting and kneading, and the mixture is used as a molding resin to melt and knead in a molding machine heating cylinder. A blend can also be implemented.

本発明にかかる成形品の製造方法について、射出成形で行う場合、特に制限はなく、公知の成形方法により成形することができる。   About the manufacturing method of the molded article concerning this invention, when performing by injection molding, there is no restriction | limiting in particular, It can shape | mold by a well-known shaping | molding method.

上記のようにして製造された本発明の再生ポリオレフィン系樹脂組成物および再生ポリスチレン系樹脂組成物は、回収樹脂組成物に対して特定量の金属捕捉剤を含有するので、樹脂組成物における熱安定剤を改善することができ、新材と同様の物性を有する樹脂組成物として再利用することが可能である。   The regenerated polyolefin resin composition and the regenerated polystyrene resin composition of the present invention produced as described above contain a specific amount of metal scavenger with respect to the recovered resin composition, so that the heat stability in the resin composition The agent can be improved and can be reused as a resin composition having the same physical properties as the new material.

次に、本発明を実施例および比較例により詳しく説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these Examples.

本発明の実施例および比較例において、使用済み家電製品より選別回収したポリオレフィン樹脂組成物とは、例えば、水(比重1.0)を比重液にした湿式の比重選別という方法により選別回収した樹脂であって、その組成が、ポリオレフィン樹脂90重量%以上のものであり、使用済み家電製品より選別回収したポリスチレン樹脂組成物とは、水(比重1.0)および塩水(比重1.1)を比重液にした湿式の比重選別方法および樹脂の摩擦帯電を利用した静電気選別という方法により選別回収した樹脂であって、その組成が、ポリスチレン樹脂90重量%以上のものを用いた。   In the examples and comparative examples of the present invention, the polyolefin resin composition selected and collected from used home appliances is, for example, a resin selected and collected by a method called wet specific gravity selection using water (specific gravity 1.0) as a specific gravity liquid. In addition, the composition of the polyolefin resin is 90% by weight or more, and the polystyrene resin composition selected and collected from used home appliances is a wet type liquid with a specific gravity liquid of water (specific gravity 1.0) and salt water (specific gravity 1.1). A resin selected and collected by a specific gravity sorting method and a method called electrostatic sorting using frictional electrification of the resin and having a composition of 90% by weight or more of polystyrene resin was used.

本発明の実施例、比較例および参考例において、予め一般的な酸化防止剤を添加しておいたものを評価した。添加した酸化防止剤は、ポリオレフィン系樹脂組成物には、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各0.05重量部、ポリスチレン系樹脂組成物には、ステアリルβ−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各0.05重量部を添加した。物性評価については、再生ポリオレフィン系およびポリスチレン系樹脂組成物の熱酸化劣化度合を評価するために、射出成形機により、JIS規格 K7139に準拠した樹脂組成物の多目的試験片A形を作製して、引張試験による引張破断伸びを測定した。熱酸化安定性試験を行って劣化させた樹脂組成物の試験片の引張破断伸びを初期値と比較した。   In the examples, comparative examples, and reference examples of the present invention, evaluations were made by adding a general antioxidant in advance. The antioxidant added to the polyolefin resin composition was tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane and tris (2,4- Di-t-butylphenyl) phosphite 0.05 parts by weight, polystyrene resin composition includes stearyl β- (3,5-di-t-butyl-4-hydroxyphenyl) propionate and tris (2,4 0.05 parts by weight of each of -di-t-butylphenyl) phosphite was added. For physical property evaluation, in order to evaluate the degree of thermal oxidative degradation of recycled polyolefin-based and polystyrene-based resin compositions, by using an injection molding machine, a multi-purpose test piece A type resin composition conforming to JIS standard K7139 is prepared, The tensile elongation at break by a tensile test was measured. The tensile elongation at break of the test piece of the resin composition deteriorated by the thermal oxidation stability test was compared with the initial value.

引張試験は、JIS規格 K7161に準ずる方法で行なった。試験は、万能試験機を用いて、試験速度50mm/minで行ない、引張破断伸びを求めた。求めた引張破断伸びについて、初期の引張破断伸びに対する引張破断伸び保持率(%)を求めた。ポリオレフィン系樹脂組成物の熱酸化安定性試験は、JIS規格 K7368に準拠する方法で行なった。試験は、140℃で0、1500、3000時間まで試験を行ない、引張試験により、引張破断伸び保持率を求めた。ポリスチレン系樹脂組成物の熱酸化安定性試験は、90℃で0、1500、3000時間まで試験を行なった。なお、ここでは樹脂の劣化の判定基準を、引張破断伸び保持率が50%に低下した場合とした。   The tensile test was performed by a method according to JIS standard K7161. The test was performed using a universal testing machine at a test speed of 50 mm / min to obtain the tensile elongation at break. With respect to the obtained tensile breaking elongation, the tensile breaking elongation retention rate (%) relative to the initial tensile breaking elongation was obtained. The thermal oxidation stability test of the polyolefin-based resin composition was performed by a method based on JIS standard K7368. The test was conducted at 140 ° C. for 0, 1500 and 3000 hours, and the tensile breaking elongation retention rate was determined by a tensile test. The thermal oxidation stability test of the polystyrene resin composition was conducted at 90 ° C. for 0, 1500 and 3000 hours. Here, the criterion for determining the deterioration of the resin was the case where the tensile elongation at break retention ratio was reduced to 50%.

(実施例1)
使用済み家電製品より選別回収したポリプロピレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸0.05重量部、一般的な酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各0.05重量部を添加して混合したものを、200℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)200℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表1に示す。この結果、本発明の再生ポリプロピレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が58%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(参考例3に該当)に比べて、熱安定性の改善効果がみられ、新材ポリプロピレン樹脂(参考例1に該当)相当まで熱安定性が改善できることがわかった。
Example 1
For 100 parts by weight of a polypropylene resin composition selected and collected from used home appliances, 0.05 parts by weight of ethylenediaminetetraacetic acid as a metal scavenger and tetrakis [methylene-3- (3 ′, a general antioxidant] , 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane and 0.05 parts by weight of tris (2,4-di-t-butylphenyl) phosphite were added and mixed. The mixture was kneaded in an extruder while being heated and melted at 200 ° C. to produce 3 to 5 mm pellets. Next, a multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 200 ° C. and a mold temperature of 50 ° C. Table 1 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polypropylene resin composition of the present invention had a good appearance, the tensile elongation at break after the thermal oxidative degradation test was 100% after 1500 hours, and 58% after 3000 hours, and the tensile elongation at break retention rate. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Reference Example 3), the effect of improving the thermal stability is seen, and the thermal stability to the equivalent of the new material polypropylene resin (corresponding to Reference Example 1) It was found that sex could be improved.

(実施例2)
使用済み家電製品より選別回収したポリプロピレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸10重量部、一般的な酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各0.05重量部を添加して混合したものを、200℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)200℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表1に示す。この結果、本発明の再生ポリプロピレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が100%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(参考例3に該当)に比べて、熱安定性の改善効果がみられ、新材ポリプロピレン樹脂(参考例1に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 2)
10 parts by weight of ethylenediaminetetraacetic acid as a metal scavenger and tetrakis [methylene-3- (3 ′, 5), a general antioxidant, with respect to 100 parts by weight of a polypropylene resin composition selected and collected from used home appliances. '-Di-t-butyl-4'-hydroxyphenyl) propionate] methane and 0.05 parts by weight of tris (2,4-di-t-butylphenyl) phosphite were added and mixed. Then, the mixture was kneaded in an extruder while being heated and melted to produce 3 to 5 mm pellets. Next, a multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 200 ° C. and a mold temperature of 50 ° C. Table 1 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polypropylene resin composition of the present invention has a good appearance, and the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours and 100% after 3000 hours. Compared to before adding the metal scavenger (corresponding to Reference Example 3), the effect of improving the thermal stability is seen, and heat up to the equivalent of the new polypropylene resin (corresponding to Reference Example 1). It was found that the stability can be improved.

(実施例3)
使用済み家電製品より選別回収したポリプロピレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸0.05重量部および安定化剤として、ステアリン酸5重量部、一般的な酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各0.05重量部を添加して混合したものを、200℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)200℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表1に示す。この結果、本発明の再生ポリプロピレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が72%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(参考例3に該当)に比べて、熱安定性の改善効果がみられ、新材ポリプロピレン樹脂(参考例1に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 3)
With respect to 100 parts by weight of a polypropylene resin composition selected and collected from used home appliances, 0.05 parts by weight of ethylenediaminetetraacetic acid and 5 parts by weight of stearic acid as stabilizers and a general antioxidant as a metal scavenger Tetrakis [methylene-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate] methane and tris (2,4-di-tert-butylphenyl) phosphite 0.05 each The mixture obtained by adding parts by weight was kneaded in an extruder while being heated and melted at 200 ° C. to produce 3 to 5 mm pellets. Next, a multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 200 ° C. and a mold temperature of 50 ° C. Table 1 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polypropylene resin composition of the present invention had a good appearance, the tensile elongation at break after thermal oxidation degradation test was 100% after 1500 hours, and 72% after 3000 hours, and the tensile elongation at break retention rate was Compared to before adding the metal scavenger (corresponding to Reference Example 3), the effect of improving the thermal stability is seen, and heat up to the equivalent of the new polypropylene resin (corresponding to Reference Example 1). It was found that the stability can be improved.

(実施例4)
使用済み家電製品より選別回収したポリプロピレン樹脂組成物100重量部に対して、金属捕捉剤として、ニトリル三酢酸0.1重量部、一般的な酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各0.05重量部を添加して混合したものを、200℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)200℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表1に示す。この結果、本発明の再生ポリプロピレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が80%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(参考例3に該当)に比べて、熱安定性の改善効果がみられ、新材ポリプロピレン樹脂(参考例1に該当)相当以上まで熱安定性が改善できることがわかった。
Example 4
As a metal scavenger, 0.1 part by weight of nitrile triacetic acid, tetrakis [methylene-3- (3 ′), a general antioxidant, with respect to 100 parts by weight of a polypropylene resin composition selected and collected from used home appliances. , 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane and 0.05 parts by weight of tris (2,4-di-t-butylphenyl) phosphite were added and mixed. The mixture was kneaded in an extruder while being heated and melted at 200 ° C. to produce 3 to 5 mm pellets. Next, a multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 200 ° C. and a mold temperature of 50 ° C. Table 1 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polypropylene resin composition of the present invention has a good appearance, the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours, and 80% after 3000 hours, and the tensile elongation at break retention rate. Compared to before adding the metal scavenger (corresponding to Reference Example 3), the effect of improving the thermal stability is seen, and heat up to the equivalent of the new polypropylene resin (corresponding to Reference Example 1). It was found that the stability can be improved.

(実施例5)
使用済み家電製品より選別回収したポリプロピレン樹脂組成物100重量部に対して、金属捕捉剤として、ジエチレントリアミン五酢酸0.5重量部および安定化剤として、オレイン酸1重量部、一般的な酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各0.05重量部を添加して混合したものを、200℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)200℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表1に示す。この結果、本発明の再生ポリプロピレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が100%であり、引張破断伸び保持率が50%以上で、金属捕捉剤を添加する前(参考例3に該当)に比べて、熱安定性の改善効果がみられ、新材ポリプロピレン樹脂(参考例1に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 5)
100 parts by weight of polypropylene resin composition selected and collected from used home appliances, 0.5 parts by weight of diethylenetriaminepentaacetic acid as a metal scavenger and 1 part by weight of oleic acid as a stabilizer, general antioxidant Tetrakis [methylene-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate] methane and tris (2,4-di-tert-butylphenyl) phosphite 0.05 each The mixture obtained by adding parts by weight was kneaded in an extruder while being heated and melted at 200 ° C. to produce 3 to 5 mm pellets. Next, a multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 200 ° C. and a mold temperature of 50 ° C. Table 1 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polypropylene resin composition of the present invention has a good appearance, the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours, and 100% after 3000 hours, and the tensile elongation at break is maintained. When the rate is 50% or more, compared with before adding the metal scavenger (corresponding to Reference Example 3), the effect of improving the thermal stability is observed, and the heat is increased to a level equivalent to the new polypropylene resin (corresponding to Reference Example 1). It was found that the stability can be improved.

(実施例6)
使用済み家電製品より選別回収したポリプロピレン樹脂組成物100重量部に対して、金属捕捉剤として、ヒドロキシエチルエチレンジアミン三酢酸0.1重量部および安定化剤として、パルミチン酸10重量部、一般的な酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各0.05重量部を添加して混合したものを、200℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)200℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表1に示す。この結果、本発明の再生ポリプロピレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が81%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(参考例3に該当)に比べて、熱安定性の改善効果がみられ、新材ポリプロピレン樹脂(参考例1に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 6)
100 parts by weight of a polypropylene resin composition selected and collected from used home appliances, 0.1 parts by weight of hydroxyethylethylenediaminetriacetic acid as a metal scavenger and 10 parts by weight of palmitic acid as a stabilizer, general oxidation Tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane and tris (2,4-di-t-butylphenyl) phosphite each 0 The mixture obtained by adding 0.05 parts by weight was kneaded in an extruder while being heated and melted at 200 ° C. to produce 3 to 5 mm pellets. Next, a multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 200 ° C. and a mold temperature of 50 ° C. Table 1 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polypropylene resin composition of the present invention had a good appearance, the tensile elongation at break after the thermal oxidative degradation test was 100% after 1500 hours, and 81% after 3000 hours, and the tensile elongation at break retention rate. Compared to before adding the metal scavenger (corresponding to Reference Example 3), the effect of improving the thermal stability is seen, and heat up to the equivalent of the new polypropylene resin (corresponding to Reference Example 1). It was found that the stability can be improved.

(実施例7)
使用済み家電製品より選別回収したポリプロピレン樹脂組成物100重量部に対して、金属捕捉剤として、酢酸トコフェロール1.0重量部、一般的な酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各0.05重量部を添加して混合したものを、200℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)200℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表1に示す。この結果、本発明の再生ポリプロピレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が82%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(参考例3に該当)に比べて、熱安定性の改善効果がみられ、新材ポリプロピレン樹脂(参考例1に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 7)
To 100 parts by weight of a polypropylene resin composition selected and collected from used home appliances, 1.0 parts by weight of tocopherol acetate as a metal scavenger, tetrakis [methylene-3- (3 ′, 3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane and 0.05 parts by weight of tris (2,4-di-t-butylphenyl) phosphite were added and mixed. The mixture was kneaded in an extruder while being heated and melted at 3 ° C. to produce 3 to 5 mm pellets. Next, a multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 200 ° C. and a mold temperature of 50 ° C. Table 1 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polypropylene resin composition of the present invention had a good appearance, the tensile elongation at break after the thermal oxidative degradation test was 100% after 1500 hours, and 82% after 3000 hours, and the tensile elongation at break retention rate. Compared to before adding the metal scavenger (corresponding to Reference Example 3), the effect of improving the thermal stability is seen, and heat up to the equivalent of the new polypropylene resin (corresponding to Reference Example 1). It was found that the stability can be improved.

(実施例8)
使用済み家電製品より選別回収したポリエチレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸0.05重量部、一般的な酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各0.05重量部を添加して混合したものを、180℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)180℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表1に示す。この結果、本発明の再生ポリエチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が60%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(参考例5に該当)に比べて、熱安定性の改善効果がみられ、新材ポリエチレン樹脂(参考例2に該当)相当まで熱安定性が改善できることがわかった。
(Example 8)
For 100 parts by weight of a polyethylene resin composition selected and collected from used home appliances, 0.05 parts by weight of ethylenediaminetetraacetic acid as a metal scavenger and tetrakis [methylene-3- (3 ′, a general antioxidant] , 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane and 0.05 parts by weight of tris (2,4-di-t-butylphenyl) phosphite were added and mixed. The mixture was kneaded in an extruder while being heated and melted at 180 ° C. to produce 3 to 5 mm pellets. Next, a multipurpose test piece A was molded by an injection molding machine under conditions of a resin temperature (molding temperature) of 180 ° C. and a mold temperature of 50 ° C. Table 1 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polyethylene resin composition of the present invention has a good appearance, the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours, and 60% after 3000 hours. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Reference Example 5), the effect of improving the thermal stability is seen, and stable to the new material polyethylene resin (corresponding to Reference Example 2) It was found that sex could be improved.

(参考例1)
一般的な新材ポリプロピレン樹脂組成物100重量部に対して、一般的な酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各0.05重量部を添加して混合したものを、射出成形機により、樹脂温度(成形温度)200℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表2に示す。この結果、新材ポリプロピレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が60%で、引張破断伸び保持率が50%以上であった。
(Reference Example 1)
Tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate which is a general antioxidant, based on 100 parts by weight of a general new material polypropylene resin composition ] 0.05 parts by weight of methane and tris (2,4-di-t-butylphenyl) phosphite were added and mixed with an injection molding machine using a resin temperature (molding temperature) of 200 ° C. and a mold temperature. A multipurpose specimen A type was molded under the condition of 50 ° C. Table 2 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the new polypropylene resin composition has a good appearance, the tensile elongation at break after thermal oxidation degradation test is 100% after 1500 hours, 60% after 3000 hours, and the tensile elongation at break is 50%. % Or more.

(参考例2)
一般的な新材ポリエチレン樹脂組成物100重量部に対して、一般的な酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各0.05重量部を添加して混合したものを、射出成形機により、樹脂温度(成形温度)180℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表2に示す。この結果、新材ポリエチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が65%で、引張破断伸び保持率が50%以上であった。
(Reference Example 2)
Tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate, which is a general antioxidant, with respect to 100 parts by weight of a general new polyethylene resin composition ] 0.05 parts by weight of methane and tris (2,4-di-t-butylphenyl) phosphite were added and mixed with an injection molding machine using a resin temperature (molding temperature) of 180 ° C. and a mold temperature. A multipurpose specimen A type was molded under the condition of 50 ° C. Table 2 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the new polyethylene resin composition has a good appearance, the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours, 65% after 3000 hours, and the tensile elongation at break retention is 50%. % Or more.

(比較例1)
使用済み家電製品より選別回収したポリプロピレン樹脂組成物100重量部に対して、一般的な酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各0.05重量部を添加して混合したものを、射出成形機により、樹脂温度(成形温度)200℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表2に示す。この結果、再生ポリプロピレン樹脂組成物は、外観が褐色に変色し、クラックが発生しており、熱酸化劣化試験後の引張破断伸び率が、1500時間後が32%、3000時間後が0%で、1500時間後では引張破断伸び保持率が50%以下であり、劣化と判定した。
(Comparative Example 1)
Tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxy), which is a general antioxidant, with respect to 100 parts by weight of the polypropylene resin composition selected and collected from used home appliances. Phenyl) propionate] methane and tris (2,4-di-t-butylphenyl) phosphite 0.05 parts by weight of each were added and mixed using an injection molding machine, resin temperature (molding temperature) 200 ° C., A multi-purpose specimen A type was molded under the condition of a mold temperature of 50 ° C. Table 2 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polypropylene resin composition had a brown appearance and cracks, and the tensile elongation at break after thermal oxidation degradation test was 32% after 1500 hours and 0% after 3000 hours. After 1500 hours, the tensile elongation at break was 50% or less, and it was determined that the deterioration occurred.

(比較例2)
使用済み家電製品より選別回収したポリプロピレン樹脂組成物100重量部に対して、一般的な酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各5重量部を添加した樹脂組成物を、射出成形機により、樹脂温度(成形温度)200℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表2に示す。この結果、再生ポリプロピレン樹脂組成物は、外観が褐色に変色し、クラックが発生しており、熱酸化劣化試験後の引張破断伸び率が、1500時間後が49%、3000時間後が0%で、1500時間後では引張破断伸び保持率が50%以下であり、劣化と判定した。
(Comparative Example 2)
Tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxy), which is a general antioxidant, with respect to 100 parts by weight of the polypropylene resin composition selected and collected from used home appliances. Phenyl) propionate] Methane and tris (2,4-di-t-butylphenyl) phosphite added with 5 parts by weight of each resin composition were injected with an injection molding machine at a resin temperature (molding temperature) of 200 ° C. and a mold temperature. A multipurpose specimen A type was molded under the condition of 50 ° C. Table 2 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polypropylene resin composition had a brown appearance and cracks, and the tensile elongation at break after thermal oxidation degradation test was 49% after 1500 hours and 0% after 3000 hours. After 1500 hours, the tensile elongation at break was 50% or less, and it was determined that the deterioration occurred.

(比較例3)
使用済み家電製品より選別回収したポリエチレン樹脂組成物100重量部を、射出成形機により、樹脂温度(成形温度)180℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表2に示す。この結果、再生ポリエチレン樹脂組成物は、外観が褐色に変色し、クラックが発生しており、熱酸化劣化試験後の引張破断伸び率が、1500時間後が57%、3000時間後が0%で、3000時間後では引張破断伸び保持率が50%以下であり、劣化と判定した。
(Comparative Example 3)
A multi-purpose specimen A type was molded from 100 parts by weight of a polyethylene resin composition selected and collected from used home appliances under the conditions of a resin temperature (molding temperature) of 180 ° C. and a mold temperature of 50 ° C. by an injection molding machine. Table 2 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polyethylene resin composition has a brown appearance and cracks, and the tensile elongation at break after thermal oxidation degradation test is 57% after 1500 hours and 0% after 3000 hours. After 3000 hours, the tensile elongation at break retention was 50% or less, and it was determined that the deterioration occurred.

(比較例4)
使用済み家電製品より選別回収したポリプロピレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸0.01重量部を添加して混合したものを、200℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)200℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表2に示す。この結果、再生ポリプロピレン樹脂組成物は、外観が褐色に変色し、クラックが発生しており、熱酸化劣化試験後の引張破断伸び率が、1500時間後が39%、3000時間後が0%で、1500時間後では引張破断伸び保持率が50%以下であり、劣化と判定した。
(Comparative Example 4)
100 parts by weight of a polypropylene resin composition selected and collected from used home appliances and mixed with 0.01 parts by weight of ethylenediaminetetraacetic acid as a metal scavenger are extruded while being heated and melted at 200 ° C. It knead | mixed in the machine and produced the 3-5 mm pellet. Next, a multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 200 ° C. and a mold temperature of 50 ° C. Table 2 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polypropylene resin composition had a brown appearance and cracks, and the tensile elongation at break after the thermal oxidation degradation test was 39% after 1500 hours and 0% after 3000 hours. After 1500 hours, the tensile elongation at break was 50% or less, and it was determined that the deterioration occurred.

Figure 2011153251
Figure 2011153251

Figure 2011153251
Figure 2011153251

(実施例9)
使用済み家電製品より選別回収したポリスチレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸0.05重量部を添加して混合したものを、220℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)220℃、金型温度55℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表3に示す。この結果、本発明の再生ポリスチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が52%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例5に該当)に比べて、熱安定性の改善効果がみられ、新材ポリスチレン樹脂(参考例3に該当)相当まで熱安定性が改善できることがわかった。
Example 9
To 100 parts by weight of polystyrene resin composition selected and collected from used home appliances, 0.05 parts by weight of ethylenediaminetetraacetic acid as a metal scavenger was added and mixed at 220 ° C. while heating and melting. It knead | mixed in the machine and produced the 3-5 mm pellet. Next, the multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 55 ° C. Table 3 shows the results obtained by performing the thermal oxidative deterioration test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the recycled polystyrene resin composition of the present invention has a good appearance, the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours, and 52% after 3000 hours, and the tensile elongation at break retention rate. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 5), the effect of improving the thermal stability is seen, and the thermal stability to the equivalent of new polystyrene resin (corresponding to Reference Example 3) It was found that sex could be improved.

(実施例10)
使用済み家電製品より選別回収したポリスチレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸10重量部を添加して混合したものを、220℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)220℃、金型温度55℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表3に示す。この結果、本発明の再生ポリスチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が100%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例5に該当)に比べて、熱安定性の改善効果がみられ、新材ポリスチレン樹脂(参考例3に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 10)
What is obtained by adding 10 parts by weight of ethylenediaminetetraacetic acid as a metal scavenger to 100 parts by weight of a polystyrene resin composition selected and collected from used home appliances and mixing them at 220 ° C. while heating and melting is used. It knead | mixed in and produced the 3-5 mm pellet. Next, the multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 55 ° C. Table 3 shows the results obtained by performing the thermal oxidative deterioration test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the regenerated polystyrene resin composition of the present invention has a good appearance, and the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours and 100% after 3000 hours, and the tensile elongation at break retention is 100%. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 5), an effect of improving the thermal stability is observed, and heat is increased to a level equivalent to the new polystyrene resin (corresponding to Reference Example 3). It was found that the stability can be improved.

(実施例11)
使用済み家電製品より選別回収したポリスチレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸0.05重量部および安定化剤として、ステアリン酸5重量部を添加して混合したものを、220℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)220℃、金型温度55℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表3に示す。この結果、本発明の再生ポリスチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が65%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例5に該当)に比べて、熱安定性の改善効果がみられ、新材ポリスチレン樹脂(参考例3に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 11)
100 parts by weight of polystyrene resin composition selected and collected from used home appliances and mixed with 0.05 parts by weight of ethylenediaminetetraacetic acid as a metal scavenger and 5 parts by weight of stearic acid as a stabilizer Was kneaded in an extruder while being heated and melted at 220 ° C. to produce 3 to 5 mm pellets. Next, the multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 55 ° C. Table 3 shows the results obtained by performing the thermal oxidative deterioration test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the regenerated polystyrene resin composition of the present invention has a good appearance, and the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours and 65% after 3000 hours. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 5), an effect of improving the thermal stability is observed, and heat is increased to a level equivalent to the new polystyrene resin (corresponding to Reference Example 3). It was found that the stability can be improved.

(実施例12)
使用済み家電製品より選別回収したポリスチレン樹脂組成物100重量部に対して、金属捕捉剤として、ニトリル三酢酸0.1重量部を添加して混合したものを、220℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)220℃、金型温度55℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表3に示す。この結果、本発明の再生ポリスチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が70%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例5に該当)に比べて、熱安定性の改善効果がみられ、新材ポリスチレン樹脂(参考例3に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 12)
100 parts by weight of polystyrene resin composition selected and collected from used home appliances and mixed with 0.1 parts by weight of nitrile triacetic acid as a metal scavenger and extruded at 220 ° C. while being heated and melted It knead | mixed in the machine and produced the 3-5 mm pellet. Next, the multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 55 ° C. Table 3 shows the results obtained by performing the thermal oxidative deterioration test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the recycled polystyrene resin composition of the present invention has a good appearance, the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours, and 70% after 3000 hours, and the tensile elongation at break retention rate. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 5), an effect of improving the thermal stability is observed, and heat is increased to a level equivalent to the new polystyrene resin (corresponding to Reference Example 3). It was found that the stability can be improved.

(実施例13)
使用済み家電製品より選別回収したポリスチレン樹脂組成物100重量部に対して、金属捕捉剤として、ジエチレントリアミン五酢酸0.5重量部および安定化剤として、オレイン酸1重量部を添加して混合したものを、220℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)220℃、金型温度55℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表3に示す。この結果、本発明の再生ポリスチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が89%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例5に該当)に比べて、熱安定性の改善効果がみられ、新材ポリスチレン樹脂(参考例3に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 13)
100 parts by weight of polystyrene resin composition selected and collected from used home appliances and mixed with 0.5 parts by weight of diethylenetriaminepentaacetic acid as a metal scavenger and 1 part by weight of oleic acid as a stabilizer Was kneaded in an extruder while being heated and melted at 220 ° C. to produce 3 to 5 mm pellets. Next, the multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 55 ° C. Table 3 shows the results obtained by performing the thermal oxidative deterioration test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the recycled polystyrene resin composition of the present invention has a good appearance, and the tensile elongation at break after thermal oxidation degradation test is 100% after 1500 hours and 89% after 3000 hours, and the tensile elongation at break retention is Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 5), an effect of improving the thermal stability is observed, and heat is increased to a level equivalent to the new polystyrene resin (corresponding to Reference Example 3). It was found that the stability can be improved.

(実施例14)
使用済み家電製品より選別回収したポリスチレン樹脂組成物100重量部に対して、金属捕捉剤として、ヒドロキシエチルエチレンジアミン三酢酸0.1重量部および安定化剤として、パルミチン酸10重量部を添加して混合したものを、220℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)220℃、金型温度55℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表3に示す。この結果、本発明の再生ポリスチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が72%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例5に該当)に比べて、熱安定性の改善効果がみられ、新材ポリスチレン樹脂(参考例3に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 14)
Add 100 parts by weight of hydroxyethylethylenediaminetriacetic acid as a metal scavenger and 10 parts by weight of palmitic acid as a stabilizer to 100 parts by weight of a polystyrene resin composition selected and collected from used home appliances. The obtained product was kneaded in an extruder while being heated and melted at 220 ° C. to produce 3 to 5 mm pellets. Next, the multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 55 ° C. Table 3 shows the results obtained by performing the thermal oxidative deterioration test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the recycled polystyrene resin composition of the present invention has a good appearance, and the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours and 72% after 3000 hours, and the tensile elongation at break retention rate is 72%. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 5), an effect of improving the thermal stability is observed, and heat is increased to a level equivalent to the new polystyrene resin (corresponding to Reference Example 3). It was found that the stability can be improved.

(実施例15)
使用済み家電製品より選別回収したポリスチレン樹脂組成物100重量部に対して、金属捕捉剤として、酢酸トコフェロール1.0重量部を添加して混合したものを、220℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)220℃、金型温度55℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表3に示す。この結果、本発明の再生ポリスチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が74%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例5に該当)に比べて、熱安定性の改善効果がみられ、新材ポリスチレン樹脂(参考例3に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 15)
Extruder that heats and melts at 220 ° C a mixture of 1.0 part by weight of tocopherol acetate as a metal scavenger added to 100 parts by weight of a polystyrene resin composition selected and collected from used home appliances. The mixture was kneaded in 3 to 5 mm pellets. Next, the multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 55 ° C. Table 3 shows the results obtained by performing the thermal oxidative deterioration test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the regenerated polystyrene resin composition of the present invention has a good appearance, and the tensile elongation at break after thermal oxidation degradation test is 100% after 1500 hours and 74% after 3000 hours, and the tensile elongation at break retention is 74%. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 5), an effect of improving the thermal stability is observed, and heat is increased to a level equivalent to the new polystyrene resin (corresponding to Reference Example 3). It was found that the stability can be improved.

(実施例16)
使用済み家電製品より選別回収したABS樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸0.05重量部を添加して混合したものを、240℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)240℃、金型温度60℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表3に示す。この結果、本発明の再生ABS樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が64%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例7に該当)に比べて、熱安定性の改善効果がみられ、新材ABS樹脂(参考例4に該当)相当まで熱安定性が改善できることがわかった。
(Example 16)
Extruded at 240 ° C while heating and melting, mixed with 0.05 parts by weight of ethylenediaminetetraacetic acid as a metal scavenger, to 100 parts by weight of ABS resin composition selected and collected from used home appliances It knead | mixed in the machine and produced the 3-5 mm pellet. Next, the multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 240 ° C. and a mold temperature of 60 ° C. Table 3 shows the results obtained by performing the thermal oxidative deterioration test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the recycled ABS resin composition of the present invention has a good appearance, and the tensile elongation at break after thermal oxidation degradation test is 100% after 1500 hours and 64% after 3000 hours, and the tensile elongation at break retention is Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 7), an effect of improving the thermal stability is seen, and the thermal stability up to the equivalent of the new ABS resin (corresponding to Reference Example 4) It was found that sex could be improved.

(参考例3)
一般的な新材ポリスチレン樹脂組成物100重量部を、射出成形機により、樹脂温度(成形温度)220℃、金型温度55℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表4に示す。この結果、新材ポリスチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が61%で、引張破断伸び保持率が50%以上であった。
(Reference Example 3)
A general purpose polystyrene resin composition (100 parts by weight) was molded using an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 55 ° C. to form a multipurpose test piece A type. Table 4 shows the results obtained by conducting a thermal oxidative degradation test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the new polystyrene resin composition has a good appearance, the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours, 61% after 3000 hours, and the tensile elongation at break retention is 50%. % Or more.

(参考例4)
一般的な新材ABS樹脂組成物100重量部を、射出成形機により、樹脂温度(成形温度)240℃、金型温度60℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表4に示す。この結果、新材ABS樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が60%で、引張破断伸び保持率が50%以上であった。
(Reference Example 4)
A general purpose ABS resin composition (100 parts by weight) was molded into a multipurpose test piece A using an injection molding machine under conditions of a resin temperature (molding temperature) of 240 ° C. and a mold temperature of 60 ° C. Table 4 shows the results obtained by conducting a thermal oxidative degradation test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the new ABS resin composition has a good appearance, the tensile elongation at break after thermal oxidation degradation test is 100% after 1500 hours, 60% after 3000 hours, and the tensile elongation at break retention is 50%. % Or more.

(比較例5)
使用済み家電製品より選別回収したポリスチレン樹脂組成物に対して、射出成形機により、樹脂温度(成形温度)220℃、金型温度55℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表4に示す。この結果、再生ポリスチレン樹脂組成物は、外観が褐色に変色し、クラックが発生しており、熱酸化劣化試験後の引張破断伸び率が、1500時間後が20%、3000時間後が0%で、1500時間後では引張破断伸び保持率が50%以下であり、劣化と判定した。
(Comparative Example 5)
A multi-purpose test piece A was molded from a polystyrene resin composition selected and collected from used home appliances with an injection molding machine under conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 55 ° C. Table 4 shows the results obtained by conducting a thermal oxidative degradation test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polystyrene resin composition has a brown appearance and cracks, and the tensile elongation at break after thermal oxidation degradation test is 20% after 1500 hours and 0% after 3000 hours. After 1500 hours, the tensile elongation at break was 50% or less, and it was determined that the deterioration occurred.

(比較例6)
使用済み家電製品より選別回収したポリスチレン樹脂組成物100重量部に対して、一般的な酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト各5重量部を添加している射出成形機により、樹脂温度(成形温度)220℃、金型温度55℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表4に示す。この結果、再生ポリスチレン樹脂組成物は、外観が褐色に変色し、クラックが発生しており、熱酸化劣化試験後の引張破断伸び率が、1500時間後が25%、3000時間後が0%で、1500時間後では引張破断伸び保持率が50%以下であり、劣化と判定した。
(Comparative Example 6)
Tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxy), which is a general antioxidant, with respect to 100 parts by weight of the polystyrene resin composition selected and collected from used home appliances. Phenyl) propionate] By an injection molding machine to which 5 parts by weight of methane and tris (2,4-di-t-butylphenyl) phosphite are added, the resin temperature (molding temperature) is 220 ° C. and the mold temperature is 55 ° C. Under the conditions, a multipurpose specimen A type was molded. Table 4 shows the results obtained by conducting a thermal oxidative degradation test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polystyrene resin composition has a brown appearance and cracks, and the tensile elongation at break after thermal oxidation degradation test is 25% after 1500 hours and 0% after 3000 hours. After 1500 hours, the tensile elongation at break was 50% or less, and it was determined that the deterioration occurred.

(比較例7)
使用済み家電製品より選別回収したABS樹脂組成物100重量部を、射出成形機により、樹脂温度(成形温度)240℃、金型温度60℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表4に示す。この結果、再生ABS樹脂組成物は、外観が褐色に変色し、クラックが発生しており、熱酸化劣化試験後の引張破断伸び率が、1500時間後が60%、3000時間後が10%で、3000時間後では引張破断伸び保持率が50%以下であり、劣化と判定した。
(Comparative Example 7)
A multi-purpose specimen A type was molded from 100 parts by weight of the ABS resin composition selected and collected from used home appliances with an injection molding machine under conditions of a resin temperature (molding temperature) of 240 ° C. and a mold temperature of 60 ° C. Table 4 shows the results obtained by conducting a thermal oxidative degradation test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled ABS resin composition had a brown appearance and cracks, and the tensile elongation at break after the thermal oxidative degradation test was 60% after 1500 hours and 10% after 3000 hours. After 3000 hours, the tensile elongation at break retention was 50% or less, and it was determined that the deterioration occurred.

(比較例8)
使用済み家電製品より選別回収したポリスチレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸0.03重量部を添加して混合したものを、220℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)220℃、金型温度55℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表4に示す。この結果、再生ポリスチレン樹脂組成物は、外観が褐色に変色し、クラックが発生しており、熱酸化劣化試験後の引張破断伸び率が、1500時間後が20%、3000時間後が0%で、1500時間後では引張破断伸び保持率が50%以下であり、劣化と判定した。
(Comparative Example 8)
To 100 parts by weight of polystyrene resin composition selected and collected from used home appliances, 0.03 parts by weight of ethylenediaminetetraacetic acid as a metal scavenger was added and mixed at 220 ° C. while heating and melting. It knead | mixed in the machine and produced the 3-5 mm pellet. Next, the multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 55 ° C. Table 4 shows the results obtained by conducting a thermal oxidative degradation test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by a tensile test. As a result, the recycled polystyrene resin composition has a brown appearance and cracks, and the tensile elongation at break after thermal oxidation degradation test is 20% after 1500 hours and 0% after 3000 hours. After 1500 hours, the tensile elongation at break was 50% or less, and it was determined that the deterioration occurred.

Figure 2011153251
Figure 2011153251

Figure 2011153251
Figure 2011153251

(実施例17)
使用済み家電製品より選別回収したポリプロピレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸0.05重量部および酢酸トコフェロール0.05重量部を添加して混合したものを、200℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)200℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表5に示す。この結果、本発明の再生ポリプロピレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が80%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例1に該当)に比べて、熱安定性の改善効果がみられ、新材ポリプロピレン樹脂(参考例1に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 17)
200 parts by weight of ethylene resin tetraacetic acid 0.05 parts by weight and tocopherol acetate 0.05 parts by weight were added as a metal scavenger to 100 parts by weight of a polypropylene resin composition selected and collected from used home appliances. The mixture was kneaded in an extruder while being heated and melted at 3 ° C. to produce 3 to 5 mm pellets. Next, a multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 200 ° C. and a mold temperature of 50 ° C. Table 5 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the recycled polypropylene resin composition of the present invention has a good appearance, the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours, and 80% after 3000 hours, and the tensile elongation at break retention rate. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 1), the effect of improving the thermal stability is seen, and heat up to the equivalent of the new polypropylene resin (corresponding to Reference Example 1) It was found that the stability can be improved.

(実施例18)
使用済み家電製品より選別回収したポリプロピレン樹脂組成物100重量部に対して、金属捕捉剤として、ニトリロ三酢酸0.1重量部、ヒドロキシエチルエチレンジアミン三酢酸0.1重量部および安定化剤として、ステアリン酸5重量部を添加して混合したものを、200℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)200℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表5に示す。この結果、本発明の再生ポリプロピレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が100%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例1に該当)に比べて、熱安定性の改善効果がみられ、新材ポリプロピレン樹脂(参考例1に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 18)
For 100 parts by weight of the polypropylene resin composition selected and collected from used home appliances, 0.1 parts by weight of nitrilotriacetic acid, 0.1 parts by weight of hydroxyethylethylenediamine triacetic acid and stearin as a metal scavenger. The mixture obtained by adding 5 parts by weight of the acid was kneaded in an extruder while being heated and melted at 200 ° C. to produce 3 to 5 mm pellets. Next, a multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 200 ° C. and a mold temperature of 50 ° C. Table 5 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the recycled polypropylene resin composition of the present invention has a good appearance, and the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours and 100% after 3000 hours. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 1), the effect of improving the thermal stability is seen, and heat up to the equivalent of the new polypropylene resin (corresponding to Reference Example 1) It was found that the stability can be improved.

(実施例19)
使用済み家電製品より選別回収したポリプロピレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸0.05重量部、ジエチレントリアミン五酢酸0.05重量部および酢酸トコフェロール0.05重量部を添加して混合したものを、200℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)200℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表5に示す。この結果、本発明の再生ポリプロピレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が100%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例1に該当)に比べて、熱安定性の改善効果がみられ、新材ポリプロピレン樹脂(参考例1に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 19)
As a metal scavenger, 0.05 parts by weight of ethylenediaminetetraacetic acid, 0.05 parts by weight of diethylenetriaminepentaacetic acid and 0.05 parts by weight of tocopherol acetate are used as a metal scavenger for 100 parts by weight of the polypropylene resin composition selected and collected from used home appliances. What was added and mixed was kneaded in an extruder while heating and melting at 200 ° C. to produce 3 to 5 mm pellets. Next, a multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 200 ° C. and a mold temperature of 50 ° C. Table 5 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the recycled polypropylene resin composition of the present invention has a good appearance, and the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours and 100% after 3000 hours. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 1), the effect of improving the thermal stability is seen, and heat up to the equivalent of the new polypropylene resin (corresponding to Reference Example 1) It was found that the stability can be improved.

(実施例20)
使用済み家電製品より選別回収したポリエチレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸0.05重量部およびジエチレントリアミン五酢酸0.05重量部を添加して混合したものを、180℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)180℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表5に示す。この結果、本発明の再生ポリエチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が92%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例3に該当)に比べて、熱安定性の改善効果がみられ、新材ポリエチレン樹脂(参考例2に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 20)
To 100 parts by weight of polyethylene resin composition selected and collected from used home appliances, as a metal scavenger, 0.05 parts by weight of ethylenediaminetetraacetic acid and 0.05 parts by weight of diethylenetriaminepentaacetic acid were added and mixed. The mixture was kneaded in an extruder while being heated and melted at 180 ° C. to produce 3 to 5 mm pellets. Next, a multipurpose test piece A was molded by an injection molding machine under conditions of a resin temperature (molding temperature) of 180 ° C. and a mold temperature of 50 ° C. Table 5 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the regenerated polyethylene resin composition of the present invention has a good appearance, and the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours and 92% after 3000 hours. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 3), the effect of improving the thermal stability is seen, and heat up to the equivalent of the new polyethylene resin (corresponding to Reference Example 2) It was found that the stability can be improved.

(実施例21)
使用済み家電製品より選別回収したポリエチレン樹脂組成物100重量部に対して、金属捕捉剤として、ニトリロ三酢酸0.05重量部、酢酸トコフェロール0.05重量部および安定化剤として、オレイン酸5重量部を添加して混合したものを、180℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)180℃、金型温度50℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、140℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表5に示す。この結果、本発明の再生ポリエチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が100%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例3に該当)に比べて、熱安定性の改善効果がみられ、新材ポリエチレン樹脂(参考例2に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 21)
As a metal scavenger, 0.05 parts by weight of nitrilotriacetic acid, 0.05 parts by weight of tocopherol acetate, and 5 parts by weight of oleic acid as a stabilizer for 100 parts by weight of a polyethylene resin composition selected and collected from used home appliances. The parts added and mixed were kneaded in an extruder while being heated and melted at 180 ° C. to produce 3 to 5 mm pellets. Next, a multipurpose test piece A was molded by an injection molding machine under conditions of a resin temperature (molding temperature) of 180 ° C. and a mold temperature of 50 ° C. Table 5 shows the results obtained by conducting a thermal oxidative degradation test at 140 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the recycled polyethylene resin composition of the present invention has a good appearance, and the tensile elongation at break after thermal oxidation degradation test is 100% after 1500 hours and 100% after 3000 hours, and the tensile elongation at break retention is 100%. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 3), the effect of improving the thermal stability is seen, and heat up to the equivalent of the new polyethylene resin (corresponding to Reference Example 2) It was found that the stability can be improved.

(実施例22)
使用済み家電製品より選別回収したポリスチレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸0.05重量部および酢酸トコフェロール0.05重量部を添加して混合したものを、220℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)220℃、金型温度55℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表5に示す。この結果、本発明の再生ポリスチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が72%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例5に該当)に比べて、熱安定性の改善効果がみられ、新材ポリスチレン樹脂(参考例3に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 22)
As a metal scavenger, 0.05 parts by weight of ethylenediaminetetraacetic acid and 0.05 parts by weight of tocopherol acetate were added to and mixed with 100 parts by weight of a polystyrene resin composition selected and collected from used home appliances. The mixture was kneaded in an extruder while being heated and melted at 3 ° C. to produce 3 to 5 mm pellets. Next, the multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 55 ° C. Table 5 shows the results obtained by conducting the thermal oxidative degradation test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the recycled polystyrene resin composition of the present invention has a good appearance, and the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours and 72% after 3000 hours, and the tensile elongation at break retention rate is 72%. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 5), an effect of improving the thermal stability is observed, and heat is increased to a level equivalent to the new polystyrene resin (corresponding to Reference Example 3). It was found that the stability can be improved.

(実施例23)
使用済み家電製品より選別回収したポリスチレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸0.05重量部、ニトリロ三酢酸0.05重量部およびヒドロキシエチルエチレンジアミン三酢酸0.05重量部を添加して混合したものを、220℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)220℃、金型温度55℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表5に示す。この結果、本発明の再生ポリスチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が74%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例5に該当)に比べて、熱安定性の改善効果がみられ、新材ポリスチレン樹脂(参考例3に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 23)
As a metal scavenger, 0.05 parts by weight of ethylenediaminetetraacetic acid, 0.05 parts by weight of nitrilotriacetic acid and 0.05 parts of hydroxyethylethylenediaminetriacetic acid are used as metal scavengers with respect to 100 parts by weight of the polystyrene resin composition selected and collected from used home appliances. The mixture obtained by adding parts by weight was kneaded in an extruder while being heated and melted at 220 ° C. to produce 3 to 5 mm pellets. Next, the multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 55 ° C. Table 5 shows the results obtained by conducting the thermal oxidative degradation test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the regenerated polystyrene resin composition of the present invention has a good appearance, and the tensile elongation at break after thermal oxidation degradation test is 100% after 1500 hours and 74% after 3000 hours, and the tensile elongation at break retention is 74%. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 5), an effect of improving the thermal stability is observed, and heat is increased to a level equivalent to the new polystyrene resin (corresponding to Reference Example 3). It was found that the stability can be improved.

(実施例24)
使用済み家電製品より選別回収したポリスチレン樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸5重量部、酢酸トコフェロール5重量部および安定化剤として、ステアリン酸5重量部を添加して混合したものを、220℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)220℃、金型温度55℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表5に示す。この結果、本発明の再生ポリスチレン樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が100%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例5に該当)に比べて、熱安定性の改善効果がみられ、新材ポリスチレン樹脂(参考例3に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 24)
5 parts by weight of ethylenediaminetetraacetic acid, 5 parts by weight of tocopherol acetate and 5 parts by weight of stearic acid as a metal scavenger are added to 100 parts by weight of a polystyrene resin composition selected and collected from used home appliances. The mixture was kneaded in an extruder while being heated and melted at 220 ° C. to produce 3 to 5 mm pellets. Next, the multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 55 ° C. Table 5 shows the results obtained by conducting the thermal oxidative degradation test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the regenerated polystyrene resin composition of the present invention has a good appearance, and the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours and 100% after 3000 hours, and the tensile elongation at break retention is 100%. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 5), an effect of improving the thermal stability is observed, and heat is increased to a level equivalent to the new polystyrene resin (corresponding to Reference Example 3). It was found that the stability can be improved.

(実施例25)
使用済み家電製品より選別回収したABS樹脂組成物100重量部に対して、金属捕捉剤として、エチレンジアミン四酢酸0.05重量部およびヒドロキシエチルエチレンジアミン三酢酸0.05重量部を添加して混合したものを、240℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)240℃、金型温度60℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表5に示す。この結果、本発明の再生ABS樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が73%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例7に該当)に比べて、熱安定性の改善効果がみられ、新材ABS樹脂(参考例4に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 25)
What added and mixed 0.05 parts by weight of ethylenediaminetetraacetic acid and 0.05 parts by weight of hydroxyethylethylenediaminetriacetic acid as metal scavengers to 100 parts by weight of ABS resin composition selected and collected from used home appliances Was kneaded in an extruder while being heated and melted at 240 ° C. to produce 3 to 5 mm pellets. Next, the multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 240 ° C. and a mold temperature of 60 ° C. Table 5 shows the results obtained by conducting the thermal oxidative degradation test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the recycled ABS resin composition of the present invention has a good appearance, and the tensile elongation at break after thermal oxidation degradation test is 100% after 1500 hours and 73% after 3000 hours, and the tensile elongation at break retention is 73%. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 7), an effect of improving the thermal stability is seen, and heat up to the equivalent of the new ABS resin (corresponding to Reference Example 4). It was found that the stability can be improved.

(実施例26)
使用済み家電製品より選別回収したABS樹脂組成物100重量部に対して、金属捕捉剤として、ニトリロ三酢酸5重量部、ヒドロキシエチルエチレンジアミン三酢酸5重量部および安定化剤として、オレイン酸5重量部を添加して混合したものを、240℃で、加熱溶融しながら押出機の中で混練して、3〜5mmのペレットを作製した。次いで、射出成形機により、樹脂温度(成形温度)240℃、金型温度60℃の条件で、多目的試験片A形を成形した。得られた試験片を用いて、90℃で熱酸化劣化試験を0、1500、3000時間行ない、引張試験による引張破断伸び保持率(%)を測定した結果を表5に示す。この結果、本発明の再生ABS樹脂組成物は、外観が良好で、熱酸化劣化試験後の引張破断伸び率が、1500時間後が100%、3000時間後が100%で、引張破断伸び保持率が50%以上であり、金属捕捉剤を添加する前(比較例7に該当)に比べて、熱安定性の改善効果がみられ、新材ABS樹脂(参考例4に該当)相当以上まで熱安定性が改善できることがわかった。
(Example 26)
5 parts by weight of nitrilotriacetic acid, 5 parts by weight of hydroxyethylethylenediamine triacetic acid and 5 parts by weight of oleic acid as a metal scavenger for 100 parts by weight of ABS resin composition selected and collected from used home appliances The mixture was added and mixed at 240 ° C. while being heated and melted, and kneaded in an extruder to produce 3 to 5 mm pellets. Next, the multipurpose test piece A was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 240 ° C. and a mold temperature of 60 ° C. Table 5 shows the results obtained by conducting the thermal oxidative degradation test at 90 ° C. for 0, 1500 and 3000 hours using the obtained test pieces and measuring the tensile elongation at break (%) by the tensile test. As a result, the recycled ABS resin composition of the present invention has a good appearance, and the tensile elongation at break after the thermal oxidative degradation test is 100% after 1500 hours and 100% after 3000 hours. Is 50% or more, compared to before the addition of the metal scavenger (corresponding to Comparative Example 7), an effect of improving the thermal stability is seen, and heat up to the equivalent of the new ABS resin (corresponding to Reference Example 4). It was found that the stability can be improved.

Figure 2011153251
Figure 2011153251

以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。   Although the embodiments and examples of the present invention have been described as described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

ポリオレフィン系樹脂組成物およびポリスチレン系樹脂組成物の再生に限られず、酸化チタンや酸化アルミニウムにより表面処理した酸化チタンを含む樹脂に対しても金属捕捉剤を添加して樹脂を再生させることができる。   The resin is not limited to regeneration of the polyolefin-based resin composition and the polystyrene-based resin composition, and the resin can be regenerated by adding a metal scavenger to a resin containing titanium oxide surface-treated with titanium oxide or aluminum oxide.

Claims (6)

回収ポリオレフィン系樹脂組成物100重量部に対して、金属捕捉剤0.05〜10重量部を含有したことを特徴とする再生ポリオレフィン系樹脂組成物。   A recycled polyolefin resin composition comprising 0.05 to 10 parts by weight of a metal scavenger with respect to 100 parts by weight of a recovered polyolefin resin composition. 前記金属捕捉剤は、エチレンジアミン四酢酸、ニトリロ三酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルエチレンジアミン三酢酸、酢酸トコフェロールのいずれか一種以上である請求項1に記載の再生ポリオレフィン系樹脂組成物。   The regenerated polyolefin resin composition according to claim 1, wherein the metal scavenger is at least one of ethylenediaminetetraacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, hydroxyethylethylenediaminetriacetic acid, and tocopherol acetate. 前記再生ポリオレフィン系樹脂組成物は、炭素数8〜24の脂肪酸を含有した請求項1または2に記載の再生ポリオレフィン系樹脂組成物。   The regenerated polyolefin resin composition according to claim 1 or 2, wherein the regenerated polyolefin resin composition contains a fatty acid having 8 to 24 carbon atoms. 回収ポリスチレン系樹脂組成物100重量部に対して、金属捕捉剤0.05〜10重量部を含有したことを特徴とする再生ポリスチレン系樹脂組成物。   A recycled polystyrene resin composition comprising 0.05 to 10 parts by weight of a metal scavenger with respect to 100 parts by weight of a recovered polystyrene resin composition. 前記金属捕捉剤は、エチレンジアミン四酢酸、ニトリロ三酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルエチレンジアミン三酢酸、酢酸トコフェロールのいずれか一種以上である請求項4に記載の再生ポリスチレン系樹脂組成物。   The regenerated polystyrene resin composition according to claim 4, wherein the metal scavenger is at least one of ethylenediaminetetraacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, hydroxyethylethylenediaminetriacetic acid, and tocopherol acetate. 前記再生ポリスチレン系樹脂組成物は、炭素数8〜24の脂肪酸を含有した請求項4または5に記載の再生ポリスチレン系樹脂組成物。   The regenerated polystyrene resin composition according to claim 4 or 5, wherein the regenerated polystyrene resin composition contains a fatty acid having 8 to 24 carbon atoms.
JP2010016695A 2010-01-28 2010-01-28 Recycled polyolefin resin composition and recycled polystyrene resin composition Active JP5177575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016695A JP5177575B2 (en) 2010-01-28 2010-01-28 Recycled polyolefin resin composition and recycled polystyrene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010016695A JP5177575B2 (en) 2010-01-28 2010-01-28 Recycled polyolefin resin composition and recycled polystyrene resin composition

Publications (2)

Publication Number Publication Date
JP2011153251A true JP2011153251A (en) 2011-08-11
JP5177575B2 JP5177575B2 (en) 2013-04-03

Family

ID=44539444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016695A Active JP5177575B2 (en) 2010-01-28 2010-01-28 Recycled polyolefin resin composition and recycled polystyrene resin composition

Country Status (1)

Country Link
JP (1) JP5177575B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162674A (en) * 2011-02-08 2012-08-30 Mitsubishi Electric Corp Reclaimed polyolefin resin composition
JP2015529692A (en) * 2012-06-13 2015-10-08 サイテク・テクノロジー・コーポレーシヨン Stabilizer compositions containing substituted chroman compounds and methods of use
JP2020007424A (en) * 2018-07-05 2020-01-16 三菱電機株式会社 Regenerated styrene resin composition
JP2021195533A (en) * 2020-06-16 2021-12-27 リケンテクノス株式会社 Thermoplastic resin composition
US11267951B2 (en) 2010-12-13 2022-03-08 Cytec Technology Corp. Stabilizer compositions containing substituted chroman compounds and methods of use
US11312043B2 (en) 2010-12-13 2022-04-26 Cytec Technology Corp. Processing additives and uses of same in rotational molding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130885A (en) * 2005-11-10 2007-05-31 Sharp Corp Recycling method of plastic waste, manufacturing method of plastic molding using the same and plastic molding
JP2007211128A (en) * 2006-02-09 2007-08-23 Mitsubishi Electric Corp Reclaimed polyolefinic resin composition and auxiliary agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130885A (en) * 2005-11-10 2007-05-31 Sharp Corp Recycling method of plastic waste, manufacturing method of plastic molding using the same and plastic molding
JP2007211128A (en) * 2006-02-09 2007-08-23 Mitsubishi Electric Corp Reclaimed polyolefinic resin composition and auxiliary agent

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11267951B2 (en) 2010-12-13 2022-03-08 Cytec Technology Corp. Stabilizer compositions containing substituted chroman compounds and methods of use
US11312043B2 (en) 2010-12-13 2022-04-26 Cytec Technology Corp. Processing additives and uses of same in rotational molding
JP2012162674A (en) * 2011-02-08 2012-08-30 Mitsubishi Electric Corp Reclaimed polyolefin resin composition
JP2015529692A (en) * 2012-06-13 2015-10-08 サイテク・テクノロジー・コーポレーシヨン Stabilizer compositions containing substituted chroman compounds and methods of use
JP2018053252A (en) * 2012-06-13 2018-04-05 サイテク・テクノロジー・コーポレーシヨン Stabilizer compositions containing substituted chroman compounds and methods of use
JP2020007424A (en) * 2018-07-05 2020-01-16 三菱電機株式会社 Regenerated styrene resin composition
JP7085923B2 (en) 2018-07-05 2022-06-17 三菱電機株式会社 Recycled styrene resin composition
JP2021195533A (en) * 2020-06-16 2021-12-27 リケンテクノス株式会社 Thermoplastic resin composition

Also Published As

Publication number Publication date
JP5177575B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5177575B2 (en) Recycled polyolefin resin composition and recycled polystyrene resin composition
RU2147309C1 (en) Composition of all-purpose mother blend
JP5478014B2 (en) Recycled polystyrene resin composition
JP2013209669A (en) Thermoplastic resin composition for blow molding and product of blow molding
JP4793005B2 (en) Recycled polyolefin resin composition
JP6121927B2 (en) Recycled thermoplastic resin composition
JP2009073989A (en) Resin composition containing fly ash
JP7085923B2 (en) Recycled styrene resin composition
KR20130008524A (en) Use of mixtures for producing impact resistant modified thermoplastic compositions
JP2006182841A (en) Thermoplastic resin composition and molded product using the same
JP5269934B2 (en) Thermoplastic resin composition for foam molding excellent in light resistance and foam-molded product thereof
JP2004323635A (en) Styrene resin composition and molded article
KR101492032B1 (en) Heat-Resistant ABS Resin Composition With Excellent Processability and Resistance for Discoloration at High Temperature and Method for Preparing the Same
JP2012025855A (en) Processing method of rubber-containing polylactic acid-based thermoplastic resin composition, and regenerated thermoplastic resin composition
JP5378429B2 (en) Recycled polyolefin resin composition
JP7359165B2 (en) Resin composition, thermoplastic resin composition, and thermoplastic resin molded body
JP6687330B2 (en) Styrene resin composition and molded article
JP5306847B2 (en) Environmentally friendly thermoplastic resin composition
JP5930983B2 (en) Recycled thermoplastic resin composition, method for producing the same, and molded article using the same
JP2008222749A (en) Crystalline polypropylene-based resin composition
JP2011126995A (en) Method for producing reclaimed abs resin composition
JP2006291131A (en) Modified polypropylene resin composition and its production method
KR101746265B1 (en) Environment friendly thermoplastic resin composition having improved weldline and plastics comprising same
JP3725440B2 (en) Transparent polystyrene resin composition
US20110166312A1 (en) Rheology modifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5177575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250